+

US20020118457A1 - Wavefront coded imaging systems - Google Patents

Wavefront coded imaging systems Download PDF

Info

Publication number
US20020118457A1
US20020118457A1 US09/747,788 US74778800A US2002118457A1 US 20020118457 A1 US20020118457 A1 US 20020118457A1 US 74778800 A US74778800 A US 74778800A US 2002118457 A1 US2002118457 A1 US 2002118457A1
Authority
US
United States
Prior art keywords
transfer function
wavefront coding
lens
coding element
optical transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/747,788
Other languages
English (en)
Inventor
Edward Dowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omnivision CDM Optics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/747,788 priority Critical patent/US20020118457A1/en
Assigned to CDM OPTICS, INCORPORATED reassignment CDM OPTICS, INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOWSKI, EDWARD RAYMOND JR.
Priority to PCT/US2001/044159 priority patent/WO2002052331A2/fr
Priority to EP01272457A priority patent/EP1346251A2/fr
Priority to AU2002219861A priority patent/AU2002219861A1/en
Publication of US20020118457A1 publication Critical patent/US20020118457A1/en
Assigned to REGENTS OF THE UNIVERSITY OF COLORADO, THE reassignment REGENTS OF THE UNIVERSITY OF COLORADO, THE QUITCLAIM Assignors: DOWSKI, EDWARD RAYMOND
Priority to US10/407,708 priority patent/US6940649B2/en
Priority to US11/192,572 priority patent/US7106510B2/en
Priority to US11/511,023 priority patent/US7554732B2/en
Priority to US11/511,022 priority patent/US7554731B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • This invention relates to apparatus and methods for optical design based on wavefront coding combined with post processing of images.
  • Traditional optical design is based on the premise that the only major components of the imaging system are the optics and detector.
  • the detector can be analog (e.g. film) or a digital (e.g. CCD, CMOS etc.) detector.
  • Traditional image processing techniques performed on an image are performed after the image is formed. Examples of traditional image processing include edge sharpening and color filter array (CFA) color interpolation.
  • Traditional optics are therefore designed to form images at the detector that are sharp and clear over a range of field angles, illumination wavelengths, temperatures, and focus positions. Consequently, a trade off is made between forming good images, which requires optical designs that are larger, heavier, and contain more optical elements than are desirable, and modifying the design in order to reduce size, weight, or the number of optical elements, which results in loss of image quality.
  • Wavefront Coding systems share the task of image formation between optics and digital processing. Instead of the imaging system being primarily composed of optics and the detector, Wavefront Coding imaging systems are composed of optics, detector, and importantly, processing of the detected image.
  • the detector can in general be analog, such as film, or a digital detector. Since processing of the detected image is an integral part of the total system, the optics of Wavefront Coded imaging systems do not need to form sharp and clear images at the plane of the detector. It is only the images after processing that need to be sharp and clear.
  • Wavefront Coding in general, corrects for known or unknown amounts of “misfocus-like” aberrations. These aberrations include misfocus, spherical aberration, petzval curvature, astigmatism, and chromatic aberration. System sensitivities to environmental parameters such as temperature and pressure induced aberrations, and mechanical focus related aberrations related to fabrication error, assembly error, drift, wear, etc., are also reduced with Wavefront Coding. Optical designs based on Wavefront Coding can reduce the effects of these aberrations and result in simpler designs that produce good images.
  • Optical system designs according to the present invention are improved in that they have the characteristic that the transverse ray intercept curves are substantially straight lines.
  • the transverse ray intercept curves for wavefront coded systems need not have a near zero slope; the slope, which indicates misfocus, may be substantial, because wavefront coding allows the effects due to misfocus to be removed.
  • the transverse ray intercept curves should vary mainly in slope over wavelength, field angles, temperature, etc. but need not be exactly straight lines. Some ripple is acceptable. With wavefront coding optical surfaces and post processing, good images can be produced.
  • FIG. 1 shows a single-lens miniature imaging system according to the present invention.
  • FIG. 2 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 1 with wavefront coding removed.
  • FIG. 3 illustrates distortion curves for the system of FIG. 1 with wavefront coding removed.
  • FIG. 4 illustrates modulation transfer functions (MTF) for the system of FIG. 1, with wavefront coding removed.
  • FIG. 5 illustrates modulation transfer functions (MTF) for the system of FIG. 1, with wavefront coding, but without post processing.
  • MTF modulation transfer functions
  • FIG. 6 illustrates modulation transfer functions (MTF) for the system of FIG. 1, with wavefront coding, both before and after filtering.
  • MTF modulation transfer functions
  • FIGS. 7 a and 7 b illustrates sampled point spread functions (PSF) for the system of FIG. 1, with wavefront coding and after filtering, for two object distances.
  • PSF sampled point spread functions
  • FIG. 8 shows a low cost microscope objective according to the present invention.
  • FIG. 9 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 8 with wavefront coding removed.
  • FIG. 10 illustrates modulation transfer functions (MTF) for the system of FIG. 8, without wavefront coding; with wavefront coding; and with both wavefront coding and filtering.
  • MTF modulation transfer functions
  • FIG. 11 shows a passive athermalized IR imaging system according to the present invention.
  • FIG. 12 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 11, without wavefront coding.
  • FIG. 13 illustrates modulation transfer functions (MTF) for the system of FIG. 11, without wavefront coding.
  • FIG. 14 illustrates modulation transfer functions (MTF) for the system of FIG. 11, with wavefront coding, both with and without filtering.
  • MTF modulation transfer functions
  • FIG. 15 a illustrates transverse ray intercept curves as typically implemented in traditional imaging systems.
  • FIG. 15 b shows MTFs for the system of FIG. 15 a.
  • FIG. 16 illustrates an example of a one dimensional separable filter for use as a post processing element in the present invention.
  • FIG. 17 illustrates the magnitude of the transfer function of the filter of FIG. 16.
  • FIG. 1 shows a single-lens miniature imaging system 100 according to the present invention.
  • Lens 102 includes wavefront coding element 104 formed on its second surface.
  • Detector 106 is preceded by an IR filter 108 and cover glass 110 .
  • Post processor 112 performs processing on the images captured by detector 106 .
  • the example single-lens imaging system (singlet) 100 is designed to meet the following specifications:
  • the example singlet 100 without Wavefront Coding 104 , was designed so that the aberrations that are not corrected by the optical surfaces, namely petzval curvature and axial chromatic aberration, are a type of misfocus.
  • petzval curvature is a type of misfocus with field angle
  • axial chromatic aberration is misfocus with illumination wavelength.
  • the effect of these aberrations could hypothetically be corrected within small regions of the image plane by changing the focus position.
  • the resulting modulation transfer functions (MTFs) and point spread functions (PSFs) will be insensitive to the focus-like aberrations.
  • the MTFs and PSFs will not be the same as an ideal in-focus MTF or PSF from a traditional imaging system.
  • Image processing is required to restore the spatial character of the image and produce a sharp and clear image.
  • Wavefront Coding surface is rectangularly separable and allows for fast processing.
  • Other forms of Wavefront Coding surfaces are non-separable, and the sum of rectangularly separable forms.
  • One non-separable form is defined as:
  • Wavefront Coding surface for singlet 100 in this example is placed at the stop surface (surface 104 ) and has the parameterized equation:
  • FIGS. 2 - 4 illustrate the performance of system 100 with wavefront coding element 104 removed, in order to illustrate design requirements and performance.
  • FIG. 5 illustrates the performance of system 100 with wavefront coding element 104 in place, but without post processing filter 112 .
  • FIG. 6 illustrates the performance improvement with post processing 112 .
  • FIGS. 7 a and 7 b shows point spread functions for system 100 with both wavefront coding and post processing.
  • FIG. 2 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for the system of FIG. 1 with wavefront coding surface 104 removed for illustrative purposes. Curves are shown for system 100 at half field angles of 0°, 10°, 20°, and 25° off axis, and for illumination wavelengths of 450 nm, 550 nm, and 650 nm. A slope of zero indicates an in-focus condition. Thus on-axis rays are nearly in focus. But, for off axis field angles, the slopes of the transverse ray intercept curves increase dramatically.
  • FIG. 15 a illustrates traditional transverse ray plots. These plots are taken from “Practical Computer Aided Lens Design”, Gregory Hallick Smith, William Bell, Inc., Richmond 1998. Note that the plot for near on axis rays do look similar to straight horizontal lines, and thus produce an in focus image. Refer also to FIG. 15 b which shows associated MTFs for this system. The MTFs for near on axis rays are good.
  • the transverse ray intercept curves of FIG. 2 are essentially straight lines, both on and off axis, and this is a deliberate design goal, because the use of wavefront coding 104 and image processing 112 can bring the captured images into focus, so long as the curves without wavefront coding are essentially straight lines through the origin, even if the lines are significantly sloped. The effect of the slope is removed by adding wavefront coding and post processing.
  • the aberration petzval curvature gives rise to transverse ray intercept curves, with slopes that are a function of field angle.
  • Axial chromatic aberration gives rise to ray intercept curves with slopes that are a function of illumination wavelength. From FIG. 2, both of these features are part of the transverse ray intercept curves in this example design.
  • FIG. 3 illustrates distortion curves for system 100 of FIG. 1, with wavefront coding element 104 removed.
  • the distortion is less than 0.2%. If distortion was large enough then additional digital processing might be required to reposition image points into a non-distorted image.
  • Table 1 lists the optical prescription of this lens, again without the Wavefront Coding surface. Units are in mm, and the total length is 4.1 mm. Aspheric terms describe rotationally symmetric forms of r order with order equal to 4, 6, 8, etc.
  • FIG. 4 illustrates modulation transfer functions (MTF) for system 100 of FIG. 1, without wavefront coding element 104 .
  • MTFs correspond to the transverse ray aberration curves of FIG. 2.
  • the MTFs are for half field angles 0, 15, and 25 degrees with wavelengths of 550 nm.
  • the MTFs include the pixel MTF due to the Bayer color filter array detector with six micron pixels and 100% fill factor.
  • the on-axis MTF is essentially diffraction limited.
  • the large drop in MTF off-axis is due to the large amount of petzval curvature that is unavoidable in traditional single lens designs with a large field of view.
  • This singlet without wavefront coding 104 does not meet the MTF specification of greater than 40% modulation at 40 lp/mm for all field angles. But, due to its design for Wavefront Coding, modifying the second surface with a Wavefront Coding surface form 104 will lead to acceptable MTF modulation values when combined with digital processing. By changing the wavefront coding element 104 either more or less sensitivity to misfocus aberrations can be formed.
  • FIG. 5 illustrates modulation transfer functions (MTF) for system 100 of FIG. 1, with wavefront coding element 104 in place, but without post processing 112 .
  • the system is focused at infinity.
  • the half field angles shown are 0, 15, and 25 degrees.
  • the wavelength is 550 nm.
  • These MTFs have very little variation with field angle due to the addition of the Wavefront Coding surface, as compared to FIG. 4.
  • Pixel MTF due to the Bayer CFA has again been included.
  • the Bayer CFA with 6 ⁇ m 100% fill factor pixels has a Nyquist spatial frequency of about 42 lp/mm. Note that there are purposely no zeros in the MTFs below the detector's Nyquist spatial frequency.
  • FIG. 6 illustrates modulation transfer functions (MTF) for system 100 of FIG. 1, with wavefront coding 104 and after processing 112 .
  • MTF modulation transfer functions
  • FIGS. 7 a and 7 b illustrate sampled two-dimensional PSFs for system 100 of FIG. 1, with wavefront coding 104 and after processing 112 .
  • FIG. 7 a shows the processed PSFs when the object is at infinity.
  • FIG. 7 b shows the processed PSFs when the object is at 30 cm. These PSFs are for 550 nm wavelength and half field angles of 0, 15, and 25 degrees. After filtering, these PSFs have nearly ideal shapes. This singlet 100 when combined with wavefront coding and digital filtering thus easily meets the system specifications.
  • processor 112 is a rectangularly separable digital filter. Rectangularly separable filters are more computationally efficient (counting the number of multiply and additions) than full 2D kernel filters. Separable filtering consists of first filtering each row of the image with the 1D row filter and forming an intermediate image. The columns of the intermediate image are then filtered with the 1D column filter to provide the final in-focus image.
  • the separable filter used for this example singlet has the same filters for rows and columns.
  • FIG. 16 illustrates an example of a one dimensional separable filter 112 .
  • Coefficients are represented as real values, but can be quantified into integer values for fixed point computations.
  • the sum of the filter coefficients equals approximately 1.
  • the coefficients were determined with a least squares algorithm by minimizing the squared difference between the filtered wavefront coded OTFs and a desired MTF with a value greater than 40% at 40 lp/mm.
  • the width of the filtered PSFs of FIGS. 7 a and 7 b are also minimized with the least squares algorithm. Changes in the filtered PSFs are minimized in regions away from their central peaks.
  • FIG. 17 illustrates the magnitude of the transfer function of the filter of FIG. 16.
  • the zero spatial frequency value is 1.
  • FIG. 8 shows a low cost microscope objective 800 according to the present invention.
  • Lens 802 is aspheric and has focussing power.
  • Aperture stop 804 includes wavefront coding element 806 . Processing is accomplished by processing block 810 .
  • Wavefront coding microscope objective 800 is designed to meet the following objectives:
  • the depth of field of traditional microscope objectives is described by the numerical aperture (NA) and the imaging wavelength.
  • the wavefront coding objective can have a depth of field that is independent of the NA of the objective.
  • the depth of field can be large enough to introduce prospective distortion to the final images. Regions of the object that are farther from the objective will appear smaller then regions of the object closer to the objective. Both near and far regions can image clearly with a large depth of field. Since the depth of field of traditional objectives is small prospective distortion is not common with traditional objectives, especially with high NA. Prospective distortion can be reduced or eliminating by designing wavefront coding objectives that are telecentric. In telecentric imaging systems the magnification of the object is independent of the distance to the object.
  • FIG. 9 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for system 800 of FIG. 8, with wavefront coding element 806 removed.
  • the ray intercept curves of FIG. 9 describe the performance of the system at wavelengths 450, 550, and 650 nm for the image field heights of on-axis (0.0 mm), 1.2 mm, and 2.8 mm. Full scale is +/ ⁇ 100 microns. Notice that each of these ray intercept curves vary mainly in slope, as required by the present invention. I.e., the shape of the curves are essentially the same when the slope components of the curves are not considered. While these plots are not quite as close to perfectly straight lines as those in FIG. 2, they can still be considered to be sloped substantially straight lines.
  • Wavefront coding element 806 is placed at aperture stop 804 , and is given by the rectangularly separable form of:
  • FIG. 10 illustrates modulation transfer functions (MTF) for system 800 of FIG. 8, without wavefront coding, with wavefront coding, and with both wavefront coding and post processing filtering, for illumination at 450 nm.
  • Image field heights are 0.0 mm, 1.2 mm, and 2.8 mm.
  • FIG. 11 shows a passive athermalized IR imaging system 1100 according to the present invention.
  • Lens 1102 is composed of silicon.
  • Lens 1104 is composed of germanium.
  • Lens 1106 is composed of silicon.
  • the aperture stop 1108 is at the back surface of lens 1106 .
  • Wavefront coding surface 1110 is on the back surface of lens 1106 (at aperture stop 1108 ).
  • Processing block 1112 processes the image.
  • Wavefront Coding surface for IR system 100 of this example has the parameterized equation:
  • FIG. 12 illustrates a series of transverse ray intercept curves illustrating aberrations at various wavelengths, for system 1100 of FIG. 11, with wavefront coding element 1110 removed.
  • the ray intercept curves of FIG. 11 describe the performance of system 1100 at a wavelength of 10 microns, on axis field points for ambient temperatures of +20° C., ⁇ 20° C., and +70° C. Full scale is +/ ⁇ 100 microns. Again these plots can be considered to be substantially straight lines. While they have more “wiggle” than the plots of FIGS. 2 and 9, in each case, if the plot were fitted to the closest straight line, the wiggles would not stray far from the line.
  • FIG. 13 illustrates on-axis MTF curves for system 1100 without wavefront coding at three temperatures +20° C. ⁇ 20° C., and +70° C.). Performance is nearly diffraction limited at +20°, but drops dramatically with changes in temperature.
  • FIG. 14 illustrates MTFs for system 1100 of FIG. 11, with wavefront coding, both with and without filtering by processing block 1112 .
  • the illumination wavelength is 10 microns.
  • the MTFs without filtering are significantly different from diffraction limited MTFs, but vary little with temperature. Thus, processing block 1112 is able to correct the images.
  • the MTFs after filtering are near diffraction limited for all three temperatures (+20°, ⁇ 20°, and +70°). Filtered MTFs extend only to the Nyquist frequency of the 20 micron detector, or 25 lp/mm.
  • FIG. 10 also illustrates this concept.
  • the MTF curves without wavefront coding do not track each other.
  • the curves with wavefront coding are very close together.
  • the curves with wavefront coding after post processing are very good.
  • transverse ray intercept curves may have noticeable deviations from a straight line (corresponding to the higher spatial frequencies)
  • the transverse ray intercept curves are still “substantially straight lines” according to our definition, because the MTFs with wavefront coding are very close together.
  • the MTFs under consideration are those that correspond to the useful range of the particular system being considered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)
US09/747,788 1995-02-03 2000-12-22 Wavefront coded imaging systems Abandoned US20020118457A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/747,788 US20020118457A1 (en) 2000-12-22 2000-12-22 Wavefront coded imaging systems
PCT/US2001/044159 WO2002052331A2 (fr) 2000-12-22 2001-11-14 Systèmes d'imagerie à surface d'onde codée
EP01272457A EP1346251A2 (fr) 2000-12-22 2001-11-14 Syst mes d'imagerie surface d'onde cod e
AU2002219861A AU2002219861A1 (en) 2000-12-22 2001-11-14 Wavefront coded imaging systems
US10/407,708 US6940649B2 (en) 1995-02-03 2003-04-04 Wavefront coded imaging systems
US11/192,572 US7106510B2 (en) 1995-02-03 2005-07-29 Wavefront coded imaging systems
US11/511,023 US7554732B2 (en) 1995-02-03 2006-08-28 Wavefront coded imaging systems
US11/511,022 US7554731B2 (en) 1995-02-03 2006-08-28 Wavefront coded imaging systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/747,788 US20020118457A1 (en) 2000-12-22 2000-12-22 Wavefront coded imaging systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/070,969 Continuation-In-Part US7218448B1 (en) 1995-02-03 1998-05-01 Extended depth of field optical systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/407,708 Continuation US6940649B2 (en) 1995-02-03 2003-04-04 Wavefront coded imaging systems

Publications (1)

Publication Number Publication Date
US20020118457A1 true US20020118457A1 (en) 2002-08-29

Family

ID=25006641

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/747,788 Abandoned US20020118457A1 (en) 1995-02-03 2000-12-22 Wavefront coded imaging systems
US10/407,708 Expired - Lifetime US6940649B2 (en) 1995-02-03 2003-04-04 Wavefront coded imaging systems
US11/192,572 Expired - Lifetime US7106510B2 (en) 1995-02-03 2005-07-29 Wavefront coded imaging systems
US11/511,022 Expired - Lifetime US7554731B2 (en) 1995-02-03 2006-08-28 Wavefront coded imaging systems
US11/511,023 Expired - Lifetime US7554732B2 (en) 1995-02-03 2006-08-28 Wavefront coded imaging systems

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/407,708 Expired - Lifetime US6940649B2 (en) 1995-02-03 2003-04-04 Wavefront coded imaging systems
US11/192,572 Expired - Lifetime US7106510B2 (en) 1995-02-03 2005-07-29 Wavefront coded imaging systems
US11/511,022 Expired - Lifetime US7554731B2 (en) 1995-02-03 2006-08-28 Wavefront coded imaging systems
US11/511,023 Expired - Lifetime US7554732B2 (en) 1995-02-03 2006-08-28 Wavefront coded imaging systems

Country Status (4)

Country Link
US (5) US20020118457A1 (fr)
EP (1) EP1346251A2 (fr)
AU (1) AU2002219861A1 (fr)
WO (1) WO2002052331A2 (fr)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030173502A1 (en) * 1995-02-03 2003-09-18 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US6707603B2 (en) * 2001-06-28 2004-03-16 Raytheon Company Apparatus and method to distort an optical beam to avoid ionization at an intermediate focus
US20040228005A1 (en) * 2003-03-28 2004-11-18 Dowski Edward Raymond Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
US20050088745A1 (en) * 2002-10-09 2005-04-28 Cathey Wade T.Jr. Methods and systems for reducing depth of field of hybrid imaging systems
US20050197809A1 (en) * 2003-12-01 2005-09-08 Dowski Edward R.Jr. System and method for optimizing optical and digital system designs
US20050204329A1 (en) * 2003-09-16 2005-09-15 Wake Forest University Methods and systems for designing electromagnetic wave filters and electromagnetic wave filters designed using same
EP1672912A2 (fr) 2003-01-16 2006-06-21 D-blur Technologies LTD. C/o Yossi Haimov CPA Procédé de fabrication d'un système optique comprenant un processeur électronique pour l'amélioration d'image
US7088419B2 (en) 2003-05-30 2006-08-08 Cdm Optics, Inc. Lithographic systems and methods with extended depth of focus
US20060256226A1 (en) * 2003-01-16 2006-11-16 D-Blur Technologies Ltd. Camera with image enhancement functions
EP1726984A1 (fr) * 2005-05-25 2006-11-29 OmniVision Technologies, Inc. Profondeur multimatrice du capteur d'images de champ
US20070002158A1 (en) * 2005-06-17 2007-01-04 Robinson M D End-to-end design of electro-optic imaging systems with constrained digital filters
US20070081224A1 (en) * 2005-10-07 2007-04-12 Robinson M D Joint optics and image processing adjustment of electro-optic imaging systems
US20070236574A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Digital filtering with noise gain limit
US20070239417A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Camera performance simulation
US20070236573A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Combined design of optical and image processing elements
WO2007134119A1 (fr) * 2006-05-09 2007-11-22 Omnivision Cdm Optics, Inc. Système d'imagerie dans l'infrarouge lointain tolérant aux aberrations
US20070268375A1 (en) * 2006-05-12 2007-11-22 Robinson M D End-to-end design of electro-optic imaging systems with adjustable optical cutoff frequency
US20070268374A1 (en) * 2006-05-12 2007-11-22 Robinson M D End-to-end design of superresolution electro-optic imaging systems
US20070279513A1 (en) * 2006-06-05 2007-12-06 Robinson M Dirk Optical subsystem with descriptors of its image quality
US20080007797A1 (en) * 2006-07-05 2008-01-10 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US20080043126A1 (en) * 2006-05-30 2008-02-21 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US20080074507A1 (en) * 2006-09-25 2008-03-27 Naoto Ohara Image pickup apparatus and method and apparatus for manufacturing the same
US20080080019A1 (en) * 2006-09-28 2008-04-03 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US20080131023A1 (en) * 2002-02-27 2008-06-05 Edward Raymond Dowski Optimized Image Processing For Wavefront Coded Imaging Systems
US20080279542A1 (en) * 2005-08-11 2008-11-13 Global Bionic Optics Ltd Optical Lens Systems
US20080297643A1 (en) * 2007-05-30 2008-12-04 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer readable media
US20090002523A1 (en) * 2007-06-28 2009-01-01 Kyocera Corporation Image processing method and imaging apparatus using the same
US20090066811A1 (en) * 2007-08-30 2009-03-12 Kyocera Corporation Image processing method and imaging apparatus using the same
US20090091797A1 (en) * 2007-10-03 2009-04-09 Ricoh Co., Ltd. Catadioptric Imaging System
US20090109535A1 (en) * 1995-02-03 2009-04-30 Cathey Jr Wade Thomas Extended Depth Of Field Optical Systems
US20090128655A1 (en) * 2007-11-16 2009-05-21 Kazuya Yoneyama Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, and medical apparatus, and method of manufacturing the imaging system
US20090128665A1 (en) * 2007-11-16 2009-05-21 Kazuya Yoneyama Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US20090147124A1 (en) * 2007-12-07 2009-06-11 Minoru Taniyama Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US20090190238A1 (en) * 2003-01-16 2009-07-30 D-Blur Technologies Ltd. Optics for an extended depth of field
US20090245688A1 (en) * 2008-03-26 2009-10-01 Robinson M Dirk Adaptive image acquisition for multiframe reconstruction
US20090322928A1 (en) * 2008-06-27 2009-12-31 Robinson M Dirk Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
US20090322898A1 (en) * 2008-06-27 2009-12-31 Kyocera Corporation Image Pickup Apparatus and Electronic Device
US20090321618A1 (en) * 2006-12-27 2009-12-31 Kyocera Corporation Image Pickup Apparatus and Information Code Reader
US20100001071A1 (en) * 2007-01-30 2010-01-07 Kyocera Corporation Imaging Device, Method of Production of Imaging Device, and Information Code-Reading Device
US20100044555A1 (en) * 2006-08-18 2010-02-25 Kyocera Corporation Image Pickup Apparatus and Method for Manufacturing the Same
US20100053361A1 (en) * 2008-08-28 2010-03-04 Kyocera Corporation Image Pickup Apparatus Electronic Device and Image Aberration Control Method
US20100053411A1 (en) * 2008-08-26 2010-03-04 Robinson M Dirk Control of Adaptive Optics Based on Post-Processing Metrics
US20100079658A1 (en) * 2008-09-29 2010-04-01 Kyocera Corporation Lens unit, image pickup apparatus, electronic device and an image aberration control method
US20100214438A1 (en) * 2005-07-28 2010-08-26 Kyocera Corporation Imaging device and image processing method
US20100272327A1 (en) * 2003-12-01 2010-10-28 Silveira Paulo E X Task-Based Imaging Systems
US20100278390A1 (en) * 2003-12-01 2010-11-04 Silveira Paulo E X Task-based imaging systems
US20100299113A1 (en) * 2009-05-22 2010-11-25 Ricoh Co., Ltd. End-to-End Design of Electro-Optic Imaging Systems Using the Nonequidistant Discrete Fourier Transform
US20110122281A1 (en) * 2008-06-27 2011-05-26 Kyocera Corporation Imaging device
US8077247B2 (en) 2007-12-07 2011-12-13 Fujinon Corporation Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US8149287B2 (en) 2007-11-16 2012-04-03 Fujinon Corporation Imaging system using restoration processing, imaging apparatus, portable terminal apparatus, onboard apparatus and medical apparatus having the imaging system
US8294999B2 (en) 2003-01-16 2012-10-23 DigitalOptics Corporation International Optics for an extended depth of field
US8949078B2 (en) 2011-03-04 2015-02-03 Ricoh Co., Ltd. Filter modules for aperture-coded, multiplexed imaging systems
US9030580B2 (en) 2013-09-28 2015-05-12 Ricoh Company, Ltd. Color filter modules for plenoptic XYZ imaging systems
US9129173B2 (en) 2013-02-27 2015-09-08 Denso Wave Incorporated Device for optically reading information codes
US9219866B2 (en) 2013-01-07 2015-12-22 Ricoh Co., Ltd. Dynamic adjustment of multimode lightfield imaging system using exposure condition and filter position
US9866826B2 (en) 2014-11-25 2018-01-09 Ricoh Company, Ltd. Content-adaptive multi-focal display
US9864205B2 (en) 2014-11-25 2018-01-09 Ricoh Company, Ltd. Multifocal display
US9865043B2 (en) 2008-03-26 2018-01-09 Ricoh Company, Ltd. Adaptive image acquisition and display using multi-focal display
US20190025546A1 (en) * 2017-07-20 2019-01-24 AAC Technologies Pte. Ltd. Camera Optical Lens

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020118457A1 (en) 2000-12-22 2002-08-29 Dowski Edward Raymond Wavefront coded imaging systems
US6879412B1 (en) * 2000-08-10 2005-04-12 Mustek Systems Inc. Method for optimizing the best resolution of an optical scanning system and apparatus for the same
JP4249627B2 (ja) 2001-12-18 2009-04-02 ザ ユニバーシティ オブ ロチェスター 多重焦点非球面レンズを使用して拡大焦点距離を得る撮像
JP3791777B2 (ja) * 2001-12-28 2006-06-28 オリンパス株式会社 電子内視鏡
US8717456B2 (en) 2002-02-27 2014-05-06 Omnivision Technologies, Inc. Optical imaging systems and methods utilizing nonlinear and/or spatially varying image processing
US7260251B2 (en) * 2003-03-31 2007-08-21 Cdm Optics, Inc. Systems and methods for minimizing aberrating effects in imaging systems
US7336430B2 (en) * 2004-09-03 2008-02-26 Micron Technology, Inc. Extended depth of field using a multi-focal length lens with a controlled range of spherical aberration and a centrally obscured aperture
WO2007011375A1 (fr) * 2004-09-13 2007-01-25 Cdm Optics, Inc. Dispositifs de capture d'images d'iris et systemes associes
US7453653B2 (en) * 2004-09-14 2008-11-18 Omnivision Cdm Optics, Inc. Low height imaging system and associated methods
WO2007001025A1 (fr) * 2005-06-29 2007-01-04 Kyocera Corporation Système de reconnaissance biométrique
KR100691268B1 (ko) * 2005-08-02 2007-03-12 삼성전기주식회사 Psf를 이용하여 이미지를 처리하는 광학 시스템 및이미지 처리방법
EP1954030B1 (fr) * 2005-10-18 2012-11-28 Kyocera Corporation Appareil de capture d'images et procede de traitement d'images
US20070093993A1 (en) * 2005-10-20 2007-04-26 Stork David G End-to-end design of electro-optic imaging systems using backwards ray tracing from the detector to the source
EP1969306A2 (fr) * 2006-01-06 2008-09-17 Phonak AG Procede et systeme pour la reconstruction de la forme tridimensionnelle de la surface d'au moins une portion d'un canal auriculaire et/ou d'une conque
US20100066809A1 (en) * 2006-02-15 2010-03-18 Cdm Optics, Inc. Deployable Image Sensor
KR101301448B1 (ko) * 2006-03-06 2013-08-28 옴니비젼 씨디엠 옵틱스 인코퍼레이티드 줌렌즈 시스템 및 사용방식
KR101161471B1 (ko) 2006-04-03 2012-07-03 옴니비젼 씨디엠 옵틱스 인코퍼레이티드 비선형 및/또는 공간적으로 변하는 이미지 프로세싱을 이용한 광학 이미징 시스템 및 방법
US8514303B2 (en) * 2006-04-03 2013-08-20 Omnivision Technologies, Inc. Advanced imaging systems and methods utilizing nonlinear and/or spatially varying image processing
US7626708B2 (en) * 2006-04-28 2009-12-01 Chao-Wen Liang Phase shifting grating-slit test for optical surface reconstruction
WO2008087485A2 (fr) * 2006-09-14 2008-07-24 Tessera Technologies Hungary Kft. Système d'imagerie avec tolérances d'ensemble assouplies et procédés associés
WO2008087486A2 (fr) * 2006-09-14 2008-07-24 Tessera Technologies Hungary Kft. Système d'imagerie à qualité d'image améliorée et procédés associés
FR2919733B1 (fr) * 2007-08-03 2010-04-09 Dxo Labs Systeme optique muni d'un dispositif d'accroissement de sa profondeur de champ
JP2009041968A (ja) * 2007-08-07 2009-02-26 Fujinon Corp 復元処理を前提としたレンズの評価方法および装置、評価用補正光学系
WO2009069752A1 (fr) * 2007-11-29 2009-06-04 Kyocera Corporation Dispositif d'imagerie et appareil électronique
EP2891918A1 (fr) * 2008-02-29 2015-07-08 Global Bionic Optics Pty Ltd. Systèmes d'imagerie à lentille unique à profondeur de champ étendue
TWI399524B (zh) * 2009-02-20 2013-06-21 Ind Tech Res Inst 景物深度資訊之取得方法與裝置
WO2010100644A1 (fr) * 2009-03-04 2010-09-10 Elie Meimoun Appareil et procédé d'inspection par analyse de front d'onde
EP2228677A1 (fr) * 2009-03-09 2010-09-15 Global Bionic Optics Pty Ltd. Système d'imagerie de surveillance de profondeur de champ étendue
JP5159715B2 (ja) * 2009-06-30 2013-03-13 株式会社東芝 画像処理装置
WO2011019283A1 (fr) 2009-08-14 2011-02-17 Akkolens International B.V. Optique avec correction variable simultanée d'aberrations
US9280000B2 (en) 2010-02-17 2016-03-08 Akkolens International B.V. Adjustable chiral ophthalmic lens
WO2011111102A1 (fr) * 2010-03-10 2011-09-15 富士通株式会社 Dispositif d'authentification biométrique et procédé d'authentification biométrique
CN102845052B (zh) * 2010-04-21 2015-06-24 富士通株式会社 摄像装置以及摄像方法
US8416334B2 (en) 2010-04-27 2013-04-09 Fm-Assets Pty Ltd. Thick single-lens extended depth-of-field imaging systems
US8558873B2 (en) 2010-06-16 2013-10-15 Microsoft Corporation Use of wavefront coding to create a depth image
US8687040B2 (en) 2010-11-01 2014-04-01 Omnivision Technologies, Inc. Optical device with electrically variable extended depth of field
WO2012132870A1 (fr) * 2011-03-31 2012-10-04 富士フイルム株式会社 Système optique à allongement focal et système d'imagerie edof
US9581798B2 (en) 2013-07-22 2017-02-28 Fundacio Institut De Ciencies Fotoniques Light sheet-based imaging device with extended depth of field
CN104352214B (zh) * 2014-11-13 2016-03-30 中国科学院光电技术研究所 一种波前调制暗场自适应光学视网膜成像仪
JP2020502558A (ja) 2016-11-10 2020-01-23 ザ トラスティーズ オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク 大型試料のための高速・高解像度イメージング方法
US11209633B2 (en) * 2018-02-26 2021-12-28 Fotonation Limited Iris image acquisition system

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2443351A (en) * 1946-02-23 1948-06-15 Infilce Inc Time duration pulse telemetering system
US2959105A (en) * 1958-07-24 1960-11-08 Canon Camera Co Phase noise filter and its application to photography and photolithography
US3054898A (en) * 1960-03-14 1962-09-18 Servo Corp Of America Infrared ranging system
US3305294A (en) * 1964-12-03 1967-02-21 Optical Res & Dev Corp Two-element variable-power spherical lens
US3583790A (en) * 1968-11-07 1971-06-08 Polaroid Corp Variable power, analytic function, optical component in the form of a pair of laterally adjustable plates having shaped surfaces, and optical systems including such components
US3614310A (en) * 1970-03-02 1971-10-19 Zenith Radio Corp Electrooptical apparatus employing a hollow beam for translating an image of an object
DE2210681C3 (de) * 1972-03-06 1980-09-18 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Einrichtung zur berührungslosen Messung
US3873958A (en) * 1973-12-26 1975-03-25 Us Navy Acoustic beam former
US4178090A (en) * 1974-10-21 1979-12-11 Marks Alvin M 3-Dimensional camera device
US4062619A (en) * 1975-03-25 1977-12-13 Robert Hoffman Variable background intensity apparatus for imaging systems
US4082431A (en) * 1975-04-22 1978-04-04 Minnesota Mining And Manufacturing Company Image processing system using incoherent radiation and spatial filter hologram
US4255014A (en) * 1977-07-20 1981-03-10 Research Corporation Edge enhancement of phase phenomena
US4174885A (en) * 1978-01-16 1979-11-20 General Motors Corporation Filter rotator for coherent optical correlation system
US4276620A (en) * 1978-10-27 1981-06-30 Geosource Inc. Method and apparatus for obtaining a composite field response _to a variable source array using weighting coefficients
US4275454A (en) * 1978-12-01 1981-06-23 Environmental Research Institute Of Michigan Optical system phase error compensator
US4308521A (en) * 1979-02-12 1981-12-29 The United States Of America As Represented By The Secretary Of The Air Force Multiple-invariant space-variant optical processing
US4349277A (en) * 1980-06-11 1982-09-14 General Electric Company Non-contact measurement of surface profile
JPS57119318A (en) * 1981-01-16 1982-07-24 Minolta Camera Co Ltd Filter having special effect
US4466067A (en) * 1981-04-03 1984-08-14 State Of Oregon Multi-detector intensity interferometer and method for processing incoherent radiation signals
EP0064812B1 (fr) * 1981-04-29 1985-08-14 Pilkington P.E. Limited Lentilles oculaires artificielles
US4589770A (en) * 1982-10-25 1986-05-20 The Boeing Company Electro-optical ranging apparatus having scanning circuitry and servoloop processor for resolving separation of images on photoelectric detector arrays
JPS59182688A (ja) * 1983-03-31 1984-10-17 Toshiba Corp ステレオ視処理装置
US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
US4650292A (en) * 1983-12-28 1987-03-17 Polaroid Corporation Analytic function optical component
GB8404817D0 (en) * 1984-02-23 1984-03-28 Pilkington Perkin Elmer Ltd Ophthalmic lenses
US4575193A (en) * 1984-04-06 1986-03-11 Eastman Kodak Company Optical spatial frequency filter
DE3418787A1 (de) * 1984-05-19 1985-11-21 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur erhoehung der aufloesung von farbfernsehkameras
JPS60247611A (ja) * 1984-05-24 1985-12-07 Toshiba Corp 光学ヘツド
WO1987003981A1 (fr) * 1985-12-20 1987-07-02 Dietmar Steinpichler Procede de reconnaissance de motifs
US4734702A (en) * 1986-02-25 1988-03-29 Litton Systems, Inc. Passive ranging method and apparatus
US4794550A (en) * 1986-10-15 1988-12-27 Eastman Kodak Company Extended-range moire contouring
US4804249A (en) * 1986-12-24 1989-02-14 Honeywell Inc. Optical filter for incoherent imaging systems
US4827125A (en) * 1987-04-29 1989-05-02 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Confocal scanning laser microscope having no moving parts
US4825263A (en) * 1987-06-02 1989-04-25 University Of Medicine & Dentistry Of New Jersey Optical method and apparatus for determining three-dimensional changes in facial contours
CH671828A5 (fr) * 1987-06-26 1989-09-29 Battelle Memorial Institute
US4936661A (en) * 1987-07-23 1990-06-26 Opcon Associates, Inc. Zoom lens with short back focal length
US5161059A (en) * 1987-09-21 1992-11-03 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
CA1313040C (fr) * 1988-03-31 1993-01-26 Mitsuaki Uesugi Methode et dispositif de mesure dans les trois dimensions d'objets a surface courbe
JPH02151825A (ja) * 1988-12-05 1990-06-11 Olympus Optical Co Ltd 微分干渉顕微鏡
US4989959A (en) * 1989-06-12 1991-02-05 Polaroid Corporation Anti-aliasing optical system with pyramidal transparent structure
US5193124A (en) * 1989-06-29 1993-03-09 The Research Foundation Of State University Of New York Computational methods and electronic camera apparatus for determining distance of objects, rapid autofocusing, and obtaining improved focus images
US5270825A (en) * 1989-10-12 1993-12-14 Olympus Optical Co., Ltd. Imaging optical system having a moire elimination effect
US5003166A (en) * 1989-11-07 1991-03-26 Massachusetts Institute Of Technology Multidimensional range mapping with pattern projection and cross correlation
US5128874A (en) * 1990-01-02 1992-07-07 Honeywell Inc. Inertial navigation sensor integrated obstacle detection system
GB9004978D0 (en) * 1990-03-06 1990-05-02 Crosfield Electronics Ltd Image compression
JP2800364B2 (ja) * 1990-04-27 1998-09-21 松下電器産業株式会社 光学的ローパスフィルタ
US5076687A (en) * 1990-08-28 1991-12-31 Massachusetts Institute Of Technology Optical ranging apparatus
US5260727A (en) * 1990-10-22 1993-11-09 Oksman Henry C Wide depth of focus intraocular and contact lenses
US5142413A (en) * 1991-01-28 1992-08-25 Kelly Shawn L Optical phase-only spatial filter
KR940004433B1 (ko) * 1991-02-26 1994-05-25 삼성전자 주식회사 샘플 엔드 홀드기법을 이용한 공간화소 이동방법과 그 장치
US5166818A (en) * 1991-03-11 1992-11-24 Bell Communications Research, Inc. Optical pulse-shaping device and method, and optical communications station and method
JP2921163B2 (ja) * 1991-04-08 1999-07-19 キヤノン株式会社 光学的ローパスフィルターを有した撮像装置
US5465147A (en) * 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
WO1993002639A1 (fr) * 1991-08-06 1993-02-18 Autogenesis Technologies, Inc. Compositions injectables a base de collagene utilisees pour la preparation d'un cristallin artificiel
JP2861525B2 (ja) 1991-09-10 1999-02-24 松下電器産業株式会社 波長選択性位相格子光学的ローパスフィルタ
US5444574A (en) * 1991-09-19 1995-08-22 Olympus Optical Co., Ltd. Electronic image pickup apparatus equipped with means for eliminating moire
US5438187A (en) * 1991-11-01 1995-08-01 Spectra-Physics Scanning Systems, Inc. Multiple focus optical system for data reading applications
US5270861A (en) * 1991-12-13 1993-12-14 Eastman Kodak Company Zoom lens system for use in a compact camera
US5270867A (en) * 1991-12-13 1993-12-14 Eastman Kodak Company Compact zoom lens having a weak front lens group
JP2857273B2 (ja) * 1991-12-24 1999-02-17 科学技術振興事業団 収差補正法及び収差補正装置
US5756981A (en) * 1992-02-27 1998-05-26 Symbol Technologies, Inc. Optical scanner for reading and decoding one- and-two-dimensional symbologies at variable depths of field including memory efficient high speed image processing means and high accuracy image analysis means
US5307175A (en) * 1992-03-27 1994-04-26 Xerox Corporation Optical image defocus correction
US5248876A (en) * 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5317394A (en) * 1992-04-30 1994-05-31 Westinghouse Electric Corp. Distributed aperture imaging and tracking system
US5243351A (en) 1992-06-25 1993-09-07 Hughes Aircraft Company Full aperture image synthesis using rotating strip aperture image measurements
DE69327895T2 (de) * 1992-07-22 2000-10-12 Matsushita Electric Industrial Co., Ltd. Bildaufnahmevorrichtung mit interpolationsfunktion der horizontalen zeilen
US5337181A (en) * 1992-08-27 1994-08-09 Kelly Shawn L Optical spatial filter
JP2987016B2 (ja) 1992-08-28 1999-12-06 松下電器産業株式会社 位相格子光学的ローパスフィルタ
US5299275A (en) * 1993-03-31 1994-03-29 Eastman Kodak Company Optical fiber filter for reducing artifacts in imaging apparatus
EP0618473A3 (fr) 1993-03-31 1995-03-15 Kuraray Co Dispositif vidéo avec réseau de diffraction bi-dimensionnel.
US5438366A (en) * 1993-03-31 1995-08-01 Eastman Kodak Company Aspherical blur filter for reducing artifacts in imaging apparatus
JPH06317764A (ja) * 1993-04-27 1994-11-15 Olympus Optical Co Ltd 光学的ローパスフィルター
GB2278750A (en) 1993-06-02 1994-12-07 Motion Media Techn Ltd Optical spatial filtering with electronic image compression
US5521695A (en) * 1993-06-25 1996-05-28 The Regents Of The University Of Colorado Range estimation apparatus and method
JP3463335B2 (ja) * 1994-02-17 2003-11-05 株式会社ニコン 投影露光装置
JP3656252B2 (ja) * 1993-07-15 2005-06-08 株式会社ニコン 微分干渉顕微鏡
US5673127A (en) * 1993-12-01 1997-09-30 Matsushita Electric Industrial Co., Ltd. Display panel and display device using a display panel
US5751475A (en) * 1993-12-17 1998-05-12 Olympus Optical Co., Ltd. Phase contrast microscope
US5473473A (en) * 1993-12-20 1995-12-05 Eastman Kodak Company Two element plastic zoom camera lens
US6025873A (en) * 1994-04-07 2000-02-15 Olympus Optical Co., Ltd. Endoscope system provided with low-pass filter for moire removal
US5640206A (en) * 1994-05-31 1997-06-17 Victor Company Of Japan, Ltd. Imaging apparatus including offset pixels for generating vertical high frequency component
JP3275010B2 (ja) * 1995-02-03 2002-04-15 ザ・リジェンツ・オブ・ザ・ユニバーシティ・オブ・コロラド 拡大された被写界深度を有する光学システム
US20020195548A1 (en) 2001-06-06 2002-12-26 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US20020118457A1 (en) * 2000-12-22 2002-08-29 Dowski Edward Raymond Wavefront coded imaging systems
US7218448B1 (en) 1997-03-17 2007-05-15 The Regents Of The University Of Colorado Extended depth of field optical systems
US5684560A (en) 1995-05-04 1997-11-04 Johnson & Johnson Vision Products, Inc. Concentric ring single vision lens designs
JPH09121363A (ja) 1995-08-17 1997-05-06 Eastman Kodak Co エイリアシングを防止するための波長選択性を有する位相型低域通過光学フィルタおよびその製造方法
US5969855A (en) * 1995-10-13 1999-10-19 Olympus Optical Co., Ltd. Microscope apparatus
US5706139A (en) * 1995-10-17 1998-01-06 Kelly; Shawn L. High fidelity optical system for electronic imaging
US6144493A (en) 1996-02-23 2000-11-07 Canon Kabushiki Kaisha Optical low-pass filter and optical apparatus having the same
US6133986A (en) * 1996-02-28 2000-10-17 Johnson; Kenneth C. Microlens scanner for microlithography and wide-field confocal microscopy
GB9608114D0 (en) * 1996-04-19 1996-06-26 Screen Tech Ltd Liquid crystal display
JP3708246B2 (ja) * 1996-09-19 2005-10-19 オリンパス株式会社 光制御部材を有する光学顕微鏡
JP3708260B2 (ja) * 1996-12-05 2005-10-19 オリンパス株式会社 微分干渉顕微鏡
US6219113B1 (en) * 1996-12-17 2001-04-17 Matsushita Electric Industrial Co., Ltd. Method and apparatus for driving an active matrix display panel
US6091548A (en) * 1997-10-01 2000-07-18 Raytheon Company Optical system with two-stage aberration correction
JP3199313B2 (ja) * 1997-11-10 2001-08-20 キヤノン株式会社 反射型液晶表示装置及びそれを用いた投射型液晶表示装置
US6037579A (en) * 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6121603A (en) * 1997-12-01 2000-09-19 Hang; Zhijiang Optical confocal device having a common light directing means
US6021005A (en) * 1998-01-09 2000-02-01 University Technology Corporation Anti-aliasing apparatus and methods for optical imaging
JP3885334B2 (ja) * 1998-02-02 2007-02-21 株式会社ニコン 微分干渉顕微鏡
KR20010043223A (ko) * 1998-05-01 2001-05-25 유니버시티 테크놀러지 코포레이션 확장된 필드 깊이를 가진 광학 시스템
US6248988B1 (en) * 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
US6069738A (en) * 1998-05-27 2000-05-30 University Technology Corporation Apparatus and methods for extending depth of field in image projection systems
US6097856A (en) * 1998-07-10 2000-08-01 Welch Allyn, Inc. Apparatus and method for reducing imaging errors in imaging systems having an extended depth of field
JP3592147B2 (ja) 1998-08-20 2004-11-24 キヤノン株式会社 固体撮像装置
JP2000098301A (ja) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd 拡大被写界深度光学系
US6337472B1 (en) * 1998-10-19 2002-01-08 The University Of Texas System Board Of Regents Light imaging microscope having spatially resolved images
JP3440465B2 (ja) * 1998-12-17 2003-08-25 株式会社高岳製作所 マルチスリット走査撮像装置
JP3622557B2 (ja) * 1999-02-23 2005-02-23 セイコーエプソン株式会社 偏光変換光学系及び照明光学系、並びに投写型表示装置
AU3155600A (en) 1999-03-01 2000-09-21 Piezosystem Jena Prazisionsjustierelemente Gmbh Optical switching matrix arrangement
JP2000333076A (ja) * 1999-05-19 2000-11-30 Asahi Optical Co Ltd デジタルカメラにおけるフレア成分除去方法
US6172799B1 (en) * 1999-06-30 2001-01-09 Intel Corporation Three channel acousto-optical devices
JP2004501575A (ja) * 2000-06-23 2004-01-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 画像感知器信号欠陥修正
US6536898B1 (en) 2000-09-15 2003-03-25 The Regents Of The University Of Colorado Extended depth of field optics for human vision
US6873733B2 (en) 2001-01-19 2005-03-29 The Regents Of The University Of Colorado Combined wavefront coding and amplitude contrast imaging systems
US6525302B2 (en) 2001-06-06 2003-02-25 The Regents Of The University Of Colorado Wavefront coding phase contrast imaging systems

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115849B2 (en) 1995-02-03 2006-10-03 The Regents Of The University Of Colorado Wavefront coding interference contrast imaging systems
US20030173502A1 (en) * 1995-02-03 2003-09-18 Dowski Edward Raymond Wavefront coding interference contrast imaging systems
US20090109535A1 (en) * 1995-02-03 2009-04-30 Cathey Jr Wade Thomas Extended Depth Of Field Optical Systems
US8004762B2 (en) 1995-02-03 2011-08-23 The Regents Of The University Of Colorado, A Body Corporate Extended depth of field optical systems
US20070001105A1 (en) * 1995-02-03 2007-01-04 Dowski Edward R Jr Wavefront coding interference contrast imaging systems
US7732750B2 (en) 1995-02-03 2010-06-08 The Regents Of The University Of Colorado Wavefront coding interference contrast imaging systems
US6707603B2 (en) * 2001-06-28 2004-03-16 Raytheon Company Apparatus and method to distort an optical beam to avoid ionization at an intermediate focus
US8111937B2 (en) * 2002-02-27 2012-02-07 Omnivision Technologies, Inc. Optimized image processing for wavefront coded imaging systems
US20080131023A1 (en) * 2002-02-27 2008-06-05 Edward Raymond Dowski Optimized Image Processing For Wavefront Coded Imaging Systems
US7031054B2 (en) 2002-10-09 2006-04-18 The Regent Of The University Of Colorado Methods and systems for reducing depth of field of hybrid imaging systems
US20050088745A1 (en) * 2002-10-09 2005-04-28 Cathey Wade T.Jr. Methods and systems for reducing depth of field of hybrid imaging systems
US8014084B2 (en) 2003-01-16 2011-09-06 DigitalOptics Corporation International Optics for an extended depth of field
US8126287B2 (en) 2003-01-16 2012-02-28 DigitalOptics Corporation International Camera with image enhancement functions
EP1672912A2 (fr) 2003-01-16 2006-06-21 D-blur Technologies LTD. C/o Yossi Haimov CPA Procédé de fabrication d'un système optique comprenant un processeur électronique pour l'amélioration d'image
US8611030B2 (en) 2003-01-16 2013-12-17 DigitalOptics Corporation International Optics for an extended depth of field
US8294999B2 (en) 2003-01-16 2012-10-23 DigitalOptics Corporation International Optics for an extended depth of field
US20060256226A1 (en) * 2003-01-16 2006-11-16 D-Blur Technologies Ltd. Camera with image enhancement functions
US20100296179A1 (en) * 2003-01-16 2010-11-25 Tessera International, Inc. Optics for an extended depth of field
US20090190238A1 (en) * 2003-01-16 2009-07-30 D-Blur Technologies Ltd. Optics for an extended depth of field
US20100141807A1 (en) * 2003-01-16 2010-06-10 Alex Alon Camera with image enhancement functions
US7627193B2 (en) 2003-01-16 2009-12-01 Tessera International, Inc. Camera with image enhancement functions
US7773316B2 (en) 2003-01-16 2010-08-10 Tessera International, Inc. Optics for an extended depth of field
US20070127041A1 (en) * 2003-03-28 2007-06-07 Dowski Edward R Jr Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
US7180673B2 (en) 2003-03-28 2007-02-20 Cdm Optics, Inc. Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
US7679830B2 (en) 2003-03-28 2010-03-16 The Regents Of The University Of Colorado Optical systems utilizing multiple phase filters to increase misfocus tolerance
US20040228005A1 (en) * 2003-03-28 2004-11-18 Dowski Edward Raymond Mechanically-adjustable optical phase filters for modifying depth of field, aberration-tolerance, anti-aliasing in optical systems
US7876417B2 (en) 2003-05-30 2011-01-25 Omnivision Technologies, Inc. Lithographic systems and methods with extended depth of focus
US7088419B2 (en) 2003-05-30 2006-08-08 Cdm Optics, Inc. Lithographic systems and methods with extended depth of focus
US20050204329A1 (en) * 2003-09-16 2005-09-15 Wake Forest University Methods and systems for designing electromagnetic wave filters and electromagnetic wave filters designed using same
US8254714B2 (en) * 2003-09-16 2012-08-28 Wake Forest University Methods and systems for designing electromagnetic wave filters and electromagnetic wave filters designed using same
US20110176708A1 (en) * 2003-12-01 2011-07-21 Omnivision Technologies, Inc. Task-Based Imaging Systems
WO2005054927A3 (fr) * 2003-12-01 2005-10-13 Cdm Optics Inc Systeme et procede pour optimiser des modeles de systemes optiques et numeriques
US8760516B2 (en) 2003-12-01 2014-06-24 Omnivision Technologies, Inc. Task-based imaging systems
US7469202B2 (en) 2003-12-01 2008-12-23 Omnivision Cdm Optics, Inc. System and method for optimizing optical and digital system designs
US7860699B2 (en) 2003-12-01 2010-12-28 Omnivision Technologies, Inc. System and method for optimizing optical and digital system designs
US20050197809A1 (en) * 2003-12-01 2005-09-08 Dowski Edward R.Jr. System and method for optimizing optical and digital system designs
US20100278390A1 (en) * 2003-12-01 2010-11-04 Silveira Paulo E X Task-based imaging systems
US8144208B2 (en) 2003-12-01 2012-03-27 Omnivision Technologies, Inc. Task-based imaging systems
US7944467B2 (en) 2003-12-01 2011-05-17 Omnivision Technologies, Inc. Task-based imaging systems
US20100272327A1 (en) * 2003-12-01 2010-10-28 Silveira Paulo E X Task-Based Imaging Systems
EP1726984A1 (fr) * 2005-05-25 2006-11-29 OmniVision Technologies, Inc. Profondeur multimatrice du capteur d'images de champ
US20060269150A1 (en) * 2005-05-25 2006-11-30 Omnivision Technologies, Inc. Multi-matrix depth of field image sensor
US7616841B2 (en) 2005-06-17 2009-11-10 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems
US7616842B2 (en) 2005-06-17 2009-11-10 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems with constrained digital filters
US20070002158A1 (en) * 2005-06-17 2007-01-04 Robinson M D End-to-end design of electro-optic imaging systems with constrained digital filters
US20100214438A1 (en) * 2005-07-28 2010-08-26 Kyocera Corporation Imaging device and image processing method
US20080279542A1 (en) * 2005-08-11 2008-11-13 Global Bionic Optics Ltd Optical Lens Systems
US8355211B2 (en) 2005-08-11 2013-01-15 FM-Assets Pty Ltd Optical lens systems
US20070081224A1 (en) * 2005-10-07 2007-04-12 Robinson M D Joint optics and image processing adjustment of electro-optic imaging systems
US20070239417A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Camera performance simulation
US20070236574A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Digital filtering with noise gain limit
US20070236573A1 (en) * 2006-03-31 2007-10-11 D-Blur Technologies Ltd. Combined design of optical and image processing elements
WO2007134119A1 (fr) * 2006-05-09 2007-11-22 Omnivision Cdm Optics, Inc. Système d'imagerie dans l'infrarouge lointain tolérant aux aberrations
US20070268374A1 (en) * 2006-05-12 2007-11-22 Robinson M D End-to-end design of superresolution electro-optic imaging systems
US7692709B2 (en) 2006-05-12 2010-04-06 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems with adjustable optical cutoff frequency
US20070268375A1 (en) * 2006-05-12 2007-11-22 Robinson M D End-to-end design of electro-optic imaging systems with adjustable optical cutoff frequency
US7889264B2 (en) 2006-05-12 2011-02-15 Ricoh Co., Ltd. End-to-end design of superresolution electro-optic imaging systems
US7944490B2 (en) 2006-05-30 2011-05-17 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US20080043126A1 (en) * 2006-05-30 2008-02-21 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US7924341B2 (en) 2006-06-05 2011-04-12 Ricoh Co., Ltd. Optical subsystem with descriptors of its image quality
US20070279513A1 (en) * 2006-06-05 2007-12-06 Robinson M Dirk Optical subsystem with descriptors of its image quality
US7916194B2 (en) * 2006-07-05 2011-03-29 Kyocera Corporation Image pickup apparatus
US20080007797A1 (en) * 2006-07-05 2008-01-10 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US20100044555A1 (en) * 2006-08-18 2010-02-25 Kyocera Corporation Image Pickup Apparatus and Method for Manufacturing the Same
US8044331B2 (en) 2006-08-18 2011-10-25 Kyocera Corporation Image pickup apparatus and method for manufacturing the same
US20080074507A1 (en) * 2006-09-25 2008-03-27 Naoto Ohara Image pickup apparatus and method and apparatus for manufacturing the same
US8059955B2 (en) * 2006-09-25 2011-11-15 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US20080080019A1 (en) * 2006-09-28 2008-04-03 Kyocera Corporation Image pickup apparatus and method and apparatus for manufacturing the same
US8334500B2 (en) 2006-12-27 2012-12-18 Kyocera Corporation System for reducing defocusing of an object image due to temperature changes
US20090321618A1 (en) * 2006-12-27 2009-12-31 Kyocera Corporation Image Pickup Apparatus and Information Code Reader
US8567678B2 (en) 2007-01-30 2013-10-29 Kyocera Corporation Imaging device, method of production of imaging device, and information code-reading device
US20100001071A1 (en) * 2007-01-30 2010-01-07 Kyocera Corporation Imaging Device, Method of Production of Imaging Device, and Information Code-Reading Device
US20080297643A1 (en) * 2007-05-30 2008-12-04 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer readable media
US8199246B2 (en) 2007-05-30 2012-06-12 Fujifilm Corporation Image capturing apparatus, image capturing method, and computer readable media
US20090002523A1 (en) * 2007-06-28 2009-01-01 Kyocera Corporation Image processing method and imaging apparatus using the same
US8125537B2 (en) 2007-06-28 2012-02-28 Kyocera Corporation Image processing method and imaging apparatus using the same
US20090066811A1 (en) * 2007-08-30 2009-03-12 Kyocera Corporation Image processing method and imaging apparatus using the same
US8077401B2 (en) 2007-10-03 2011-12-13 Ricoh Co., Ltd. Catadioptric imaging system
US20090091797A1 (en) * 2007-10-03 2009-04-09 Ricoh Co., Ltd. Catadioptric Imaging System
US20090128655A1 (en) * 2007-11-16 2009-05-21 Kazuya Yoneyama Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, and medical apparatus, and method of manufacturing the imaging system
US8094207B2 (en) * 2007-11-16 2012-01-10 Fujifilm Corporation Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, and medical apparatus, and method of manufacturing the imaging system
US20090128665A1 (en) * 2007-11-16 2009-05-21 Kazuya Yoneyama Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US8134609B2 (en) * 2007-11-16 2012-03-13 Fujinon Corporation Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US8149287B2 (en) 2007-11-16 2012-04-03 Fujinon Corporation Imaging system using restoration processing, imaging apparatus, portable terminal apparatus, onboard apparatus and medical apparatus having the imaging system
US20090147124A1 (en) * 2007-12-07 2009-06-11 Minoru Taniyama Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US8111318B2 (en) 2007-12-07 2012-02-07 Fujinon Corporation Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US8077247B2 (en) 2007-12-07 2011-12-13 Fujinon Corporation Imaging system, imaging apparatus, portable terminal apparatus, onboard apparatus, medical apparatus and method of manufacturing the imaging system
US9865043B2 (en) 2008-03-26 2018-01-09 Ricoh Company, Ltd. Adaptive image acquisition and display using multi-focal display
US20090245688A1 (en) * 2008-03-26 2009-10-01 Robinson M Dirk Adaptive image acquisition for multiframe reconstruction
US9438816B2 (en) 2008-03-26 2016-09-06 Ricoh Company, Ltd. Adaptive image acquisition for multiframe reconstruction
US8897595B2 (en) 2008-03-26 2014-11-25 Ricoh Co., Ltd. Adaptive image acquisition for multiframe reconstruction
US7948550B2 (en) 2008-06-27 2011-05-24 Ricoh Co., Ltd. Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
US20090322898A1 (en) * 2008-06-27 2009-12-31 Kyocera Corporation Image Pickup Apparatus and Electronic Device
US8149298B2 (en) 2008-06-27 2012-04-03 Kyocera Corporation Imaging device and method
US20110122281A1 (en) * 2008-06-27 2011-05-26 Kyocera Corporation Imaging device
US20090322928A1 (en) * 2008-06-27 2009-12-31 Robinson M Dirk Electro-optic imaging system with aberrated triplet lens compensated by digital image processing
US8363129B2 (en) 2008-06-27 2013-01-29 Kyocera Corporation Imaging device with aberration control and method therefor
US20100053411A1 (en) * 2008-08-26 2010-03-04 Robinson M Dirk Control of Adaptive Optics Based on Post-Processing Metrics
US8248684B2 (en) 2008-08-26 2012-08-21 Ricoh Co., Ltd. Control of adaptive optics based on post-processing metrics
US8773778B2 (en) 2008-08-28 2014-07-08 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
US8502877B2 (en) 2008-08-28 2013-08-06 Kyocera Corporation Image pickup apparatus electronic device and image aberration control method
US20100053361A1 (en) * 2008-08-28 2010-03-04 Kyocera Corporation Image Pickup Apparatus Electronic Device and Image Aberration Control Method
US8310583B2 (en) 2008-09-29 2012-11-13 Kyocera Corporation Lens unit, image pickup apparatus, electronic device and an image aberration control method
US20100079658A1 (en) * 2008-09-29 2010-04-01 Kyocera Corporation Lens unit, image pickup apparatus, electronic device and an image aberration control method
US20100299113A1 (en) * 2009-05-22 2010-11-25 Ricoh Co., Ltd. End-to-End Design of Electro-Optic Imaging Systems Using the Nonequidistant Discrete Fourier Transform
US8121439B2 (en) 2009-05-22 2012-02-21 Ricoh Co., Ltd. End-to-end design of electro-optic imaging systems using the nonequidistant discrete Fourier transform
US9519737B2 (en) 2011-03-04 2016-12-13 Ricoh Company, Ltd. Filter modules for aperture-coded, multiplexed imaging systems
US8949078B2 (en) 2011-03-04 2015-02-03 Ricoh Co., Ltd. Filter modules for aperture-coded, multiplexed imaging systems
US9219866B2 (en) 2013-01-07 2015-12-22 Ricoh Co., Ltd. Dynamic adjustment of multimode lightfield imaging system using exposure condition and filter position
US9129173B2 (en) 2013-02-27 2015-09-08 Denso Wave Incorporated Device for optically reading information codes
US9030580B2 (en) 2013-09-28 2015-05-12 Ricoh Company, Ltd. Color filter modules for plenoptic XYZ imaging systems
US9866826B2 (en) 2014-11-25 2018-01-09 Ricoh Company, Ltd. Content-adaptive multi-focal display
US9864205B2 (en) 2014-11-25 2018-01-09 Ricoh Company, Ltd. Multifocal display
US20190025546A1 (en) * 2017-07-20 2019-01-24 AAC Technologies Pte. Ltd. Camera Optical Lens
US10739558B2 (en) * 2017-07-20 2020-08-11 Aac Optics Solutions Pte. Ltd. Camera optical lens

Also Published As

Publication number Publication date
US20050264886A1 (en) 2005-12-01
EP1346251A2 (fr) 2003-09-24
US20040004766A1 (en) 2004-01-08
AU2002219861A1 (en) 2002-07-08
US20070076296A1 (en) 2007-04-05
US7106510B2 (en) 2006-09-12
US7554732B2 (en) 2009-06-30
US7554731B2 (en) 2009-06-30
US6940649B2 (en) 2005-09-06
WO2002052331A3 (fr) 2002-10-10
WO2002052331A2 (fr) 2002-07-04
US20060291058A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
US6940649B2 (en) Wavefront coded imaging systems
US8563913B2 (en) Imaging systems having ray corrector, and associated methods
US6911638B2 (en) Wavefront coding zoom lens imaging systems
US20030057353A1 (en) Wavefront coding zoom lens imaging systems
CN110488456B (zh) 光学透镜系统与成像系统
KR100506516B1 (ko) 전자 화상 시스템용 렌즈
US6525302B2 (en) Wavefront coding phase contrast imaging systems
CN106249381B (zh) 光学成像系统
CN108919464A (zh) 光学成像镜片组
CN106483628B (zh) 光学成像系统
CN208705549U (zh) 光学成像镜片组
CN106338810B (zh) 光学成像系统
US11036032B2 (en) Wide-angle imaging lens having lenses of −++−+ refractive powers
CN101978304A (zh) 被扩大景深的单透镜成像系统
CN109445077A (zh) 光学镜头及成像设备
CN114167577B (zh) 光学成像镜头
CN108873254A (zh) 光学成像系统
CN107436485A (zh) 光学成像系统
CN110488470A (zh) 光学镜头
CN106154514B (zh) 光学成像系统
CN208521056U (zh) 光学成像系统
CN118011597B (zh) 光学镜头
US8922700B2 (en) Imaging system including distributed phase modification and associated methods
US20060269215A1 (en) Distorted pupil relay for spectral filtering
CN116577917B (zh) 光学镜头

Legal Events

Date Code Title Description
AS Assignment

Owner name: CDM OPTICS, INCORPORATED, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOWSKI, EDWARD RAYMOND JR.;REEL/FRAME:011424/0892

Effective date: 20001221

AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF COLORADO, THE, COLORA

Free format text: QUITCLAIM;ASSIGNOR:DOWSKI, EDWARD RAYMOND;REEL/FRAME:013711/0752

Effective date: 20021210

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载