US20020115245A1 - Method for forming thin film transistor with lateral crystallization - Google Patents
Method for forming thin film transistor with lateral crystallization Download PDFInfo
- Publication number
- US20020115245A1 US20020115245A1 US09/789,347 US78934701A US2002115245A1 US 20020115245 A1 US20020115245 A1 US 20020115245A1 US 78934701 A US78934701 A US 78934701A US 2002115245 A1 US2002115245 A1 US 2002115245A1
- Authority
- US
- United States
- Prior art keywords
- amorphous silicon
- layer
- silicon layer
- dielectric layer
- angstrom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0312—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes
- H10D30/0314—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes of lateral top-gate TFTs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/031—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
- H10D30/0321—Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/673—Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
- H10D30/6731—Top-gate only TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
- H10D30/6745—Polycrystalline or microcrystalline silicon
Definitions
- the present invention generally relates to a method for manufacturing a metal-induced-laterally-crystallization thin-film transistor, and more particularly to a method for forming thin film transistor with lateral crystallization.
- a method of crystallizing amorphous silicon using heat treatment at a low temperature after a certain kind of a metal layer has been deposited on the amorphous silicon is know as an MIC process.
- the MIC process is beneficial due to the low temperature crystallization of amorphous silicon.
- the MIC process has not been applied to electronic devices because of an inflow of metal into the thin film of crystallized silicon formed underneath the metal layer, which cause the intrinsic characteristics of amorphous silicon to deteriorate.
- FIGS. 1A to 1 C show a method of fabricating a channel region of a thin film transistor using an MILC process according to a related art.
- an amorphous silicon layer 110 as an active layer is deposited on an insulation substrate 100 having a buffer film (not shown the above figure) on its upper part, and the active layer 110 is patterned by photolithography and etching process.
- a gate insulation layer 120 and a gate electrode 130 are formed on the active layer by conventional processes.
- a nickel layer 140 is formed to a thickness of 10 angstrom by sputtering nickel on the entire surface of the formed structure. Then a source region 110 S and a drain 110 D are formed at portions of the active layer by heavily doping the entire surface of the formed structure with impurities. Between the source region 110 S and drain region 110 D, a channel region 110 C are formed on the substrate 100 .
- amorphous silicon in the active layer is crystallized by heating the substrate 100 at a temperature of 350° C. ⁇ 500° C. Then the source region 110 S and drain region 110 D on which the nickel layer 140 has been formed become the MIC regions having silicon crystallized by an MIC process. The channel region 110 C without the nickel layer 140 formed directly thereon, becomes the MILC region where silicon has been crystallized by an MILC process. Impurities are activated in the source region 110 S and drain regions 110 D during the heat treatment as amorphous silicon is crystallized in the active layer.
- the channel region 110 C has boundaries defined by the crystalline structure of silicon in the MIC regions facing that of silicon in the adjacent MILC region. Since the boundary between the MIC region and the MILC region is located at the junction where the source or drain region meets the channel region, an abrupt difference in the crystal structure appears in the junction and the metal from the MIC region contaminates the adjacent MILC region. Consequently, a trap is formed at such junctions as soon as the TFT is turned on which causes unstable channel regions and deteriorates the characteristics of the thin film transistor.
- a method for forming thin film transistor with lateral crystallization that substantially can be used to improve carrier mobility issue in conventional process.
- One of the objectives of the present invention is to provide a method to form thin film transistor with lateral crystallization to improve carrier mobility issue.
- Another of the objective of the present invention is to provide a method to form thin film transistor with lateral crystallization using a very simple process, having a low temperature and maintaining high carrier mobility.
- a further objective of the present invention is to provide a method to form thin film transistor with lateral crystallization improving planarity of interface, increasing grain of big polycrystalline silicon channel, and also increasing lateral-growth grain.
- the present invention provides a method for forming thin film transistor with lateral crystallization.
- the method at least includes the following steps. First of all, an insulation substrate is provided. Then, an amorphous silicon layer is provided on the insulation substrate. The seeds are formed by annealing a portion of said amorphous silicon layer by excimer laser system, and the lateral-growth grain is formed by using the seeds to grow laterally by annealing the amorphous silicon layer, wherein the amorphous silicon layer defines an active region.
- a dielectric layer and a polysilicon layer is deposited on the active region, wherein the dielectric layer and the polysilicon layer are gate electrode, a gate is defined on the substrate, and the polysilicon layer is formed by etching.
- source and drain regions are formed by implanting numerous ions into amorphous silicon layer by using the gate electrode as a mask.
- FIGS. 1A to 1 C show a method of fabricating a channel region of a thin film transistor using an MILC process according to a prior art
- FIG.2A to FIG.2G are cross-sectional views of a method for forming thin film transistor with lateral crystallization in accordance with one preferred embodiment of the present invention.
- FIG.2A to FIG.2G are cross-sectional views of a method for forming thin film transistor with lateral crystallization in accordance with one preferred embodiment of the present invention.
- a glass substrate 200 which comprises silicon dioxide substrate.
- a film 210 is formed on the glass substrate 200 .
- the film can be an amorphous silicon layer formed by chemical vapor deposition method, e.g. Plasma enhanced CVD, APCVD, and LPCVD, but preferably LPCVD at 450° C. temperature.
- amorphous silicon layer 210 is changed by excimer laser 40 to seeds 20 , which will be kept in high temperature melting condition.
- the excimer laser system 40 illuminates the amorphous silicon layer 210 regionally.
- the temperature of the local annealing method using excimer laser 40 will be between 400 and 500° C.
- the above seed 20 will be changed to lateral-growth grain 60 .
- the seeds 20 will grow laterally grain 60 .
- the amorphous silicon layer 210 is now a polysilicon layer.
- an amorphous silicon layer named active region 210 a is formed on the glass substrate 200 .
- the active region 210 a is deposited by LPCVD (Low Pressure Chemical Vapor Deposition); it has a thickness of about 1000 ⁇ and then is patterned by photolithography and etching.
- a dielectric layer 220 usually SiO 2 layer, with thickness of about 400 ⁇ is deposited on active region 210 a by atmospheric pressure CVD method, which uses SiH 4 as a reaction gas. The process will be conducted under a pressure of 0.5 ⁇ 1 torr and a temperature of 400 ⁇ 500° C.
- a dielectric layer 220 is deposited on active region 210 a by plasma enhanced CVD method, which uses TEOS/O 2 as a reaction gas. Then, a metal layer for forming a gate electrode 230 is deposited on the dielectric layer 220 to a thickness of about 500 ⁇ by sputtering. The metal layer is patterned by using photolithography to form the oxide layer 220 ; the gate electrode 230 is patterned by using photolithography to form the dielectric layer 220 ; and the gate electrode 230 is used as an etch mask to etch the dielectric layer 220 .
- source region 210 S and drain region 210 D are formed in portions of the active layer 210 by implanting high concentration ions in the active layer 210 a, wherein the dielectric layer 220 and the gate electrode 230 function as a doping mask.
- a low temperature oxide silicon 240 having a thickness of 2000 ⁇ to 3000 ⁇ is formed by plasma enhanced CVD method on the already formed structure.
- the contact holes 250 are defined on the gate 230 , the source 210 S, and the drain 210 D regions, then patterned by using photolithography.
- the metal layer 260 having a thickness about 5000 ⁇ is formed by evaporating aluminum on the already formed structure.
- the metal layer 260 comprises aluminum.
- the aluminum layer 260 is, thereafter, formed by an isotropic etch on contact region 250 .
- the thin film transistor with lateral crystallization using the above explained method has the following advantages:
- the present invention is to provide a method to form thin film transistor with lateral crystallization to solve carrier mobility issue.
- the present invention is to provide a method to form thin film transistor with lateral crystallization using a very simple process, having a low temperature and maintaining high carrier mobility.
- the present invention is to provide a method to form thin film transistor with lateral crystallization improving planarity of interface, increasing grain of big polycrystalline silicon channel, and also increasing lateral-growth grain.
Landscapes
- Thin Film Transistor (AREA)
Abstract
A method for forming thin film transistor with lateral crystallization. The method at least includes the following steps. First of all, an insulation substrate is provided. Then, an amorphous silicon layer is provided on the insulation substrate. The seeds are formed by annealing a portion of said amorphous silicon layer by excimer laser system, and the lateral-growth grain is formed by using the seeds to grow laterally by annealing the amorphous silicon layer, wherein the amorphous silicon layer defines an active region. Then, sequentially a dielectric layer and a polysilicon layer is deposited on the active region, wherein the dielectric layer and the polysilicon layer are gate electrode, a gate is defined on the substrate, and the polysilicon layer is formed by etching. Next, source and drain regions are formed by implanting numerous ions into amorphous silicon layer by using the gate electrode as a mask.
Description
- 1. Field of the Invention
- The present invention generally relates to a method for manufacturing a metal-induced-laterally-crystallization thin-film transistor, and more particularly to a method for forming thin film transistor with lateral crystallization.
- 2. Description of the Prior Art
- A method of crystallizing amorphous silicon using heat treatment at a low temperature after a certain kind of a metal layer has been deposited on the amorphous silicon is know as an MIC process. The MIC process is beneficial due to the low temperature crystallization of amorphous silicon. However, the MIC process has not been applied to electronic devices because of an inflow of metal into the thin film of crystallized silicon formed underneath the metal layer, which cause the intrinsic characteristics of amorphous silicon to deteriorate.
- FIGS. 1A to1C show a method of fabricating a channel region of a thin film transistor using an MILC process according to a related art.
- Referring to FIG. 1A, an
amorphous silicon layer 110, as an active layer is deposited on aninsulation substrate 100 having a buffer film (not shown the above figure) on its upper part, and theactive layer 110 is patterned by photolithography and etching process. Agate insulation layer 120 and agate electrode 130 are formed on the active layer by conventional processes. - Referring to FIG. 1B, a
nickel layer 140 is formed to a thickness of 10 angstrom by sputtering nickel on the entire surface of the formed structure. Then asource region 110S and adrain 110D are formed at portions of the active layer by heavily doping the entire surface of the formed structure with impurities. Between thesource region 110S anddrain region 110D, achannel region 110C are formed on thesubstrate 100. - Referring to FIG. 1C, amorphous silicon in the active layer is crystallized by heating the
substrate 100 at a temperature of 350° C. −500° C. Then thesource region 110S anddrain region 110D on which thenickel layer 140 has been formed become the MIC regions having silicon crystallized by an MIC process. Thechannel region 110C without thenickel layer 140 formed directly thereon, becomes the MILC region where silicon has been crystallized by an MILC process. Impurities are activated in thesource region 110S anddrain regions 110D during the heat treatment as amorphous silicon is crystallized in the active layer. - In the thin film transistor fabricated by the above-described method according to the conventional art, the
channel region 110C has boundaries defined by the crystalline structure of silicon in the MIC regions facing that of silicon in the adjacent MILC region. Since the boundary between the MIC region and the MILC region is located at the junction where the source or drain region meets the channel region, an abrupt difference in the crystal structure appears in the junction and the metal from the MIC region contaminates the adjacent MILC region. Consequently, a trap is formed at such junctions as soon as the TFT is turned on which causes unstable channel regions and deteriorates the characteristics of the thin film transistor. - Accordingly, it is desired to find out a method for forming thin film transistor with lateral crystallization, to not only improve planarity of interface, increase grain of big polycrystalline silicon channel and lateral grain growth and carrier mobility, but also overcome the drawbacks of the conventional grain formation process.
- In accordance with the present invention, a method is provided for forming thin film transistor with lateral crystallization that substantially can be used to improve carrier mobility issue in conventional process.
- One of the objectives of the present invention is to provide a method to form thin film transistor with lateral crystallization to improve carrier mobility issue.
- Another of the objective of the present invention is to provide a method to form thin film transistor with lateral crystallization using a very simple process, having a low temperature and maintaining high carrier mobility.
- A further objective of the present invention is to provide a method to form thin film transistor with lateral crystallization improving planarity of interface, increasing grain of big polycrystalline silicon channel, and also increasing lateral-growth grain.
- In order to achieve the above objectives, the present invention provides a method for forming thin film transistor with lateral crystallization. The method at least includes the following steps. First of all, an insulation substrate is provided. Then, an amorphous silicon layer is provided on the insulation substrate. The seeds are formed by annealing a portion of said amorphous silicon layer by excimer laser system, and the lateral-growth grain is formed by using the seeds to grow laterally by annealing the amorphous silicon layer, wherein the amorphous silicon layer defines an active region. Then, sequentially a dielectric layer and a polysilicon layer is deposited on the active region, wherein the dielectric layer and the polysilicon layer are gate electrode, a gate is defined on the substrate, and the polysilicon layer is formed by etching. Next, source and drain regions are formed by implanting numerous ions into amorphous silicon layer by using the gate electrode as a mask.
- The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by referring to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
- FIGS. 1A to1C show a method of fabricating a channel region of a thin film transistor using an MILC process according to a prior art; and
- FIG.2A to FIG.2G are cross-sectional views of a method for forming thin film transistor with lateral crystallization in accordance with one preferred embodiment of the present invention.
- Some embodiments of the invention will now be described in greater detail. Nevertheless, it should be recognized that the present invention can be practiced in a wide range of other embodiments besides those explicitly described here; the scope of the present invention is expressly not limited except as specified in the accompanying claims.
- FIG.2A to FIG.2G are cross-sectional views of a method for forming thin film transistor with lateral crystallization in accordance with one preferred embodiment of the present invention.
- Referring to FIG. 2A, a
glass substrate 200 is provided which comprises silicon dioxide substrate. First of all, afilm 210 is formed on theglass substrate 200. The film can be an amorphous silicon layer formed by chemical vapor deposition method, e.g. Plasma enhanced CVD, APCVD, and LPCVD, but preferably LPCVD at 450° C. temperature. - Referring to FIG. 2B as the
layer 210 enlarged show, using local annealing method,amorphous silicon layer 210 is changed byexcimer laser 40 toseeds 20, which will be kept in high temperature melting condition. Theexcimer laser system 40 illuminates theamorphous silicon layer 210 regionally. The temperature of the local annealing method usingexcimer laser 40 will be between 400 and 500° C. - Referring to FIG. 2C, next, in a rapid annealing process, the
above seed 20 will be changed to lateral-growth grain 60. In this annealing process, theseeds 20 will grow laterallygrain 60. Therefor, theamorphous silicon layer 210 is now a polysilicon layer. - Referring to FIG. 2D, an amorphous silicon layer named
active region 210 a is formed on theglass substrate 200. Theactive region 210 a is deposited by LPCVD (Low Pressure Chemical Vapor Deposition); it has a thickness of about 1000 Å and then is patterned by photolithography and etching. Next, adielectric layer 220, usually SiO2 layer, with thickness of about 400 Å is deposited onactive region 210 a by atmospheric pressure CVD method, which uses SiH4 as a reaction gas. The process will be conducted under a pressure of 0.5˜1 torr and a temperature of 400˜500° C. Using an alternative method, adielectric layer 220 is deposited onactive region 210 a by plasma enhanced CVD method, which uses TEOS/O2 as a reaction gas. Then, a metal layer for forming agate electrode 230 is deposited on thedielectric layer 220 to a thickness of about 500 Å by sputtering. The metal layer is patterned by using photolithography to form theoxide layer 220; thegate electrode 230 is patterned by using photolithography to form thedielectric layer 220; and thegate electrode 230 is used as an etch mask to etch thedielectric layer 220. - Referring to FIG. 2E,
source region 210S and drainregion 210D are formed in portions of theactive layer 210 by implanting high concentration ions in theactive layer 210 a, wherein thedielectric layer 220 and thegate electrode 230 function as a doping mask. - Referring to FIG. 2F, a low
temperature oxide silicon 240, having a thickness of 2000 Å to 3000 Å is formed by plasma enhanced CVD method on the already formed structure. The contact holes 250 are defined on thegate 230, thesource 210S, and thedrain 210D regions, then patterned by using photolithography. - Referring to FIG. 2G, the
metal layer 260, having a thickness about 5000 Å is formed by evaporating aluminum on the already formed structure. Themetal layer 260 comprises aluminum. Thealuminum layer 260 is, thereafter, formed by an isotropic etch oncontact region 250. - The thin film transistor with lateral crystallization using the above explained method, has the following advantages:
- 1. The present invention is to provide a method to form thin film transistor with lateral crystallization to solve carrier mobility issue.
- 2. The present invention is to provide a method to form thin film transistor with lateral crystallization using a very simple process, having a low temperature and maintaining high carrier mobility.
- 3. The present invention is to provide a method to form thin film transistor with lateral crystallization improving planarity of interface, increasing grain of big polycrystalline silicon channel, and also increasing lateral-growth grain.
- Although specific embodiment have been illustrated and described, it will be obvious to those skilled in the art that various modifications may be made without departing from what is intended to be limited solely by the appended claims.
Claims (39)
1. A method for forming a thin-film transistor (TFT) the method comprising the steps of:
providing an insulation substrate;
depositing an amorphous silicon layer on said insulation substrate;
forming seeds by annealing a portion of said amorphous silicon layer;
forming a lateral-growth grain by annealing said amorphous silicon layer, wherein said amorphous silicon layer defines an active region;
depositing sequentially a dielectric layer and a polysilicon layer on said active region, wherein said dielectric layer and said polysilicon layer are gate electrode; and
forming a source and a drain regions by implanting a plurality of ions into film by using said gate electrode as a mask.
2. The method according to claim 1 , wherein said insulation substrate is transparent.
3. The method according to claim 1 , wherein said amorphous silicon layer is formed at a temperature between 450° C. and 550° C.
4. The method according to claim 1 , wherein said seeds are formed by using excimer laser system.
5. The method according to claim 1 , wherein said lateral-growth grain is formed by using the seeds to grow laterally.
6. The method according to claim 4 , wherein said excimer laser system illuminates the amorphous silicon layer regionally.
7. The method according to claim 4 , wherein said lateral-growth grains is formed at a temperature between 400° C. and 500° C.
8. The method according to claim 1 , wherein said active region is formed by photolithography and etching technique.
9. The method according to claim 1 , wherein said dielectric layer comprises silicon dioxide.
10. The method according to claim 1 , wherein thickness of said dielectric layer is between 400 angstrom and 1000 angstrom.
11. The method according to claim 1 , wherein said dielectric layer is deposited by plasma enhanced CVD method.
12. The method according to claim 1 , wherein thickness of said gate is between 2000 angstrom and 3000 angstrom.
13. The method according to claim 1 , wherein said gate is deposited by photolithography technique.
14. The method according to claim 1 , wherein said source and drain regions is implanted by high-concentration ions.
15. A method for forming a thin-film transistor (TFT) the method comprising the steps of:
providing an insulation substrate;
depositing an amorphous silicon layer on said insulation substrate;
forming seeds by annealing a portion of said amorphous silicon layer, wherein said seeds are formed by excimer laser system;
forming a lateral-growth grain by using said seeds to grow laterally by annealing said amorphous silicon layer, wherein said amorphous silicon layer defines an active region;
depositing sequentially a dielectric layer and a polysilicon layer on said active region, wherein said dielectric layer and said polysilicon layer are gate electrode; and
forming a source and a drain regions by implanting a plurality of ions into film by using said gate electrode as a mask.
16. The method according to claim 15 , wherein insulation substrate is transparent.
17. The method according to claim 15 , wherein said amorphous silicon layer is formed at a temperature between 450° C. and 550° C.
18. The method according to claim 15 , wherein said lateral-growth grain is formed at a temperature between 400° C. and 500° C.
19. The method according to claim 15 , wherein said excimer laser system illuminates the amorphous silicon layer regionally.
20. The method according to claim 15 , wherein said active region is formed by photolithography and etching technique.
21. The method according to claim 15 , wherein said dielectric layer comprises silicon dioxide.
22. The method according to claim 15 , wherein thickness of said dielectric layer is between 400 angstrom and 1000 angstrom.
23. The method according to claim 15 , wherein said dielectric layer is deposited by plasma enhanced CVD method.
24. The method according to claim 15 , wherein thickness of said gate is between 2000 angstrom and 3000 angstrom.
25. The method according to claim 15 , wherein said gate is deposited by photolithography technique.
26. The method according to claim 15 , wherein said source and drain regions is implanted by high-concentration ions.
27. A method for forming a thin-film transistor (TFT) the method comprising the steps of:
providing an insulation substrate;
depositing an amorphous silicon layer on said insulation substrate;
illuminating a portion of said amorphous silicon layer to form said seeds in said amorphous silicon layer region by using excimer laser system;
annealing said amorphous silicon layer to form a polysilicon layer having a lateral-growth grain;
depositing sequentially a dielectric layer and a polysilicon layer on said active region, wherein said dielectric layer and said polysilicon layer are gate electrode; and
forming a source and a drain regions by implanting a plurality of ions into film by using said gate electrode as a mask.
28. The method according to claim 27 , wherein said insulation substrate is transparent.
29. The method according to claim 27 , wherein said amorphous silicon layer is formed at a temperature between 450° C. and 550° C.
30. The method according to claim 27 , wherein said lateral-growth grain is formed by using the seeds to grow laterally.
31. The method according to claim 27 , wherein said excimer laser system illuminates the amorphous silicon layer regionally.
32. The method according to claim 27 , wherein said lateral-growth grains is formed at a temperature between 400° C. and 500° C.
33. The method according to claim 27 , wherein said active region is formed by photolithography and etching technique.
34. The method according to claim 27 , wherein said dielectric layer comprises silicon dioxide.
35. The method according to claim 27 , wherein thickness of said dielectric layer is between 400 angstrom and 1000 angstrom.
36. The method according to claim 27 , wherein said dielectric layer is deposited by plasma enhanced CVD method.
37. The method according to claim 27 , wherein thickness of said gate is between 2000 angstrom and 3000 angstrom.
38. The method according to claim 27 , wherein said gate is deposited by photolithography technique.
39. The method according to claim 27 , wherein said source and drain regions is implanted by high-concentration ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/789,347 US6426246B1 (en) | 2001-02-21 | 2001-02-21 | Method for forming thin film transistor with lateral crystallization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/789,347 US6426246B1 (en) | 2001-02-21 | 2001-02-21 | Method for forming thin film transistor with lateral crystallization |
Publications (2)
Publication Number | Publication Date |
---|---|
US6426246B1 US6426246B1 (en) | 2002-07-30 |
US20020115245A1 true US20020115245A1 (en) | 2002-08-22 |
Family
ID=25147360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/789,347 Expired - Lifetime US6426246B1 (en) | 2001-02-21 | 2001-02-21 | Method for forming thin film transistor with lateral crystallization |
Country Status (1)
Country | Link |
---|---|
US (1) | US6426246B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040248345A1 (en) * | 2003-06-05 | 2004-12-09 | Mao-Yi Chang | [method of fabricating a polysilicon thin film] |
US6833561B2 (en) * | 2001-11-02 | 2004-12-21 | Seung Ki Joo | Storage capacitor structure for LCD and OELD panels |
EP1533838A2 (en) * | 2003-11-24 | 2005-05-25 | Samsung SDI Co., Ltd. | Method for manufacturing transistor and image display device using the same |
CN100358156C (en) * | 2003-05-06 | 2007-12-26 | Pt普拉斯有限公司 | Storing capacitor structure for LCD board and OELD board |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6664147B2 (en) | 2001-02-28 | 2003-12-16 | Sharp Laboratories Of America, Inc. | Method of forming thin film transistors on predominantly <100> polycrystalline silicon films |
US20020117718A1 (en) | 2001-02-28 | 2002-08-29 | Apostolos Voutsas | Method of forming predominantly <100> polycrystalline silicon thin film transistors |
US6686978B2 (en) * | 2001-02-28 | 2004-02-03 | Sharp Laboratories Of America, Inc. | Method of forming an LCD with predominantly <100> polycrystalline silicon regions |
US6635555B2 (en) | 2001-02-28 | 2003-10-21 | Sharp Laboratories Of America, Inc. | Method of controlling crystallographic orientation in laser-annealed polycrystalline silicon films |
KR100483985B1 (en) * | 2001-11-27 | 2005-04-15 | 삼성에스디아이 주식회사 | Polysilicon thin layer for thin film transistor and device using thereof |
KR100623689B1 (en) * | 2004-06-23 | 2006-09-19 | 삼성에스디아이 주식회사 | Thin film transistor and its manufacturing method |
KR100712101B1 (en) * | 2004-06-30 | 2007-05-02 | 삼성에스디아이 주식회사 | Thin film transistor and its manufacturing method |
KR100611659B1 (en) * | 2004-07-07 | 2006-08-10 | 삼성에스디아이 주식회사 | Thin film transistor and its manufacturing method |
US20060220023A1 (en) * | 2005-03-03 | 2006-10-05 | Randy Hoffman | Thin-film device |
KR101002667B1 (en) * | 2008-07-02 | 2010-12-21 | 삼성모바일디스플레이주식회사 | Thin film transistor, manufacturing method thereof and organic light emitting display device comprising same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69032773T2 (en) * | 1989-02-14 | 1999-05-27 | Seiko Epson Corp., Tokio/Tokyo | Method of manufacturing a semiconductor device |
JP3192546B2 (en) * | 1994-04-15 | 2001-07-30 | シャープ株式会社 | Semiconductor device and method of manufacturing the same |
JP3072005B2 (en) * | 1994-08-25 | 2000-07-31 | シャープ株式会社 | Semiconductor device and manufacturing method thereof |
TW303526B (en) * | 1994-12-27 | 1997-04-21 | Matsushita Electric Ind Co Ltd | |
JP3675886B2 (en) * | 1995-03-17 | 2005-07-27 | 株式会社半導体エネルギー研究所 | Method for manufacturing thin film semiconductor device |
US5773329A (en) * | 1996-07-24 | 1998-06-30 | International Business Machines Corporation | Polysilicon grown by pulsed rapid thermal annealing |
KR100292048B1 (en) * | 1998-06-09 | 2001-07-12 | 구본준, 론 위라하디락사 | Manufacturing Method of Thin Film Transistor Liquid Crystal Display |
US6306697B1 (en) * | 2001-01-05 | 2001-10-23 | United Microelectronics Corp. | Low temperature polysilicon manufacturing process |
-
2001
- 2001-02-21 US US09/789,347 patent/US6426246B1/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6833561B2 (en) * | 2001-11-02 | 2004-12-21 | Seung Ki Joo | Storage capacitor structure for LCD and OELD panels |
CN100358156C (en) * | 2003-05-06 | 2007-12-26 | Pt普拉斯有限公司 | Storing capacitor structure for LCD board and OELD board |
US20040248345A1 (en) * | 2003-06-05 | 2004-12-09 | Mao-Yi Chang | [method of fabricating a polysilicon thin film] |
US7022591B2 (en) | 2003-06-05 | 2006-04-04 | Au Optronics Corporation | Method of fabricating a polysilicon thin film |
EP1533838A2 (en) * | 2003-11-24 | 2005-05-25 | Samsung SDI Co., Ltd. | Method for manufacturing transistor and image display device using the same |
US20050112813A1 (en) * | 2003-11-24 | 2005-05-26 | Keum-Nam Kim | Method for manufacturing transistor and image display device using the same |
EP1533838A3 (en) * | 2003-11-24 | 2005-08-03 | Samsung SDI Co., Ltd. | Method for manufacturing transistor and image display device using the same |
US7199406B2 (en) | 2003-11-24 | 2007-04-03 | Samsung Sdi Co., Ltd. | Method for manufacturing transistor and image display device using the same |
US20070138504A1 (en) * | 2003-11-24 | 2007-06-21 | Keum-Nam Kim | Method for manufacturing diode-connected transistor and image display device using the same |
US7615803B2 (en) | 2003-11-24 | 2009-11-10 | Samsung Mobile Display Co., Ltd. | Method for manufacturing transistor and image display device using the same |
US20100035391A1 (en) * | 2003-11-24 | 2010-02-11 | Keum-Nam Kim | Method for manufacturing diode-connected transistor and image display device using the same |
US7951658B2 (en) | 2003-11-24 | 2011-05-31 | Samsung Mobile Display Co., Ltd. | Method for manufacturing diode-connected transistor and image display device using the same |
Also Published As
Publication number | Publication date |
---|---|
US6426246B1 (en) | 2002-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6780693B2 (en) | Method of fabricating polysilicon thin film transistor | |
US8088676B2 (en) | Metal-induced crystallization of amorphous silicon, polycrystalline silicon thin films produced thereby and thin film transistors produced therefrom | |
JP4095064B2 (en) | Thin film transistor and manufacturing method thereof | |
US6426246B1 (en) | Method for forming thin film transistor with lateral crystallization | |
US5318919A (en) | Manufacturing method of thin film transistor | |
JP2009295996A (en) | Thin-film transistor | |
JP2008227530A (en) | Thin film transistor | |
US7601565B2 (en) | Thin film transistor and method of fabricating the same | |
US20020192884A1 (en) | Method for forming thin film transistor with reduced metal impurities | |
KR100473997B1 (en) | A method of fabricating the same | |
KR20020056114A (en) | Thin film transistor and the method of fabricating the same | |
KR20000074450A (en) | Thin film transistor and the method of fabricating the same | |
US20020139979A1 (en) | Method of crystallizing a silicon layer and method of fabricating a semiconductor device using the same | |
KR20020057382A (en) | Method and apparatus for fabricating a semiconductor device | |
US20060121655A1 (en) | Method of crystallizing amorphous semiconductor thin film and method of fabricating poly crystalline thin film transistor using the same | |
US7696030B2 (en) | Method of fabricating semiconductor device and semiconductor fabricated by the same method | |
KR100317639B1 (en) | Thin film transistor, liquid crystal display device and the method of fabricating the same | |
US6399959B1 (en) | Thin film transistor with reduced metal impurities | |
EP2276062B1 (en) | Method of etching nickel silicide and cobalt silicide and method of forming conductive lines | |
JP2002299235A (en) | Semiconductor thin-film forming method and thin-film semiconductor device | |
KR20050039023A (en) | Method for crystallizing of si, and methode for fabricating of poly-tft | |
JPH04336468A (en) | Fabrication of thin film transistor | |
JP2876598B2 (en) | Method for manufacturing semiconductor device | |
KR970011502B1 (en) | Method of manufacturing polycrystalline silicon thin film transistor | |
KR100751315B1 (en) | Thin film transistor, manufacturing method of thin film transistor and flat panel display device having same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNITED MICROELECTRONICS CORP., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANG, TING-CHANG;PENG, DU-ZEN;CHANG, CHUN-YEN;REEL/FRAME:011567/0823 Effective date: 20010209 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
FPAY | Fee payment |
Year of fee payment: 12 |