US20020111355A1 - Cyclic urea and cyclic amide derivatives - Google Patents
Cyclic urea and cyclic amide derivatives Download PDFInfo
- Publication number
- US20020111355A1 US20020111355A1 US10/050,287 US5028702A US2002111355A1 US 20020111355 A1 US20020111355 A1 US 20020111355A1 US 5028702 A US5028702 A US 5028702A US 2002111355 A1 US2002111355 A1 US 2002111355A1
- Authority
- US
- United States
- Prior art keywords
- substituted
- alkyl
- alkoxy
- aryl
- aminoalkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000003950 cyclic amides Chemical class 0.000 title description 2
- ZMGMDXCADSRNCX-UHFFFAOYSA-N 5,6-dihydroxy-1,3-diazepan-2-one Chemical class OC1CNC(=O)NCC1O ZMGMDXCADSRNCX-UHFFFAOYSA-N 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 102
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 66
- 125000001424 substituent group Chemical group 0.000 claims abstract description 52
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 29
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 29
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 29
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 26
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims abstract description 9
- 125000000547 substituted alkyl group Chemical group 0.000 claims abstract description 8
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 190
- 125000003545 alkoxy group Chemical group 0.000 claims description 120
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 93
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 87
- 125000003118 aryl group Chemical group 0.000 claims description 67
- 125000003107 substituted aryl group Chemical group 0.000 claims description 58
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 50
- 229910052736 halogen Inorganic materials 0.000 claims description 45
- 150000002367 halogens Chemical class 0.000 claims description 33
- 238000011282 treatment Methods 0.000 claims description 33
- 125000005309 thioalkoxy group Chemical group 0.000 claims description 30
- 229910052739 hydrogen Inorganic materials 0.000 claims description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 19
- 150000003839 salts Chemical class 0.000 claims description 19
- 125000000304 alkynyl group Chemical group 0.000 claims description 18
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical group O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 claims description 15
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 claims description 14
- 125000002373 5 membered heterocyclic group Chemical group 0.000 claims description 12
- 125000006664 (C1-C3) perfluoroalkyl group Chemical group 0.000 claims description 11
- 229920006395 saturated elastomer Polymers 0.000 claims description 11
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- 241000124008 Mammalia Species 0.000 claims description 8
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 8
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 claims description 8
- 125000004070 6 membered heterocyclic group Chemical group 0.000 claims description 7
- 125000005330 8 membered heterocyclic group Chemical group 0.000 claims description 7
- 239000011737 fluorine Substances 0.000 claims description 7
- 125000004001 thioalkyl group Chemical group 0.000 claims description 7
- 229940088597 hormone Drugs 0.000 claims description 6
- 239000005556 hormone Substances 0.000 claims description 6
- 201000009273 Endometriosis Diseases 0.000 claims description 5
- 210000000481 breast Anatomy 0.000 claims description 5
- 230000002265 prevention Effects 0.000 claims description 5
- 201000009030 Carcinoma Diseases 0.000 claims description 4
- 206010046798 Uterine leiomyoma Diseases 0.000 claims description 4
- 208000009956 adenocarcinoma Diseases 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 210000001072 colon Anatomy 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 4
- 210000004696 endometrium Anatomy 0.000 claims description 4
- 201000010260 leiomyoma Diseases 0.000 claims description 4
- 210000001672 ovary Anatomy 0.000 claims description 4
- 210000002307 prostate Anatomy 0.000 claims description 4
- 206010028980 Neoplasm Diseases 0.000 claims description 3
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 claims description 2
- 208000004403 Prostatic Hyperplasia Diseases 0.000 claims description 2
- 206010027191 meningioma Diseases 0.000 claims description 2
- 230000002632 myometrial effect Effects 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 230000001817 pituitary effect Effects 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims 12
- 125000001153 fluoro group Chemical group F* 0.000 claims 6
- 125000003277 amino group Chemical group 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 102000003998 progesterone receptors Human genes 0.000 abstract description 25
- 108090000468 progesterone receptors Proteins 0.000 abstract description 25
- 239000005557 antagonist Substances 0.000 abstract description 23
- 239000000556 agonist Substances 0.000 abstract description 17
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 38
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 31
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 30
- 0 *=C1[W]C([1*])([2*])C2=*C([4*])=B[2H]=C2C1[3*] Chemical compound *=C1[W]C([1*])([2*])C2=*C([4*])=B[2H]=C2C1[3*] 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 26
- 210000004027 cell Anatomy 0.000 description 26
- 239000000186 progesterone Substances 0.000 description 20
- 239000002904 solvent Substances 0.000 description 20
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 231100000673 dose–response relationship Toxicity 0.000 description 18
- 239000002609 medium Substances 0.000 description 18
- 229960003387 progesterone Drugs 0.000 description 17
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 13
- 230000000708 anti-progestin effect Effects 0.000 description 13
- 239000003418 antiprogestin Substances 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Natural products OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- 239000003446 ligand Substances 0.000 description 11
- VKHAHZOOUSRJNA-GCNJZUOMSA-N mifepristone Chemical compound C1([C@@H]2C3=C4CCC(=O)C=C4CC[C@H]3[C@@H]3CC[C@@]([C@]3(C2)C)(O)C#CC)=CC=C(N(C)C)C=C1 VKHAHZOOUSRJNA-GCNJZUOMSA-N 0.000 description 11
- 239000000583 progesterone congener Substances 0.000 description 11
- 235000019439 ethyl acetate Nutrition 0.000 description 10
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- XPGWFAZUEHWZIR-UHFFFAOYSA-N CC(C)=C1C(=O)OC(C)(C)OC1=O Chemical compound CC(C)=C1C(=O)OC(C)(C)OC1=O XPGWFAZUEHWZIR-UHFFFAOYSA-N 0.000 description 9
- 239000005089 Luciferase Substances 0.000 description 9
- 241001465754 Metazoa Species 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 239000001963 growth medium Substances 0.000 description 9
- 239000003981 vehicle Substances 0.000 description 9
- -1 —OH Chemical group 0.000 description 9
- 238000005160 1H NMR spectroscopy Methods 0.000 description 8
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- JUNDJWOLDSCTFK-MTZCLOFQSA-N trimegestone Chemical compound C1CC2=CC(=O)CCC2=C2[C@@H]1[C@@H]1CC[C@@](C(=O)[C@@H](O)C)(C)[C@@]1(C)CC2 JUNDJWOLDSCTFK-MTZCLOFQSA-N 0.000 description 8
- 229950008546 trimegestone Drugs 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 241000700159 Rattus Species 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 230000037396 body weight Effects 0.000 description 6
- 230000016117 decidualization Effects 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 5
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 229930182555 Penicillin Natural products 0.000 description 5
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 5
- 230000001911 anti-progestational effect Effects 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 5
- 239000012091 fetal bovine serum Substances 0.000 description 5
- 102000027411 intracellular receptors Human genes 0.000 description 5
- 108091008582 intracellular receptors Proteins 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 5
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 5
- 238000001543 one-way ANOVA Methods 0.000 description 5
- 229940049954 penicillin Drugs 0.000 description 5
- 230000036515 potency Effects 0.000 description 5
- 230000001072 progestational effect Effects 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 229960005322 streptomycin Drugs 0.000 description 5
- FBXGQDUVJBKEAJ-UHFFFAOYSA-N 4h-oxazin-3-one Chemical class O=C1CC=CON1 FBXGQDUVJBKEAJ-UHFFFAOYSA-N 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- UJGCLDRGVCSBND-UHFFFAOYSA-N C1=C[U]C=C1.CC.CC.CC(C)(C)C Chemical compound C1=C[U]C=C1.CC.CC.CC(C)(C)C UJGCLDRGVCSBND-UHFFFAOYSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 4
- 125000005157 alkyl carboxy group Chemical group 0.000 description 4
- 125000004104 aryloxy group Chemical group 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 239000002285 corn oil Substances 0.000 description 4
- 235000005687 corn oil Nutrition 0.000 description 4
- 102000015694 estrogen receptors Human genes 0.000 description 4
- 108010038795 estrogen receptors Proteins 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 3
- OGGAWTWALXPMSK-UHFFFAOYSA-N 2-(2-amino-5-bromopyridin-3-yl)propan-2-ol Chemical compound CC(C)(O)C1=CC(Br)=CN=C1N OGGAWTWALXPMSK-UHFFFAOYSA-N 0.000 description 3
- IEPDTLRHISNBLB-UHFFFAOYSA-N 2-amino-5-bromopyridine-3-carboxylic acid Chemical compound NC1=NC=C(Br)C=C1C(O)=O IEPDTLRHISNBLB-UHFFFAOYSA-N 0.000 description 3
- NOUWBUXEHHJSRS-UHFFFAOYSA-N 6-(3-chlorophenyl)-4,4-dimethyl-1h-pyrido[2,3-d][1,3]oxazin-2-one Chemical compound C1=C2C(C)(C)OC(=O)NC2=NC=C1C1=CC=CC(Cl)=C1 NOUWBUXEHHJSRS-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 238000008940 Alkaline Phosphatase assay kit Methods 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 101000574060 Homo sapiens Progesterone receptor Proteins 0.000 description 3
- 108060001084 Luciferase Proteins 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 208000002495 Uterine Neoplasms Diseases 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 125000003282 alkyl amino group Chemical group 0.000 description 3
- 238000000540 analysis of variance Methods 0.000 description 3
- 125000005110 aryl thio group Chemical group 0.000 description 3
- 239000012131 assay buffer Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000001516 cell proliferation assay Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000012039 electrophile Substances 0.000 description 3
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 238000005462 in vivo assay Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 229960004400 levonorgestrel Drugs 0.000 description 3
- NXPHGHWWQRMDIA-UHFFFAOYSA-M magnesium;carbanide;bromide Chemical compound [CH3-].[Mg+2].[Br-] NXPHGHWWQRMDIA-UHFFFAOYSA-M 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 125000005415 substituted alkoxy group Chemical group 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- IRQCUIAROPPLDH-UHFFFAOYSA-N 1-(3-amino-6-chloropyridin-2-yl)ethanone Chemical compound CC(=O)C1=NC(Cl)=CC=C1N IRQCUIAROPPLDH-UHFFFAOYSA-N 0.000 description 2
- SHCWQWRTKPNTEM-UHFFFAOYSA-N 2,6-dichloro-3-nitropyridine Chemical compound [O-][N+](=O)C1=CC=C(Cl)N=C1Cl SHCWQWRTKPNTEM-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- GGQNLFCQZACXET-UHFFFAOYSA-N 3-amino-6-chloropyridine-2-carbonitrile Chemical compound NC1=CC=C(Cl)N=C1C#N GGQNLFCQZACXET-UHFFFAOYSA-N 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 102100032187 Androgen receptor Human genes 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- FBUIIWHYTLCORM-UHFFFAOYSA-N CC(C)(C)C1=CN=CC=C1 Chemical compound CC(C)(C)C1=CN=CC=C1 FBUIIWHYTLCORM-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- 229940102550 Estrogen receptor antagonist Drugs 0.000 description 2
- 108090000079 Glucocorticoid Receptors Proteins 0.000 description 2
- 102100033417 Glucocorticoid receptor Human genes 0.000 description 2
- 239000007818 Grignard reagent Substances 0.000 description 2
- 108090000375 Mineralocorticoid Receptors Proteins 0.000 description 2
- 102100021316 Mineralocorticoid receptor Human genes 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229940123788 Progesterone receptor antagonist Drugs 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 238000006619 Stille reaction Methods 0.000 description 2
- GNVMUORYQLCPJZ-UHFFFAOYSA-M Thiocarbamate Chemical compound NC([S-])=O GNVMUORYQLCPJZ-UHFFFAOYSA-M 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 108010080146 androgen receptors Proteins 0.000 description 2
- 150000001543 aryl boronic acids Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001555 benzenes Chemical group 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000012761 co-transfection Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000002508 compound effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- GCKFUYQCUCGESZ-BPIQYHPVSA-N etonogestrel Chemical compound O=C1CC[C@@H]2[C@H]3C(=C)C[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 GCKFUYQCUCGESZ-BPIQYHPVSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000035558 fertility Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000003818 flash chromatography Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000002825 functional assay Methods 0.000 description 2
- 150000004795 grignard reagents Chemical class 0.000 description 2
- 238000002657 hormone replacement therapy Methods 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- CFHGBZLNZZVTAY-UHFFFAOYSA-N lawesson's reagent Chemical compound C1=CC(OC)=CC=C1P1(=S)SP(=S)(C=2C=CC(OC)=CC=2)S1 CFHGBZLNZZVTAY-UHFFFAOYSA-N 0.000 description 2
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000002287 radioligand Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000006798 ring closing metathesis reaction Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 235000017550 sodium carbonate Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000005017 substituted alkenyl group Chemical group 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- SDEAGACSNFSZCU-UHFFFAOYSA-N (3-chlorophenyl)boronic acid Chemical compound OB(O)C1=CC=CC(Cl)=C1 SDEAGACSNFSZCU-UHFFFAOYSA-N 0.000 description 1
- IEXUMDBQLIVNHZ-YOUGDJEHSA-N (8s,11r,13r,14s,17s)-11-[4-(dimethylamino)phenyl]-17-hydroxy-17-(3-hydroxypropyl)-13-methyl-1,2,6,7,8,11,12,14,15,16-decahydrocyclopenta[a]phenanthren-3-one Chemical compound C1=CC(N(C)C)=CC=C1[C@@H]1C2=C3CCC(=O)C=C3CC[C@H]2[C@H](CC[C@]2(O)CCCO)[C@@]2(C)C1 IEXUMDBQLIVNHZ-YOUGDJEHSA-N 0.000 description 1
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 description 1
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 1
- IRFSXVIRXMYULF-UHFFFAOYSA-N 1,2-dihydroquinoline Chemical compound C1=CC=C2C=CCNC2=C1 IRFSXVIRXMYULF-UHFFFAOYSA-N 0.000 description 1
- FXVLVRSETCLLKO-UHFFFAOYSA-N 1-(3-amino-6-chloro-3-nitro-2h-pyridin-2-yl)propan-2-ol Chemical compound CC(O)CC1N=C(Cl)C=CC1(N)[N+]([O-])=O FXVLVRSETCLLKO-UHFFFAOYSA-N 0.000 description 1
- GLQPWXJJPJKSFY-UHFFFAOYSA-N 1-(3-amino-6-chloropyridin-2-yl)propan-2-ol Chemical compound CC(O)CC1=NC(Cl)=CC=C1N GLQPWXJJPJKSFY-UHFFFAOYSA-N 0.000 description 1
- KPIVDNYJNOPGBE-UHFFFAOYSA-N 2-aminonicotinic acid Chemical compound NC1=NC=CC=C1C(O)=O KPIVDNYJNOPGBE-UHFFFAOYSA-N 0.000 description 1
- AFMPMSCZPVNPEM-UHFFFAOYSA-N 2-bromobenzonitrile Chemical compound BrC1=CC=CC=C1C#N AFMPMSCZPVNPEM-UHFFFAOYSA-N 0.000 description 1
- 125000004637 2-oxopiperidinyl group Chemical group O=C1N(CCCC1)* 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- XVIHGTRTKQZJAC-UHFFFAOYSA-N 6-chloro-3-nitropyridine-2-carbonitrile Chemical compound [O-][N+](=O)C1=CC=C(Cl)N=C1C#N XVIHGTRTKQZJAC-UHFFFAOYSA-N 0.000 description 1
- WMHKNOUTHVHZLH-UHFFFAOYSA-N 6-chloro-4,4-dimethyl-1h-pyrido[3,2-d][1,3]oxazin-2-one Chemical compound C1=C(Cl)N=C2C(C)(C)OC(=O)NC2=C1 WMHKNOUTHVHZLH-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- 238000010599 BrdU assay Methods 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- SWJKQYBPSVCQOG-UHFFFAOYSA-N C=C1C=C(C)CC(C)(C)C1CC1=C(OC(C)=O)C=C(Br)C(OC)=C1 Chemical compound C=C1C=C(C)CC(C)(C)C1CC1=C(OC(C)=O)C=C(Br)C(OC)=C1 SWJKQYBPSVCQOG-UHFFFAOYSA-N 0.000 description 1
- PXXHJWCVGKGOFV-UBFJBIBJSA-N C=C1CC[C@H](O)C/C1=C/C=C1\CCCC2(C)C(C(C)=O)CCC12 Chemical compound C=C1CC[C@H](O)C/C1=C/C=C1\CCCC2(C)C(C(C)=O)CCC12 PXXHJWCVGKGOFV-UBFJBIBJSA-N 0.000 description 1
- VFVSQPSLNWVYLH-WIUYVHTKSA-N C=CC(CCC1)(C(CC2)C(C=C)=O)C2/C1=C/C=C(/C[C@H](CC1)O)\C1=C Chemical compound C=CC(CCC1)(C(CC2)C(C=C)=O)C2/C1=C/C=C(/C[C@H](CC1)O)\C1=C VFVSQPSLNWVYLH-WIUYVHTKSA-N 0.000 description 1
- BVVRFLKHDORYLD-UHFFFAOYSA-N CC(=O)OC1C(O)C=C2C=C3OC(=O)C(C)=C3CC2(C)C1C Chemical compound CC(=O)OC1C(O)C=C2C=C3OC(=O)C(C)=C3CC2(C)C1C BVVRFLKHDORYLD-UHFFFAOYSA-N 0.000 description 1
- YCIFJIPODRSMPJ-UHFFFAOYSA-N CC(C)(C)C1=CC(C#N)=CC(F)=C1 Chemical compound CC(C)(C)C1=CC(C#N)=CC(F)=C1 YCIFJIPODRSMPJ-UHFFFAOYSA-N 0.000 description 1
- SIAPVOBOIHAJRZ-UHFFFAOYSA-N CC1=CC(C)(C)NC2=C1C1=C(C=C2)C2=CC=CC=C2C(=O)O1.CC1=CC(C)(C)NC2=C1C1=C(C=C2)C2=CC=CC=C2OC1=O.CC1=CC(C)(C)NC2=C1C=C1C(=C2)OC(=O)C2=C1C=CC=C2 Chemical compound CC1=CC(C)(C)NC2=C1C1=C(C=C2)C2=CC=CC=C2C(=O)O1.CC1=CC(C)(C)NC2=C1C1=C(C=C2)C2=CC=CC=C2OC1=O.CC1=CC(C)(C)NC2=C1C=C1C(=C2)OC(=O)C2=C1C=CC=C2 SIAPVOBOIHAJRZ-UHFFFAOYSA-N 0.000 description 1
- NSOHKUPHTOMLEH-UHFFFAOYSA-N CC1=CC(C)(C)NC2=C1C1=C(C=C2)C2=CC=CC=C2C(C2=CC=CC=C2)O1 Chemical compound CC1=CC(C)(C)NC2=C1C1=C(C=C2)C2=CC=CC=C2C(C2=CC=CC=C2)O1 NSOHKUPHTOMLEH-UHFFFAOYSA-N 0.000 description 1
- QASVQWYKHBDCLY-UHFFFAOYSA-N CC1=CC(C)(C)NC2=CC=C(C3=CSC(C#N)=C3)C=C12 Chemical compound CC1=CC(C)(C)NC2=CC=C(C3=CSC(C#N)=C3)C=C12 QASVQWYKHBDCLY-UHFFFAOYSA-N 0.000 description 1
- NPDSJEIIHNPHHF-UHFFFAOYSA-N CC1=CC(C2OC3=CC=C(F)C=C3C3=C2C2=C(C=C3)NC(C)(C)C=C2C)=CC=C1Cl Chemical compound CC1=CC(C2OC3=CC=C(F)C=C3C3=C2C2=C(C=C3)NC(C)(C)C=C2C)=CC=C1Cl NPDSJEIIHNPHHF-UHFFFAOYSA-N 0.000 description 1
- ACMHIHPPNKFBLC-CFRMEGHHSA-N CC1=CC=CC(/C=C2\OC3=CC=C(F)C=C3C3=C2C2=C(C=C3)NC(C)(C)C=C2C)=C1 Chemical compound CC1=CC=CC(/C=C2\OC3=CC=C(F)C=C3C3=C2C2=C(C=C3)NC(C)(C)C=C2C)=C1 ACMHIHPPNKFBLC-CFRMEGHHSA-N 0.000 description 1
- HEFLRQLHCXVPCE-UHFFFAOYSA-N CC1=NC2=C(C=C1C1=CC=NC=C1)C(C)C(=O)N2.CC1=NC2=C(C=C1C1=CC=NC=C1)CC(=O)N2 Chemical compound CC1=NC2=C(C=C1C1=CC=NC=C1)C(C)C(=O)N2.CC1=NC2=C(C=C1C1=CC=NC=C1)CC(=O)N2 HEFLRQLHCXVPCE-UHFFFAOYSA-N 0.000 description 1
- 101100297347 Caenorhabditis elegans pgl-3 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000017667 Chronic Disease Diseases 0.000 description 1
- HSHZYRDOSRDLMZ-OOJLDXBWSA-N ClC1=C(Cl)C=C(N[C@H]2CCCC3(CCNC4=CC=CC=C4S3)C2)C=C1 Chemical compound ClC1=C(Cl)C=C(N[C@H]2CCCC3(CCNC4=CC=CC=C4S3)C2)C=C1 HSHZYRDOSRDLMZ-OOJLDXBWSA-N 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010078851 HIV Reverse Transcriptase Proteins 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 101000738977 Homo sapiens Reverse transcriptase/ribonuclease H Proteins 0.000 description 1
- 101000617808 Homo sapiens Synphilin-1 Proteins 0.000 description 1
- 206010071119 Hormone-dependent prostate cancer Diseases 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NFXGORVTGOUZTR-UHFFFAOYSA-N O=C(C1=CC(Br)=C(F)C=C1)N1CCCC(C2=CC=CC=C2)=N1 Chemical compound O=C(C1=CC(Br)=C(F)C=C1)N1CCCC(C2=CC=CC=C2)=N1 NFXGORVTGOUZTR-UHFFFAOYSA-N 0.000 description 1
- WJROQRURJKPGOH-UHFFFAOYSA-N O=C1NC2=C(C=C(Cl)C=N2)C(C#CC2=CC=CC=N2)(C(F)(F)F)O1.O=C1NC2=C(C=CC=N2)C2(CCCC2)O1.O=C1NC2=C(C=CN=N2)C(C2=CC=CC=C2)O1 Chemical compound O=C1NC2=C(C=C(Cl)C=N2)C(C#CC2=CC=CC=N2)(C(F)(F)F)O1.O=C1NC2=C(C=CC=N2)C2(CCCC2)O1.O=C1NC2=C(C=CN=N2)C(C2=CC=CC=C2)O1 WJROQRURJKPGOH-UHFFFAOYSA-N 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 108010085012 Steroid Receptors Proteins 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 102100021997 Synphilin-1 Human genes 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- KHVQXJRFDUJWQK-UHFFFAOYSA-N [C-]#[N+]C1=CC(C(C)(C)C)=CS1.[C-]#[N+]C1=CC(C)=C(C(C)(C)C)S1 Chemical compound [C-]#[N+]C1=CC(C(C)(C)C)=CS1.[C-]#[N+]C1=CC(C)=C(C(C)(C)C)S1 KHVQXJRFDUJWQK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001499 aryl bromides Chemical class 0.000 description 1
- 150000001503 aryl iodides Chemical class 0.000 description 1
- 238000006254 arylation reaction Methods 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000002785 azepinyl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000008004 cell lysis buffer Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008157 edible vegetable oil Substances 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 150000002084 enol ethers Chemical class 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- USZLCYNVCCDPLQ-UHFFFAOYSA-N hydron;n-methoxymethanamine;chloride Chemical class Cl.CNOC USZLCYNVCCDPLQ-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 231100000546 inhibition of ovulation Toxicity 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- VYFOAVADNIHPTR-UHFFFAOYSA-N isatoic anhydride Chemical class NC1=CC=CC=C1CO VYFOAVADNIHPTR-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 230000009245 menopause Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000003863 metallic catalyst Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 239000012434 nucleophilic reagent Substances 0.000 description 1
- 229950011093 onapristone Drugs 0.000 description 1
- 238000009806 oophorectomy Methods 0.000 description 1
- 238000000424 optical density measurement Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 125000001979 organolithium group Chemical group 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 238000001408 paramagnetic relaxation enhancement Methods 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 description 1
- 239000002570 phosphodiesterase III inhibitor Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002379 progesterone receptor modulator Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229940095745 sex hormone and modulator of the genital system progesterone receptor modulator Drugs 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 210000002325 somatostatin-secreting cell Anatomy 0.000 description 1
- 238000013223 sprague-dawley female rat Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 102000005969 steroid hormone receptors Human genes 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 125000006089 thiamorpholinyl sulfoxide group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004568 thiomorpholinyl group Chemical group 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 239000012485 toluene extract Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 1
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 1
- NHDIQVFFNDKAQU-UHFFFAOYSA-N tripropan-2-yl borate Chemical compound CC(C)OB(OC(C)C)OC(C)C NHDIQVFFNDKAQU-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D498/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D498/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D498/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/16—Masculine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/18—Feminine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/34—Gestagens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/24—Drugs for disorders of the endocrine system of the sex hormones
- A61P5/36—Antigestagens
Definitions
- This invention relates to compounds which are agonists and antagonists of the progesterone receptor, their preparation and utility.
- Intracellular receptors form a class of structurally related gene regulators known as “ligand dependent transcription factors” (R. M. Evans, Science, 240, 889, 1988).
- the steroid receptor family is a subset of the IR family, including progesterone receptor (PR), estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR).
- PR progesterone receptor
- ER estrogen receptor
- AR glucocorticoid receptor
- MR mineralocorticoid receptor
- the natural hormone, or ligand, for the PR is the steroid progesterone, but synthetic compounds, such as medroxyprogesterone acetate or levonorgestrel, have been made which also serve as ligands.
- a ligand Once a ligand is present in the fluid surrounding a cell, it passes through the membrane via passive diffusion, and binds to the IR to create a receptor/ligand complex. This complex binds to specific gene promoters present in the cell's DNA. Once bound to the DNA the complex modulates the production of mRNA and protein encoded by that gene.
- a compound that binds to an IR and mimics the action of the natural hormone is termed an agonist, whilst a compound that inhibits the effect of the hormone is an antagonist.
- PR agonists are known to play an important role in the health of women.
- PR agonists are used in birth control formulations, typically in the presence of an ER agonist.
- ER agonists are used to treat the symptoms of menopause, but have been associated with a proliferative effect on the uterus that can lead to an increased risk of uterine cancers.
- Co-administration of a PR agonist reduces or ablates that risk.
- PR antagonists may also be used in contraception. In this context they may be administered alone (Ulmann, et al, Ann. N.Y Acad. Sci., 261, 248, 1995), in combination with a PR agonist (Kekkonen, et al, Fertility and Sterility, 60, 610, 1993) or in combination with a partial ER antagonist such as tamoxifen (WO 96/19997 A1, Jul. 4, 1996).
- PR antagonists may also be useful for the treatment of hormone dependent breast cancers (Horwitz, et al, Horm Cancer, 283, pub: Birkhaeuser, Boston, Mass., ed. Vedeckis) as well as uterine and ovarian cancers. PR antagonists may also be useful for the treatment of non-malignant chronic conditions such as fibroids (Murphy, et al, J. Clin. Endo. Metab., 76, 513, 1993) and endometriosis (Kettel, et al, Fertility and Sterility, 56, 402, 1991).
- hormone dependent breast cancers Horm Cancer, 283, pub: Birkhaeuser, Boston, Mass., ed. Vedeckis
- PR antagonists may also be useful for the treatment of non-malignant chronic conditions such as fibroids (Murphy, et al, J. Clin. Endo. Metab., 76, 513, 1993) and endometriosis (Kettel, et al, Fertility and Sterility
- PR antagonists may also be useful in hormone replacement therapy for post menopausal patients in combination with a partial ER antagonist such as tamoxifen (U.S. Pat. No. 5,719,136).
- PR antagonists such as nifepristone and onapristone
- PR antagonists have been shown to be effective in a model of hormone dependent prostate cancer, which may indicate their utility in the treatment of this condition in men (Michna, et al, Ann. N. Y Acad. Sci., 761, 224, 1995).
- A, B and D are N or CH, with the proviso that A, B and D can not all be CH;
- R 1 and R 2 are independent substituents selected from H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted C 2 to C 6 alkenyl, C 2 to C 6 alkynyl, substituted C 2 to C 6 alkynyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, COR A , NR B COR A ;
- R 1 and R 2 are fused to form a spirocyclic ring selected from a), b) or c), each spirocyclic ring optionally substituted by from 1 to 3 C 1 -C 3 alkyl groups:
- R A is H, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, aryl, substituted aryl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, or substituted C 1 to C 3 aminoalkyl;
- R B is H, C 1 to C 3 alkyl, or substituted C 1 to C 3 alkyl
- R 3 is H, OH, NH 2 , C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 6 alkenyl, substituted C 1 to C 6 alkenyl, or COR C ;
- R C is H, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, aryl, substituted aryl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, or substituted C 1 to C 3 aminoalkyl;
- R 4 is a trisubstituted benzene ring containing the substituents X, Y and Z as shown below:
- X is taken from the group including halogen, CN, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 thioalkoxy, substituted C 1 to C 3 thioalkoxy, amino, C 1 to C 3 aminoalkyl, substituted C 1 to C 3 aminoalkyl, NO 2 , C 1 to C 3 perfluoroalkyl, 5 or 6 membered heterocyclic ring containing 1 to 3 heteroatoms, COR D , OCOR D , or NR E COR D ;
- R D is H, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, aryl, substituted aryl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, or substituted C 1 to C 3 aminoalkyl;
- R E is H, C 1 to C 3 alkyl, or substituted C 1 to C 3 alkyl
- Y and Z are independent substituents taken from the group including H, halogen, CN, NO 2 , C 1 to C 3 alkoxy, C 1 to C 3 alkyl, or C 1 to C 3 thioalkoxy; or
- R 4 is a five or six membered ring with 1, 2, or 3 heteroatoms from the group including O, S, SO, SO 2 or NR 5 and containing one or two independent substituents from the group including H, halogen, CN, NO 2 and C 1 to C 3 alkyl, C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, COR F , or NR G COR F ;
- R F is H, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, aryl, substituted aryl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, or substituted C 1 to C 3 aminoalkyl;
- R G is H, C 1 to C 3 alkyl, or substituted C 1 to C 3 alkyl
- R 5 is H or C 1 to C 3 alkyl
- Q is O, S, NR 6 , or CR 7 R 8 ;
- R 6 is from the group including CN, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO 2 CF 3 ;
- R 7 and R 8 are independent substituents from the group including H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO 2 , CN, or CO 2 R 9 ;
- R 9 is C 1 to C 3 alkyl
- CR 7 R 8 form a six membered ring of the structure below:
- W is O or a chemical bond.
- Preferred compounds are those of Formula I
- A, B and D are N or CH, with the proviso that A, B and D can not all be CH;
- R 1 is H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, COR A , or NR B COR A ;
- R 2 is H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 2 to C 6 alkenyl, substituted C 2 to C 6 alkenyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, COR A , or NR B COR A ; or
- R 1 and R 2 are fused to form the optionally substituted 3 to 8 membered spirocyclic alkyl, alkenyl or heterocyclic rings described above;
- R A is H, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, aryl, substituted aryl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, or substituted C 1 to C 3 aminoalkyl;
- R B is H, C 1 to C 3 alkyl, or substituted C 1 to C 3 alkyl
- R 3 is H, OH, NH 2 , C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 6 alkenyl, substituted C 1 to C 6 alkenyl, or COR C ;
- R C is H, C 1 to C 4 alkyl, substituted C 1 to C 4 alkyl, aryl, substituted aryl, C 1 to C 4 alkoxy, substituted C 1 to C 4 alkoxy, C 1 to C 4 aminoalkyl, or substituted C 1 to C 4 aminoalkyl;
- R 4 is a trisubstituted benzene ring containing the substituents X, Y and Z as shown below:
- X is selected from halogen, CN, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 thioalkoxy, substituted C 1 to C 3 thioalkoxy, C 1 to C 3 aminoalkyl, substituted C 1 to C 3 aminoalkyl, NO 2 , C 1 to C 3 perfluoroalkyl, a 5 membered heterocyclic ring containing 1 to 3 heteroatoms, COR D , OCOR D , or NR E COR D ;
- R D is H, C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, aryl, substituted aryl, C 1 to C 3 alkoxy, substituted C 1 to C 3 alkoxy, C 1 to C 3 aminoalkyl, or substituted C 1 to C 3 aminoalkyl;
- R E is H, C 1 to C 3 alkyl, or substituted C 1 to C 3 alkyl
- Y and Z are independent substituents selected from H, halogen, CN, NO 2 , C 1 to C 3 alkoxy, C 1 to C 3 alkyl, or C 1 to C 3 thioalkoxy; or
- R 5 is a five or six membered ring with 1, 2, or 3 heteroatoms from the group including O, S, SO, SO 2 or NR 5 and containing one or two independent substituents from the group including H, halogen, CN, NO 2 and C 1 to C 3 alkyl, or C 1 to C 3 alkoxy;
- R 5 is H or C 1 to C 3 alkyl
- Q is O, S, NR 6 , or CR 7 R 8 ;
- R 6 is selected from CN, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO 2 CF 3 ;
- R 7 and R 8 are independent substituents selected from the group including H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO 2 , CN, or CO 2 R;
- R 9 is C 1 to C 3 alkyl
- CR 7 R 8 form a six membered ring of the structure below:
- W is O or a chemical bond
- A, B and D are N or CH, with the proviso that A, B and D cannot all be CH;
- R 1 R 2 and are selected from the group of C 1 to C 3 alkyl, substituted C 1 to C 3 alkyl, or spirocyclic alkyl constructed by fusing R 1 and R 2 to form a 3 to 6 membered spirocyclic ring;
- R 3 is H, OH, NH 2 , C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, or COR C ;
- R C is H, C 1 to C 4 alkyl, or C 1 to C 4 alkoxy
- R 4 is a disubstituted benzene ring containing the substituents X, and Y as shown below:
- X is selected from the group of halogen, CN, C 1 to C 3 alkoxy, C 1 to C 3 alkyl, NO 2 , C 1 to C 3 perfluoroalkyl, 5 membered heterocyclic ring containing 1 to 3 heteroatoms, or C 1 to C 3 thioalkoxy;
- Y is a substituent on the 4′ or 5′position from the group including H, halogen, CN, NO 2 , C 1 to C 3 alkoxy, C 1 to C 4 alkyl, or C 1 to C 3 thioalkoxy; or
- R 4 is a five membered ring with the structure:
- R 5 is H, or C 1 to C 3 alkyl, or C 1 to C 4 CO 2 alkyl;
- X′ is selected from halogen, CN, NO 2 , C 1 to C 3 alkyl, or C 1 to C 3 alkoxy;
- Y′ is selected from H and C 1 to C 4 alkyl
- A, B and D are N or CH, with the proviso that A, B and D can not all be CH;
- R 1 R 2 and are selected from CH 3 and spirocyclic alkyl constructed by fusing R 1 and R 2 to form a 6 membered spirocyclic ring;
- R 3 is H, OH, NH 2 , CH 3 , substituted methyl, or COR C ;
- R C is H, C 1 to C 3 alkyl, or C 1 to C 4 alkoxy
- R 4 is a disubstituted benzene ring containing the substituents X and Y as shown below:
- X is halogen, CN, methoxy, NO 2 , or 2-thiazole;
- Y is a substituent on the 4′ or 5′position selected from H and F; or
- R 4 is a five membered ring of the structure:
- U is O, S, or NH
- X′ is halogen, CN, or NO 2 ;
- Y′ is H or C 1 to C 4 alkyl
- R 4 is a six membered ring with the structure:
- X 1 is N or CX 2 ;
- X 2 is halogen, CN or NO 2 ;
- Q is O, S, NR 6 , or CR 7 R 8 ;
- R 6 is selected from CN, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO 2 CF 3 ;
- R 7 and R 8 are independent substituents selected from H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO 2 , CN, or CO 2 R 9 ;
- R 9 is C 1 to C 3 alkyl
- Q is O, S, NR 6 , or CR 7 R 8 ;
- R 6 is CN, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO 2 CF 3 ;
- R 7 and R 8 are independent substituents selected from the group including H, C 1 to C 6 alkyl, substituted C 1 to C 6 alkyl, C 3 to C 8 cycloalkyl, substituted C 3 to C 8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO 2 , CN, or CO 2 R 9 ;
- R 9 is C 1 to C 3 alkyl
- W is O or a chemical bond
- Each of the generic and subgeneric groups of compounds described above, as well as the methods of treatment and pharmaceutical compositions utilizing them, may be divided into two further subgeneric groups, one in which Q is oxygen and another in which Q is sulfur or NR 6 or CR 7 R 8 .
- the compounds of this invention may contain an asymmetric carbon atom and some of the compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers.
- the shown without respect to stereochemistry in Formula I, the present invention includes such optical isomers and diastereomers; as well as the racemic and resolved, enantiomerically pure R and S stereoisomers; as well as other mixtures of the R and S stereoisomers and pharmaceutically acceptable salts thereof.
- alkyl is used herein to refer to both straight- and branched-chain saturated aliphatic hydrocarbon groups having one to eight carbon atoms, preferably one to six carbon atoms; “alkenyl” is intended to include both straight- and branched-chain alkyl group with at least one carbon-carbon double bond and two to eight carbon atoms, preferably two to six carbon atoms; “alkynyl” group is intended to cover both straight- and branched-chain alkyl group with at least one carbon-carbon triple bond and two to eight carbon atoms, preferably two to six carbon atoms.
- substituted alkyl refers to alkyl, alkenyl, and alkynyl as just described having one or more substituents from the group including halogen, CN, OH, NO 2 , amino, aryl, heterocyclic, substituted aryl, substituted heterocyclic, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, arylthio.
- substituents may be attached to any carbon of an alkyl, alkenyl, or alkynyl group provided that the attachment constitutes a stable chemical moiety.
- aryl is used herein to refer to an aromatic system which may be a single ring or multiple aromatic rings fused or linked together as such that at least one part of the fused or linked rings forms the conjugated aromatic system
- aryl groups include but are not limited to phenyl, naphthyl, biphenyl, anthryl, tetrahydronaphthyl, and phenanthryl.
- substituted aryl refers to aryl as just defined having one to four substituents from the group including halogen, CN, OH, NO 2 , amino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, or arylthio.
- heterocyclic is used herein to describe a stable 4- to 7-membered monocyclic or a stable multicyclic heterocyclic ring which is saturated, partially unsaturated, or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group including N, O, and S atoms.
- the N and S atoms may be oxidized.
- the heterocyclic ring also includes any multicyclic ring in which any of the above defined heterocyclic rings is fused to an aryl ring.
- the heterocyclic ring may be attached at any heteroatom or carbon atom provided the resultant structure is chemically stable.
- heterocyclic groups include, for example, tetrahydrofuran, piperidinyl, piperazinyl, 2-oxopiperidinyl, azepinyl, pyrrolidinyl, imidazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isoxazolyl, morpholinyl, indolyl, quinolinyl, thienyl, furyl, benzofuranyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide, and isoquinolinyl.
- substituted heterocyclic is used herein to describe the heterocyclic just defined having one to four substituents selected from the group which includes halogen, CN, OH, NO 2 , amino, alkyl, substituted alkyl, cycloalkyl, alkenyl, substituted alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, or arylthio.
- alkoxy is used herein to refer to the OR group, where R is an alkyl or substituted alkyl.
- aryloxy is used herein to refer to the OR group, where R is an aryl or substituted aryl.
- alkylcarbonyl is used herein to refer to the RCO group, where R is an alkyl or substituted alkyl.
- alkylcarboxy is used herein to refer to the COOR group, where R is an alkyl or substituted alkyl.
- aminoalkyl refers to both secondary and tertiary amines wherein the alkyl or substituted alkyl groups contain one to eight carbon atoms, which may be either same or different and the point of attachment is on the nitrogen atom “Halogen” refers to Cl, Br, F, or I.
- the compounds of the present invention can be used in the form of salts derived from pharmaceutically or physiologically acceptable acids or bases.
- These salts include, but are not limited to, the following salts with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and, as the case may be, such organic acids as acetic acid, oxalic acid, succinic acid, and maleic acid.
- Other salts include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium in the form of esters, carbamates and other conventional “pro-drug” forms, which, when administered in such form, convert to the active moiety in vivo.
- the compounds of this invention have been shown to act as competitive inhibitors of progesterone binding to the PR and act as agonists and/or antagonists in functional models, either/or in-vitro and in-vivo. These compounds may be used for contraception, in the treatment of fibroids, endometriosis, breast, uterine, ovarian and prostate cancer, and post menopausal hormone replacement therapy.
- This invention includes pharmaceutical compositions and treatments which comprise administering to a mammal a pharmaceutically effective amount of one or more compounds as described above wherein Q is oxygen as antagonists of the progesterone receptor.
- the invention further provides comparable methods and compositions which utilize one or more compounds herein wherein Q is S, NR 6 , or CR 7 R 8 as agonists of the progesterone receptor.
- the progesterone receptor antagonists of this invention can be utilized in methods of contraception and the treatment and/or prevention of benign and malignant neoplastic disease.
- Specific uses of the compounds and pharmaceutical compositions of invention include the treatment and/or prevention of uterine myometrial fibroids, endometriosis, benign prostatic hypertrophy; carcinomas and adenocarcinomas of the endometrium, ovary, breast, colon, prostate, pituitary, meningioma and other hormone-dependent tumors.
- Additional uses of the present progesterone receptor antagonists include the synchronization of the estrus in livestock.
- the progesterone receptor agonists of this invention can be utilized in methods of contraception and the treatment and/or prevention of dysfunctional bleeding, uterine leiomyomata, endometriosis; polycystic ovary syndrome, carcinomas and adenocarcinomas of the endometrium, ovary, breast, colon, prostate. Additional uses of the invention include stimulation of food intake.
- the compounds When the compounds are employed for the above utilities, they may be combined with one or more pharmaceutically acceptable carriers or excipients, for example, solvents, diluents and the like, and may be administered orally in such forms as tablets, capsules, dispersible powders, granules, or suspensions containing, for example, from about 0.05 to 5% of suspending agent, syrups containing, for example, from about 10 to 50% of sugar, and elixirs containing, for example, from about 20 to 50% ethanol, and the like, or parenterally in the form of sterile injectable solutions or suspensions containing from about 0.05 to 5% suspending agent in an isotonic medium
- Such pharmaceutical preparations may contain, for example, from about 25 to about 90% of the active ingredient in combination with the carrier, more usually between about 5% and 60% by weight.
- the effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration and the severity of the condition being treated. However, in general, satisfactory results are obtained when the compounds of the invention are administered at a daily dosage of from about 0.5 to about 500 mg/kg of animal body weight, preferably given in divided doses two to four times a day, or in a sustained release form For most large mammals, the total daily dosage is from about 1 to 100 mg, preferably from about 2 to 80 mg.
- Dosage forms suitable for internal use comprise from about 0.5 to 500 mg of the active compound in intimate admixture with a solid or liquid pharmaceutically acceptable carrier. This dosage regimen may be adjusted to provide the optimal therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
- active compounds may be administered orally as well as by intravenous, intramuscular, or subcutaneous routes.
- Solid carriers include starch, lactose, dicalcium phosphate, microcrystalline cellulose, sucrose and kaolin, while liquid carriers include sterile water, polyethylene glycols, non-ionic surfactants and edible oils such as corn, peanut and sesame oils, as are appropriate to the nature of the active ingredient and the particular form of administration desired.
- Adjuvents customarily employed in the preparation of pharmaceutical compositions may be advantageously included, such as flavoring agents, coloring agents, preserving agents, and antioxidants, for example, vitamin E, ascorbic acid, BHT and BHA.
- compositions from the standpoint of ease of preparation and administration are solid compositions, particularly tablets and hard-filled or liquid-filled capsules. Oral administration of the compounds is preferred.
- active compounds may also be administered parenterally or intraperitoneally.
- Solutions or suspensions of these active compounds as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose.
- Dispersions can also be prepared in glycerol, liquid, polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- the pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions.
- the form must be sterile and must be fluid to the extent that easy syringe ability exits. It must be stable under conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacterial and fungi.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oil.
- the compounds of this invention are generally prepared by employing the suitable coupling reaction as a final step.
- a suitable organo metallic reagent e.g. Grignard reagent
- Ring closure of carbinol 2 to yield oxazin-2-ones 3 is commonly effected by a condensing agent such as carbonyldimidazole, phosgene, dimethylcarbonate, or diethylcarbonate in a suitable nonprotic solvent such as THF at temperatures ranging from room temperature to 65° C.
- a condensing agent such as carbonyldimidazole, phosgene, dimethylcarbonate, or diethylcarbonate
- a suitable nonprotic solvent such as THF
- a transition metallic catalyst e.g., palladium or nickel complex often with phosphino ligands, e.g., Ph 3 P, 1,1′-bis(diphenylphosphino)ferrocene, 1,2-bis(diphenylphosphino)ethane or palladium salt such as palladium acetate.
- phosphino ligands e.g., Ph 3 P
- 1,1′-bis(diphenylphosphino)ferrocene 1,2-bis(diphenylphosphino)ethane or palladium salt
- palladium salt such as palladium acetate
- the commonly used bases include but not limited to sodium bicarbonate, sodium carbonate, potassium phosphate, barium carbonate, potassium acetate, or cesium fluoride.
- the most commonly used solvents in these reactions include benzene, DMF, isopropanol, ethanol, DME, ether, acetone or a mixture of any one of these solvent and water.
- the coupling reaction is generally executed under an inert atmosphere such as nitrogen or argon at temperatures ranging from room temperature to 95° C.
- Oxazinones 3 can be converted into a nucleophile such as boronic acid which can be coupled with an appropriate electrophile, e.g., aryl bromide or aryl iodide, to yield 6 employing the coupling reaction condition as described above.
- a nucleophile such as boronic acid
- an appropriate electrophile e.g., aryl bromide or aryl iodide
- the transformation of 3 into 5 can be effected by treating 3 with an organo metallic reagent, e.g., n-BuLi, in a nonprotic solvent such as THF or ether followed by quenching the reaction solution with a suitable electrophile such as trimethyl borate, triisopropyl borate, bishexalkyl tin reagent, or zinc chloride at temperatures ranging from ⁇ 78° C. to room temperature under an inert atmosphere such as argon or nitrogen.
- organo metallic reagent e.g., n-BuLi
- a suitable electrophile such as trimethyl borate, triisopropyl borate, bishexalkyl tin reagent, or zinc chloride
- Conversion of carbamate 6 to thiocarbamate 7 can be readily effected by treatment of 6 with a suitable sulfur reagent such as P 2 S 5 or Lawesson's reagent in a suitable nonprotic solvent such as toluene, chlorobenzene, benzene, or xylene under an inert atmosphere such as argon or nitrogen at the temperature of boiling solvent.
- a suitable sulfur reagent such as P 2 S 5 or Lawesson's reagent in a suitable nonprotic solvent such as toluene, chlorobenzene, benzene, or xylene under an inert atmosphere such as argon or nitrogen at the temperature of boiling solvent.
- Scheme II describes the procedures to prepare oxazinones bearing two different substituents at position-4.
- the Weinreb amide 9 can be prepared from an appropriately substituted isatoic anhydride when treated with N-, O-dimethylhydroxylamine hydrochloride salt in a protic solvent such as ethanol or isopropanol at reflux under an inert atmosphere such as argon or nitrogen.
- Coupling of amide 9 with an aryl electrophile such as aryl boronic acid or arylstannane to give 10 can be effected by employing a typical coupling reaction such as Suzuki, Stille coupling procedure in a similar fashion as described for the preparation of oxazinones 4.
- organo metallic compounds e.g., alkyllithium, alkynyllithium, aryllithium, or their Grignard counterpart in a nonprotic solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at ⁇ 78 ° to room temperature affords amino ketone 11.
- Conversion of ketone 11 to carbinol 12 can be effected by treatment of 10 with an organo metallic reagent such as alkyl, alkynyl, or aryl Grignard compound in a nonprotic solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at ⁇ 78° C. to room temperature.
- Conversion of ketone 11 to carbinol 12 can also be effected by reduction of ketone group of 11 to the carbinol moiety of 12 using an appropriate reducing reagent such as lithium aluminum hydride, sodium borohydride in a suitable solvent such as THF, ether, or anhydrous alcohol under an inert atmosphere in the temperature ranging from 0° C. to the boiling point of the solvent.
- Ring closure of carbinol 12 to produce the compounds of this invention, 13 can be accomplished with condensing agents such as carbonyldiimidazole, phosgene, dimethylcarbonate, or diethylcarbonate in a suitable nonprotic solvent such as THF at temperatures ranging from room temperature to 65° C.
- Conversion of carbamate 13 to thiocarbamate 14 can be readily effected by treatment of 13 with a suitable sulfur reagent such as P 2 S 5 or Lawesson's reagent in a suitable nonprotic solvent such as toluene, chlorobenzene, benzene, or xylene under an inert atmosphere such as argon or nitrogen at the temperature of boiling solvent.
- a suitable sulfur reagent such as P 2 S 5 or Lawesson's reagent in a suitable nonprotic solvent such as toluene, chlorobenzene, benzene, or xylene under an inert atmosphere such as argon or nitrogen at the temperature of boiling solvent.
- ortho-amino ketone 11 can be prepared by treatment of ortho-amino nitrile 16 with an organo metallic compound such as an organo lithium reagent or Grignard reagent in a suitable solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at temperatures ranging from ⁇ 78° C. to room temperature as illustrated in Scheme III.
- an organo metallic compound such as an organo lithium reagent or Grignard reagent in a suitable solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at temperatures ranging from ⁇ 78° C. to room temperature as illustrated in Scheme III.
- Nitrile 16 can be readily prepared from an appropriately substituted nitrile such as bromobenzonitrile 15 using a suitable coupling reaction such as Stille or Suzuki protocol carried out in a similar fashion as described for the preparation of the Weinreb amide 10.
- the reaction was cooled to room temperature and ethyl acetate (100 mL) was added. The organic layer washed with aqueous ammonium chloride (2 ⁇ 50 mL) and with brine (50 mL), dried over magnesium sulfate and concentrated. The product was dissolved in dichloromethane and passed through a plug of magnesol.
- the compounds of this invention were tested in the relevant assay as described below and their potency are in the range of 0.01 nM to 5 ⁇ M in the in vitro assays and 0.001 to 300 mg/kg in the in vivo assays.
- the selected example is example 4.
- the in-vitro biology is determined by (1) competitive Radioligand Binding: using the A-form of the human progesterone receptor with progesterone as the radioligand; (2) co-transfection assay, which provides functional activity expressed as agonist EC50 and Antagonist IC50 values; (3) a T47D cell proliferation, which is a further functional assay which also provides agonist and antagonist data; and (4) T47D cell alkaline phosphatase assay, which is a further functional assay which also provides agonist and antagonist data.
- This assay is carried out in accordance with: Pathirana, C.; Stein, R. B.; Berger, T. S.; Fenical, W.; Ianiro, T.; Mais, D. E.; Torres, A.; Glodman, M. E., Nonsteroidal human progesterone receptor modulators from the marine alga cymoplia barbata, J. Steroid Biochem. Mol. Biol., 1992, 41, 733-738.
- the object of this assay is to determine a compound's progestational or antiprogestational potency based on its effect on PRE-luciferase reporter activity in CV-1 cells co-transfected with human PR and PRE-luciferase plasmids.
- the materials methods used in the assay are as follows.
- the growth medium was as follows: DMEM (BioWhittaker) containing 10% (v/v) fetal bovine serum (heat inactivated), 0.1 mM MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- the experimental medium was as follows: DMEM (BioWhittaker), phenol red-free, containing 10% (v/v) charcoal-stripped fetal bovine serum (heat-inactivated), 0.1 mM MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- Cells are then treated with reference or test compounds in experimental medium Compounds are tested for antiprogestational activity in the presence of 3 nM progesterone. Twenty-four hr. after treatment, the medium is discarded, cells are washed three times with D-PBS (GIBCO, BRL). Fifty ⁇ l of cell lysis buffer (Promega, Madison, Wis.) is added to each well and the plates are shaken for 15 min in a Titer Plate Shaker (Lab Line Instrument, Inc.). Luciferase activity is measured using luciferase reagents from Promega.
- Each treatment consists of at least 4 replicates.
- Log transformed data are used for analysis of variance and nonlinear dose response curve fitting for both agonist and antagonist modes. Huber weighting is used to downweight the effects of outliers.
- EC 50 or IC 50 values are calculated from the retransformed values.
- JMP software SAS Institute, Inc. is used for both one-way analysis of variance and non-linear response analyses.
- Progesterone and trimegestone are reference progestins and RU486 is the reference antiprogestin. All reference compounds are run in full dose-response curves and the EC 50 or IC 50 values are calculated. TABLE 1 Estimated EC 50 , standard error (SE), and 95% confidence intervals (CI) for reference progestins from three individual studies EC50 95% CI Compound Exp.
- the objective of this assay is the determination of progestational and antiprogestational potency by using a cell proliferation assay in T47D cells. A compound's effect on DNA synthesis in T47D cells is measured.
- the materials and methods used in this assay are as follows.
- DMEM:F12 (1:1) (GIBCO, BRL) supplemented with 10% (v/v) fetal bovine serum (not heat-inactivated), 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- MEM Minimum Essential Medium
- BRL phenol red-free supplemented with 0.5% charcoal stripped fetal bovine serum, 100 U/ml penicillin, 200 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- Antiprogestins are tested in the presence of 0.03 nM trimegestone, the reference progestin agonist. Twenty-four hours after treatment, the medium is discarded and cells are labeled with 10 mM BrdU (Amersham Life Science, Arlington Heights, Ill.) in treatment medium for 4 hr.
- BrdU incorporation is measured using a cell proliferation ELISA kit (#RPN 250, Amersham Life Science) according to manufacturer's instructions. Briefly, cells are fixed in an ethanol containing fixative for 30 min, followed by incubation in a blocking buffer for 30 min to reduce background. Peroxidase-labeled anti-BrdU antibody is added to the wells and incubated for 60 min. The cells are rinsed three times with PBS and incubated with 3,3′5,5′-tetramethylbenzidine (TMB) substrate for 10-20 min depending upon the potency of tested compounds. Then 25 ⁇ l of 1 M sulfuric acid is added to each well to stop color reaction and optical density is read in a plate reader at 450 nm within 5 min.
- TMB 3,3′5,5′-tetramethylbenzidine
- Trimegestone and medroxyprogesterone acetate (MPA) are reference progestins and RU486 is the reference antiprogestin. All reference compounds are run in full dose-response curves and the EC 50 or IC 50 values are calculated. TABLE 3 Estimated EC 50 , standard error (SE), and 95% confidence intervals (CI) for individual studies EC 50 95% CI Compound Exp (nM) SE lower upper Trimegestone 1 0.017 0.003 0.007 0.040 2 0.014 0.001 0.011 0.017 3 0.019 0.001 0.016 0.024 MPA 1 0.019 0.001 0.013 0.027 2 0.017 0.001 0.011 0.024
- EC 50 Concentration of a compound that gives half-maximal increase in BrdU incorporation with SE
- IC 50 Concentration of a compound that gives half-maximal decrease in 0.1 trimegestone induced BrdU incorporation with SE
- the purpose of this assay is to identify progestins or antiprogestins by determining a compound's effect on alkaline phosphatase activity in T47D cells.
- the materials and methods used in this assay are as follows.
- DMEM:F12 (1:1) (GIBCO, BRL) supplemented with 5% (v/v) charcoal stripped fetal bovine serum (not heat-inactivated), 100 U/ml penicillin, 100 ⁇ g/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- Frozen T47D cells were thawed in a 37° C. water bath and diluted to 280,000 cells/ml in culture medium. To each well in a 96-well plate (Falcon, Becton Dickinson Labware), 180 ⁇ l of diluted cell suspension was added. Twenty ⁇ l of reference or test compounds diluted in the culture medium was then added to each well. When testing for progestin antagonist activity, reference antiprogestins or test compounds were added in the presence of 1 nM progesterone. The cells were incubated at 37° C. in a 5% CO 2 /humidified atmosphere for 24 hr.
- a dose response curve is generated for dose (X-axis) vs. the rate of enzyme reaction (slope) (Y-axis).
- Square root-transformed data are used for analysis of variance and nonlinear dose response curve fitting for both agonist and antagonist modes. Huber weighting is used to downweight the effects of outliers.
- EC 50 or IC 50 values are calculated from the retransformed values.
- JMP software SAS Institute, Inc. is used for both one-way analysis of variance and non-linear dose response analyses in both single dose and dose response studies.
- Progesterone and trimegestone are reference progestins and RU486 is the reference antiprogestin. All reference compounds are run in full dose response curves and the EC 50 or IC 50 values are calculated. TABLE 5 Estimated EC 50 , standard error (SE), and 95% confidence intervals (CI) for reference progestins from three independent experiments EC50 95% CI Compound Exp.
- the primary in-vivo assay is the rat decidualization model, which may be used to determine progestational effects of both agonists and antagonists.
- the secondary in-vivo assay is the rat ovulation inhibition model, which is under development, and hence the protocol is un-available.
- Test compounds are dissolved in 100% ethanol and mixed with corn oil (vehicle). Stock solutions of the test compounds in oil (MazolaTM) are then prepared by heating ( ⁇ 80° C.) the mixture to evaporate ethanol. Test compounds are subsequently diluted with 100% corn oil or 10% ethanol in corn oil prior to the treatment of animals. No difference in decidual response was found when these two vehicles were compared.
- Ovariectomized mature female Sprague-Dawley rats ( ⁇ 60-day old and 230 g) are obtained from Taconic (Taconic Farms, N.Y.) following surgery. Ovariectomy is performed at least 10 days prior to treatment to reduce circulating sex steroids. Animals are housed under 12 hr light/dark cycle and given standard rat chow and water ad libitum.
- Rats are weighed and randomly assigned to groups of 4 or 5 before treatment.
- Test compounds in 0.2 ml vehicle are administered by subcutaneous injection in the nape of the neck or by gavage using 0.5 ml. The animals are treated once daily for seven days.
- animals are given the test compounds and a EC50 dose of progesterone (5.6 mg/kg) during the first three days of treatment. Following decidual stimulation, animals continue to receive progesterone until necropsy four days later.
- Doses are prepared based upon mg/kg mean group body weight. In all studies, a control group receiving vehicle is included. Determination of dose-response curves is carried out using doses with half log increases (e.g. 0.1, 0.3, 1.0, 3.0 mg/kg . . . ).
- decidualization is induced in one of the uterine horns by scratching the antimesometrial luminal epithelium with a blunt 21 G needle.
- the contralateral horn is not scratched and serves as an unstimulated control.
- rats are sacrificed by CO 2 asphyxiation and body weight measured. Uteri are removed and trimmed of fat.
- Decidualized (D-horn) and control (C-horn) uterine horns are weighed separately.
- the increase in weight of the decidualized uterine horn is calculated by D-horn/C-horn and logarithmic transformation is used to maximize normality and homogeneity of variance.
- the Huber M-estimator is used to down weight the outlying transformed observations for both dose-response curve fitting and one-way analysis of variance.
- JMP software SAS Institute, Inc. is used for both one-way ANOVA and non-linear dose-response analyses.
- Route of administration Route the compound is administered to the animals
- Body weight Mean total animal body weight (default-kg)
- D-horn Wet weight of decidualized uterine horn (default-mg)
- C-horn Wet weight of control uterine horn (default-mg)
- Progestational activity Compounds that induce decidualization significantly (p ⁇ 0.05) compared to vehicle control are considered active
- Antiprogestational activity Compounds that decrease EC 50 progesterone induced decidualization significantly (p ⁇ 0.05)
- EC 50 for uterine weight Concentration of compound that gives half-maximal increase in decidual response (default-mg/kg)
- IC 50 for uterine weight Concentration of compound that gives half-maximal decrease in EC 50 progesterone induced decidual response (default-mg/kg)
Landscapes
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Endocrinology (AREA)
- Reproductive Health (AREA)
- Diabetes (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Urology & Nephrology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application is a divisional of U.S. patent application Ser. No. 09/552,356, filed Apr. 19, 2000, which claims the benefit of the priority of U.S. Patent Application No. 60/183,037, filed May 4, 1999, now abandoned.
- This invention relates to compounds which are agonists and antagonists of the progesterone receptor, their preparation and utility.
- Intracellular receptors (IR) form a class of structurally related gene regulators known as “ligand dependent transcription factors” (R. M. Evans,Science, 240, 889, 1988). The steroid receptor family is a subset of the IR family, including progesterone receptor (PR), estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR).
- The natural hormone, or ligand, for the PR is the steroid progesterone, but synthetic compounds, such as medroxyprogesterone acetate or levonorgestrel, have been made which also serve as ligands. Once a ligand is present in the fluid surrounding a cell, it passes through the membrane via passive diffusion, and binds to the IR to create a receptor/ligand complex. This complex binds to specific gene promoters present in the cell's DNA. Once bound to the DNA the complex modulates the production of mRNA and protein encoded by that gene.
- A compound that binds to an IR and mimics the action of the natural hormone is termed an agonist, whilst a compound that inhibits the effect of the hormone is an antagonist.
- PR agonists (natural and synthetic) are known to play an important role in the health of women. PR agonists are used in birth control formulations, typically in the presence of an ER agonist. ER agonists are used to treat the symptoms of menopause, but have been associated with a proliferative effect on the uterus that can lead to an increased risk of uterine cancers. Co-administration of a PR agonist reduces or ablates that risk.
- PR antagonists may also be used in contraception. In this context they may be administered alone (Ulmann, et al,Ann. N.Y Acad. Sci., 261, 248, 1995), in combination with a PR agonist (Kekkonen, et al, Fertility and Sterility, 60, 610, 1993) or in combination with a partial ER antagonist such as tamoxifen (WO 96/19997 A1, Jul. 4, 1996).
- PR antagonists may also be useful for the treatment of hormone dependent breast cancers (Horwitz, et al, Horm Cancer, 283, pub: Birkhaeuser, Boston, Mass., ed. Vedeckis) as well as uterine and ovarian cancers. PR antagonists may also be useful for the treatment of non-malignant chronic conditions such as fibroids (Murphy, et al,J. Clin. Endo. Metab., 76, 513, 1993) and endometriosis (Kettel, et al, Fertility and Sterility, 56, 402, 1991).
- PR antagonists may also be useful in hormone replacement therapy for post menopausal patients in combination with a partial ER antagonist such as tamoxifen (U.S. Pat. No. 5,719,136).
- PR antagonists, such as nifepristone and onapristone, have been shown to be effective in a model of hormone dependent prostate cancer, which may indicate their utility in the treatment of this condition in men (Michna, et al,Ann. N. Y Acad. Sci., 761, 224, 1995).
-
-
-
-
-
-
-
-
-
-
-
-
-
- wherein:
- A, B and D are N or CH, with the proviso that A, B and D can not all be CH;
- R1 and R2 are independent substituents selected from H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C2 to C6 alkenyl, substituted C2 to C6 alkenyl, C2 to C6 alkynyl, substituted C2 to C6 alkynyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, CORA, NRBCORA;
- or R1 and R2 are fused to form a spirocyclic ring selected from a), b) or c), each spirocyclic ring optionally substituted by from 1 to 3 C1-C3 alkyl groups:
- a) a 3 to 8 membered spirocyclic alkyl ring;
- b) a 3 to 8 membered spirocyclic alkenyl ring; or
- c) an optionally substituted 3 to 8 membered heterocyclic ring containing one to three heteroatoms from the group including O, S and N; the spirocyclic rings of a), b) and c) being optionally substituted by from 1 to 4 groups selected from fluorine, C1 to C6 alkyl, C1 to C6 alkoxy, C1 to C6 thioalkyl, —CF3, —OH, —CN, NH2, —NH(C1 to C6 alkyl), or —N(C1 to C6 alkyl)2;
- RA is H, C1 to C3 alkyl, substituted C1 to C3 alkyl, aryl, substituted aryl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 aminoalkyl, or substituted C1 to C3 aminoalkyl;
- RB is H, C1 to C3 alkyl, or substituted C1 to C3 alkyl;
- R3 is H, OH, NH2, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C6 alkenyl, substituted C1 to C6 alkenyl, or CORC;
- RC is H, C1 to C3 alkyl, substituted C1 to C3 alkyl, aryl, substituted aryl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 aminoalkyl, or substituted C1 to C3 aminoalkyl;
-
- X is taken from the group including halogen, CN, C1 to C3 alkyl, substituted C1 to C3 alkyl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 thioalkoxy, substituted C1 to C3 thioalkoxy, amino, C1 to C3 aminoalkyl, substituted C1 to C3 aminoalkyl, NO2, C1 to C3 perfluoroalkyl, 5 or 6 membered heterocyclic ring containing 1 to 3 heteroatoms, CORD, OCORD, or NRECORD;
- RD is H, C1 to C3 alkyl, substituted C1 to C3 alkyl, aryl, substituted aryl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 aminoalkyl, or substituted C1 to C3 aminoalkyl;
- RE is H, C1 to C3 alkyl, or substituted C1 to C3 alkyl;
- Y and Z are independent substituents taken from the group including H, halogen, CN, NO2, C1 to C3 alkoxy, C1 to C3 alkyl, or C1 to C3 thioalkoxy; or
- R4 is a five or six membered ring with 1, 2, or 3 heteroatoms from the group including O, S, SO, SO2 or NR5 and containing one or two independent substituents from the group including H, halogen, CN, NO2 and C1 to C3 alkyl, C1 to C3 alkoxy, C1 to C3 aminoalkyl, CORF, or NRGCORF;
- RF is H, C1 to C3 alkyl, substituted C1 to C3 alkyl, aryl, substituted aryl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 aminoalkyl, or substituted C1 to C3 aminoalkyl;
- RG is H, C1 to C3 alkyl, or substituted C1 to C3 alkyl;
- R5 is H or C1 to C3 alkyl;
- Q is O, S, NR6, or CR7R8;
- R6 is from the group including CN, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO2CF3;
- R7 and R8 are independent substituents from the group including H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO2, CN, or CO2R9;
- R9 is C1 to C3 alkyl;
-
- W is O or a chemical bond.
-
-
- wherein:
- A, B and D are N or CH, with the proviso that A, B and D can not all be CH;
- R1 is H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, CORA, or NRBCORA;
- R2 is H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C2 to C6 alkenyl, substituted C2 to C6 alkenyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, CORA, or NRBCORA; or
- R1 and R2 are fused to form the optionally substituted 3 to 8 membered spirocyclic alkyl, alkenyl or heterocyclic rings described above;
- RA is H, C1 to C3 alkyl, substituted C1 to C3 alkyl, aryl, substituted aryl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 aminoalkyl, or substituted C1 to C3 aminoalkyl;
- RB is H, C1 to C3 alkyl, or substituted C1 to C3 alkyl;
- R3 is H, OH, NH2, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C6 alkenyl, substituted C1 to C6 alkenyl, or CORC;
- RC is H, C1 to C4 alkyl, substituted C1 to C4 alkyl, aryl, substituted aryl, C1 to C4 alkoxy, substituted C1 to C4 alkoxy, C1 to C4 aminoalkyl, or substituted C1 to C4 aminoalkyl;
-
- X is selected from halogen, CN, C1 to C3 alkyl, substituted C1 to C3 alkyl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 thioalkoxy, substituted C1 to C3 thioalkoxy, C1 to C3 aminoalkyl, substituted C1 to C3 aminoalkyl, NO2, C1 to C3 perfluoroalkyl, a 5 membered heterocyclic ring containing 1 to 3 heteroatoms, CORD, OCORD, or NRECORD;
- RD is H, C1 to C3 alkyl, substituted C1 to C3 alkyl, aryl, substituted aryl, C1 to C3 alkoxy, substituted C1 to C3 alkoxy, C1 to C3 aminoalkyl, or substituted C1 to C3 aminoalkyl;
- RE is H, C1 to C3 alkyl, or substituted C1 to C3 alkyl;
- Y and Z are independent substituents selected from H, halogen, CN, NO2, C1 to C3 alkoxy, C1 to C3 alkyl, or C1 to C3 thioalkoxy; or
- R5 is a five or six membered ring with 1, 2, or 3 heteroatoms from the group including O, S, SO, SO2 or NR5 and containing one or two independent substituents from the group including H, halogen, CN, NO2 and C1 to C3 alkyl, or C1 to C3 alkoxy;
- R5 is H or C1 to C3 alkyl;
- Q is O, S, NR6, or CR7R8;
- R6 is selected from CN, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO2CF3;
- R7 and R8 are independent substituents selected from the group including H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO2, CN, or CO2R;
- R9 is C1 to C3 alkyl;
-
- W is O or a chemical bond;
- or a pharmaceutically acceptable salt thereof.
-
- wherein:
- A, B and D are N or CH, with the proviso that A, B and D cannot all be CH;
- R1=R2 and are selected from the group of C1 to C3 alkyl, substituted C1 to C3 alkyl, or spirocyclic alkyl constructed by fusing R1 and R2 to form a 3 to 6 membered spirocyclic ring;
- R3 is H, OH, NH2, C1 to C6 alkyl, substituted C1 to C6 alkyl, or CORC;
- RC is H, C1 to C4 alkyl, or C1 to C4 alkoxy;
-
- X is selected from the group of halogen, CN, C1 to C3 alkoxy, C1 to C3 alkyl, NO2, C1 to C3 perfluoroalkyl, 5 membered heterocyclic ring containing 1 to 3 heteroatoms, or C1 to C3 thioalkoxy;
- Y is a substituent on the 4′ or 5′position from the group including H, halogen, CN, NO2, C1 to C3 alkoxy, C1 to C4 alkyl, or C1 to C3 thioalkoxy; or
-
- R5 is H, or C1 to C3 alkyl, or C1 to C4 CO2alkyl;
- X′ is selected from halogen, CN, NO2, C1 to C3 alkyl, or C1 to C3 alkoxy;
-
- wherein:
- A, B and D are N or CH, with the proviso that A, B and D can not all be CH;
- R1=R2 and are selected from CH3 and spirocyclic alkyl constructed by fusing R1 and R2 to form a 6 membered spirocyclic ring;
- R3 is H, OH, NH2, CH3, substituted methyl, or CORC;
- RC is H, C1 to C3 alkyl, or C1 to C4 alkoxy;
-
- X is halogen, CN, methoxy, NO2, or 2-thiazole;
- Y is a substituent on the 4′ or 5′position selected from H and F; or
-
- U is O, S, or NH;
- X′ is halogen, CN, or NO2;
- Y′ is H or C1 to C4 alkyl;
-
- X1 is N or CX2;
- X2 is halogen, CN or NO2;
- Q is O, S, NR6, or CR7R8;
- R6 is selected from CN, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO2CF3;
- R7 and R8 are independent substituents selected from H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO2, CN, or CO2R9;
- R9 is C1 to C3 alkyl;
-
- or a pharmaceutically acceptable salt thereof.
- Further preferred compounds include those of Formula I:
- Q is O, S, NR6, or CR7R8;
- R6 is CN, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, or SO2CF3;
- R7 and R8 are independent substituents selected from the group including H, C1 to C6 alkyl, substituted C1 to C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl, heterocyclic, substituted heterocyclic, NO2, CN, or CO2R9;
- R9 is C1 to C3 alkyl;
-
- W is O or a chemical bond;
- or a pharmaceutically acceptable salt thereof
- Each of the generic and subgeneric groups of compounds described above, as well as the methods of treatment and pharmaceutical compositions utilizing them, may be divided into two further subgeneric groups, one in which Q is oxygen and another in which Q is sulfur or NR6 or CR7R8.
- The compounds of this invention may contain an asymmetric carbon atom and some of the compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers. The shown without respect to stereochemistry in Formula I, the present invention includes such optical isomers and diastereomers; as well as the racemic and resolved, enantiomerically pure R and S stereoisomers; as well as other mixtures of the R and S stereoisomers and pharmaceutically acceptable salts thereof.
- The term “alkyl” is used herein to refer to both straight- and branched-chain saturated aliphatic hydrocarbon groups having one to eight carbon atoms, preferably one to six carbon atoms; “alkenyl” is intended to include both straight- and branched-chain alkyl group with at least one carbon-carbon double bond and two to eight carbon atoms, preferably two to six carbon atoms; “alkynyl” group is intended to cover both straight- and branched-chain alkyl group with at least one carbon-carbon triple bond and two to eight carbon atoms, preferably two to six carbon atoms.
- The terms “substituted alkyl”, “substituted alkenyl”, and “substituted alknyl” refer to alkyl, alkenyl, and alkynyl as just described having one or more substituents from the group including halogen, CN, OH, NO2, amino, aryl, heterocyclic, substituted aryl, substituted heterocyclic, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, arylthio. These substituents may be attached to any carbon of an alkyl, alkenyl, or alkynyl group provided that the attachment constitutes a stable chemical moiety.
- The term “aryl” is used herein to refer to an aromatic system which may be a single ring or multiple aromatic rings fused or linked together as such that at least one part of the fused or linked rings forms the conjugated aromatic system The aryl groups include but are not limited to phenyl, naphthyl, biphenyl, anthryl, tetrahydronaphthyl, and phenanthryl.
- The term “substituted aryl” refers to aryl as just defined having one to four substituents from the group including halogen, CN, OH, NO2, amino, alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, or arylthio.
- The term “heterocyclic” is used herein to describe a stable 4- to 7-membered monocyclic or a stable multicyclic heterocyclic ring which is saturated, partially unsaturated, or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from the group including N, O, and S atoms. The N and S atoms may be oxidized. The heterocyclic ring also includes any multicyclic ring in which any of the above defined heterocyclic rings is fused to an aryl ring. The heterocyclic ring may be attached at any heteroatom or carbon atom provided the resultant structure is chemically stable. Such heterocyclic groups include, for example, tetrahydrofuran, piperidinyl, piperazinyl, 2-oxopiperidinyl, azepinyl, pyrrolidinyl, imidazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, isoxazolyl, morpholinyl, indolyl, quinolinyl, thienyl, furyl, benzofuranyl, benzothienyl, thiamorpholinyl, thiamorpholinyl sulfoxide, and isoquinolinyl.
- The term “substituted heterocyclic” is used herein to describe the heterocyclic just defined having one to four substituents selected from the group which includes halogen, CN, OH, NO2, amino, alkyl, substituted alkyl, cycloalkyl, alkenyl, substituted alkenyl, alkynyl, alkoxy, aryloxy, substituted alkyloxy, alkylcarbonyl, alkylcarboxy, alkylamino, or arylthio. The term “alkoxy” is used herein to refer to the OR group, where R is an alkyl or substituted alkyl. The term “aryloxy” is used herein to refer to the OR group, where R is an aryl or substituted aryl. The term “alkylcarbonyl” is used herein to refer to the RCO group, where R is an alkyl or substituted alkyl. The term “alkylcarboxy” is used herein to refer to the COOR group, where R is an alkyl or substituted alkyl. The term “aminoalkyl” refers to both secondary and tertiary amines wherein the alkyl or substituted alkyl groups contain one to eight carbon atoms, which may be either same or different and the point of attachment is on the nitrogen atom “Halogen” refers to Cl, Br, F, or I.
- The compounds of the present invention can be used in the form of salts derived from pharmaceutically or physiologically acceptable acids or bases. These salts include, but are not limited to, the following salts with inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and, as the case may be, such organic acids as acetic acid, oxalic acid, succinic acid, and maleic acid. Other salts include salts with alkali metals or alkaline earth metals, such as sodium, potassium, calcium or magnesium in the form of esters, carbamates and other conventional “pro-drug” forms, which, when administered in such form, convert to the active moiety in vivo.
- The compounds of this invention have been shown to act as competitive inhibitors of progesterone binding to the PR and act as agonists and/or antagonists in functional models, either/or in-vitro and in-vivo. These compounds may be used for contraception, in the treatment of fibroids, endometriosis, breast, uterine, ovarian and prostate cancer, and post menopausal hormone replacement therapy.
- This invention includes pharmaceutical compositions and treatments which comprise administering to a mammal a pharmaceutically effective amount of one or more compounds as described above wherein Q is oxygen as antagonists of the progesterone receptor. The invention further provides comparable methods and compositions which utilize one or more compounds herein wherein Q is S, NR6, or CR7R8 as agonists of the progesterone receptor.
- The progesterone receptor antagonists of this invention, used alone or in combination, can be utilized in methods of contraception and the treatment and/or prevention of benign and malignant neoplastic disease. Specific uses of the compounds and pharmaceutical compositions of invention include the treatment and/or prevention of uterine myometrial fibroids, endometriosis, benign prostatic hypertrophy; carcinomas and adenocarcinomas of the endometrium, ovary, breast, colon, prostate, pituitary, meningioma and other hormone-dependent tumors. Additional uses of the present progesterone receptor antagonists include the synchronization of the estrus in livestock.
- The progesterone receptor agonists of this invention, used alone or in combination, can be utilized in methods of contraception and the treatment and/or prevention of dysfunctional bleeding, uterine leiomyomata, endometriosis; polycystic ovary syndrome, carcinomas and adenocarcinomas of the endometrium, ovary, breast, colon, prostate. Additional uses of the invention include stimulation of food intake.
- When the compounds are employed for the above utilities, they may be combined with one or more pharmaceutically acceptable carriers or excipients, for example, solvents, diluents and the like, and may be administered orally in such forms as tablets, capsules, dispersible powders, granules, or suspensions containing, for example, from about 0.05 to 5% of suspending agent, syrups containing, for example, from about 10 to 50% of sugar, and elixirs containing, for example, from about 20 to 50% ethanol, and the like, or parenterally in the form of sterile injectable solutions or suspensions containing from about 0.05 to 5% suspending agent in an isotonic medium Such pharmaceutical preparations may contain, for example, from about 25 to about 90% of the active ingredient in combination with the carrier, more usually between about 5% and 60% by weight.
- The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration and the severity of the condition being treated. However, in general, satisfactory results are obtained when the compounds of the invention are administered at a daily dosage of from about 0.5 to about 500 mg/kg of animal body weight, preferably given in divided doses two to four times a day, or in a sustained release form For most large mammals, the total daily dosage is from about 1 to 100 mg, preferably from about 2 to 80 mg. Dosage forms suitable for internal use comprise from about 0.5 to 500 mg of the active compound in intimate admixture with a solid or liquid pharmaceutically acceptable carrier. This dosage regimen may be adjusted to provide the optimal therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation.
- These active compounds may be administered orally as well as by intravenous, intramuscular, or subcutaneous routes. Solid carriers include starch, lactose, dicalcium phosphate, microcrystalline cellulose, sucrose and kaolin, while liquid carriers include sterile water, polyethylene glycols, non-ionic surfactants and edible oils such as corn, peanut and sesame oils, as are appropriate to the nature of the active ingredient and the particular form of administration desired. Adjuvents customarily employed in the preparation of pharmaceutical compositions may be advantageously included, such as flavoring agents, coloring agents, preserving agents, and antioxidants, for example, vitamin E, ascorbic acid, BHT and BHA.
- The preferred pharmaceutical compositions from the standpoint of ease of preparation and administration are solid compositions, particularly tablets and hard-filled or liquid-filled capsules. Oral administration of the compounds is preferred.
- These active compounds may also be administered parenterally or intraperitoneally. Solutions or suspensions of these active compounds as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid, polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
- The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringe ability exits. It must be stable under conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacterial and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol (e.g., glycerol, propylene glycol and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oil.
- The compounds of this invention can be prepared following the Schemes illustrated below:
- As demonstrated in Scheme I, the compounds of this invention are generally prepared by employing the suitable coupling reaction as a final step. An appropriately substituted ortho-amino acid or its derivatives such as an ethyl ester (X=Br, I, Cl, or a latent coupling precursor such as alkoxy group which can be converted into an OTf group suitable in the coupling reaction) is treated with a suitable organo metallic reagent, e.g. Grignard reagent, in appropriate nonprotic solvents which include but not limited to THF or ether to give ortho-amino carbinol 2 under an inert atmosphere such as argon or nitrogen at −78° C. to room temperature. Ring closure of carbinol 2 to yield oxazin-2-ones 3 is commonly effected by a condensing agent such as carbonyldimidazole, phosgene, dimethylcarbonate, or diethylcarbonate in a suitable nonprotic solvent such as THF at temperatures ranging from room temperature to 65° C. The arylation of oxazin-2-ones 3 to yield 4 can be effected by various coupling reactions including Suzuki, Stille reactions etc. These reactions are commonly performed in the presence of a transition metallic catalyst, e.g., palladium or nickel complex often with phosphino ligands, e.g., Ph3P, 1,1′-bis(diphenylphosphino)ferrocene, 1,2-bis(diphenylphosphino)ethane or palladium salt such as palladium acetate. Under this catalytic condition, an appropriately substituted nucleophilic reagent, e.g., aryl boronic acid, arylstannane, or aryl zinc compound, is coupled with oxazinones 3 to give compounds 4. If a base is needed in the reaction, the commonly used bases include but not limited to sodium bicarbonate, sodium carbonate, potassium phosphate, barium carbonate, potassium acetate, or cesium fluoride. The most commonly used solvents in these reactions include benzene, DMF, isopropanol, ethanol, DME, ether, acetone or a mixture of any one of these solvent and water. The coupling reaction is generally executed under an inert atmosphere such as nitrogen or argon at temperatures ranging from room temperature to 95° C. Oxazinones 3 can be converted into a nucleophile such as boronic acid which can be coupled with an appropriate electrophile, e.g., aryl bromide or aryl iodide, to yield 6 employing the coupling reaction condition as described above.
- The transformation of 3 into 5 can be effected by treating 3 with an organo metallic reagent, e.g., n-BuLi, in a nonprotic solvent such as THF or ether followed by quenching the reaction solution with a suitable electrophile such as trimethyl borate, triisopropyl borate, bishexalkyl tin reagent, or zinc chloride at temperatures ranging from −78° C. to room temperature under an inert atmosphere such as argon or nitrogen. Conversion of carbamate 6 to thiocarbamate 7 can be readily effected by treatment of 6 with a suitable sulfur reagent such as P2S5 or Lawesson's reagent in a suitable nonprotic solvent such as toluene, chlorobenzene, benzene, or xylene under an inert atmosphere such as argon or nitrogen at the temperature of boiling solvent.
- Scheme II describes the procedures to prepare oxazinones bearing two different substituents at position-4. The Weinreb amide 9 can be prepared from an appropriately substituted isatoic anhydride when treated with N-, O-dimethylhydroxylamine hydrochloride salt in a protic solvent such as ethanol or isopropanol at reflux under an inert atmosphere such as argon or nitrogen. Coupling of amide 9 with an aryl electrophile such as aryl boronic acid or arylstannane to give 10 can be effected by employing a typical coupling reaction such as Suzuki, Stille coupling procedure in a similar fashion as described for the preparation of oxazinones 4. Treatment of Weinreb amide 10 with organo metallic compounds, e.g., alkyllithium, alkynyllithium, aryllithium, or their Grignard counterpart in a nonprotic solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at −78 ° to room temperature affords amino ketone 11. Conversion of ketone 11 to carbinol 12 can be effected by treatment of 10 with an organo metallic reagent such as alkyl, alkynyl, or aryl Grignard compound in a nonprotic solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at −78° C. to room temperature. Conversion of ketone 11 to carbinol 12 can also be effected by reduction of ketone group of 11 to the carbinol moiety of 12 using an appropriate reducing reagent such as lithium aluminum hydride, sodium borohydride in a suitable solvent such as THF, ether, or anhydrous alcohol under an inert atmosphere in the temperature ranging from 0° C. to the boiling point of the solvent. Ring closure of carbinol 12 to produce the compounds of this invention, 13, can be accomplished with condensing agents such as carbonyldiimidazole, phosgene, dimethylcarbonate, or diethylcarbonate in a suitable nonprotic solvent such as THF at temperatures ranging from room temperature to 65° C. Conversion of carbamate 13 to thiocarbamate 14 can be readily effected by treatment of 13 with a suitable sulfur reagent such as P2S5 or Lawesson's reagent in a suitable nonprotic solvent such as toluene, chlorobenzene, benzene, or xylene under an inert atmosphere such as argon or nitrogen at the temperature of boiling solvent.
- Alternatively, ortho-amino ketone 11 can be prepared by treatment of ortho-amino nitrile 16 with an organo metallic compound such as an organo lithium reagent or Grignard reagent in a suitable solvent such as THF or ether under an inert atmosphere such as argon or nitrogen at temperatures ranging from −78° C. to room temperature as illustrated in Scheme III. Nitrile 16 can be readily prepared from an appropriately substituted nitrile such as bromobenzonitrile 15 using a suitable coupling reaction such as Stille or Suzuki protocol carried out in a similar fashion as described for the preparation of the Weinreb amide 10.
- The following non-limiting examples illustrate the compounds of the invention.
- To a solution of 2-amino-nicotinic acid (10 g, 72.5 mmol) in acetic acid (70 mL) was dropwise added bromine (9.8 mL, 79.8 mmol) at room temperature under nitrogen. Upon completion of the reaction, the solvent was removed in vacuo, the residue triturated with ether and collected on a filter to give 2-amino-5-bromo-3-pyridine carboxylic acid as a yellow solid (15.7 g, 99%): mp 272° C., (decomposed);1H-NMR (DMSO-d6) δ 8.8-7.8 (bs, 2H), 8.44 (d, 1H, J=2.48 Hz), 8.34 (d, 1H, J=2.48 Hz); MS (EI) m/z 216/218 ([M+]+, 100%)
- To a solution of 2-amino-5-bromo-3-pyridine carboxylic acid (5 g, 23 mmol) in THF (70 mL) at 0° C. was added methyl magnesium bromide (13.7 g, 115 mmol) under nitrogen. After addition, the reaction mixture was heated at 65° C. for 12 hours, cooled to room temperature and quenched with saturated aqueous ammonium chloride. The ethyl acetate was added and organic layer was separated, dried over sodium sulfate and concentrated. The residue was purified via flash chromatography to give 2-(2-amino-5-bromo-pyridin-3-yl)-propan-2-ol as a yellow solid (1.2 g, 23%): mp 107-108° C.;1H-NMR (DMSO-d6) 67.89 (d, 1H, J=2.3 Hz), 7.40 (d, 1H, J=2.3 Hz), 6.28 (bs, 2H), 5.51 (s, 1H), 1.4 (s, 6H); MS (APCI) m/z 231 ([M+H]+, 100%).
- A mixture of 2-(2-amino-5-bromo-pyridin-3-yl)-propan-2-ol (0.86 g, 3.7 mmol) and 1,1′-carbonyldiimidazole (excess) in THF (10 mL) was heated at 35° C. overnight. The reaction solution was cooled to room temperature, poured into ethyl acetate (200 mL), washed with 1 N HCl (2×50 mL), dried over sodium sulfate, and concentrated. The residue was purified by a flash chromatography (silica gel, 25% ethyl acetate/hexane) to afford 6-bromo-4,4′-dimethyl-1,4-dihydro-3-oxa-1,8-diaza-naphthalen-2-one (0.9 g, 94%) as a white solid: mp 251-252° C.;1H-NMR (DMSO-d6) δ 10.9 (s, 1H), 8.32 (d, 1H, J=2.19 Hz), 8.0 (d, 1H, J=2.22 Hz), 1.6 (s, 6H); MS (EI) m/z 256 ([M]+, 80%); Anal. Calc. For C9H9BrN2O2: C, 42.05, H, 3.53, N, 10.90. Found: C, 42.15, H, 3.65, N, 10.80.
- A mixture of 6-bromo-4,4′-dimethyl-1,4-dihydro-3-oxa-1,8-diaza-naphthalen-2-one (0.1 g, 0.39 mmol), 3-chlorophenyl boronic acid (0.075 g, 0.47 mmol), tetrakis(triphenylphosphine)-palladium (0) (0.023 g, 0.02 mmol), and sodium carbonate (0.1 g, 0.94 mmol) in DME (8 mL) and water (5 mL) was subject to a blanket of nitrogen for 15 minutes at 50° C. and then was heated at 85° C. for 30 minutes. The reaction was cooled to room temperature and ethyl acetate (100 mL) was added. The organic layer washed with aqueous ammonium chloride (2×50 mL) and with brine (50 mL), dried over magnesium sulfate and concentrated. The product was dissolved in dichloromethane and passed through a plug of magnesol. The solvent was removed and the clear oil obtained triturated with ether (25 mL) to give 6-(3-chloro-phenyl)-4,4-dimethyl-1,4-dihydro-3-oxa-1,8-diaza-naphthalene-2-one as a white solid (0.087 g, 80%): mp 214-215° C.;1H-NMR (DMSO-d6) δ 10.9 (s, 1H), 8.56 (d, 1H, J=2.35 Hz), 8.06 (d, 1H, J=2.35 Hz), 7.86 (t, 1H, J=2.35 Hz), 7.72 (td, 1H, J=9.4, 2.35 Hz), 7.54-7.44 (m, 2H), 1.69 (s, 6H); MS (ESI) m/z 289 ([M+H]+, 100%); Anal. Calc. For C17H17NO3: C, 62.40, H, 4.54, N, 9.70. Found: C, 60.53, H, 4.40, N, 9.21.
- A mixture of 2,6-dichloro-3-nitropyridine and cuprous cyanide in 1-methyl-2-pyrrolidinone was quickly heated to 180° C. and maintained at that temperature for 15 minutes with vigorous stirring. The mixture was cooled to −10° C. and the deep brown solution was poured into ice water (3.5 L) and stirred for 30 min. The flocculent brown precipitate was collected and washed with H2O. After drying for about 1.5 h, the moist solid was extracted with boiling toluene (3×300 mL). The combined toluene extracts were washed with H2O, brine, and dried (MgSO4), concentrated. The crude product was crystallized from EtOAc/hexane to afford the title compound: mp 115-117° C.; 1H NMR(DMSO-d6) δ 8.16 (dd, 1H, J=8.7, 3.0 Hz), 8.82 (d, 1H, J=9.0 Hz); MS (EI) m/z 183/185 (M+H)+; Anal. Calc. For C6H2ClN3O2: C, 39.26, H, 1.10, N, 22.89. Found: C, 39.47, H, 1.38, N, 22.77.
- To a solution of 2,6-dichloro-3-nitropyridine(4.8 g, 26.15 mmol) in MeOH (60 mL) and concentrated HCl (25 mL) was slowly added iron powder (5.12g, 91.53 mmol). After the completion of addition, the mixture was refluxed for 45 minutes and poured into 700 mL of H2O. Filtration of the resulting slurry gave a dull yellow solid. The filtrate was made basic with concentrated NH4OH, the resulting slurry was filtered and both the solid and the filtrates were extracted with ether. The combined extracts were dried (MgSO4) and evaporated to give the title compound as a creamy solid (2.8 g, 58%): mp 162-165° C. which was used in next step without further purification.
- To a solution of 3-amino-6-chloro-pyridine-2-carbonitrile (0.75 g, 4.88 mmol) in anhydrous THF (25 mL) under nitrogen was added a solution of methylmagnesium bromide (3M in ether, 8.1 mL, 24.3 mmol). The reaction mixture was stirred for 30 minutes and then slowly quenched with H2O, and treated with 5N HCl solution. The mixture was extracted with ethyl acetate (3×100 mL) and organic extracts were washed with brine, and dried (MgSO4). After removal of the solvent, the residue was purified by a chromatography using EtOAc/hexane mixture (1:3) as eluent to afford the title compound as a greenish crystalline solid: (0.71 g, 85%): mp: 108-110° C. 1H NMR (DMSO-d6) δ 2.51 (s, 3H), 7.28-7.39 (mn, 4H); MS(ESI) m/z 171/173 (M+H)+; Anal. Calc. For C7H7ClN2O: C, 49.28, H, 4.14, N, 16.14. Found: C, 49.70, H, 4.03, N, 16.41.
- To a solution of 1-(3-amino-6-chloro-pyridin-2-yl)-ethanone in anhydrous THF under N2 was added a solution of methylmagnesium bromide (3N in ether). The resulting reaction mixture was stirred at room temperature for 4 h, then slowly quenched with H2O, treated with 0.5 N HCl and stirred for 30 minutes, diluted with ethyl acetate, washed with brine, dried (MgSO4), concentrated, and chromatographed using a mixture of EtOAc/Hexane (3.5:6.5) to afford the title compound as a white crystals (0.45 g, 82%): mp: 118-121° C. 1H NMR(DMSO-d6) δ 1.45(s, 6H), 3.35(s, 1H), 5.51(s, 1H), 5.68(s, 1H), 7.02(s, 1H); MS((+)APCI) m/z 187/189 (M+H)+; Anal. Calc. For C8H11ClN2O: C, 51.48, H, 5.94, N, 15.01. Found: C, 51.22, H, 5.99, N, 14.47.
- To a solution of 1-(3-amino-6-chloro-3-nitro-pyridin-2-yl)-propan-2-ol (0.3 g, 1.67 mmol) in anhydrous THF (20 mL) was added a solution of 1,1′-carbonyldimidazole (0.68 g, 4.12 mmol) in anhydrous THF (10 mL). The reaction mixture was heated under reflux for 3 h. The reaction mixture was treated with 0.5N HCl, washed with brine, H2O, dried (MgSO4), concentrated and crystallized from EtOAc/hexane to obtain the title compound as a white crystalline solid (0.2 g, 56%): mp 175-178° C. 1H NMR(DMSO-d6) δ 1.60 (s, 6H), 7.30 (d, 1H, J=8.41 Hz), 7.41 (d, 1H, J=8.41 Hz), 10.47 (s, 1H); MS((+)APCI) m/z 213 (M+H)+; Anal. Calc. For C9H9ClN2O2: C, 50.84, H, 4.27, N, 13.17. Found: C, 50.99, H, 4.28, N, 12.98.
-
- Example 4, hPR CV-1, IC50=0.8 μM
- A. In-vitro Biology
- The in-vitro biology is determined by (1) competitive Radioligand Binding: using the A-form of the human progesterone receptor with progesterone as the radioligand; (2) co-transfection assay, which provides functional activity expressed as agonist EC50 and Antagonist IC50 values; (3) a T47D cell proliferation, which is a further functional assay which also provides agonist and antagonist data; and (4) T47D cell alkaline phosphatase assay, which is a further functional assay which also provides agonist and antagonist data.
- 1. hPR Binding Assay
- This assay is carried out in accordance with: Pathirana, C.; Stein, R. B.; Berger, T. S.; Fenical, W.; Ianiro, T.; Mais, D. E.; Torres, A.; Glodman, M. E.,Nonsteroidal human progesterone receptor modulators from the marine alga cymoplia barbata, J. Steroid Biochem. Mol. Biol., 1992, 41, 733-738.
- 2. PRE-luciferase Assay in CV-1 Cells
- The object of this assay is to determine a compound's progestational or antiprogestational potency based on its effect on PRE-luciferase reporter activity in CV-1 cells co-transfected with human PR and PRE-luciferase plasmids. The materials methods used in the assay are as follows.
- a. Medium:
- The growth medium was as follows: DMEM (BioWhittaker) containing 10% (v/v) fetal bovine serum (heat inactivated), 0.1 mM MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL). The experimental medium was as follows: DMEM (BioWhittaker), phenol red-free, containing 10% (v/v) charcoal-stripped fetal bovine serum (heat-inactivated), 0.1 mM MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- b. Cell Culture, Transfection, Treatment and Luciferase Assay
- Stock CV-1 cells are maintained in growth medium Co-transfection is done using 1.2×107 cells, 5 mg pLEM plasmid with hPR-B inserted at Sph1 and BamH1 sites, 10 mg pGL3 plasmid with two PREs upstream of the luciferase sequence, and 50 mg sonicated calf thymus DNA as carrier DNA in 250 ml. Electroporation is carried out at 260 V and 1,000 mF in a Biorad Gene Pulser II. After electroporation, cells are resuspended in growth medium and plated in 96-well plate at 40,000 cells/well in 200 μl. Following overnight incubation, the medium is changed to experimental medium. Cells are then treated with reference or test compounds in experimental medium Compounds are tested for antiprogestational activity in the presence of 3 nM progesterone. Twenty-four hr. after treatment, the medium is discarded, cells are washed three times with D-PBS (GIBCO, BRL). Fifty μl of cell lysis buffer (Promega, Madison, Wis.) is added to each well and the plates are shaken for 15 min in a Titer Plate Shaker (Lab Line Instrument, Inc.). Luciferase activity is measured using luciferase reagents from Promega.
- c. Analysis of Results:
- Each treatment consists of at least 4 replicates. Log transformed data are used for analysis of variance and nonlinear dose response curve fitting for both agonist and antagonist modes. Huber weighting is used to downweight the effects of outliers. EC50 or IC50 values are calculated from the retransformed values. JMP software (SAS Institute, Inc.) is used for both one-way analysis of variance and non-linear response analyses.
- d. Reference Compounds:
- Progesterone and trimegestone are reference progestins and RU486 is the reference antiprogestin. All reference compounds are run in full dose-response curves and the EC50 or IC50 values are calculated.
TABLE 1 Estimated EC50, standard error (SE), and 95% confidence intervals (CI) for reference progestins from three individual studies EC50 95% CI Compound Exp. (nM) SE lower upper Progesterone 1 0.616 0.026 0.509 0.746 2 0.402 0.019 0.323 0.501 3 0.486 0.028 0.371 0.637 Trimegestone 1 0.0075 0.0002 0.0066 0.0085 2 0.0081 0.0003 0.0070 0.0094 3 0.0067 0.0003 0.0055 0.0082 -
TABLE 2 Estimated IC50, standard error (SE), and 95% confident interval (CI) for the antiprogestin, RU486 from three individual studies IC 50 95% CI Compound Exp. (nM) SE lower upper RU486 1 0.028 0.002 0.019 0.042 2 0.037 0.002 0.029 0.048 3 0.019 0.001 0.013 0.027 - Progestational Activity:
- Compounds that increase PRE-luciferase activity significantly (p<0.05) compared to vehicle control are considered active.
- Antiprogestational Activity:
- Compounds that decrease 3 nM progesterone induced PRE-luciferase activity significantly (p<0.05)
- EC50:
- Concentration of a compound that gives half-maximal increase PRE-luciferase activity (default-nM) with SE.
- IC50:
- Concentration of a compound that gives half-maximal decrease in 3 nM progesterone induced PRE-luciferase activity (default-nM) with SE.
- 3. T47D Cell Proliferation Assay
- The objective of this assay is the determination of progestational and antiprogestational potency by using a cell proliferation assay in T47D cells. A compound's effect on DNA synthesis in T47D cells is measured. The materials and methods used in this assay are as follows.
- a. Growth Medium:
- DMEM:F12 (1:1) (GIBCO, BRL) supplemented with 10% (v/v) fetal bovine serum (not heat-inactivated), 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- b. Treatment Medium:
- Minimum Essential Medium (MEM) (#51200-038GIBCO, BRL) phenol red-free supplemented with 0.5% charcoal stripped fetal bovine serum, 100 U/ml penicillin, 200 mg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- c. Cell Culture
- Stock T47 D cells are maintained in growth medium For BrdU incorporation assay, cells are plated in 96-well plates (Falcon, Becton Dickinson Labware) at 10,000 cells/well in growth medium After overnight incubation, the medium is changed to treatment medium and cells are cultured for an additional 24 hr before treatment. Stock compounds are dissolved in appropriate vehicle (100% ethanol or 50% ethanol/50% DMSO), subsequently diluted in treatment medium and added to the cells. Progestin and antiprogestin reference compounds are run in full dose-response curves. The final concentration of vehicle is 0.1%. In control wells, cells receive vehicle only. Antiprogestins are tested in the presence of 0.03 nM trimegestone, the reference progestin agonist. Twenty-four hours after treatment, the medium is discarded and cells are labeled with 10 mM BrdU (Amersham Life Science, Arlington Heights, Ill.) in treatment medium for 4 hr.
- d. Cell Proliferation Assay
- At the end of BrdU labeling, the medium is removed and BrdU incorporation is measured using a cell proliferation ELISA kit (#RPN 250, Amersham Life Science) according to manufacturer's instructions. Briefly, cells are fixed in an ethanol containing fixative for 30 min, followed by incubation in a blocking buffer for 30 min to reduce background. Peroxidase-labeled anti-BrdU antibody is added to the wells and incubated for 60 min. The cells are rinsed three times with PBS and incubated with 3,3′5,5′-tetramethylbenzidine (TMB) substrate for 10-20 min depending upon the potency of tested compounds. Then 25 μl of 1 M sulfuric acid is added to each well to stop color reaction and optical density is read in a plate reader at 450 nm within 5 min.
- e. Analysis of Results:
- Square root-transformed data are used for analysis of variance and nonlinear dose response curve fitting for both agonist and antagonist modes. Huber weighting is used to downweight the effects of outliers. EC50 or IC50 values are calculated from the retransformed values. JMP software (SAS Institute, Inc.) is used for both one-way analysis of variance and non-linear dose response analyses in both single dose and dose response studies.
- f. Reference Compounds:
- Trimegestone and medroxyprogesterone acetate (MPA) are reference progestins and RU486 is the reference antiprogestin. All reference compounds are run in full dose-response curves and the EC50 or IC50 values are calculated.
TABLE 3 Estimated EC50, standard error (SE), and 95% confidence intervals (CI) for individual studies EC50 95% CI Compound Exp (nM) SE lower upper Trimegestone 1 0.017 0.003 0.007 0.040 2 0.014 0.001 0.011 0.017 3 0.019 0.001 0.016 0.024 MPA 1 0.019 0.001 0.013 0.027 2 0.017 0.001 0.011 0.024 -
TABLE 4 Estimated IC50, standard error, and 95% confident interval for the antiprogestin, RU486 IC50 95% CI Compound Exp (nM) SE lower upper RU486 1 0.011 0.001 0.008 0.014 2 0.016 0.001 0.014 0.020 3 0.018 0.001 0.014 0.022 - EC50: Concentration of a compound that gives half-maximal increase in BrdU incorporation with SE; IC50: Concentration of a compound that gives half-maximal decrease in 0.1 trimegestone induced BrdU incorporation with SE
- 4. T47D Cell Alkaline Phosphatase Assay
- The purpose of this assay is to identify progestins or antiprogestins by determining a compound's effect on alkaline phosphatase activity in T47D cells. The materials and methods used in this assay are as follows.
- a. Culture Medium:
- DMEM:F12 (1:1) (GIBCO, BRL) supplemented with 5% (v/v) charcoal stripped fetal bovine serum (not heat-inactivated), 100 U/ml penicillin, 100 μg/ml streptomycin, and 2 mM GlutaMax (GIBCO, BRL).
- b. Alkaline Phosphatase Assay Buffer:
- I. 0.1 M Tris-HCl, pH 9.8, containing 0.2% Triton X-100
- II. 0.1 M Tris-HCl, pH 9.8 containing 4 mM p-nitrophenyl phosphate (Sigma).
- c. Cell Culture and Treatment:
- Frozen T47D cells were thawed in a 37° C. water bath and diluted to 280,000 cells/ml in culture medium. To each well in a 96-well plate (Falcon, Becton Dickinson Labware), 180 μl of diluted cell suspension was added. Twenty μl of reference or test compounds diluted in the culture medium was then added to each well. When testing for progestin antagonist activity, reference antiprogestins or test compounds were added in the presence of 1 nM progesterone. The cells were incubated at 37° C. in a 5% CO2/humidified atmosphere for 24 hr.
- d. Alkaline Phosphatase Enzyme Assay:
- At the end of treatment, the medium was removed from the plate and fifty μl of assay buffer I was added to each well. The plates were shaken in a titer plate shaker for 15 min. Then 150 μl of assay buffer II was added to each well. Optical density measurements were taken at 5 min intervals for 30 min at a test wavelength of 405 nM.
- e. Analysis of Results: Analysis of Dose-response Data
- For reference and test compounds, a dose response curve is generated for dose (X-axis) vs. the rate of enzyme reaction (slope) (Y-axis). Square root-transformed data are used for analysis of variance and nonlinear dose response curve fitting for both agonist and antagonist modes. Huber weighting is used to downweight the effects of outliers. EC50 or IC50 values are calculated from the retransformed values. JMP software (SAS Institute, Inc.) is used for both one-way analysis of variance and non-linear dose response analyses in both single dose and dose response studies.
- f. Reference Compounds:
- Progesterone and trimegestone are reference progestins and RU486 is the reference antiprogestin. All reference compounds are run in full dose response curves and the EC50 or IC50 values are calculated.
TABLE 5 Estimated EC50, standard error (SE), and 95% confidence intervals (CI) for reference progestins from three independent experiments EC50 95% CI Compound Exp. (nM) SE lower upper Progesterone 1 0.839 0.030 0.706 0.996 2 0.639 0.006 0.611 0.669 3 1.286 0.029 1.158 1.429 Trimegestone 1 0.084 0.002 0.076 0.091 2 0.076 0.001 0.072 0.080 3 0.160 0.004 0.141 0.181 -
TABLE 6 Estimated IC50, standard error, and 95% confident interval for the reference antiprogestin RU486 from three independent experiments IC 50 95% CI Compound Exp (nM) SE lower upper RU486 1 0.103 0.002 0.092 0.115 2 0.120 0.001 0.115 0.126 3 0.094 0.007 0.066 0.134 - B. In-vivo Biology
- The primary in-vivo assay is the rat decidualization model, which may be used to determine progestational effects of both agonists and antagonists. The secondary in-vivo assay is the rat ovulation inhibition model, which is under development, and hence the protocol is un-available.
- 1. Rat Decidualization Assay
- The objective of this procedure is used to evaluate the effect of progestins and antiprogestins on rat uterine decidualization and compare the relative potencies of various test compounds. The materials and methods used in this assay are as follows.
- a. Methods:
- Test compounds are dissolved in 100% ethanol and mixed with corn oil (vehicle). Stock solutions of the test compounds in oil (Mazola™) are then prepared by heating (−80° C.) the mixture to evaporate ethanol. Test compounds are subsequently diluted with 100% corn oil or 10% ethanol in corn oil prior to the treatment of animals. No difference in decidual response was found when these two vehicles were compared.
- b. Animals (RACUC Protocol #5002)
- Ovariectomized mature female Sprague-Dawley rats (−60-day old and 230 g) are obtained from Taconic (Taconic Farms, N.Y.) following surgery. Ovariectomy is performed at least 10 days prior to treatment to reduce circulating sex steroids. Animals are housed under 12 hr light/dark cycle and given standard rat chow and water ad libitum.
- c. Treatment
- Rats are weighed and randomly assigned to groups of 4 or 5 before treatment. Test compounds in 0.2 ml vehicle are administered by subcutaneous injection in the nape of the neck or by gavage using 0.5 ml. The animals are treated once daily for seven days. For testing antiprogestins, animals are given the test compounds and a EC50 dose of progesterone (5.6 mg/kg) during the first three days of treatment. Following decidual stimulation, animals continue to receive progesterone until necropsy four days later.
- d. Dosing
- Doses are prepared based upon mg/kg mean group body weight. In all studies, a control group receiving vehicle is included. Determination of dose-response curves is carried out using doses with half log increases (e.g. 0.1, 0.3, 1.0, 3.0 mg/kg . . . ).
- e. Decidual Induction
- Approximately 24 hr after the third injection, decidualization is induced in one of the uterine horns by scratching the antimesometrial luminal epithelium with a blunt 21 G needle. The contralateral horn is not scratched and serves as an unstimulated control. Approximately 24 hr following the final treatment, rats are sacrificed by CO2 asphyxiation and body weight measured. Uteri are removed and trimmed of fat. Decidualized (D-horn) and control (C-horn) uterine horns are weighed separately.
- f. Analysis of Results:
- The increase in weight of the decidualized uterine horn is calculated by D-horn/C-horn and logarithmic transformation is used to maximize normality and homogeneity of variance. The Huber M-estimator is used to down weight the outlying transformed observations for both dose-response curve fitting and one-way analysis of variance. JMP software (SAS Institute, Inc.) is used for both one-way ANOVA and non-linear dose-response analyses.
- g. Reference Compounds:
- All progestin reference compounds were run in fill dose-response curves and the EC50 for uterine wet weight were calculated.
TABLE 7 Estimated EC50, standard error (SE), and 95% confidence intervals for individual studies EC50 95% CI Compound Exp (mg/kg, s.c.) SE lower upper Progesterone 1 5.50 0.77 4.21 7.20 2 6.21 1.12 4.41 8.76 3-Ketodesogestrel 1 0.11 0.02 0.07 0.16 2 0.10 0.05 0.11 0.25 3 0.06 0.03 0.03 0.14 Levonorgestrel 1 0.08 0.03 0.04 0.16 2 0.12 0.02 0.09 0.17 3 0.09 0.02 0.06 0.13 4 0.09 0.02 0.06 0.14 MPA 1 0.42 0.03 0.29 0.60 2 0.39 0.05 0.22 0.67 3 0.39 0.04 0.25 0.61 -
TABLE 8 Estimated average EC50, standard error, and 95% confidence intervals for dose-response curves of 3 reference compounds EC50 95% CI Compound (mg/kg. s.c.) SE lower upper Progesterone 5.62 0.62 4.55 7.00 3-Ketodesogestrel 0.10 0.02 0.07 0.14 Levonorgestrel 0.10 0.01 0.08 0.12 -
TABLE 9 Estimated IC50, standard error, and 95% confident interval for the antiprogestin, RU 486 IC50 95% CI Compound Exp. (mg/kg, p.o.) SE lower upper RU 486 1 0.21 0.07 0.05 0.96 2 0.14 0.02 0.08 0.27 - Concentration: Compound concentration in assay(default-mg/kg body weight)
- Route of administration: Route the compound is administered to the animals
- Body weight: Mean total animal body weight (default-kg)
- D-horn: Wet weight of decidualized uterine horn (default-mg)
- C-horn: Wet weight of control uterine horn (default-mg)
- Decidual response: [(D−C)/C]×100%
- Progestational activity: Compounds that induce decidualization significantly (p<0.05) compared to vehicle control are considered active
- Antiprogestational activity: Compounds that decrease EC50 progesterone induced decidualization significantly (p<0.05)
- EC50 for uterine weight: Concentration of compound that gives half-maximal increase in decidual response (default-mg/kg)
- IC50 for uterine weight: Concentration of compound that gives half-maximal decrease in EC50 progesterone induced decidual response (default-mg/kg)
- All publications cited in this specification are incorporated herein by reference herein. While the invention has been described with reference to a particularly preferred embodiment, it will be appreciated that modifications can be made without departing from the spirit of the invention. Such modifications are intended to fall within the scope of the appended claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/050,287 US20020111355A1 (en) | 1999-05-04 | 2002-01-16 | Cyclic urea and cyclic amide derivatives |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18303799P | 1999-05-04 | 1999-05-04 | |
US09/552,356 US6369056B1 (en) | 1999-05-04 | 2000-04-19 | Cyclic urea and cyclic amide derivatives |
US10/050,287 US20020111355A1 (en) | 1999-05-04 | 2002-01-16 | Cyclic urea and cyclic amide derivatives |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/552,356 Division US6369056B1 (en) | 1999-05-04 | 2000-04-19 | Cyclic urea and cyclic amide derivatives |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020111355A1 true US20020111355A1 (en) | 2002-08-15 |
Family
ID=56290008
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/552,356 Expired - Fee Related US6369056B1 (en) | 1999-05-04 | 2000-04-19 | Cyclic urea and cyclic amide derivatives |
US10/050,287 Abandoned US20020111355A1 (en) | 1999-05-04 | 2002-01-16 | Cyclic urea and cyclic amide derivatives |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/552,356 Expired - Fee Related US6369056B1 (en) | 1999-05-04 | 2000-04-19 | Cyclic urea and cyclic amide derivatives |
Country Status (2)
Country | Link |
---|---|
US (2) | US6369056B1 (en) |
CN (1) | CN1349537A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030225109A1 (en) * | 1999-05-04 | 2003-12-04 | Wyeth | Thio-oxindole derivatives |
US6713478B2 (en) | 1999-05-04 | 2004-03-30 | Wyeth | Cyclocarbamate derivatives as progesterone receptor modulators |
US6964973B2 (en) | 1999-08-27 | 2005-11-15 | Ligand Pharmaceuticals Incorporated | Bicyclic androgen and progesterone receptor modulator compounds and methods |
US6982261B2 (en) | 1999-05-04 | 2006-01-03 | Wyeth | Cyanopyrroles |
US20060142280A1 (en) * | 1999-05-04 | 2006-06-29 | Wyeth | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US7084168B2 (en) | 1999-05-04 | 2006-08-01 | Wyeth | Indoline derivatives |
US20070249615A1 (en) * | 2006-04-21 | 2007-10-25 | Pfizer Inc | Pyridine [3,4-b] Pyrazinones |
US7514466B2 (en) | 2004-04-27 | 2009-04-07 | Wyeth | Purification of progesterone receptor modulators |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6417214B1 (en) * | 1999-05-04 | 2002-07-09 | Wyeth | 3,3-substituted indoline derivatives |
US6423699B1 (en) | 1999-05-04 | 2002-07-23 | American Home Products Corporation | Combination therapies using benzimidazolones |
US6444668B1 (en) | 1999-05-04 | 2002-09-03 | Wyeth | Combination regimens using progesterone receptor modulators |
US6462032B1 (en) | 1999-05-04 | 2002-10-08 | Wyeth | Cyclic regimens utilizing indoline derivatives |
EP1551845A1 (en) * | 2002-10-11 | 2005-07-13 | Ligand Pharmaceuticals, Inc. | 5-CYCLOALKENYL 5 i H /i -CHROMENO 3,4-F QUINOLINE DERIV ATIVES AS SELECTIVE PROGESTERONE RECEPTOR MODULATOR COMPOUNDS |
MXPA05003800A (en) * | 2002-10-11 | 2005-06-08 | Ligand Pharm Inc | 5-(1',1'-cycloalkyl/alkenyl)methylidene 1,2-dihydro-5h. |
US7247625B2 (en) * | 2003-10-09 | 2007-07-24 | Wyeth | 6-amino-1,4-dihydro-benzo[d][1,3] oxazin-2-ones and analogs useful as progesterone receptor modulators |
US7323455B2 (en) * | 2004-03-24 | 2008-01-29 | Wyeth | 7-aryl 1,5-dihydro-4,1-benzoxazepin-2(3H)-one derivatives and their use as progesterone receptor modulators |
BRPI0717747A2 (en) | 2006-10-24 | 2013-10-22 | Repros Therapeutics Inc | ENDOMETRIAL PROLIFERATION SUPPRESSION COMPOSITIONS AND METHODS |
TWI539953B (en) | 2008-04-28 | 2016-07-01 | 瑞波若斯治療學公司 | Compositions and methods for treating breast cancer |
MX2012010327A (en) | 2010-03-22 | 2012-11-16 | Repros Therapeutics Inc | Compositions and methods for non-toxic delivery of antiprogestins. |
US10058542B1 (en) | 2014-09-12 | 2018-08-28 | Thioredoxin Systems Ab | Composition comprising selenazol or thiazolone derivatives and silver and method of treatment therewith |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3635964A (en) | 1969-02-10 | 1972-01-18 | Colgate Palmolive Co | 5-morpholinyl-2 1-benzisothiazolines |
US3917592A (en) | 1974-09-27 | 1975-11-04 | Chevron Res | Herbicidal N-haloacetyl-1,2-dihydro-4H-3,1-benzoxazine |
IT1039699B (en) | 1975-07-03 | 1979-12-10 | Prephar | SPERMICIDE COMPOSITION BASED ON BENZISOTHIAZOLIC DERIVATIVES |
DE3064910D1 (en) | 1979-06-12 | 1983-10-27 | Fujisawa Pharmaceutical Co | 2-oxo-benzothiazoline, benzoxazoline or indoline derivatives, their preparation, and pharmaceutical compositions comprising such derivatives |
US4670566A (en) | 1979-07-12 | 1987-06-02 | A. H. Robins Company, Incorporated | 3-methyl-hio-4-(5-, 6-, or 7-)phenylindolindolin-2-ones |
US4440785A (en) | 1980-10-30 | 1984-04-03 | A. H. Robins Company, Inc. | Methods of using 2-aminobiphenylacetic acids, esters, and metal salts thereof to treat inflammation |
US4721721A (en) | 1984-12-18 | 1988-01-26 | Rorer Pharmaceutical Corporation | 6-(4-thiazole) compounds, cardiotonic compositions including the same, and their uses |
EP0208510B1 (en) | 1985-07-09 | 1991-09-11 | Pfizer Inc. | 1-substituted oxindole-3-carboxamines as antiinflammatory and analgesic agents |
US4666913A (en) | 1985-11-22 | 1987-05-19 | William H. Rorer, Inc. | Hydroxy and aminothiazolyl-benzodiazinone compounds, cardiotonic compositions including the same, and their uses |
DE3633861A1 (en) | 1986-10-04 | 1988-04-07 | Thomae Gmbh Dr K | NEW IMIDAZO-BENZOXAZINONE, THEIR PRODUCTION AND MEDICINAL PRODUCTS CONTAINING THESE COMPOUNDS |
JPS63112584A (en) | 1986-10-29 | 1988-05-17 | Yoshitomi Pharmaceut Ind Ltd | Imidazopyridine derivative |
US4822794A (en) * | 1987-05-08 | 1989-04-18 | Rorer Pharmaceutical Corporation | Pyridooxazinone-pyridone compounds, cardiotonic compositions including the same, and their uses |
DE3718527A1 (en) | 1987-06-03 | 1988-12-15 | Basf Ag | METHOD FOR PRODUCING 2 (5H) FURANONES |
DE3733478A1 (en) | 1987-10-01 | 1989-04-13 | Schering Ag | ANTIGESTAGEN AND ANTIOOTROGENIC COMPOUNDS FOR THE INTRODUCTION OF BIRTH AND PREGNANCY, AND THE TREATMENT OF GYNAECOLOGICAL DISORDER AND HORMONE-RELATED TUMORS |
DE3734745A1 (en) | 1987-10-09 | 1989-04-20 | Schering Ag | TETRAHYDROPYRROLO (2,1-C) (1,2,4) -THIADIAZOL-3-YLIDENIMINOBENZOXAZINONE AND OTHER HETEROCYCLICALLY SUBSTITUTED AZOLES AND AZINES, METHODS FOR THE PRODUCTION THEREOF AND THEIR USE AS AGENTS WITH HERBICIDES |
JPH02138183A (en) | 1988-11-17 | 1990-05-28 | Nippon Tokushu Noyaku Seizo Kk | Herbicidal pyrroles |
FR2643903A1 (en) | 1989-03-03 | 1990-09-07 | Union Pharma Scient Appl | NOVEL BENZIMIDAZOLE DERIVATIVES, PROCESSES FOR PREPARING SAME, SYNTHESIS INTERMEDIATES, PHARMACEUTICAL COMPOSITIONS CONTAINING SAME, IN PARTICULAR FOR THE TREATMENT OF CARDIOVASCULAR DISEASES, AND DUODENIAL ULCERS |
DE3932953A1 (en) | 1989-10-03 | 1991-04-11 | Boehringer Mannheim Gmbh | NEW 2-BICYCLO-BENZIMIDAZOLES, METHOD FOR THEIR PRODUCTION AND MEDICINAL PRODUCTS CONTAINING THESE COMPOUNDS |
DE3935514A1 (en) | 1989-10-25 | 1991-05-02 | Boehringer Mannheim Gmbh | NEW BICYCLO IMIDAZOLES, METHOD FOR THEIR PRODUCTION AND MEDICINAL PRODUCTS CONTAINING THESE COMPOUNDS |
KR0164842B1 (en) | 1990-03-24 | 1999-01-15 | 손정삼 | Novel benzoxazine, benzothiazine derivatives and preparation thereof |
TW203049B (en) | 1990-04-13 | 1993-04-01 | Yamanouchi Pharma Co Ltd | |
EP0641565B1 (en) | 1990-09-28 | 2000-03-15 | I.F.L.O. S.a.s. di Giorgio e Aldo Laguzzi | Contraceptive and menstrual cycle controlling drug having oncostatic properties |
EP0510235A1 (en) | 1991-04-26 | 1992-10-28 | Dong-A Pharm. Co., Ltd. | Novel benzoxazine or benzothiazine derivatives and process for the preparation of the same |
JP3108483B2 (en) | 1991-09-30 | 2000-11-13 | 日清製粉株式会社 | Indole derivatives and anti-ulcer drugs containing the same as active ingredients |
SE9103752D0 (en) | 1991-12-18 | 1991-12-18 | Astra Ab | NEW COMPOUNDS |
GB9201038D0 (en) | 1992-01-16 | 1992-03-11 | Glaxo Group Ltd | Chemical compounds |
US5808139A (en) | 1992-04-21 | 1998-09-15 | Ligand Pharmaceuticals Incorporated | Non-steroid progesterone receptor agonist and antagonist and compounds and methods |
DE4242451A1 (en) | 1992-12-16 | 1994-06-23 | Basf Ag | Process for the preparation of 5-ring heterocycles |
ZA939516B (en) | 1992-12-22 | 1994-06-06 | Smithkline Beecham Corp | Endothelin receptor antagonists |
SE9302080D0 (en) | 1993-06-16 | 1993-06-16 | Ab Astra | NEW COMPOUNDS |
DE4330234A1 (en) | 1993-09-02 | 1995-03-09 | Schering Ag | The use of progestogens and competitive progesterone antagonists for the production of pharmaceuticals for female fertility control and compositions comprising a progestogen and a competitive progesterone antagonist |
DE4335876A1 (en) | 1993-10-17 | 1995-04-20 | Schering Ag | Combination of progesterone antagonists and partial agonist antiestrogens for hormone replacement therapy for peri- and postmenopausal women |
DE4344463A1 (en) | 1993-12-22 | 1995-06-29 | Schering Ag | Combination product for contraception |
WO1995020389A1 (en) | 1994-01-28 | 1995-08-03 | Merck & Co., Inc. | Benzoxazinones as inhibitors of hiv reverse transcriptase |
US5681817A (en) | 1994-02-04 | 1997-10-28 | The Medical College Of Hampton Roads | Treatment of ovarian estrogen dependent conditions |
AU683387B2 (en) | 1994-06-08 | 1997-11-06 | E.I. Du Pont De Nemours And Company | Cyclic sulfonamide herbicides |
WO1996015794A1 (en) | 1994-11-22 | 1996-05-30 | Balance Pharmaceuticals, Inc. | Compositions and methods for contraception and for treatment of benign gynecological disorders |
US5521166A (en) | 1994-12-19 | 1996-05-28 | Ortho Pharmaceitical Corporation | Antiprogestin cyclophasic hormonal regimen |
PT800519E (en) | 1994-12-22 | 2004-03-31 | Ligand Pharm Inc | STEROID RECEPTOR MODULATORS AND METHODS |
US5696127A (en) | 1994-12-22 | 1997-12-09 | Ligand Pharmaceuticals Incorporated | Steroid receptor modulator compounds and methods |
ZA9510926B (en) | 1994-12-23 | 1996-07-03 | Schering Ag | Compounds with progesterone-antagonistic and antiestrogenic action to be used together for female contraception |
WO1997013767A1 (en) | 1995-10-09 | 1997-04-17 | Chemisch Pharmazeutische Forschungsgesellschaft Mbh | Heterocyclically-substituted 1-indole carboxamides as cyclo-oxygenase-2 inhibitors |
ES2174265T3 (en) | 1996-06-25 | 2002-11-01 | Akzo Nobel Nv | PROGESTOGEN-ANTI-PROGESTOGEN REGIMES. |
ATE248826T1 (en) | 1996-10-02 | 2003-09-15 | Bristol Myers Squibb Pharma Co | 4,4-DISUBSTITUTED 1,4-DIHYDRO-2H-3,1-BENZOXAZINE-2-ONE APPLICABLE AS HIV REVERS TRANSCRIPTASE INHIBITORS, INTERMEDIATE PRODUCTS AND METHODS FOR THE PRODUCTION THEREOF |
US5874430A (en) | 1996-10-02 | 1999-02-23 | Dupont Pharmaceuticals Company | 4,4-disubstitued-1,4-dihydro-2H-3,1-benzoxazin-2-ones useful as HIV reverse transcriptase inhibitors and intermediates and processes for making the same |
US6077840A (en) | 1996-12-18 | 2000-06-20 | Meiji Seika Kaisha, Ltd. | Tetrahydrobenzindolone derivatives |
WO1998055116A1 (en) | 1997-06-05 | 1998-12-10 | Merck & Co., Inc. | Antagonists of gonadotropin releasing hormone |
GB9716557D0 (en) | 1997-08-06 | 1997-10-08 | Glaxo Group Ltd | Benzylidene-1,3-dihydro-indol-2-one derivatives having anti-cancer activity |
AR015425A1 (en) | 1997-09-05 | 2001-05-02 | Smithkline Beecham Corp | BENZOTIAZOL COMPOUNDS, PHARMACEUTICAL COMPOSITION CONTAINING THEM, ITS USE IN THE MANUFACTURE OF A MEDICINAL PRODUCT, PROCEDURE FOR PREPARATION, INTERMEDIARY COMPOUNDS AND PROCEDURE FOR PREPARATION |
GB9718913D0 (en) | 1997-09-05 | 1997-11-12 | Glaxo Group Ltd | Substituted oxindole derivatives |
BR9908510A (en) | 1998-03-06 | 2000-11-21 | Astrazeneca Ab | Use of a compound, compound, process for preparing a compound, pharmaceutical composition, and process for treating a patient suffering from, or at risk for, a mycobacterial disease |
EP0978279A1 (en) | 1998-08-07 | 2000-02-09 | Pfizer Products Inc. | Inhibitors of human glycogen phosphorylase |
-
2000
- 2000-04-19 US US09/552,356 patent/US6369056B1/en not_active Expired - Fee Related
- 2000-05-01 CN CN00807078A patent/CN1349537A/en active Pending
-
2002
- 2002-01-16 US US10/050,287 patent/US20020111355A1/en not_active Abandoned
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846924B2 (en) | 1999-05-04 | 2010-12-07 | Wyeth Llc | Cyanopyrroles |
US8476262B2 (en) | 1999-05-04 | 2013-07-02 | Wyeth Llc | Cyanopyrroles |
US6841568B2 (en) | 1999-05-04 | 2005-01-11 | Wyeth | Thio-oxindole derivatives |
US20050054711A1 (en) * | 1999-05-04 | 2005-03-10 | Andrew Fensome | Thio-oxindole derivatives |
US20050171186A1 (en) * | 1999-05-04 | 2005-08-04 | Wyeth | Thio-oxindole derivatives |
US8796266B2 (en) | 1999-05-04 | 2014-08-05 | Wyeth Llc | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US6982261B2 (en) | 1999-05-04 | 2006-01-03 | Wyeth | Cyanopyrroles |
US20060142280A1 (en) * | 1999-05-04 | 2006-06-29 | Wyeth | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US7084168B2 (en) | 1999-05-04 | 2006-08-01 | Wyeth | Indoline derivatives |
US7091234B2 (en) | 1999-05-04 | 2006-08-15 | Wyeth | Thio-oxindole derivatives |
US7253203B2 (en) | 1999-05-04 | 2007-08-07 | Wyeth | Indoline derivatives |
US8329690B2 (en) | 1999-05-04 | 2012-12-11 | Wyeth Llc | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US20070259944A1 (en) * | 1999-05-04 | 2007-11-08 | Wyeth | Indoline derivatives |
US7488822B2 (en) | 1999-05-04 | 2009-02-10 | Wyeth | Cyclocarbamate derivatives as progesterone receptor modulators |
US6713478B2 (en) | 1999-05-04 | 2004-03-30 | Wyeth | Cyclocarbamate derivatives as progesterone receptor modulators |
US8466146B2 (en) | 1999-05-04 | 2013-06-18 | Wyeth Llc | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US20110039839A1 (en) * | 1999-05-04 | 2011-02-17 | Wyeth Llc | Cyanopyrroles |
US7569564B2 (en) | 1999-05-04 | 2009-08-04 | Wyeth | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US20090281096A1 (en) * | 1999-05-04 | 2009-11-12 | Wyeth | Cyclothiocarbamate derivatives as progesterone receptor modulators |
US7645761B2 (en) | 1999-05-04 | 2010-01-12 | Wyeth | Indoline derivatives |
US20090111802A1 (en) * | 1999-05-04 | 2009-04-30 | Wyeth | Cyclocarbamate derivatives as progesterone receptor modulators |
US20030225109A1 (en) * | 1999-05-04 | 2003-12-04 | Wyeth | Thio-oxindole derivatives |
US7696246B2 (en) | 1999-08-27 | 2010-04-13 | Ligand Pharmaceuticals Incorporated | Bicyclic androgen and progesterone receptor modulator compounds and methods |
US6964973B2 (en) | 1999-08-27 | 2005-11-15 | Ligand Pharmaceuticals Incorporated | Bicyclic androgen and progesterone receptor modulator compounds and methods |
US8309594B2 (en) | 2004-04-27 | 2012-11-13 | Wyeth Llc | Purification of progesterone receptor modulators |
US20090143577A1 (en) * | 2004-04-27 | 2009-06-04 | Wyeth | Purification of progesterone receptor modulators |
US7514466B2 (en) | 2004-04-27 | 2009-04-07 | Wyeth | Purification of progesterone receptor modulators |
US8609712B2 (en) | 2004-04-27 | 2013-12-17 | Wyeth Llc | Purification of progesterone receptor modulators |
US7902195B2 (en) | 2006-04-21 | 2011-03-08 | Pharmacia & Upjohn Company Llc | Pyridine [3,4-b] pyrazinones |
US20070249615A1 (en) * | 2006-04-21 | 2007-10-25 | Pfizer Inc | Pyridine [3,4-b] Pyrazinones |
Also Published As
Publication number | Publication date |
---|---|
CN1349537A (en) | 2002-05-15 |
US6369056B1 (en) | 2002-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6380235B1 (en) | Benzimidazolones and analogues | |
US6369056B1 (en) | Cyclic urea and cyclic amide derivatives | |
US6693103B2 (en) | 1,2,3,4-tetrahydro-2-thioxo-quinolinyl and 1,2,3,4-tetrahydro-2-oxo-quinolinyl derivatives as progesterone receptor modulators | |
US6498154B1 (en) | Cyclic regimens using quinazolinone and benzoxazine derivatives | |
US7084168B2 (en) | Indoline derivatives | |
US6835744B2 (en) | 3,3-substituted indoline derivatives | |
US20030216388A1 (en) | Cyclocarbamate derivatives as progesterone receptor modulators | |
US7414142B2 (en) | 5-aryl-indan-1-one oximes and analogs useful as progesterone receptor modulators | |
US20060142280A1 (en) | Cyclothiocarbamate derivatives as progesterone receptor modulators | |
US6441019B2 (en) | Cyclocarbamate and cyclic amide derivatives | |
US6399593B1 (en) | Cyclic regimens using cyclic urea and cyclic amide derivatives | |
WO2000066560A1 (en) | Quinazolinone and benzoxazine derivatives as progesterone receptor modulators | |
US6423699B1 (en) | Combination therapies using benzimidazolones | |
US6380178B1 (en) | Cyclic regimens using cyclocarbamate and cyclic amide derivatives | |
WO2000066592A1 (en) | Cyclic urea and cyclic amide derivatives | |
EP1175397B1 (en) | 3,3-substituted indoline derivatives | |
CA2371642A1 (en) | Cyclic urea and cyclic amide derivatives | |
CA2371651A1 (en) | Quinazolinone and benzoxazine derivatives as progesterone receptor modulators | |
EP1173213A1 (en) | Compositions containing benzimidazolones and progestogens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMERICAN HOME PRODUCTS CORPORATION, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, PUWEN;SANTILLI, ARTHUR A.;FENSOME, ANDREW;AND OTHERS;REEL/FRAME:012516/0338;SIGNING DATES FROM 20000905 TO 20000907 Owner name: LIGAND PHARMACEUTICALS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EDWARDS, JAMES P.;JONES, TODD K.;TEGLEY, CHRISTOPHER M.;AND OTHERS;REEL/FRAME:012512/0918;SIGNING DATES FROM 20000920 TO 20000922 |
|
AS | Assignment |
Owner name: WYETH, NEW JERSEY Free format text: CHANGE OF NAME;ASSIGNOR:AMERICAN HOME PRODUCTS CORPORATION;REEL/FRAME:013239/0870 Effective date: 20020311 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |