US20020132784A1 - Cytokine related treatments of disease - Google Patents
Cytokine related treatments of disease Download PDFInfo
- Publication number
- US20020132784A1 US20020132784A1 US10/136,745 US13674502A US2002132784A1 US 20020132784 A1 US20020132784 A1 US 20020132784A1 US 13674502 A US13674502 A US 13674502A US 2002132784 A1 US2002132784 A1 US 2002132784A1
- Authority
- US
- United States
- Prior art keywords
- response
- patient
- administering
- compound
- nucleoside
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 17
- 102000004127 Cytokines Human genes 0.000 title abstract description 23
- 108090000695 Cytokines Proteins 0.000 title abstract description 23
- 201000010099 disease Diseases 0.000 title abstract description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 title abstract description 14
- 150000001875 compounds Chemical class 0.000 claims abstract description 61
- 230000004044 response Effects 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims description 18
- 230000009385 viral infection Effects 0.000 claims description 15
- 208000036142 Viral infection Diseases 0.000 claims description 14
- 108010002350 Interleukin-2 Proteins 0.000 claims description 9
- 125000000623 heterocyclic group Chemical group 0.000 claims description 9
- 102000000588 Interleukin-2 Human genes 0.000 claims description 8
- 108010074328 Interferon-gamma Proteins 0.000 claims description 7
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims description 7
- 208000015181 infectious disease Diseases 0.000 claims description 6
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 claims description 4
- 102100037850 Interferon gamma Human genes 0.000 claims description 4
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 150000003973 alkyl amines Chemical class 0.000 claims description 3
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims description 3
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 230000037396 body weight Effects 0.000 claims 2
- 208000031886 HIV Infections Diseases 0.000 claims 1
- 208000037357 HIV infectious disease Diseases 0.000 claims 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims 1
- 230000028993 immune response Effects 0.000 claims 1
- 238000001727 in vivo Methods 0.000 claims 1
- 239000002342 ribonucleoside Substances 0.000 claims 1
- 239000002777 nucleoside Substances 0.000 abstract description 44
- 230000000694 effects Effects 0.000 abstract description 23
- 229940079593 drug Drugs 0.000 abstract description 20
- 239000003814 drug Substances 0.000 abstract description 20
- 150000003833 nucleoside derivatives Chemical class 0.000 abstract description 17
- 125000003835 nucleoside group Chemical group 0.000 abstract description 11
- 230000005856 abnormality Effects 0.000 abstract description 10
- 238000013270 controlled release Methods 0.000 abstract description 4
- 239000002552 dosage form Substances 0.000 abstract description 4
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 14
- 229960000329 ribavirin Drugs 0.000 description 13
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 12
- -1 11-6 Proteins 0.000 description 11
- XKMLYUALXHKNFT-UUOKFMHZSA-N Guanosine-5'-triphosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XKMLYUALXHKNFT-UUOKFMHZSA-N 0.000 description 9
- 206010020751 Hypersensitivity Diseases 0.000 description 9
- 206010028980 Neoplasm Diseases 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 235000013902 inosinic acid Nutrition 0.000 description 8
- FVRDYQYEVDDKCR-DBRKOABJSA-N tiazofurine Chemical compound NC(=O)C1=CSC([C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)=N1 FVRDYQYEVDDKCR-DBRKOABJSA-N 0.000 description 8
- 208000023275 Autoimmune disease Diseases 0.000 description 7
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 206010061217 Infestation Diseases 0.000 description 6
- 230000007815 allergy Effects 0.000 description 6
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229960003723 tiazofurine Drugs 0.000 description 6
- 239000003443 antiviral agent Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 210000004698 lymphocyte Anatomy 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- 210000001744 T-lymphocyte Anatomy 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 102100040247 Tumor necrosis factor Human genes 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 0 Cl.[2*]C1([7*])C(N2C=NC(C(=N)N)=N2)OC(CO)C1([3*])[8*] Chemical compound Cl.[2*]C1([7*])C(N2C=NC(C(=N)N)=N2)OC(CO)C1([3*])[8*] 0.000 description 3
- 108010036941 Cyclosporins Proteins 0.000 description 3
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 3
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 3
- 102000008070 Interferon-gamma Human genes 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 102000004388 Interleukin-4 Human genes 0.000 description 3
- 230000024932 T cell mediated immunity Effects 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 230000002902 bimodal effect Effects 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 229930182912 cyclosporin Natural products 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 210000002443 helper t lymphocyte Anatomy 0.000 description 3
- 230000009610 hypersensitivity Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 201000005569 Gout Diseases 0.000 description 2
- 241000711549 Hepacivirus C Species 0.000 description 2
- 108010087227 IMP Dehydrogenase Proteins 0.000 description 2
- 102000006674 IMP dehydrogenase Human genes 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 102000003814 Interleukin-10 Human genes 0.000 description 2
- 108010002616 Interleukin-5 Proteins 0.000 description 2
- 102000000743 Interleukin-5 Human genes 0.000 description 2
- 208000019695 Migraine disease Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 241000725643 Respiratory syncytial virus Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 229960004150 aciclovir Drugs 0.000 description 2
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229960005305 adenosine Drugs 0.000 description 2
- 239000013566 allergen Substances 0.000 description 2
- 230000002141 anti-parasite Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000003429 antifungal agent Substances 0.000 description 2
- 239000003096 antiparasitic agent Substances 0.000 description 2
- 229940125687 antiparasitic agent Drugs 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- SNHRLVCMMWUAJD-SUYDQAKGSA-N betamethasone valerate Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(OC(=O)CCCC)[C@@]1(C)C[C@@H]2O SNHRLVCMMWUAJD-SUYDQAKGSA-N 0.000 description 2
- 229960004311 betamethasone valerate Drugs 0.000 description 2
- 125000001246 bromo group Chemical group Br* 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 239000003241 dermatological agent Substances 0.000 description 2
- VWVSBHGCDBMOOT-IIEHVVJPSA-N desoximetasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@H](C(=O)CO)[C@@]1(C)C[C@@H]2O VWVSBHGCDBMOOT-IIEHVVJPSA-N 0.000 description 2
- OFKDAAIKGIBASY-VFGNJEKYSA-N ergotamine Chemical class C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2C(C3=CC=CC4=NC=C([C]34)C2)=C1)C)C1=CC=CC=C1 OFKDAAIKGIBASY-VFGNJEKYSA-N 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 206010027599 migraine Diseases 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 238000011294 monotherapeutic Methods 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229960000988 nystatin Drugs 0.000 description 2
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- 150000002972 pentoses Chemical class 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- SDWIOXKHTFOULX-PDNLFSCWSA-N ribavirin monophosphate Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](COP(O)(O)=O)O1 SDWIOXKHTFOULX-PDNLFSCWSA-N 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 229960004880 tolnaftate Drugs 0.000 description 2
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 2
- 229940035306 topicort Drugs 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical class ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- XEDONBRPTABQFB-UHFFFAOYSA-N 4-[(2-formyl-3-hydroxyphenoxy)methyl]benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1COC1=CC=CC(O)=C1C=O XEDONBRPTABQFB-UHFFFAOYSA-N 0.000 description 1
- YLDCUKJMEKGGFI-QCSRICIXSA-N 4-acetamidobenzoic acid;9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one;1-(dimethylamino)propan-2-ol Chemical compound CC(O)CN(C)C.CC(O)CN(C)C.CC(O)CN(C)C.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.CC(=O)NC1=CC=C(C(O)=O)C=C1.O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(NC=NC2=O)=C2N=C1 YLDCUKJMEKGGFI-QCSRICIXSA-N 0.000 description 1
- 208000026872 Addison Disease Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 208000015943 Coeliac disease Diseases 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 208000007984 Female Infertility Diseases 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 206010061192 Haemorrhagic fever Diseases 0.000 description 1
- 208000001204 Hashimoto Disease Diseases 0.000 description 1
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 1
- 108010034145 Helminth Proteins Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000001688 Herpes Genitalis Diseases 0.000 description 1
- 208000000903 Herpes simplex encephalitis Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 108091058560 IL8 Proteins 0.000 description 1
- GRSZFWQUAKGDAV-KQYNXXCUSA-N IMP Chemical compound O[C@@H]1[C@H](O)[C@@H](COP(O)(O)=O)O[C@H]1N1C(NC=NC2=O)=C2N=C1 GRSZFWQUAKGDAV-KQYNXXCUSA-N 0.000 description 1
- 206010021928 Infertility female Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 241000712431 Influenza A virus Species 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000013462 Interleukin-12 Human genes 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000004890 Interleukin-8 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 102000000585 Interleukin-9 Human genes 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 208000009388 Job Syndrome Diseases 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010024229 Leprosy Diseases 0.000 description 1
- HLFSDGLLUJUHTE-SNVBAGLBSA-N Levamisole Chemical compound C1([C@H]2CN3CCSC3=N2)=CC=CC=C1 HLFSDGLLUJUHTE-SNVBAGLBSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 210000000447 Th1 cell Anatomy 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- 208000024799 Thyroid disease Diseases 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PYMYPHUHKUWMLA-MROZADKFSA-N aldehydo-L-ribose Chemical compound OC[C@H](O)[C@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-MROZADKFSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000001399 anti-metabolic effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 201000004946 genital herpes Diseases 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 208000024908 graft versus host disease Diseases 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 244000000013 helminth Species 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 206010051040 hyper-IgE syndrome Diseases 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 206010023332 keratitis Diseases 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 229960001614 levamisole Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000002969 morbid Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940127073 nucleoside analogue Drugs 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 208000005987 polymyositis Diseases 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 201000008827 tuberculosis Diseases 0.000 description 1
- 229950009795 tucaresol Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 230000005951 type IV hypersensitivity Effects 0.000 description 1
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/66—Phosphorus compounds
- A61K31/675—Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
Definitions
- the present invention relates to the field of nucleosides.
- B lymphocytes B cells
- T lymphocytes T cells
- T cells are generally considered to fall into two subclasses, helper T cells and cytotoxic T cells.
- Helper T cells activate other lymphocytes, including B cells and cytotoxic T cells, and macrophages, by releasing soluble protein mediators called cytokines that are involved in cell-mediated immunity.
- lymphokines are a subset of cytokines.
- Th1 and Th2 helper T cells are also generally considered to fall into two subclasses, Th1 and Th2.
- Th1 cells also known as Type 1 cells
- IL-2 interleukin 2
- TNF ⁇ tumor necrosis factor
- IFN ⁇ interferon gamma
- Th2 cells also known as Type 2 cells
- IL4 cells produce interleukins, IL4, IL-5, 11-6, IL-9, IL-10 and IL-13, and are primarily involved in assisting humoral immune responses such as those seen in response to allergens, e.g. IgE and 1gG4 antibody isotype switching (Mosmann, 1989 , Annu Rev Immunol, 7:145-173).
- Th1 and Th2 “responses” are meant to include the entire range of effects resulting from induction of Th1 and Th2 lymphocytes, respectively.
- responses include variation in production of the corresponding cytokines through transcription, translation, secretion and possibly other mechanisms, increased proliferation of the corresponding lymphocytes, and other effects associated with increased production of cytokines, including motility effects.
- nucleosides which are defined herein to include derivatives and analogs of native nucleosides
- lymphocyte responses we have shown that either of Th1 and Th2 responses can be selectively suppressed while the other is either induced or left relatively unaffected, and either of Th1 or Th2 responses can be selectively induced while the other is either suppressed or left relatively unaffected.
- nucleosides effective in selectively modulating Th1 and Th2 responses relative to one another tend to have a bimodal effect.
- nucleosides that tend to generally suppress or induce both Th1 and Th1 activity at a relatively higher dose tend to selectively modulate Th1 and Th2 relative to each other at relatively lower doses.
- nucleosides and other compounds selectively modulate Th1 and Th2 responses relative to each other are still unclear.
- One possibility contemplated by the present inventors is that effective nucleosides alter the pool of guanosine triphosphate (GTP), which in turn affects the rate at which cytokines are produced.
- GTP guanosine triphosphate
- relatively large variations in available GTP are sufficient to affect concentrations of both Th1 and Th2 cytokines, while relatively smaller variations in available GTP tend to affect concentrations of Th1 and Th2 cytokines to different extents.
- Tumor cells are characterized by high levels of inosine monophosphate dehydrogenase (IMP DH) activity, and it is known that IMP DH is the rate-limiting enzyme of GTP biosynthesis. Weber, G., IMP Dehydrogenase and GTP as Targets in Human Leukemia Treatment , Adv. Exp. Med. Biol. 309B:287-292 (1991).
- IMP DH inosine monophosphate dehydrogenase
- Tiazofurin has been shown to selectively block IMP DH activity and deplete guanine nucleotide pools, which in turn forces various tumors into remission. Weber, G., Critical Issues in Chemotherapy with Tiazofurill , Adv. Enzyme Regul. 29:75-95 (1989). Typical initial doses of Tiazofurin are about 4,400 mg/m 2 , with consolidation doses of about 1100 to 3300 mg/m 2 . At these levels synthesis of both Th1 and Th2 responses are greatly reduced, thereby essentially shutting down much of the immune system.
- Ribavirin 1- ⁇ -D-ribofuranosyl-1,2,4-triazole-3-carboxamide
- Ribavirin is a potent, broad-spectrum antiviral agent, which has also been shown to inhibit IMP DH. Yamada, Y. et al., Action of the Active Metabolites of Tiazofurin and Ribavirin on Purified IMP Dehydrogenase , Biochem. 27:2193-2196 (1988). Ribavirin proceeds under a different mechanism than Tiazofurin in inhibiting IMP DH, however, acting on a different site on the enzyme molecule.
- Ribavirin is converted to its active metabolite, ribavirin-monophosphate (RMP), which inhibits the enzyme at the IMP-XMP site of IMP DH.
- RMP ribavirin-monophosphate
- the affinity of Ribavirin's active form to the enzyme is higher than that of the natural metabolite.
- Ribavirin reduces IMP DH activity to such an extent that both Th1 and Th2 responses are inhibited.
- Ribavirin promotes a Th1 response and suppresses a Th2 response.
- Th1 and Th2 responses can be useful in treating a wide variety of conditions and diseases, ranging from infections, infestations, tumors and hypersensitivities to autoimmune diseases.
- This application relates to the use or monocyclic nucleosides in a relatively low dosage range to selectively modulate Th1 and Th2 responses relative to each other in the treatment of disease.
- administration of a nucleoside or other compound reduces the dosage at which a primary drug is administered.
- an abnormality reflected in increased response in one group of cytokines is treated by administering a nucleoside or other compound that increases response in another group of cytokines.
- a patient is prophylactically treated by administering a nucleoside or other compound that selectively reduces Th1 activity without significantly reducing Th2 activity.
- a nucleoside or other compound is administered to a patient at a dose that reduces the patient's GTP pool to a degree that selectively reduces one of the Th1 or Th2 responses without significantly reducing the other response.
- Controlled release dosage forms are particularly contemplated to achieve that result.
- nucleosides contemplated to be effective in this manner are D- and L-forms of monocyclic nuclcosides corresponding to Formula 1.
- anti-viral agents such as Ribavirin, acyclovir, and AZTTM
- anti-fungal agents such as tolnaftate, FungizoneTM, LotriminTM, MyeelexTM, Nystatin and Amphoteracin
- anti-parasitics such as MintezolTM, NiclocideTM, VermoxTM, and FlagylTM
- bowel agents such as ImmodiumTM, LomotilTM and PhazymeTM
- anti-tumor agents such as AdriamycinTM, CytoxanTM, ImuranTM, Methotrxate, MithracinTM, TiazofurinTM, TaxolTM
- dermatologic agents such as AclovateTM, CyclocortTM, DenorexTM, FloroneTM, OxsoralenTM, coal tar and salicylic acid
- migraine preparations such as ergotamine compounds
- steroids and immunosuppresants not listed above, including cyclosporins, Diprosone
- ⁇ and “ ⁇ ” indicate the specific stereochemical configuration of a substituent at an asymmetric carbon atom in a chemical structure as drawn.
- abnormality refers to a condition associated with a disease.
- Th1 and/or Th2 responses resulting from an autoimmune disease are considered herein to be abnormalities of the corresponding cytokine(s) even though such cytokine responses may commonly result from the disease.
- aryl refers to a monovalent unsaturated aromatic carbocyclic radical having a single ring (e.g., phenyl) or two condensed rings (e.g., naphthyl), which can optionally be substituted with hydroxyl, lower alky, chloro, and/or cyano.
- the term “effective amount” refers to the amount of a compound of formula (I) that will restore immune function to normal levels, or increase immune function above normal levels in order to eliminate infection.
- enantiomers refers to a pair of stereoisomers that are non-superimposable mirror images of each other.
- a mixture of a pair of enantiomers, in a 1:1 ratio, is a “racemic” mixture.
- heterocycle refers to a monovalent saturated or unsaturated carbocyclic radical having at least one hetero atom, such as N, 0 or S, within the ring each available position of which can be optionally substituted, independently, with, e.g., hydroxy, oxo, amino, imino, lower alkyl, bromo, chloro and/or cyano. Included within this class of substituents are purines, pyrimidines.
- immunomodulators refers to natural or synthetic products capable of modifying the normal or aberrant immune system through stimulation or suppression.
- isomers refers to different compounds that have the same formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
- L-configuration is used throughout the present invention to describe the chemical configuration of the ribofuranosyl moiety of the compounds that is linked to the nucleobases.
- the L-configuration of the sugar moiety of compounds of the present invention contrasts with the D-configuration of ribose sugar moieties of the naturally occurring nucleosides such as cytidine, adenosine, thymidine, guanosine and uridine.
- lower alkyl refers to methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, 1-butyl or n-hexyl. This term is further exemplified to a cyclic, branched or straight chain from one to six carbon atoms.
- the term “monocyclic” refers to a monovalent saturated carbocyclic radical having at least one hetero atom, such as 0, N, S, Se or P, within the ring, each available position of which can be optionally substituted, independently, with a sugar moiety or any other groups like bromo, chloro and/or cyano, so that the monocyclic ring system eventually aromatized [e.g., Thymidine].
- nucleoside refers to a compound composed of any pentose or modified pentose moiety attached to a specific position of a heterocycle or to the natural position of a purine (9-position) or pyrimidine (1-position) or to the equivalent position in an analog, including especially both D- and L-forms of nitrogenous monocyclic heterocycles depicted in FIG. 1.
- C-nucleosides is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base.
- the linkage originates from the C-1 position of the ribose sugar moiety and joins the carbon of the heterocyclic base.
- the linkage that forms in C-nucleosides is carbon-to-carbon type.
- D-nucleosides refers to nucleoside compounds that have a D-ribose sugar moiety (e.g., Adenosine).
- L-nucleosides refers to nucleoside compounds that have an L-ribose sugar moiety.
- N-nucleosides is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base.
- the linkage originates from the C-1 position of the ribose sugar moiety and joins the nitrogen of the heterocyclic base.
- the linkage that forms in N-nucleosides is carbon to nitrogen type.
- nucleotide refers to a phosphate ester substituted on the 5-position of a nucleoside.
- pharmaceutically acceptable salts refers to any salt derived from inorganic and organic acids or bases.
- protecting group refers to a chemical group that is added to, oxygen or nitrogen atom to prevent its further reaction during the course of derivatization of other moieties in the molecule in which the oxygen or nitrogen is located.
- oxygen and nitrogen protecting groups arc known to those skilled in the art of organic synthesis.
- pyrimidine refers to nitrogenous monocyclic heterocycles depicted in FIG. 1.
- tumor refers broadly to all manner of autonomous morbid growth of tissue that may or may not become malignant, including all manner of neoplasms and cancers.
- treating refers to executing a protocol, which may include administering one or more drugs to a patient, in an effort to alleviate signs or symptoms of the disease.
- treating do not require complete alleviation of signs or symptoms, do not require a cure, and specifically include protocols which have only marginal effect on the patient.
- Contemplated combinations in one aspect of the present invention generally include a primary or “first” drug and another or “second” drug, and contemplated methods involve selecting and combining the first and second drugs in combination therapies.
- a disease is identified which is known to produce an abnormality in at least one cytokine in a patient.
- the first drug is selected from among those compounds demonstrated to treat the disease at a monotherapeutic dosage
- the second drug which may be a bimodal nucleoside modulator as herein described, is selected from among those compounds known to exacerbate the very abnormality produced by the disease when administered within a given dosage range.
- the first drug is then administered at less than the monotherapeutic dosage and the second drug is administered in a dosage outside the dosage range that exacerbates the abnormality. Since the second drug has a bimodal activity with respect to at least some of the cytokines of interest, the combination is still effective to treat the disease, and administration of the second drug allows reduction in the administered dosage of the primary or first drug.
- anti-viral agents such as interferon, including but not limited to interferon ⁇ and ⁇ , Ribavirin, acyclovir, and AZTTM; anti-fungal agents such as tolnaftate, FungizoneTM, LotriminTM, MycelexTM, Nystatin and Amphoteracin; anti-parasitics such as MintezolTM, NiclocideTM, VermoxTM, and FlagylTM, bowel agents such as ImmodiumTM, LomotilTM and PhazymeTM; anti-tumor agents such as interferon ⁇ and ⁇ , AdriamycinTM, CytoxanTM, ImuranTM, Methotrexate, MithracinTM, TiazofurinTM, TaxolTM; dermatologic agents such as AclovateTM, CyclocortTM, DenorexTM, FloroneTM, OxsoralenTM, coal tar and salicylic
- Especially preferred primary drugs are AZT, 3TC, 8-substituted guanosine analogs, 2,3-dideoxynucleosides, interleukin II, interfeons such as I ⁇ B-interferons, tucaresol, levamisole, isoprinosine and cyclolignans.
- Examples of secondary drugs contemplated to be effective in the invention are D- and L-forms of monocyclic nucleosides corresponding to Formula 1.
- Other nucleoside and non-nucleoside compounds effective in the invention are readily identified through screening of such compounds in vitro for effect on IL-2, TNF- ⁇ , IFN- ⁇ , IL-4 and IL-5 as described in PCT/US97/00600.
- Formula 1 compounds are:
- R 2 , R 3 , R 7 and R 8 are independently selected from H, OH, CN, N 3 , halogens, CH 2 OH, NH 2 , OCH 3 , NHCH 3 , ONHCH 3 , SCH 3 , SPh, alkenyl, lower alkyl, lower alkyl amines or substituted heterocycles.
- an abnormality reflected in increased response in one group of cytokines is treated by administering a nucleoside or other compound that increases response in another group of cytokines.
- a nucleoside or other compound that increases response in another group of cytokines results in an abnormally elevated Th2 response.
- the abnormality is treated by administering Ribavirin at between 600 mg/day and 1,000 mg/day (for a typical adult), at which dose the Th1 response is induced.
- the treatment is effective because Th1 and Th2 have a teeter-totter type relationship in this instance, such that the Th2 response is suppressed.
- a patient is prophylactically treated by administering a nucleoside or other compound that selectively reduces Th1 activity without significantly reducing Th2 activity.
- the prophylaxis can, for example, prepare the patient for organ or tissue transplant, or for anticipated contact with allergens.
- a nucleoside or other compound is administered to a patient at a dose that reduces the patient's GTP pool to a degree that selectively reduces one of the Th1 or Th2 responses without significantly reducing the other response.
- Controlled release dosage forms are particularly contemplated to achieve that result, especially formulations which maintain the dose of the compound in the serum within a desirable range.
- the serum level should be maintained between about 2 ⁇ M and about 5 ⁇ M.
- a controlled release formulation may advantageously have an in vitro dissolution rate when measured by the USP Paddle Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) between about 15% and 40% by weight of the compound after 1 hour, between about 30% and about 50% by weight of the compound after 2 hours, about 50% and 70% by weight of the compound after 4 hours, between about 60% and about 80% by weight of the compound after 6 hours
- the claimed combinations will be used to treat a wide variety of conditions, and in fact any condition which responds positively to administration of one or more such combinations. Among other things, it is specifically contemplated that such combinations may be used to treat an infection, an infestation, a tumor, hypersensitivity or an autoimmune disease.
- Infections contemplated to be treated with the compounds of the present invention include respiratory syncytial virus (RSV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex type 1 and 2, herpes genitalis, herpes keratitis, herpes encephalitis, herpes zoster, human immunodeficiency virus (HIV), influenza A virus, hantann virus (hemorrhagic fever), human papilloma virus (IIPV), measles and fungus. It is especially contemplated that combinations claimed herein will be useful in treating chronic viral and bacterial infections, including HIV, Tuberculosis, leprosy and so forth.
- RSV respiratory syncytial virus
- HBV hepatitis B virus
- HCV hepatitis C virus
- herpes simplex type 1 and 2 herpes genitalis
- herpes keratitis herpes encephalitis
- Infestations contemplated to be treated with the compounds of the present invention include intracellular protozoan infestations, as well as helminth and other parasitic infestations. Again, it is especially contemplated that combinations claimed herein will be useful in treating chronic infestations.
- Tumors contemplated to be treated include those caused by a virus, and the effect may involve inhibiting the transformation of virus-infected cells to a neoplastic state, inhibiting the spread of viruses from transformed cells to other normal cells and/or arresting the growth of virus-transformed cells.
- Hypersensitivities contemplated to be treated include all types of allergies, including IgE and IgG allergies, hyper IgE syndrome, and dermatic conditions such as atopic dermatitis. It is also contemplated that claimed combinations can be used to treat transplant rejection, (graft vs. host disease) and implant reactions.
- Non-organ-specific autoimmune diseases include rheumatoid arthritis, gout and gouty arthritis, Systemic Lupus Erythematosus (SLE), Sjogren syndrome, scleroderma, polymyositis and dermomyositis, ankylosing spondylitis, and rheumatic fever.
- SLE Systemic Lupus Erythematosus
- Organ-specific autoimmune diseases are known for virtually every organ, including insulin-dependent diabetes, thyroid diseases (Graves disease and Hashimoto thyroiditis), Addison disease, and some kidney and lung diseases including allergy and asthma, multiple sclerosis, myasthenia gravis, uveitis, psoriasis, forms of hepatitis and cirrhosis, celiac disease, inflammatory bowel disease, and some types of male and female infertility.
- Autoimmune processes may also be stimulated by viral infections including the HIV virus, may result from rejection of transplantation, and may accompany certain tumors, or be precipitated by exposure to some chemicals.
- an abnormality reflected in increased response in one group of cytokines can be treated by administering a nucleoside that increases response in another group of cytokines.
- a nucleoside that increases response in another group of cytokines.
- allergies can be treated with Ribavirin, which increases Th1 response at low dosages of about 500 mg/day to about 1,000 mg/day.
- a patient is prophylactically treated by administering a compound that selectively reduces Th1 activity without significantly reducing Th2 activity.
- the prophylactic treatment may be to reduce expected undesirable effects from an upcoming event, such as an organ or tissue transplant, or to reduce symptoms from an expected pulmonary insult, as from the onset of increase in airborne pollen levels in spring.
- dosages between 0.5 mg/kg and 0.1 mg/kg and less, but also dosages between 0.5 and 1.0 mg/kg and more.
- the appropriate dosage will depend on multiple parameters, including the type of virus infection, the stage of the virus infection, the desired plasma concentration of the compounds of Formula 1, the duration of the treatment, etc. For example, while treatment success may be achieved with some viral infections at relatively low plasma concentrations of the compounds of Formula 1, other viral infections may require relatively high dosages.
- Formula 1 may be replaced with LevovirinTM, depending on the particular type of viral infection or stage of a particular viral infection.
- LevovirinTM may respond well to treatment with Formula 1
- other types of viral infections may be more responsive to treatment with LevovirinTM.
- a treatment of a viral infection need not be limited to LevovirinTM or the carboxamidine compound (Formula 1), but alternative treatments may include mixtures of LevovirinTM and the carboxamidine compound.
- the ratio of LevovirinTM to Formula 1 compounds may thereby vary among various types of viral infections or even during various stages of a single type of viral infection.
- Formula 1 compound may be combined with additional pharmaceutically active substances to assist in the treatment of the viral infections.
- Contemplated additional pharmaceutically active substances include antiviral agents and immune modulator substances.
- antiviral agents are protease inhibitors, or nucleotide and nucleoside analogs
- immune modulator substances may include cytokines.
- the administration of the Formula 1 compound is correlated with an increase of the Th1 response relative to the Th2 response in a patient, and it is especially contemplated that the relative increase of the Th1 response to the Th2 response is due to an absolute increase in the Th1 response.
- the cytokine levels may thereby be increased individually or collectively.
- administration or the Formula 1 compound to activated human PBMCs may result in a mean peak increase of the IL-2 level of at least 70% (by weight) over an activated control level.
- administration of the Formula 1 compound to activated human PBMCs may result in a mean peak increase of the IFN-Y level of at least 20% (by weight) over an activated control level, or in a mean peak increase of the TNF-a level of at least 50% (by weight) over an activated control level.
- the increase in the Th1 response may comprises a mean peak increase over an activated control level in IL-2, IFN- ⁇ , and TNF- ⁇ of 70% (weight), 20% (weight), and 50% (weight), respectively.
- Administration of compounds according to the present invention may take place orally, parenterally (including subcutaneous injections, intravenous, intramuscularly, by intrasternal injection or infusion techniques), by inhalation spray, or rectally, topically and so forth, and in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- compounds according to the present invention can be formulated in admixture with a pharmaceutically acceptable carrier.
- the compounds of the present invention can be administered orally as pharmacologically acceptable salts.
- physiological saline solution e.g., buffered to a pH of about 7.2 to 7.5.
- physiological saline solution e.g., buffered to a pH of about 7.2 to 7.5.
- Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose.
- physiological saline solution e.g., buffered to a pH of about 7.2 to 7.5.
- Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose.
- one of ordinary skill in the art may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity.
- the modification of the present compounds to render them more soluble in water or other vehicle may be easily accomplished by minor modifications (salt formulation, esterification, etc.) that are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.
- the pro-drug form of administered compounds especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred.
- acylated (acetylated or other) derivatives especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred.
- One of ordinary skill in the art will recognize how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a target site within the host organism or patient.
- One of ordinary skill in the art will also take advantage of favorable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to a targeted site within the host organism or patient to maximize the intended effect of the compound.
- compounds included in combinations according to the present invention may be administered separately or together, and when administered separately this may occur in any order.
- the amounts of the active ingredient(s) and pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
- Administration routes of compounds according to the present invention may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D.) and may include oral, topical, parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal and suppository administration, among other routes of administration.
- a therapeutically effective amount of a compound is preferably intimately admixed with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques to produce a dose.
- a carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral.
- any of the usual pharmaceutical media may be used.
- suitable carriers and additives including water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like may be used.
- suitable carriers and additives including starches, sugar carrier, such as dextrose, mannitol, lactose and related carriers, diluents, granulating agents, lubricants, binders, disintegrating agents and the like may be used.
- the tablets or capsules may be enteric-coated or sustained release by standard techniques.
- the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those that aid dispersion may be included.
- sterile water is to be used and maintained as sterile, the compositions and carriers must also be sterilized.
- injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
- the most preferred uses according to the present invention are those in which the active compounds are relatively less cytotoxic to the non-target host cells and relatively more active against the target.
- L-nucleosides may have increased stability over D-nucleosides, which could lead to better pharmacokinetics. This result may attain because L-nucleosides may not be recognized by enzymes, and therefore may have longer half-lives.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Nucleosides and other compounds to selectively modulate Th1 and Th2 responses relative to each other in the treatment of disease. In one aspect of the invention, administration of a nucleoside or other compound reduces the dosage at which a primary drug is administered. In another aspect of the invention, an abnormality reflected in increased response in one group of cytokines is treated by administering a nucleoside or other compound that increases response in another group of cytokines. In yet another aspect of the invention, a patient is prophylactically treated by administering a nucleoside or other compound that selectively reduces Th1 activity without significantly reducing Th2 activity. In yet another aspect of the invention, a nucleoside or other compound is administered to a patient at a dose that reduces the patient's GTP pool to a degree that selectively reduces one of the Th1 or Th2 responses without significantly reducing the other response. Controlled release dosage forms are particularly contemplated to achieve that result.
Description
- This application claims priority to the US National Phase Application filed Jul. 9, 1999 that claims priority to the International Application No: PCT/US98/00634 filed on Jan. 13, 1998.
- The present invention relates to the field of nucleosides.
- Mammalian immune systems contain two major classes of lymphocytes: B lymphocytes (B cells), which originate in the bone marrow; and T lymphocytes (T cells) that originate in the thymus. B cells are largely responsible for humoral immunity (i.e., antibody production), while T cells are largely responsible for cell-mediated immunity.
- T cells are generally considered to fall into two subclasses, helper T cells and cytotoxic T cells. Helper T cells activate other lymphocytes, including B cells and cytotoxic T cells, and macrophages, by releasing soluble protein mediators called cytokines that are involved in cell-mediated immunity. As used herein, lymphokines are a subset of cytokines.
- Helper T cells are also generally considered to fall into two subclasses, Th1 and Th2. Th1 cells (also known as Type 1 cells) produce interleukin 2 (IL-2), tumor necrosis factor (TNFα) and interferon gamma (IFNγ), and are responsible primarily for cell-mediated immunity such as delayed type hypersensitivity and antiviral immunity. In contrast, Th2 cells (also known as Type 2 cells) produce interleukins, IL4, IL-5, 11-6, IL-9, IL-10 and IL-13, and are primarily involved in assisting humoral immune responses such as those seen in response to allergens, e.g. IgE and 1gG4 antibody isotype switching (Mosmann, 1989, Annu Rev Immunol, 7:145-173).
- As used herein, the terms Th1 and Th2 “responses” are meant to include the entire range of effects resulting from induction of Th1 and Th2 lymphocytes, respectively. Among other things, such responses include variation in production of the corresponding cytokines through transcription, translation, secretion and possibly other mechanisms, increased proliferation of the corresponding lymphocytes, and other effects associated with increased production of cytokines, including motility effects.
- The priority applications, each of which is incorporated herein by reference, relate to aspects of our recent discoveries involving the effect of various nucleosides (which are defined herein to include derivatives and analogs of native nucleosides) on selectively modulating lymphocyte responses relative to each other. Among other things, we have shown that either of Th1 and Th2 responses can be selectively suppressed while the other is either induced or left relatively unaffected, and either of Th1 or Th2 responses can be selectively induced while the other is either suppressed or left relatively unaffected. We have also discovered the surprising fact that nucleosides effective in selectively modulating Th1 and Th2 responses relative to one another tend to have a bimodal effect. Among other things, nucleosides that tend to generally suppress or induce both Th1 and Th1 activity at a relatively higher dose tend to selectively modulate Th1 and Th2 relative to each other at relatively lower doses.
- The mechanisms by which nucleosides and other compounds selectively modulate Th1 and Th2 responses relative to each other are still unclear. One possibility contemplated by the present inventors is that effective nucleosides alter the pool of guanosine triphosphate (GTP), which in turn affects the rate at which cytokines are produced. In this theory, relatively large variations in available GTP are sufficient to affect concentrations of both Th1 and Th2 cytokines, while relatively smaller variations in available GTP tend to affect concentrations of Th1 and Th2 cytokines to different extents.
- The effects of 2-β-D-ribofuranosylthiazole-4-carboxamide (Tiazofurin), a synthetic C-nucleoside analogue, on GTP levels supports this view. Tumor cells are characterized by high levels of inosine monophosphate dehydrogenase (IMP DH) activity, and it is known that IMP DH is the rate-limiting enzyme of GTP biosynthesis. Weber, G.,IMP Dehydrogenase and GTP as Targets in Human Leukemia Treatment, Adv. Exp. Med. Biol. 309B:287-292 (1991). Tiazofurin has been shown to selectively block IMP DH activity and deplete guanine nucleotide pools, which in turn forces various tumors into remission. Weber, G., Critical Issues in Chemotherapy with Tiazofurill, Adv. Enzyme Regul. 29:75-95 (1989). Typical initial doses of Tiazofurin are about 4,400 mg/m2, with consolidation doses of about 1100 to 3300 mg/m2. At these levels synthesis of both Th1 and Th2 responses are greatly reduced, thereby essentially shutting down much of the immune system. In one aspect of the present invention it is contemplated that much smaller doses of Tiazofurin, in the range of {fraction (1/10)}th to one-half that set forth above, would be sufficient to specifically suppress either a Th1 response or a Th2 response without greatly reducing the other response.
- The effects of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Ribavirin) also supports the present theory. Ribavirin is a potent, broad-spectrum antiviral agent, which has also been shown to inhibit IMP DH. Yamada, Y. et al.,Action of the Active Metabolites of Tiazofurin and Ribavirin on Purified IMP Dehydrogenase, Biochem. 27:2193-2196 (1988). Ribavirin proceeds under a different mechanism than Tiazofurin in inhibiting IMP DH, however, acting on a different site on the enzyme molecule. Ribavirin is converted to its active metabolite, ribavirin-monophosphate (RMP), which inhibits the enzyme at the IMP-XMP site of IMP DH. As with Tiazofurin, the affinity of Ribavirin's active form to the enzyme is higher than that of the natural metabolite. At relatively high doses, approximately 2200 mg/M2 or about 1200-1500 mg/day for an adult, Ribavirin reduces IMP DH activity to such an extent that both Th1 and Th2 responses are inhibited. At relatively lower dosages of approximately 600 to 1000 mg/day, Ribavirin promotes a Th1 response and suppresses a Th2 response.
- Despite the existence of as-yet undefined mechanisms, we have discovered that enormous potential benefits can be derived from selective modulation of Th1 and Th2 responses relative to each other. We have concluded, for example, that specific modulation of Th1 relative to Th2 can be useful in treating a wide variety of conditions and diseases, ranging from infections, infestations, tumors and hypersensitivities to autoimmune diseases.
- These discoveries are especially significant because modern treatment strategies for many of the above-listed diseases have limited effectiveness, significant side effects, or both. Treatment of autoimmune disease, for example, is frequently limited to palliative measures, removal of toxic antibodies (as in myasthenia gravis), and administration of hazardous drugs including corticosteroids, chloroquine derivatives, and antimetabolic or antitumor drugs, and drugs such as cyclosporines that target immune system cells.
- This application relates to the use or monocyclic nucleosides in a relatively low dosage range to selectively modulate Th1 and Th2 responses relative to each other in the treatment of disease. In one aspect of the invention, administration of a nucleoside or other compound reduces the dosage at which a primary drug is administered. In another aspect of the invention, an abnormality reflected in increased response in one group of cytokines is treated by administering a nucleoside or other compound that increases response in another group of cytokines. In yet another aspect of the invention, a patient is prophylactically treated by administering a nucleoside or other compound that selectively reduces Th1 activity without significantly reducing Th2 activity. In yet another aspect of the invention, a nucleoside or other compound is administered to a patient at a dose that reduces the patient's GTP pool to a degree that selectively reduces one of the Th1 or Th2 responses without significantly reducing the other response. Controlled release dosage forms are particularly contemplated to achieve that result.
- Examples of nucleosides contemplated to be effective in this manner are D- and L-forms of monocyclic nuclcosides corresponding to Formula 1.
- Examples of primary drugs contemplated to be effective in this manner are anti-viral agents such as Ribavirin, acyclovir, and AZT™; anti-fungal agents such as tolnaftate, Fungizone™, Lotrimin™, Myeelex™, Nystatin and Amphoteracin; anti-parasitics such as Mintezol™, Niclocide™, Vermox™, and Flagyl™; bowel agents such as Immodium™, Lomotil™ and Phazyme™; anti-tumor agents such as Adriamycin™, Cytoxan™, Imuran™, Methotrxate, Mithracin™, Tiazofurin™, Taxol™; dermatologic agents such as Aclovate™, Cyclocort™, Denorex™, Florone™, Oxsoralen™, coal tar and salicylic acid; migraine preparations such as ergotamine compounds; steroids and immunosuppresants not listed above, including cyclosporins, Diprosone™, hydrocortisone; Floron™, Lidex™, Topicort and Valisone; and metabolic agents such as insulin.
- The terms “α” and “β” indicate the specific stereochemical configuration of a substituent at an asymmetric carbon atom in a chemical structure as drawn.
- The term “abnormality” refers to a condition associated with a disease. Thus, Th1 and/or Th2 responses resulting from an autoimmune disease are considered herein to be abnormalities of the corresponding cytokine(s) even though such cytokine responses may commonly result from the disease.
- The term “aryl” refers to a monovalent unsaturated aromatic carbocyclic radical having a single ring (e.g., phenyl) or two condensed rings (e.g., naphthyl), which can optionally be substituted with hydroxyl, lower alky, chloro, and/or cyano.
- The term “effective amount” refers to the amount of a compound of formula (I) that will restore immune function to normal levels, or increase immune function above normal levels in order to eliminate infection.
- The term “enantiomers” refers to a pair of stereoisomers that are non-superimposable mirror images of each other. A mixture of a pair of enantiomers, in a 1:1 ratio, is a “racemic” mixture.
- The term “heterocycle” refers to a monovalent saturated or unsaturated carbocyclic radical having at least one hetero atom, such as N, 0 or S, within the ring each available position of which can be optionally substituted, independently, with, e.g., hydroxy, oxo, amino, imino, lower alkyl, bromo, chloro and/or cyano. Included within this class of substituents are purines, pyrimidines.
- The term “immunomodulators” refers to natural or synthetic products capable of modifying the normal or aberrant immune system through stimulation or suppression.
- The term “isomers” refers to different compounds that have the same formula. “Stereoisomers” are isomers that differ only in the way the atoms are arranged in space.
- The term “L-configuration” is used throughout the present invention to describe the chemical configuration of the ribofuranosyl moiety of the compounds that is linked to the nucleobases. The L-configuration of the sugar moiety of compounds of the present invention contrasts with the D-configuration of ribose sugar moieties of the naturally occurring nucleosides such as cytidine, adenosine, thymidine, guanosine and uridine.
- The term “lower alkyl” refers to methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, 1-butyl or n-hexyl. This term is further exemplified to a cyclic, branched or straight chain from one to six carbon atoms.
- The term “monocyclic” refers to a monovalent saturated carbocyclic radical having at least one hetero atom, such as 0, N, S, Se or P, within the ring, each available position of which can be optionally substituted, independently, with a sugar moiety or any other groups like bromo, chloro and/or cyano, so that the monocyclic ring system eventually aromatized [e.g., Thymidine].
- The term “nucleoside” refers to a compound composed of any pentose or modified pentose moiety attached to a specific position of a heterocycle or to the natural position of a purine (9-position) or pyrimidine (1-position) or to the equivalent position in an analog, including especially both D- and L-forms of nitrogenous monocyclic heterocycles depicted in FIG. 1.
- The term “C-nucleosides” is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base. In C-nucleosides, the linkage originates from the C-1 position of the ribose sugar moiety and joins the carbon of the heterocyclic base. The linkage that forms in C-nucleosides is carbon-to-carbon type.
- The term “D-nucleosides” refers to nucleoside compounds that have a D-ribose sugar moiety (e.g., Adenosine). The term “L-nucleosides” refers to nucleoside compounds that have an L-ribose sugar moiety.
- The term “N-nucleosides” is used throughout the specification to describe the linkage type that formed between the ribose sugar moiety and the heterocyclic base. In N-nucleosides, the linkage originates from the C-1 position of the ribose sugar moiety and joins the nitrogen of the heterocyclic base. The linkage that forms in N-nucleosides is carbon to nitrogen type.
- The term “nucleotide” refers to a phosphate ester substituted on the 5-position of a nucleoside.
- The term “pharmaceutically acceptable salts” refers to any salt derived from inorganic and organic acids or bases.
- The term “protecting group” refers to a chemical group that is added to, oxygen or nitrogen atom to prevent its further reaction during the course of derivatization of other moieties in the molecule in which the oxygen or nitrogen is located. A wide variety of oxygen and nitrogen protecting groups arc known to those skilled in the art of organic synthesis.
- The term “pyrimidine” refers to nitrogenous monocyclic heterocycles depicted in FIG. 1.
- The term “tumor” refers broadly to all manner of autonomous morbid growth of tissue that may or may not become malignant, including all manner of neoplasms and cancers.
- The terms “treating” or “treatment” of a disease refers to executing a protocol, which may include administering one or more drugs to a patient, in an effort to alleviate signs or symptoms of the disease. Thus, “treating” or “treatment” do not require complete alleviation of signs or symptoms, do not require a cure, and specifically include protocols which have only marginal effect on the patient.
- Combinations and Methods
- Contemplated combinations in one aspect of the present invention generally include a primary or “first” drug and another or “second” drug, and contemplated methods involve selecting and combining the first and second drugs in combination therapies. In preferred embodiments, a disease is identified which is known to produce an abnormality in at least one cytokine in a patient. The first drug is selected from among those compounds demonstrated to treat the disease at a monotherapeutic dosage, and the second drug, which may be a bimodal nucleoside modulator as herein described, is selected from among those compounds known to exacerbate the very abnormality produced by the disease when administered within a given dosage range. The first drug is then administered at less than the monotherapeutic dosage and the second drug is administered in a dosage outside the dosage range that exacerbates the abnormality. Since the second drug has a bimodal activity with respect to at least some of the cytokines of interest, the combination is still effective to treat the disease, and administration of the second drug allows reduction in the administered dosage of the primary or first drug.
- Examples of primary drugs contemplated to be effective in combination with a modulator selected from FIG. 1 are anti-viral agents such as interferon, including but not limited to interferon α and γ, Ribavirin, acyclovir, and AZT™; anti-fungal agents such as tolnaftate, Fungizone™, Lotrimin™, Mycelex™, Nystatin and Amphoteracin; anti-parasitics such as Mintezol™, Niclocide™, Vermox™, and Flagyl™, bowel agents such as Immodium™, Lomotil™ and Phazyme™; anti-tumor agents such as interferon α and γ, Adriamycin™, Cytoxan™, Imuran™, Methotrexate, Mithracin™, Tiazofurin™, Taxol™; dermatologic agents such as Aclovate™, Cyclocort™, Denorex™, Florone™, Oxsoralen™, coal tar and salicylic acid; migraine preparations such as ergotamine compounds; steroids and immunosuppresants not listed above, including cyclosporins, Diprosone™, hydrocortisone; Floron™, Lidex™, Topicort and Valisone; and metabolic agents such as insulin, and other drugs which may not nicely fit into the above categories, including cytokines such as IL2, IL4, IL8, IL10 and IL12. Especially preferred primary drugs are AZT, 3TC, 8-substituted guanosine analogs, 2,3-dideoxynucleosides, interleukin II, interfeons such as IαB-interferons, tucaresol, levamisole, isoprinosine and cyclolignans.
- Examples of secondary drugs contemplated to be effective in the invention are D- and L-forms of monocyclic nucleosides corresponding to Formula 1. Other nucleoside and non-nucleoside compounds effective in the invention are readily identified through screening of such compounds in vitro for effect on IL-2, TNF-α, IFN-γ, IL-4 and IL-5 as described in PCT/US97/00600.
-
- wherein:
- R2, R3, R7 and R8 are independently selected from H, OH, CN, N3, halogens, CH2OH, NH2, OCH3, NHCH3, ONHCH3, SCH3, SPh, alkenyl, lower alkyl, lower alkyl amines or substituted heterocycles.
- It is contemplated that when R2=R3=H, then R7 and R8 arc hydrogen atoms or nothing. It is preferred that when, in compounds of Formula 1, R7=R8=H that R2=R3 =OH.
- In another aspect of the invention, an abnormality reflected in increased response in one group of cytokines is treated by administering a nucleoside or other compound that increases response in another group of cytokines. Thus, for example, a common rapid onset type of allergy results in an abnormally elevated Th2 response. The abnormality is treated by administering Ribavirin at between 600 mg/day and 1,000 mg/day (for a typical adult), at which dose the Th1 response is induced. The treatment is effective because Th1 and Th2 have a teeter-totter type relationship in this instance, such that the Th2 response is suppressed.
- In yet another aspect of the invention, a patient is prophylactically treated by administering a nucleoside or other compound that selectively reduces Th1 activity without significantly reducing Th2 activity. The prophylaxis can, for example, prepare the patient for organ or tissue transplant, or for anticipated contact with allergens.
- In yet another aspect of the invention, a nucleoside or other compound is administered to a patient at a dose that reduces the patient's GTP pool to a degree that selectively reduces one of the Th1 or Th2 responses without significantly reducing the other response. Controlled release dosage forms are particularly contemplated to achieve that result, especially formulations which maintain the dose of the compound in the serum within a desirable range. In the case of Ribavirin, for example, the serum level should be maintained between about 2 μM and about 5 μM. In terms of delivery rates, a controlled release formulation may advantageously have an in vitro dissolution rate when measured by the USP Paddle Method at 100 rpm at 900 ml aqueous buffer (pH between 1.6 and 7.2) between about 15% and 40% by weight of the compound after 1 hour, between about 30% and about 50% by weight of the compound after 2 hours, about 50% and 70% by weight of the compound after 4 hours, between about 60% and about 80% by weight of the compound after 6 hours
- Uses
- It is contemplated that the claimed combinations will be used to treat a wide variety of conditions, and in fact any condition which responds positively to administration of one or more such combinations. Among other things, it is specifically contemplated that such combinations may be used to treat an infection, an infestation, a tumor, hypersensitivity or an autoimmune disease.
- Infections contemplated to be treated with the compounds of the present invention include respiratory syncytial virus (RSV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex type 1 and 2, herpes genitalis, herpes keratitis, herpes encephalitis, herpes zoster, human immunodeficiency virus (HIV), influenza A virus, hantann virus (hemorrhagic fever), human papilloma virus (IIPV), measles and fungus. It is especially contemplated that combinations claimed herein will be useful in treating chronic viral and bacterial infections, including HIV, Tuberculosis, leprosy and so forth.
- Infestations contemplated to be treated with the compounds of the present invention include intracellular protozoan infestations, as well as helminth and other parasitic infestations. Again, it is especially contemplated that combinations claimed herein will be useful in treating chronic infestations.
- Tumors contemplated to be treated include those caused by a virus, and the effect may involve inhibiting the transformation of virus-infected cells to a neoplastic state, inhibiting the spread of viruses from transformed cells to other normal cells and/or arresting the growth of virus-transformed cells.
- Hypersensitivities contemplated to be treated include all types of allergies, including IgE and IgG allergies, hyper IgE syndrome, and dermatic conditions such as atopic dermatitis. It is also contemplated that claimed combinations can be used to treat transplant rejection, (graft vs. host disease) and implant reactions.
- Autoimmune diseases can be classified as either non-organ-specific or organ-specific. Non-organ-specific autoimmune diseases include rheumatoid arthritis, gout and gouty arthritis, Systemic Lupus Erythematosus (SLE), Sjogren syndrome, scleroderma, polymyositis and dermomyositis, ankylosing spondylitis, and rheumatic fever. Organ-specific autoimmune diseases are known for virtually every organ, including insulin-dependent diabetes, thyroid diseases (Graves disease and Hashimoto thyroiditis), Addison disease, and some kidney and lung diseases including allergy and asthma, multiple sclerosis, myasthenia gravis, uveitis, psoriasis, forms of hepatitis and cirrhosis, celiac disease, inflammatory bowel disease, and some types of male and female infertility. Autoimmune processes may also be stimulated by viral infections including the HIV virus, may result from rejection of transplantation, and may accompany certain tumors, or be precipitated by exposure to some chemicals.
- It is also contemplated that an abnormality reflected in increased response in one group of cytokines can be treated by administering a nucleoside that increases response in another group of cytokines. Thus, for example, since common IgE allergies are associated with a predominantly Th2 response, allergies can be treated with Ribavirin, which increases Th1 response at low dosages of about 500 mg/day to about 1,000 mg/day.
- In yet another aspect of the invention, a patient is prophylactically treated by administering a compound that selectively reduces Th1 activity without significantly reducing Th2 activity. The prophylactic treatment may be to reduce expected undesirable effects from an upcoming event, such as an organ or tissue transplant, or to reduce symptoms from an expected pulmonary insult, as from the onset of increase in airborne pollen levels in spring.
- Synthesis
- Synthesis of compounds according to Formula 1 was set forth in co-pending PCT application PCT/US97/00600 and are herein incorporated by reference.
- Administration
- With respect to the dosage of Formula 1, it is contemplated that various alternative dosages are also appropriate, including dosages between 0.5 mg/kg and 0.1 mg/kg and less, but also dosages between 0.5 and 1.0 mg/kg and more. In general, the appropriate dosage will depend on multiple parameters, including the type of virus infection, the stage of the virus infection, the desired plasma concentration of the compounds of Formula 1, the duration of the treatment, etc. For example, while treatment success may be achieved with some viral infections at relatively low plasma concentrations of the compounds of Formula 1, other viral infections may require relatively high dosages.
- In still further alternative aspects of the inventive subject matter, Formula 1 may be replaced with Levovirin™, depending on the particular type of viral infection or stage of a particular viral infection. For example, while one type of viral infection may respond well to treatment with Formula 1, other types of viral infections may be more responsive to treatment with Levovirin™. It is further contemplated that a treatment of a viral infection need not be limited to Levovirin™ or the carboxamidine compound (Formula 1), but alternative treatments may include mixtures of Levovirin™ and the carboxamidine compound. The ratio of Levovirin™ to Formula 1 compounds may thereby vary among various types of viral infections or even during various stages of a single type of viral infection.
- It should further be appreciated that the Formula 1 compound may be combined with additional pharmaceutically active substances to assist in the treatment of the viral infections. Contemplated additional pharmaceutically active substances include antiviral agents and immune modulator substances. For example, antiviral agents are protease inhibitors, or nucleotide and nucleoside analogs, and immune modulator substances may include cytokines.
- Although not wishing to be bound to any particular theory, it is contemplated that the administration of the Formula 1 compound is correlated with an increase of the Th1 response relative to the Th2 response in a patient, and it is especially contemplated that the relative increase of the Th1 response to the Th2 response is due to an absolute increase in the Th1 response. The cytokine levels may thereby be increased individually or collectively. For example, it is contemplated that administration or the Formula 1 compound to activated human PBMCs may result in a mean peak increase of the IL-2 level of at least 70% (by weight) over an activated control level. Alternatively, it is contemplated that administration of the Formula 1 compound to activated human PBMCs may result in a mean peak increase of the IFN-Y level of at least 20% (by weight) over an activated control level, or in a mean peak increase of the TNF-a level of at least 50% (by weight) over an activated control level. In another example, it is contemplated that the increase in the Th1 response may comprises a mean peak increase over an activated control level in IL-2, IFN-γ, and TNF-α of 70% (weight), 20% (weight), and 50% (weight), respectively.
- Administration of compounds according to the present invention may take place orally, parenterally (including subcutaneous injections, intravenous, intramuscularly, by intrasternal injection or infusion techniques), by inhalation spray, or rectally, topically and so forth, and in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles.
- It is contemplated that compounds according to the present invention can be formulated in admixture with a pharmaceutically acceptable carrier. For example, the compounds of the present invention can be administered orally as pharmacologically acceptable salts. Because the compounds of the present invention are mostly water soluble, they can be administered intravenously in physiological saline solution (e.g., buffered to a pH of about 7.2 to 7.5). Conventional buffers such as phosphates, bicarbonates or citrates can be used for this purpose. Of course, one of ordinary skill in the art may modify the formulations within the teachings of the specification to provide numerous formulations for a particular route of administration without rendering the compositions of the present invention unstable or compromising their therapeutic activity. In particular, the modification of the present compounds to render them more soluble in water or other vehicle, for example, may be easily accomplished by minor modifications (salt formulation, esterification, etc.) that are well within the ordinary skill in the art. It is also well within the ordinary skill of the art to modify the route of administration and dosage regimen of a particular compound in order to manage the pharmacokinetics of the present compounds for maximum beneficial effect in patients.
- In certain pharmaceutical dosage forms, the pro-drug form of administered compounds, especially including acylated (acetylated or other) derivatives, pyridine esters and various salt forms of the present compounds are preferred. One of ordinary skill in the art will recognize how to readily modify the present compounds to pro-drug forms to facilitate delivery of active compounds to a target site within the host organism or patient. One of ordinary skill in the art will also take advantage of favorable pharmacokinetic parameters of the pro-drug forms, where applicable, in delivering the present compounds to a targeted site within the host organism or patient to maximize the intended effect of the compound.
- In addition, compounds included in combinations according to the present invention may be administered separately or together, and when administered separately this may occur in any order. The amounts of the active ingredient(s) and pharmaceutically active agent(s) and the relative timings of administration will be selected in order to achieve the desired combined therapeutic effect.
- Administration routes of compounds according to the present invention may range from continuous (intravenous drip) to several oral administrations per day (for example, Q.I.D.) and may include oral, topical, parenteral, intramuscular, intravenous, subcutaneous, transdermal (which may include a penetration enhancement agent), buccal and suppository administration, among other routes of administration.
- To prepare therapies according to the present invention, a therapeutically effective amount of a compound is preferably intimately admixed with a pharmaceutically acceptable carrier according to conventional pharmaceutical compounding techniques to produce a dose. A carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral. In preparing pharmaceutical compositions in oral dosage form, any of the usual pharmaceutical media may be used. Thus, for liquid oral preparations such as suspensions, elixirs and solutions, suitable carriers and additives including water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like may be used. For solid oral preparations such as powders, tablets, capsules, and for solid preparations such as suppositories, suitable carriers and additives including starches, sugar carrier, such as dextrose, mannitol, lactose and related carriers, diluents, granulating agents, lubricants, binders, disintegrating agents and the like may be used. If desired, the tablets or capsules may be enteric-coated or sustained release by standard techniques.
- For parenteral formulations, the carrier will usually comprise sterile water or aqueous sodium chloride solution, though other ingredients including those that aid dispersion may be included. Of course, where sterile water is to be used and maintained as sterile, the compositions and carriers must also be sterilized. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
- It will also be appreciated that in general, the most preferred uses according to the present invention are those in which the active compounds are relatively less cytotoxic to the non-target host cells and relatively more active against the target. In this respect, it may also be advantageous that L-nucleosides may have increased stability over D-nucleosides, which could lead to better pharmacokinetics. This result may attain because L-nucleosides may not be recognized by enzymes, and therefore may have longer half-lives.
- Thus, therapies have been disclosed which employ nucleosides and other compounds to selectively modulate Th1 and Th2 responses relative to each other in the treatment of disease. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that arc not expressly referenced.
Claims (13)
1. A method of treatment of a viral infection in a patient comprising:
administering a compound according to formula 1
wherein:
R2, R3, R7 and R8 are independently selected from H, OH, CN, N3, halogens, CH2OH, NH2, OCH3, NHCH3, ONHCH3, SCH3, SPh, alkenyl, lower alkyl, lower alkyl amines or substituted heterocycles.
2. The method of claim 1 wherein the viral infection is selected from the group consisting of an HIV infection, an HCV infection, and a HBV infection.
3. The method of claim 1 wherein the step of administering increases a Th1 response relative to a Th2 response in the patient.
4. The method of claim 3 wherein the Th1 response increases.
5. The method of claim 4 wherein the increase in the Th1 response comprises a mean peak increase over an activated control level in IL-2 of at least 20% (by weight).
6. The method of claim 4 wherein the increase in the Th1 response comprises a mean peak increase over an activated control level in IFN-γ of at least 75% (by weight).
7. The method of claim 4 wherein the increase in the Th1 response comprises a mean peak increase over an activated control level in TNF-α of at least 50% (by weight).
8. The method of claim 4 wherein the increase in the Th1 response comprises a mean peak increase over an activated control level in IL-2, IFN-γ, and TNF-α of 42% (mole), 125% (mole), and 72% (mole), respectively.
9. The method of claim 1 wherein the step of administering comprises in vivo administration.
10. The method of claim 1 wherein the step of administering comprises oral administration.
11. The method of claim 1 wherein the step of administering comprises injection of the L-ribonucleoside.
12. The method of claim 1 wherein the step of administering comprises administering the compound in a dose between 0.1 mg per kg of body weight of the patient and 1.0 mg per kg of body weight of the patient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/136,745 US20020132784A1 (en) | 1999-12-20 | 2002-04-29 | Cytokine related treatments of disease |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/467,443 US6423695B1 (en) | 1998-01-13 | 1999-12-20 | Cytokine related treatments of disease |
US10/136,745 US20020132784A1 (en) | 1999-12-20 | 2002-04-29 | Cytokine related treatments of disease |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1998/000634 Division WO1998030223A1 (en) | 1997-01-14 | 1998-01-13 | Cytokine related treatments of disease |
US09/467,443 Division US6423695B1 (en) | 1998-01-13 | 1999-12-20 | Cytokine related treatments of disease |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020132784A1 true US20020132784A1 (en) | 2002-09-19 |
Family
ID=23855724
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/467,443 Expired - Lifetime US6423695B1 (en) | 1998-01-13 | 1999-12-20 | Cytokine related treatments of disease |
US10/136,745 Abandoned US20020132784A1 (en) | 1999-12-20 | 2002-04-29 | Cytokine related treatments of disease |
US10/428,806 Abandoned US20030207826A1 (en) | 1998-01-13 | 2003-04-30 | Cytokine related treatments of disease |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/467,443 Expired - Lifetime US6423695B1 (en) | 1998-01-13 | 1999-12-20 | Cytokine related treatments of disease |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/428,806 Abandoned US20030207826A1 (en) | 1998-01-13 | 2003-04-30 | Cytokine related treatments of disease |
Country Status (1)
Country | Link |
---|---|
US (3) | US6423695B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090048444A1 (en) * | 2005-03-25 | 2009-02-19 | Glaxo Group Limited | Process for Preparing Pyrido[2,3-d]pyrimidin-7-one and 3,4-Dihydropyrimido[4,5-d]pyrimidin-2(1H)-one Derivatives |
US20090156597A1 (en) * | 2005-03-25 | 2009-06-18 | Glaxo Group Limited | Novel Compounds |
US8058282B2 (en) | 2000-10-23 | 2011-11-15 | Glaxosmithkline Llc | 2,4,8-trisubstituted-8H-pyrido[2,3-d]pyrimidin-7-one compounds and compositions for use in therapy |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7056895B2 (en) * | 2000-02-15 | 2006-06-06 | Valeant Pharmaceuticals International | Tirazole nucleoside analogs and methods for using same |
US7638496B2 (en) * | 2000-02-15 | 2009-12-29 | Valeant Pharmaceuticals North America | Nucleoside analogs with carboxamidine modified monocyclic base |
US6720000B2 (en) * | 2001-03-19 | 2004-04-13 | Three Rivers Pharmaceutical, Llc | Process for producing wet ribavirin pellets |
PE20030545A1 (en) * | 2001-10-31 | 2003-06-19 | Schering Corp | RIBAVIRIN SYRUP FORMULATIONS |
US7538094B2 (en) | 2002-09-19 | 2009-05-26 | Three Rivers Pharmacueticals, Llc | Composition containing ribavirin and use thereof |
AU2003275123A1 (en) * | 2002-09-19 | 2004-04-08 | Three Rivers Pharmaceuticals, Llc | Composition containing ribavirin and use thereof |
RU2005133093A (en) * | 2003-03-28 | 2006-07-27 | Фармассет, Инк. (Us) | COMPOUNDS FOR TREATMENT OF FLAVIVIRAL INFECTIONS |
WO2005018330A1 (en) * | 2003-08-18 | 2005-03-03 | Pharmasset, Inc. | Dosing regimen for flaviviridae therapy |
MXPA06003963A (en) | 2003-10-14 | 2006-08-25 | Intermune Inc | Macrocyclic carboxylic acids and acylsulfonamides as inhibitors of hcv replication. |
US7597884B2 (en) | 2004-08-09 | 2009-10-06 | Alios Biopharma, Inc. | Hyperglycosylated polypeptide variants and methods of use |
WO2006020580A2 (en) * | 2004-08-09 | 2006-02-23 | Alios Biopharma Inc. | Synthetic hyperglycosylated, protease-resistant polypeptide variants, oral formulations and methods of using the same |
CA2666814A1 (en) * | 2006-08-21 | 2008-05-29 | United Therapeutics Corporation | Combination therapy for treatment of viral infections |
WO2010039801A2 (en) | 2008-10-02 | 2010-04-08 | The J. David Gladstone Institutes | Methods of treating hepatitis c virus infection |
CN102448458B (en) | 2009-03-18 | 2015-07-22 | 小利兰·斯坦福大学理事会 | Methods and compositions of treating a flaviviridae family viral infection |
MX349036B (en) | 2011-12-06 | 2017-07-07 | Univ Leland Stanford Junior | Methods and compositions for treating viral diseases. |
AU2015217221A1 (en) | 2014-02-13 | 2016-08-11 | Ligand Pharmaceuticals, Inc. | Prodrug compounds and their uses |
US9994600B2 (en) | 2014-07-02 | 2018-06-12 | Ligand Pharmaceuticals, Inc. | Prodrug compounds and uses therof |
CA3087932A1 (en) | 2018-01-09 | 2019-07-18 | Ligand Pharmaceuticals, Inc. | Acetal compounds and therapeutic uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5290540A (en) * | 1991-05-01 | 1994-03-01 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Method for treating infectious respiratory diseases |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5019568A (en) * | 1987-06-18 | 1991-05-28 | Merck & Co., Inc. | Steroidal glycolipids as host resistance stimulators against viral infection |
NZ507848A (en) * | 1996-10-28 | 2005-01-28 | Univ Washington | Method of increasing the mutation rate of a virus in a non-human by administering an RNA nucleoside analogue to a virally infected cell |
US6258831B1 (en) * | 1999-03-31 | 2001-07-10 | The Procter & Gamble Company | Viral treatment |
US6136835A (en) * | 1999-05-17 | 2000-10-24 | The Procter & Gamble Company | Methods of treatment for viral infections |
-
1999
- 1999-12-20 US US09/467,443 patent/US6423695B1/en not_active Expired - Lifetime
-
2002
- 2002-04-29 US US10/136,745 patent/US20020132784A1/en not_active Abandoned
-
2003
- 2003-04-30 US US10/428,806 patent/US20030207826A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5290540A (en) * | 1991-05-01 | 1994-03-01 | Henry M. Jackson Foundation For The Advancement Of Military Medicine | Method for treating infectious respiratory diseases |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8058282B2 (en) | 2000-10-23 | 2011-11-15 | Glaxosmithkline Llc | 2,4,8-trisubstituted-8H-pyrido[2,3-d]pyrimidin-7-one compounds and compositions for use in therapy |
US20090048444A1 (en) * | 2005-03-25 | 2009-02-19 | Glaxo Group Limited | Process for Preparing Pyrido[2,3-d]pyrimidin-7-one and 3,4-Dihydropyrimido[4,5-d]pyrimidin-2(1H)-one Derivatives |
US20090156597A1 (en) * | 2005-03-25 | 2009-06-18 | Glaxo Group Limited | Novel Compounds |
US8207176B2 (en) | 2005-03-25 | 2012-06-26 | Glaxo Group Limited | Compounds |
US8354416B2 (en) | 2005-03-25 | 2013-01-15 | Glaxo Group Limited | 7,8-dihydropyrido[2,3-d]pyrimidin-4-yl substituted compounds as inhibitors of p38 kinase |
Also Published As
Publication number | Publication date |
---|---|
US6423695B1 (en) | 2002-07-23 |
US20030207826A1 (en) | 2003-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6423695B1 (en) | Cytokine related treatments of disease | |
US6455508B1 (en) | Methods for treating diseases with tirazole and pyrrolo-pyrimidine ribofuranosyl nucleosides | |
US6495677B1 (en) | Nucleoside compounds | |
US6815542B2 (en) | Nucleoside compounds and uses thereof | |
US6455690B1 (en) | L-8-oxo-7-propyl-7,8-dihydro-(9H)-guanosine | |
AU736075B2 (en) | Cytokine related treatments of disease | |
US7056895B2 (en) | Tirazole nucleoside analogs and methods for using same | |
US20090176721A1 (en) | Nucleoside analogs with carboxamidine modified monocyclic base | |
EP1277759A1 (en) | Cytokine related treatments of disease | |
AU743366B2 (en) | Novel nucleosides | |
NZ505531A (en) | 7-Propyl-8-oxo-alpha or beta-L-guanine alpha or beta-L-nucleoside | |
EP1103559A1 (en) | Autoimmune nucleosides | |
MXPA99006418A (en) | Cytokine related treatments of disease | |
CA2322053A1 (en) | Novel nucleosides | |
HRP20000421A2 (en) | Cytokine related treatments of disease | |
HRP980477A2 (en) | Cytokine related treatments of disease | |
CZ246999A3 (en) | Method of reducing administered dosage of a first medicament when treating disease | |
ZA200206468B (en) | Nucleoside analogs with carboxamidine modified monocyclic base. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RIBAPHARM INC., CALIFORNIA Free format text: CONTRIBUTION AGREEMENT;ASSIGNOR:ICN PHARMACEUTICALS, INC.;REEL/FRAME:015549/0460 Effective date: 20020820 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |