US20020125335A1 - Tapered air purging circulator - Google Patents
Tapered air purging circulator Download PDFInfo
- Publication number
- US20020125335A1 US20020125335A1 US09/845,644 US84564401A US2002125335A1 US 20020125335 A1 US20020125335 A1 US 20020125335A1 US 84564401 A US84564401 A US 84564401A US 2002125335 A1 US2002125335 A1 US 2002125335A1
- Authority
- US
- United States
- Prior art keywords
- air purging
- air
- reservoir
- circulator
- pump housing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010926 purge Methods 0.000 title claims abstract description 93
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 54
- 238000010438 heat treatment Methods 0.000 claims abstract description 24
- 238000000926 separation method Methods 0.000 claims abstract description 13
- 230000009467 reduction Effects 0.000 claims abstract description 5
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000005086 pumping Methods 0.000 claims description 4
- 230000004323 axial length Effects 0.000 claims description 2
- 230000008030 elimination Effects 0.000 abstract description 2
- 238000003379 elimination reaction Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 3
- 210000002445 nipple Anatomy 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D19/00—Degasification of liquids
- B01D19/0042—Degasification of liquids modifying the liquid flow
- B01D19/0052—Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/426—Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
- F04D29/4293—Details of fluid inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D9/00—Priming; Preventing vapour lock
- F04D9/001—Preventing vapour lock
- F04D9/002—Preventing vapour lock by means in the very pump
- F04D9/003—Preventing vapour lock by means in the very pump separating and removing the vapour
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/08—Arrangements for drainage, venting or aerating
- F24D19/082—Arrangements for drainage, venting or aerating for water heating systems
- F24D19/083—Venting arrangements
Definitions
- hydronic hot water
- the removal of air in a hot water heating system is conventionally done in two steps.
- the first step is to remove the large pockets of air by purging the system with a hose.
- the second step is to remove the left-over smaller pockets of air by an air scoop or microbubbler.
- a shut-off valve is opened on the fill line leading to the boiler and the system is filled until 12 psi is reached. Then a hose is attached to a drain valve in the system piping and the shut-off valves for each split, off of each zone, are closed. The drain valve is opened and the pressure is increased in the system by adjusting the fill valve to let water into the system. If that doesn't work, the fill valve must be bypassed with a double-end hose. Most of the time the drain valves are not properly placed to do this. The water is then circulated through the system until new water replaces the water already in the system.
- the hose is then moved to the next drain valve and the step of circulating water to replace existing water with new water is repeated for each split of each heating loop. This task takes 1.25-2.5 hours and must be added to every repair done in the system. If the fill valve breaks due to excessive pressures during filling of the system, the entire process may have to be repeated.
- 4,775,292 is not suitable for orientation in more than one direction, thus limiting its application to limited situations where a preexisting circulator pump is oriented in the same way as the intended use of the system shown in this patent. In addition, this system would not be useful to install the pump where system piping runs close to a wall.
- the present invention improves upon and extends this original design.
- an air purging circulator comprises a pump housing which is tapered from an inlet end to a pump end.
- the housing is a horizontal frustoconical shape, similar to a coffee cup positioned on a horizontal axis.
- the circulator has an inlet aperture and an outlet aperture at one end, generally axially aligned with each other.
- the inlet leads to a reservoir and from there to an impeller chamber.
- the impeller chamber is at one end of the housing and contains an impeller driven by an electric motor at an end of the circulator opposite from the end containing the inlet and outlet.
- the impeller chamber preferably connects to the outlet aperture in the pump housing by a curved passageway that extends from the impeller chamber to the outlet aperture.
- the air purging circulator is particularly well adapted to use in retrofit of existing systems, even where piping is close by a wall.
- the distance between the inlet and outlet apertures of the pump housing is selected to match the distance between flanges in conventional circulators, to allow easy retrofit.
- the air purging reservoir is sized to provide reduction of the velocity of the circulating water in the hydronic system as it passes through the air purging reservoir on the suction side of the reservoir. This location has the lowest pressure within the system, and thus, the least amount of dissolved air in the circulating water.
- the air contained in the circulating water separates from the circulating water and, due to the frustoconical shape of the reservoir, collects in an upper portion of the air purging reservoir.
- the air purging reservoir has an air vent provided in the upper portion thereof to release the air collected in the reservoir.
- the air purging reservoir is provided with four apertures positioned at 90° intervals around a peripheral wall thereof. In this way, the air purging circulator may be oriented in any direction and the air vent will be positioned on the upper portion of the air purging reservoir.
- the reservoir contains a separation media, such as a plate, marbles, wire mesh, or crumpled wire, to further slow the water flow and enhance separation of the air from the water.
- a separation media such as a plate, marbles, wire mesh, or crumpled wire
- FIG. 1 is a top, front and left side perspective view of a first embodiment of an air purging circulator in accordance with the invention.
- FIG. 2 is a top, front and right side perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 3 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 4 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 5 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 6 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 7 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 8 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 9 is a cross-sectional view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 10A is a top plan view of a flange for mounting to an air purging circulator.
- FIG. 10B is a top plan view of a flange for mounting to an air purging circulator.
- FIG. 11 is a side elevation view of an air purging circulator adapted to receive the flange of FIGS. 10A or 10 B.
- FIG. 12 is a side elevation view showing the first step of mounting the flange of FIG. 10A to a pipe in the air purging circulator of FIG. 12.
- FIG. 13 is a side elevation view showing the second step of mounting the flange of FIG. 10A to a pipe in the air purging circulator of FIG. 11.
- FIG. 14 is a side elevation view showing the third step of mounting the flange of FIG. 10A to a pipe in the air purging circulator of FIG. 11.
- FIG. 15 is a side elevation view showing the fourth step of connecting the flanges pipe in the air purging circulator of FIGS. 13 - 14 to preexisting flanged pipe.
- the present invention has particular application in hydronic heating systems, i.e., circulating hot water heating systems found in many homes.
- hydronic heating systems i.e., circulating hot water heating systems found in many homes.
- FIGS. 1 - 9 an air purging circulator 30 for a hydronic heating system is shown.
- the same numbers refer to like elements in the different embodiments.
- Circulator 30 comprises an electric motor 32 (not shown), a pump housing 34 , and an impeller 36 (not shown).
- Pump housing 34 has an inlet aperture 38 leading to an air purging reservoir 42 .
- An outlet from the air purging reservoir 42 has an outlet aperture 44 connected to an impeller chamber 46 , such that the reservoir 42 is on the upstream, or suction side, of the impeller chamber 46 .
- Impeller chamber 46 is connected by a passageway 48 to an outlet aperture 50 in pump housing 34 .
- the impeller chamber 36 preferably connects to the outlet aperture 50 in the pump housing 34 by a curved tube 52 that extends from the impeller chamber 46 , to the outlet aperture 50 .
- Impeller 54 for pumping water in the hydronic heating system is operably connected to motor 56 .
- Impeller 54 is located within impeller chamber 46 .
- the air purging reservoir 42 is located on the suction side of the impeller 54 in circulator 30 .
- Inlet aperture 38 and outlet aperture 50 are axially aligned, so that the circulator 30 may be installed in retrofit applications in place of an existing conventional circulator without requiring repiping, drainage of the system, or other time-consuming and expensive alterations of the existing hydronic heating system. Moreover, the distance between aperture 38 and outlet aperture 50 is selected to be consistent with industry standards for existing circulators, to simplify installation of the circulator 30 into an existing hydronic heating system.
- Flanges are preferably associated with the inlet aperture 38 and outlet aperture 50 and are preferably secured in a manner allowing rotation of the flanges relative to the housing this manner, the air purging circulator 30 can easily be retrofitted into existing systems that have mating flanges on installed pipes, because the flanges on the circulator 30 may easily be oriented to match up with the existing flanges in the preexisting heating system.
- Rotation of the flanges of the inlet and outlet apertures 38 , 50 may be provided by a threaded connection between the flange and a nipple extending from the circulator 30 , or by a retaining collar for the flange having sealing means between the flange and the collar.
- the inlet aperture 38 and outlet aperture 50 are positioned on one end of air purging reservoir opposite from the motor 12 .
- This configuration provides the added advantage of fitting the circulator 30 into tight spaces, as where existing piping is fitted close to a wall.
- the provision of the inlet aperture 38 and outlet aperture 50 at end 54 of air purging reservoir 30 allows the circulator 30 to fit into the existing space, very nearly flush against a wall, where piping is fitted close to the wall.
- a curved tube 52 preferably connects the impeller chamber 46 to the outlet aperture 50 of pump housing 34 .
- the curved tube 52 is a smooth gradually curved tube to provide a smooth transition from the impeller chamber 46 to the outlet 50 , and is believed to have a better flow rate and to reduce turbulence and mixing of air into the water than a system where a winding path is provided from the impeller chamber to the outlet.
- Housing 34 and reservoir 42 contained therein have a tapered diameter along their axial length.
- the Figures show a preferred embodiment where housing 34 and reservoir 42 are frustoconical in shape along their horizontal axis.
- the frustoconical shape similar to a coffee cup laid on its side, enhances the separation of air from the circulating water, and encourages the separated air to rise up and exit through the uppermost of the vent apertures 60 .
- the air purging reservoir 42 is provided with four threaded vent apertures 60 around a peripheral wall thereof at positions 90° apart, for connecting air vent 64 to the air purging reservoir 42 using a nipple 66 .
- the apertures 60 are aligned with the axis of the inlet and outlets 38 and 50 and at positions 90° away therefrom.
- the provision of vent apertures 60 at these positions allows the air purging circulator 30 to be oriented in any direction, and the air vent 64 can be installed in the upper portion 62 of the air purging reservoir 42 .
- the apertures 60 that are not used for the air vent 64 will be plugged with a suitable threaded plug 68 .
- the air purging reservoir 42 is sized to permit reduction of velocity of water in the hydronic system, and is located to remove air at the point of lowest pressure in the system. This causes air bubbles contained in the water to separate from the water by and to be collected in an upper portion 62 of the air purging reservoir 42 .
- the air purging reservoir 42 has an air vent 64 provided in the uppermost of the vent apertures 60 . to release air collected in the air purging reservoir 42 .
- the air purging circulator may be an empty space; however, in one embodiment, the air purging circulator 30 contains media that assists in inducing the separation of air from the water. Baffle plates may also be used in lieu of separation media. Separation media may comprise a randomly stacked series of spherical materials such as marbles or it may comprise packings of the type used in packed towers as are known in the art of chemical process equipment, or it may comprise a mesh or other material, such as a crumpled wire media. The separation media acts to divert the water flow into numerous paths, further reducing the water velocity, to allow further residence time for separation of air bubbles from the water.
- a summary of the operation of the circulator of the invention is as follows.
- An air/water mixture in a hydronic heating system enters the circulator through aperture 38 in housing 34 , then enters the air purging reservoir 42 .
- Air purging reservoir 42 is sized sufficiently large so as to allow the mixture to reduce its speed. Air released by the low pressure, or that is moving with the water, separates by gravity from the water and collects in the upper end 62 of the reservoir 42 . The air is then vented out through automatic vent 64 . Vent 64 does not allow water to pass therethrough. Vent 64 is attached to reservoir 42 by a nipple 66 screwed into threaded vent aperture 60 . In a typical use, one air vent 64 will be installed in one of the apertures 60 after it is determined which aperture 60 will be topmost.
- the water flows into impeller chamber 46 by suction from the impeller.
- the amount of dissolved air in the water in impeller chamber 46 is significantly lower than the amount of air in the water entering reservoir 42 .
- the water in impeller chamber 46 does not contain enough air to stall the system. (In prior art systems the entire heating system would stall if enough air entered impeller chamber 46 , so that the impeller was spinning in the trapped air instead of pumping water through the system.)
- the air purging circulator 30 After a few cycles of the water through the air purging circulator 30 the smaller pockets of air disappear, eliminating banging and other noises associated with air in the hydronic system.
- a flange 90 is provided with a central opening 92 , which has cutout sides, and conventional bolt holes 94 . Opening 92 is sized to fit over the lip 95 of the flaring tube end 96 in the circulator.
- the cutout sides allow the flange to be oriented and manipulated to a position inward of the lip 95 , so that the flange 90 may be retained on the tube end 96 , all as shown in the series of steps at FIGS. 12 - 15 .
- the present invention provides a new and useful improvement in the filed of hydronic heating systems, by providing for elimination of dissolved air in the circulating water in the heating system.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
An air purging circulator is provided with a frustoconical reservoir, which promotes separation of dissolved and captured air form the water in a hydronic home heating system, to prevent stalling of the circulator and reduction or elimination of noise associated with air contained in the hydronic system.
Description
- I claim priority benefits under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Serial No. 60/203,139 filed May 8, 2000.
- Air can enter a hydronic (hot water) heating system in number of ways. Most typically, air enters the system as a result of some repair or replacement of a component of the system. If, for example, a boiler is replaced, the entire system typically must be drained and refilled with water.
- The removal of air in a hot water heating system is conventionally done in two steps. The first step is to remove the large pockets of air by purging the system with a hose. The second step is to remove the left-over smaller pockets of air by an air scoop or microbubbler.
- In the first step, a shut-off valve is opened on the fill line leading to the boiler and the system is filled until 12 psi is reached. Then a hose is attached to a drain valve in the system piping and the shut-off valves for each split, off of each zone, are closed. The drain valve is opened and the pressure is increased in the system by adjusting the fill valve to let water into the system. If that doesn't work, the fill valve must be bypassed with a double-end hose. Most of the time the drain valves are not properly placed to do this. The water is then circulated through the system until new water replaces the water already in the system. The hose is then moved to the next drain valve and the step of circulating water to replace existing water with new water is repeated for each split of each heating loop. This task takes 1.25-2.5 hours and must be added to every repair done in the system. If the fill valve breaks due to excessive pressures during filling of the system, the entire process may have to be repeated.
- In the second step, after the biggest pockets of air are gone, small bubbles remain, causing gurgling noises in the pipes of the hot water system. These small bubbles are removed by air scoops or microbubblers installed in the system. If properly installed, these devices will eventually purge most of the remaining air within 24 hours and the system should circulate smoothly and quietly.
- If the smaller bubbles are not removed, they can accumulate into bigger pockets of air. These large pockets of air, if they are drawn through the system to the impeller chamber of the circulator, can cause stalling of circulation of the water through the system, so that no heat is delivered to the radiators located downstream of the circulator. In other cases, the air pocket can become trapped in one of the zones of the heating system, preventing circulation through that zone. If these problems occur in the winter, there is the possibility of the pipes freezing and bursting if the problems are not promptly solved.
- A number of systems have been proposed to provide gas separation equipment in a hyrdronic heating system, but to date, none of the proposed systems have been suitable for use in retrofit applications, i.e., installation into preexisting hydronic heating systems. Thus, the system in U.S. Pat. No. 3,290,864 is complicated, and would require expensive repiping to install in a preexisting system due to the non-standard positioning of the pump inlet and outlet; and due to the inability to install the pump where system piping is run close to a wall. The system in U.S. Pat. No. 4,775,292 is not suitable for orientation in more than one direction, thus limiting its application to limited situations where a preexisting circulator pump is oriented in the same way as the intended use of the system shown in this patent. In addition, this system would not be useful to install the pump where system piping runs close to a wall.
- More recently, I have invented a new design for a retrofit circulator, as disclosed in U.S. Pat. No. 6,129,153, issued Oct. 10, 2000, which provides a circulator for hydronic systems which can automatically remove air in the system, without need for laborious hose purging of the system, and which is suitable for retrofit applications regardless of the positioning or orientation of the existing circulator or piping in the system.
- The present invention improves upon and extends this original design.
- In accordance with one embodiment of the invention, an air purging circulator comprises a pump housing which is tapered from an inlet end to a pump end. In the preferred embodiment, the housing is a horizontal frustoconical shape, similar to a coffee cup positioned on a horizontal axis. The circulator has an inlet aperture and an outlet aperture at one end, generally axially aligned with each other. The inlet leads to a reservoir and from there to an impeller chamber. The impeller chamber is at one end of the housing and contains an impeller driven by an electric motor at an end of the circulator opposite from the end containing the inlet and outlet. The impeller chamber preferably connects to the outlet aperture in the pump housing by a curved passageway that extends from the impeller chamber to the outlet aperture.
- The air purging circulator is particularly well adapted to use in retrofit of existing systems, even where piping is close by a wall. Preferably, the distance between the inlet and outlet apertures of the pump housing is selected to match the distance between flanges in conventional circulators, to allow easy retrofit.
- The air purging reservoir is sized to provide reduction of the velocity of the circulating water in the hydronic system as it passes through the air purging reservoir on the suction side of the reservoir. This location has the lowest pressure within the system, and thus, the least amount of dissolved air in the circulating water. The air contained in the circulating water separates from the circulating water and, due to the frustoconical shape of the reservoir, collects in an upper portion of the air purging reservoir. The air purging reservoir has an air vent provided in the upper portion thereof to release the air collected in the reservoir. Preferably, the air purging reservoir is provided with four apertures positioned at 90° intervals around a peripheral wall thereof. In this way, the air purging circulator may be oriented in any direction and the air vent will be positioned on the upper portion of the air purging reservoir.
- In a preferred embodiment, the reservoir contains a separation media, such as a plate, marbles, wire mesh, or crumpled wire, to further slow the water flow and enhance separation of the air from the water.
- Other objects, aspects and features of the present invention in addition to those mentioned above will be pointed out in or will be understood from the following detailed description provided in conjunction with the accompanying drawings.
- FIG.1 is a top, front and left side perspective view of a first embodiment of an air purging circulator in accordance with the invention.
- FIG. 2 is a top, front and right side perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 3 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 4 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 5 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 6 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 7 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 8 is a perspective view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 9 is a cross-sectional view of the embodiment of an air purging circulator of FIG. 1.
- FIG. 10A is a top plan view of a flange for mounting to an air purging circulator.
- FIG. 10B is a top plan view of a flange for mounting to an air purging circulator.
- FIG. 11 is a side elevation view of an air purging circulator adapted to receive the flange of FIGS. 10A or10B.
- FIG. 12 is a side elevation view showing the first step of mounting the flange of FIG. 10A to a pipe in the air purging circulator of FIG. 12.
- FIG. 13 is a side elevation view showing the second step of mounting the flange of FIG. 10A to a pipe in the air purging circulator of FIG. 11.
- FIG. 14 is a side elevation view showing the third step of mounting the flange of FIG. 10A to a pipe in the air purging circulator of FIG. 11.
- FIG. 15 is a side elevation view showing the fourth step of connecting the flanges pipe in the air purging circulator of FIGS.13-14 to preexisting flanged pipe.
- The present invention has particular application in hydronic heating systems, i.e., circulating hot water heating systems found in many homes. Referring now to FIGS.1-9, an
air purging circulator 30 for a hydronic heating system is shown. In the Figures, the same numbers refer to like elements in the different embodiments. -
Circulator 30 comprises an electric motor 32 (not shown), apump housing 34, and an impeller 36 (not shown).Pump housing 34 has aninlet aperture 38 leading to anair purging reservoir 42. An outlet from theair purging reservoir 42 has anoutlet aperture 44 connected to animpeller chamber 46, such that thereservoir 42 is on the upstream, or suction side, of theimpeller chamber 46.Impeller chamber 46 is connected by apassageway 48 to anoutlet aperture 50 inpump housing 34. The impeller chamber 36 preferably connects to theoutlet aperture 50 in thepump housing 34 by acurved tube 52 that extends from theimpeller chamber 46, to theoutlet aperture 50. -
Impeller 54 for pumping water in the hydronic heating system is operably connected to motor 56.Impeller 54 is located withinimpeller chamber 46. Thus theair purging reservoir 42 is located on the suction side of theimpeller 54 incirculator 30. -
Inlet aperture 38 andoutlet aperture 50 are axially aligned, so that thecirculator 30 may be installed in retrofit applications in place of an existing conventional circulator without requiring repiping, drainage of the system, or other time-consuming and expensive alterations of the existing hydronic heating system. Moreover, the distance betweenaperture 38 andoutlet aperture 50 is selected to be consistent with industry standards for existing circulators, to simplify installation of thecirculator 30 into an existing hydronic heating system. Flanges are preferably associated with theinlet aperture 38 andoutlet aperture 50 and are preferably secured in a manner allowing rotation of the flanges relative to the housing this manner, theair purging circulator 30 can easily be retrofitted into existing systems that have mating flanges on installed pipes, because the flanges on thecirculator 30 may easily be oriented to match up with the existing flanges in the preexisting heating system. Rotation of the flanges of the inlet andoutlet apertures circulator 30, or by a retaining collar for the flange having sealing means between the flange and the collar. - In preferred embodiments, shown in FIGS. 1 and 2, the
inlet aperture 38 andoutlet aperture 50 are positioned on one end of air purging reservoir opposite from themotor 12. This configuration provides the added advantage of fitting the circulator 30 into tight spaces, as where existing piping is fitted close to a wall. The provision of theinlet aperture 38 andoutlet aperture 50 atend 54 ofair purging reservoir 30 allows thecirculator 30 to fit into the existing space, very nearly flush against a wall, where piping is fitted close to the wall. As noted above, in the embodiment of FIG. 1, acurved tube 52 preferably connects theimpeller chamber 46 to theoutlet aperture 50 ofpump housing 34. Thecurved tube 52 is a smooth gradually curved tube to provide a smooth transition from theimpeller chamber 46 to theoutlet 50, and is believed to have a better flow rate and to reduce turbulence and mixing of air into the water than a system where a winding path is provided from the impeller chamber to the outlet. -
Housing 34 andreservoir 42 contained therein have a tapered diameter along their axial length. The Figures show a preferred embodiment wherehousing 34 andreservoir 42 are frustoconical in shape along their horizontal axis. The frustoconical shape, similar to a coffee cup laid on its side, enhances the separation of air from the circulating water, and encourages the separated air to rise up and exit through the uppermost of thevent apertures 60. - The
air purging reservoir 42 is provided with four threadedvent apertures 60 around a peripheral wall thereof atpositions 90° apart, for connecting air vent 64 to theair purging reservoir 42 using a nipple 66. Theapertures 60 are aligned with the axis of the inlet andoutlets positions 90° away therefrom. The provision ofvent apertures 60 at these positions allows theair purging circulator 30 to be oriented in any direction, and the air vent 64 can be installed in theupper portion 62 of theair purging reservoir 42. Theapertures 60 that are not used for the air vent 64 will be plugged with a suitable threaded plug 68. - The
air purging reservoir 42 is sized to permit reduction of velocity of water in the hydronic system, and is located to remove air at the point of lowest pressure in the system. This causes air bubbles contained in the water to separate from the water by and to be collected in anupper portion 62 of theair purging reservoir 42. Theair purging reservoir 42 has an air vent 64 provided in the uppermost of thevent apertures 60. to release air collected in theair purging reservoir 42. - The air purging circulator may be an empty space; however, in one embodiment, the
air purging circulator 30 contains media that assists in inducing the separation of air from the water. Baffle plates may also be used in lieu of separation media. Separation media may comprise a randomly stacked series of spherical materials such as marbles or it may comprise packings of the type used in packed towers as are known in the art of chemical process equipment, or it may comprise a mesh or other material, such as a crumpled wire media. The separation media acts to divert the water flow into numerous paths, further reducing the water velocity, to allow further residence time for separation of air bubbles from the water. - A summary of the operation of the circulator of the invention is as follows. An air/water mixture in a hydronic heating system enters the circulator through
aperture 38 inhousing 34, then enters theair purging reservoir 42.Air purging reservoir 42 is sized sufficiently large so as to allow the mixture to reduce its speed. Air released by the low pressure, or that is moving with the water, separates by gravity from the water and collects in theupper end 62 of thereservoir 42. The air is then vented out through automatic vent 64. Vent 64 does not allow water to pass therethrough. Vent 64 is attached toreservoir 42 by a nipple 66 screwed into threadedvent aperture 60. In a typical use, one air vent 64 will be installed in one of theapertures 60 after it is determined whichaperture 60 will be topmost. - After separation of the air/water mixture in
reservoir 42, the water flows intoimpeller chamber 46 by suction from the impeller. The amount of dissolved air in the water inimpeller chamber 46 is significantly lower than the amount of air in thewater entering reservoir 42. The water inimpeller chamber 46 does not contain enough air to stall the system. (In prior art systems the entire heating system would stall if enough air enteredimpeller chamber 46, so that the impeller was spinning in the trapped air instead of pumping water through the system.) After a few cycles of the water through theair purging circulator 30 the smaller pockets of air disappear, eliminating banging and other noises associated with air in the hydronic system. - Referring now to FIGS.10A-15, a preferred embodiment for retrofit of the circulator of the invention into an existing home hydronic system is shown. A
flange 90 is provided with acentral opening 92, which has cutout sides, and conventional bolt holes 94.Opening 92 is sized to fit over thelip 95 of the flaringtube end 96 in the circulator. The cutout sides allow the flange to be oriented and manipulated to a position inward of thelip 95, so that theflange 90 may be retained on thetube end 96, all as shown in the series of steps at FIGS. 12-15. Once theflange 90 is positioned in location, it may be bolted to the corresponding flange of apipe 100. - Accordingly, the present invention provides a new and useful improvement in the filed of hydronic heating systems, by providing for elimination of dissolved air in the circulating water in the heating system.
Claims (15)
1. An air purging circulator for a hydronic heating system, comprising:
a motor;
a pump housing having an inlet aperture and an outlet aperture, said inlet aperture connecting to an air purging reservoir, said air purging reservoir having a generally frusto-conical shape, said air purging reservoir being on a suction side of an impeller chamber, an outlet from said air purging reservoir connecting to said impeller chamber, said impeller chamber connecting to said outlet aperture in said pump housing;
impeller means for pumping water in said hydronic heating system operably connected to said motor and located within said impeller chamber;
said air purging reservoir being sized to permit reduction of velocity of circulating water in the hydronic system through said air purging reservoir, air contained in the circulating water separating from the circulating water while passing through said air purging reservoir and collecting in an upper portion of said air purging reservoir, said air purging reservoir having an air vent provided in said upper portion thereof to release air collected in said reservoir.
2. An air purging circulator in accordance with claim 1 wherein said inlet aperture and said outlet aperture of said pump housing are axially aligned and are located at one end of said pump housing opposite from said motor.
3. An air purging circulator in accordance with claim 1 wherein said air purging reservoir is sized to provide a sufficient residence time of water in said reservoir to permit effective separation of air from the water.
4. An air purging circulator for a hydronic heating system in accordance with claim 3 , wherein said air purging reservoir is provided with four apertures around a peripheral wall thereof for connecting said air vent to said air purging reservoir, whereby said air purging circulator may be oriented in any direction and said air vent may be positioned in said upper portion of said air purging reservoir.
5. An air purging circulator in accordance with claim 4 , wherein said apertures are positioned at 90 degree intervals around said peripheral wall.
6. An air purging circulator in accordance with claim 1 , wherein a smooth gradually curved tube connects said impeller chamber to said outlet aperture of said pump housing.
7. An air purging circulator in accordance with claim 1 , wherein said impeller chamber is connected to said outlet aperture of said pump housing by a channel formed in said pump housing.
8. An air purging circulator in accordance with claim 1 , wherein one or more of said inlet aperture and said outlet aperture are provided with a tubular body with a flaring tube end, and a flange is mounted on said flaring tube end, said flange being generally oval with a central opening with cutout sides permitting said flange to be mounted to or removed from said flaring tube end.
9. An air purging circulator for a hydronic heating system, comprising:
a motor;
a pump housing having an inlet aperture and an outlet aperture, said inlet aperture connecting to an air purging reservoir, said air purging reservoir having a tapered shape along its axial length, said air purging reservoir being on a suction side of an impeller chamber, an outlet from said air purging reservoir connecting to said impeller chamber, said impeller chamber connecting to said outlet aperture in said pump housing; said inlet aperture and said outlet aperture of said pump housing being axially aligned and being located at one end of said pump housing opposite from said motor;
impeller means for pumping water in said hydronic heating system operably connected to said motor and located within said impeller chamber;
said air purging reservoir being sized to permit reduction of velocity of circulating water in the hydronic system through said air purging reservoir, air contained in the circulating water separating from the circulating water while passing through said air purging reservoir and collecting in an upper portion of said air purging reservoir, said air purging reservoir having an air vent provided in said upper portion thereof to release air collected in said reservoir.
10. An air purging circulator in accordance with claim 9 wherein said air purging reservoir is sized to provide a sufficient residence time of water in said reservoir to permit effective separation of air from the water.
11. An air purging circulator for a hydronic heating system in accordance with claim 10 , wherein said air purging reservoir is provided with four apertures around a peripheral wall thereof for connecting said air vent to said air purging reservoir, whereby said air purging circulator may be oriented in any direction and said air vent may be positioned in said upper portion of said air purging reservoir.
12. An air purging circulator in accordance with claim 11 , wherein said apertures are positioned at 90 degree intervals around said peripheral wall.
13. An air purging circulator in accordance with claim 9 , wherein a smooth gradually curved tube connects said impeller chamber to said outlet aperture of said pump housing.
14. An air purging circulator in accordance with claim 9 , wherein said impeller chamber is connected to said outlet aperture of said pump housing by a channel formed in said pump housing.
15. An air purging circulator in accordance with claim 9 , wherein one or more of said inlet aperture and said outlet aperture are provided with a tubular body with a flaring tube end, and a flange is mounted on said flaring tube end, said flange being generally oval with a central opening with cutout sides permitting said flange to be mounted to or removed from said flaring tube end.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/845,644 US6431461B1 (en) | 2000-05-08 | 2001-04-30 | Tapered air purging circulator |
CA 2357339 CA2357339C (en) | 2001-04-30 | 2001-09-14 | Tapered air purging circulator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20313900P | 2000-05-08 | 2000-05-08 | |
US09/845,644 US6431461B1 (en) | 2000-05-08 | 2001-04-30 | Tapered air purging circulator |
Publications (2)
Publication Number | Publication Date |
---|---|
US6431461B1 US6431461B1 (en) | 2002-08-13 |
US20020125335A1 true US20020125335A1 (en) | 2002-09-12 |
Family
ID=26898345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/845,644 Expired - Fee Related US6431461B1 (en) | 2000-05-08 | 2001-04-30 | Tapered air purging circulator |
Country Status (1)
Country | Link |
---|---|
US (1) | US6431461B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190024907A1 (en) * | 2016-01-15 | 2019-01-24 | Charanjit Singh BATH | Boiler service and maintenance valve |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7578870B2 (en) * | 2004-12-17 | 2009-08-25 | Hamilton Sundstrand Corporation | Fluid separating device |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2146532A (en) * | 1936-03-13 | 1939-02-07 | Du Pont | Extrusion process |
US3074645A (en) | 1960-11-21 | 1963-01-22 | Bell & Gossett Co | Air separator fitting for hydronic systems |
US3271933A (en) | 1963-10-31 | 1966-09-13 | Internat Telephone & Telegraph | Gas separation pump for liquid circulating systems |
US3276188A (en) * | 1964-02-28 | 1966-10-04 | Itt | Heating or cooling systems and air separating devices therefor |
US3290864A (en) | 1965-08-10 | 1966-12-13 | Itt | Gas separation pump for liquid circulating systems |
US3377778A (en) | 1966-02-02 | 1968-04-16 | Gen Electric | Method and apparatus for degassing liquids |
US3397512A (en) * | 1966-12-28 | 1968-08-20 | James E. Webb | Vapor-liquid separator |
US3472453A (en) * | 1968-01-04 | 1969-10-14 | American Standard Inc | Hot water heating system having a unique fitting therein |
US3535854A (en) * | 1968-08-29 | 1970-10-27 | John J Taylor | Centrifugal dust separator |
DE1937119A1 (en) | 1969-07-22 | 1971-02-04 | Loewe Pumpenfabrik Gmbh | Centrifugal pump with gas separation |
DE2346286C3 (en) | 1973-09-14 | 1978-11-23 | Joh. Vaillant Kg, 5630 Remscheid | Device for gas separation |
US4201555A (en) * | 1976-12-30 | 1980-05-06 | Joseph Tkach | Method and apparatus for degasification of liquid by induced vortexing |
DE3012078A1 (en) | 1980-03-28 | 1981-10-08 | Spiro Research B.V., Helmond | DEVICE FOR VENTILATING PIPE SYSTEMS |
DE3022420C2 (en) | 1980-06-14 | 1984-06-28 | Grundfos A/S, Bjerringbro | Device for separating gas from a liquid |
DE8102304U1 (en) | 1981-01-30 | 1981-07-02 | Grundfos A/S, 8850 Bjerringbro | PUMP WITH NAMEPLATE |
DE3109918C2 (en) | 1981-03-14 | 1989-03-16 | Wilo-Werk Gmbh & Co Pumpen- Und Apparatebau, 4600 Dortmund | Liquid pump with gas separation chamber |
US4609385A (en) * | 1985-05-06 | 1986-09-02 | Burgess & Associates Mfg., Inc. | Multi stage water deoxygenator |
DK155340C (en) | 1986-07-08 | 1989-10-02 | Grundfos Int | Pump with gas separator |
DE3637040A1 (en) | 1986-10-31 | 1988-05-19 | Grundfos Int | CENTRIFUGAL PUMP AS A CIRCUIT PUMP FOR HEATING SYSTEMS |
NL8900857A (en) | 1989-04-06 | 1990-11-01 | Flamco Bv | DEVICE FOR SEPARATING GAS FROM LIQUID AND DRAINING THE RELEASED GAS. |
WO1992019531A1 (en) | 1991-04-26 | 1992-11-12 | Gilbarco Limited | Air/vapour separation device |
US5490874A (en) | 1995-01-03 | 1996-02-13 | Sparco, Inc. | De-aerator apparatus |
US5660618A (en) * | 1995-07-13 | 1997-08-26 | Daewoo Electronics Co., Ltd. | Gas-liquid separating apparatus for a gas boiler |
US6129523A (en) | 1997-04-11 | 2000-10-10 | Ruhnke; John | Air purging circulator |
-
2001
- 2001-04-30 US US09/845,644 patent/US6431461B1/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190024907A1 (en) * | 2016-01-15 | 2019-01-24 | Charanjit Singh BATH | Boiler service and maintenance valve |
Also Published As
Publication number | Publication date |
---|---|
US6431461B1 (en) | 2002-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0688631B1 (en) | System and method for collecting cutting fluid liquid and chips | |
CN104321572B (en) | Compact air stop valve for aircraft galley plumbing system | |
CA3086197C (en) | Storm drainage detention assembly and system | |
US6129523A (en) | Air purging circulator | |
CN101142006B (en) | Gravity tank for discharging used water into a receiving body of water | |
US6431461B1 (en) | Tapered air purging circulator | |
US6745580B1 (en) | Combination P-trap, shutoff switch and cleanout fitting | |
CN104380004A (en) | Hot water generator | |
US4564142A (en) | Hydronic system with circulators connected to a header | |
EP0550980B1 (en) | Vacuum valve for a sewage collection system | |
CA2357339C (en) | Tapered air purging circulator | |
AU674561B2 (en) | A method and a device for automatic circulation in a waste water pump station | |
EP0058648B1 (en) | A device for automatic circulation in sewage water pump station | |
EP0865547B1 (en) | A device for controlling a liquid flow in a conduit system | |
CN114705047B (en) | A dewaxing device for sintering furnace | |
EP0363586B1 (en) | Gas separator | |
US2075784A (en) | Waste water heat recovery apparatus | |
EP0054264A2 (en) | Combined inlet and outlet fitting | |
CN207786027U (en) | A kind of horizontal three-phase separator | |
CN220980418U (en) | Exhaust valve | |
US4051859A (en) | Apparatus for draining fluid from a continuously evacuated space | |
CN215636552U (en) | Pipeline fluid separation storage device | |
US5447193A (en) | Apparatus for injecting a volume of liquid into a liquid-conducting system | |
CN218339064U (en) | Solid-liquid separator for water circulation pipeline | |
EP3312134A1 (en) | A device and a method for storing and dispensing a liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060813 |