US20020111978A1 - Approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding - Google Patents
Approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding Download PDFInfo
- Publication number
- US20020111978A1 US20020111978A1 US09/741,724 US74172400A US2002111978A1 US 20020111978 A1 US20020111978 A1 US 20020111978A1 US 74172400 A US74172400 A US 74172400A US 2002111978 A1 US2002111978 A1 US 2002111978A1
- Authority
- US
- United States
- Prior art keywords
- shift
- data
- multiplication
- resource units
- computational
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims abstract description 51
- 230000008569 process Effects 0.000 claims abstract description 9
- 230000001419 dependent effect Effects 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000007792 addition Methods 0.000 description 16
- 238000004422 calculation algorithm Methods 0.000 description 12
- 238000000354 decomposition reaction Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
- G06F17/147—Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/132—Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/156—Availability of hardware or computational resources, e.g. encoding based on power-saving criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/18—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/59—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
Definitions
- This invention relates to video and still image decoding and in particular to an approximate inverse discrete cosine transform for scaling video and still image decoding computational complexity in accordance with available quantities of computational resource units and a decoder which utilizes the same.
- SVAs scalable video algorithms
- Video decoders should be capable of decoding incoming compressed digital video signals at real-time speed.
- the computational resource available for video decoding varies over time because the total available resource has to be divided among many different tasks.
- the decoder should then intelligently adapt the complexity of the decoding algorithm, albeit, with some loss in the visual quality of the decoded video.
- the most prevalently used compression techniques for digital video and images are MPEG and JPEG respectively. Both these techniques use the block based DCT as one of the basic blocks in the compression.
- a video decoder performs the following algorithmic steps in decoding video: variable length decoding, inverse quantization, inverse DCT (IDCT) and motion compensation.
- the IDCT requires a substantial portion of the computational resource and by using an approximate algorithm its complexity can be adapted to scale to the available resource.
- a method of scaling image and video processing computational complexity in accordance with maximum available quantities of computational resource units comprising the steps of: performing a plurality of data multiplications which processes digital image and video data, each data multiplication having a data dependent value multiplied by data independent value, the performance of each data multiplication requiring a predetermined quantity of computational resource units; selecting one of the data multiplications; selecting a shift/add-operation, a shift/substract-operation, or a shift-operation using the data independent value associated with the selected multiplication that requires a quantity of computational resource units which is less than the predetermined quantity of computational resource units required for performing the selected multiplication; and approximating the selected multiplication with the selected operation.
- the decoder which scales video and still image decoding computational complexity with available computational resources.
- the decoder comprises a variable length decoder; an inverse quantizer which dequantizes signals received from the variable length decoder; and an approximate inverse discrete cosine transform that scales decoding computational complexity in accordance with the above method.
- FIG. 1 is a block diagram illustrating the steps performed by the approximate IDCT of the present invention
- FIG. 2 is a flowchart which illustrates an exemplary implementation of the approximate IDCT of the present invention.
- FIG. 3 is a schematic illustration of a video decoder in which the approximate IDCT of the present invention can be implemented.
- the present invention sets forth an approximate inverse discrete cosine transform (IDCT) for digital video and still image decoding as respectively used in MPEG and JPEG compression/decompression techniques.
- IDCT inverse discrete cosine transform
- Conventional IDCTs utilize algorithms with fixed computational complexities to process data. Therefore, conventional IDCTs can not scale their computational complexity to the computational resources that are available in the microprocessor of the decoder at any given time.
- the approximate IDCT of the present invention utilizes an algorithmic process whose complexity scales to the computational resources available in the microprocessor of the decoder at any given time.
- the approximate IDCT of the invention can be utilized in MPEG and JPEG to enable scalable computation decoding of digital video and still images respectively which is not possible with conventional IDCTs that utilize algorithmic processes of fixed computational complexity.
- FIG. 1 is a block diagram illustrating the steps performed by the approximate IDCT of the present invention to provide complexity scaling.
- step 10 the maximum number of available computational units is observed for each multiplication to be performed by the IDCT.
- step 12 it determines whether the maximum number of computational units available (the maximum computational complexity available) for each multiplication is sufficient. If it is determined that the maximum number of available computational units is sufficient, the multiplication is performed in step 14 .
- step 16 multiplications are replaced by one or more shift/add-operations, shift/substract-operations, or a shift-operation (all three of these operations being collectively referred to hereinafter as shift-operation) the exact number and type of such operations being dependent upon the maximum number of computational units required therefore.
- the multiplication is approximated with an abbreviated shift-operation. Approximation is typically performed when the multiplication is by a value that is not a single power of two. Such a multiplication may involve a shift-operation comprised of two or more shifts, the results of which are then added or subtracted.
- the abbreviated shift-operation of the present invention neglects one or more of these shifts and additions/subtractions to scale the complexity of the IDCT to the available computational units.
- the decoder performs an IDCT based on a multi-stage network. It should be understood, however, that the present invention can be applied to any IDCT including IDCTs which use matrix multiplications to obtain a 2-D IDCT directly or IDCTs which use two 1-D IDCTs, one of which is performed over the rows and the other which is performed over the columns. Moreover, the present invention can also be applied to DCTs or any other computer computation involving multiplications.
- the above IDCT is performed on a two-dimensional block of 8 by 8 pixels.
- the two dimensional IDCT is achieved by performing one-dimensional IDCT on the columns followed by one-dimensional IDCT on the rows.
- the following set of equations as provided below in Table 1 shows the four states of a 4-stage network. The first column of equations corresponds to the operations performed in the first stage and so forth.
- x 1 are the inputs and Y 1 . are the outputs of each stage and T 1 . are temporary variables that are computed. Also, the output of each stage is the input to the subsequent stage, i.e. the output of the first stage is the input of the second stage and so on.
- the x 1 and Y 1 values are dependent on the received bitstream data.
- the w 1 values are independent of the received bitstream data and these values are replaced or approximated with shift-operations in accordance with the present invention. Accordingly, the approximate IDCT of the present invention is input data-independent, hence, avoiding the additional overhead in terms of computational resources of classifying the input data into selected categories as required in prior IDCT complexity reduction techniques.
- the operations in stage I require 6 multiplications, 6 additions and no shift-operations.
- the multiplication can be replaced or approximated by with a shift operation as described above.
- a multiplication can be replaced with a shift-operation if w i is a value that is equal to a single power of two because the shift-operation requires only a single shift with no additions or subtractions.
- w 7 in the first equation of stage I is 64
- the multiplication by w 7 can be replaced with a single shift with no additions or subtractions because 64 is equal to a single power of two or 2 6 .
- multiplication by 64 can be achieved by left shifting the value of (x 4 +x 5 ) by 6. Assuming for example, a multiplication requires 3 computational units and a single-shift operation requires 1 computational unit, then the above shift-operation provides a savings of 2 computational units.
- w 1 is a value that is not equal to a single power of two
- the multiplication by w 1 can be replaced with a set of shift-operations and additions or subtractions if the maximum number of computational units available for the multiplication are insufficient and the number of computational units required for the shift-operations are less than what is required for the multiplication.
- values that are not equal to a single power of two can be decomposed or split into a sum of values each of which is a power of two.
- w 7 in the first equation of stage I is 84 (which is not a single power of two)
- 84 can be split into the sum of three values each of which is a power of two or 64 (2 6 )+16 (2 4 )+4 (2 2 ).
- Multiplication by 84 is therefore achieved by multiplying the value of (x 4 +x 5 ) by 64, 16 and 4 and adding the results.
- Each of these multiplications can be achieved in the approximate IDCT of the present invention through a shift-operation, i.e.
- 64 * (x 4 +x 5 ) is achieved by left shifting the value of (x 4 +x 5 ) by 6
- 16 * (x 4 +x 5 ) is achieved by left shifting the value of (x 4 +x 5 ) by 4 places
- 4 * (x 4 +x 5 ) is achieved by left shifting (x 4 +x 5 ) by 2. Accordingly, multiplication by 84 is replaced by 3 shift-operations and 2 additions.
- the replacement of the multiplication is performed in the present invention only if the computational resources or units required by the shift-operations and the additions is less than that required by a multiplication. If the computational resources required for the 3 shift-operations and 2 additions is not less than that required by the multiplication, then the multiplication is approximated by omitting some of the shifts and additions. Assuming again that an addition and a shift-operation are each equivalent to 1 unit of computation and a multiplication is equivalent of 3 units of computation, then the shift-operation actually requires 5 units of computation which is 2 more than the multiplication. Accordingly, an abbreviated shift-operation which omits the shifts involving the values 16 and 4 would be performed to approximate the multiplication by 84.
- the values that are not equal to a single power of two can also be decomposed or split into a “difference” of values each of which is a power of two. For example, if w 7 in the first equation of stage I is 63, 63 can be decomposed or split into 64 (2 6 ) ⁇ 1 (2 0 ). The decision to select a decomposition made up of a sum or difference is typically based on which decomposition method requires less computational units to implement and is the best approximation of the multiplication. Using the above example, the multiplication by 63 can be replaced in its entirety by 2 shift-operations and 1 subtraction.
- a corresponding sum decomposition of 63 would equal 32 (2 5 )+16 (2 4 )+8 (2 3 )+4 (2 2 )+2 (2 1 )+1 (2 0 ) which requires 6 shifts and 5 additions.
- the difference decomposition of 63 requires less computational units to implement in its entirety than the sum decomposition of 63.
- an abbreviated shift operation using the difference decomposition of 63 would require one computational unit, thus providing a 2 computational unit savings over the multiplication with only a small loss in accuracy.
- An abbreviated shift operation using the sum decomposition of 63 would also require only 1 computational unit to implement but would involve a much greater loss of accuracy.
- FIG. 2 is a flowchart which illustrates an exemplary implementation of the approximate IDCT of the present invention.
- C is the maximum number of computational units available for the multiplication (the maximum computation complexity available for the multiplication)
- C m is the number of computational units required to perform the multiplication w * x without any approximation
- C s is the number of computational units required for shifting
- C a is the number of computational units required for adding or subtracting
- C sa is total number of computational units required for shifting, adding or subtracting the powers of two.
- FIG. 3 schematically illustrates a video decoder 30 in which the approximate IDCT of the present invention can be implemented.
- the video decoder 30 includes a channel buffer 32 , a variable length decoder (VLD) 34 , an inverse quantizer 36 , the approximate IDCT 38 of the invention, a motion compensator 40 , an adder 42 and a memory 46 for storing reference frames for motion compensation.
- VLD variable length decoder
- the IDCT 38 of the invention enables the video decoder to scale its video decoding computational complexity with the computational resources available from the controller 44 of the decoder 30 .
- Table II shows the number of multiplications, additions and shift-operations required by the four different stages of equations shown in Table I above. Assuming additions and shift-operations are equivalent to one unit of computation and a multiplication is equivalent to three units of computation, the total requirement is 74 units. Stage 1 Stage II Stage III Stage IV Number of Multiplications 6 3 2 0 Number of Additions 6 9 8 8 Number of Shift Operations 0 0 2 8 Total number of computation 24 18 16 16 units
- stage II If the computational resources fall below 94.6%, the multiplications in stage II are also replaced or approximated by shift-operations in addition to the stage III replacements and approximations. If the three multiplications in stage II and the two in Stage III are replaced or approximated by shift-operations, the total computational requirement will be 64, which is 86.5%, of the original complexity.
- the computational requirement can be scaled to three different levels of 94.6%, 86.5% and 70.3% by replacing or approximating the multiplications at different stages with shift-operations.
- some of the multiplications (and not all) in each stage can be replaced or approximated.
- a complexity level that is less than 90% (but above 86.5%)
- two multiplications in Stage III and two in Stage II can be replaced or approximated with shift-operations. This will result in (66/74) 89.2% complexity.
- the error introduced in approximating multiplications with abbreviated shift-operations is calculated for each multiplication and the two multiplication approximations that result in the lower error values is selected. This process can be done a priori and is data independent.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Computational Mathematics (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Discrete Mathematics (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Complex Calculations (AREA)
Abstract
Description
- This invention relates to video and still image decoding and in particular to an approximate inverse discrete cosine transform for scaling video and still image decoding computational complexity in accordance with available quantities of computational resource units and a decoder which utilizes the same.
- As Digital Television (DTV) expands worldwide and gradually dominates the TV market, the demand for flexible architecture and scalable computation will become greater. The impetus to adopt flexible architecture is lead by the availability of a more powerful DSPCPU core and the increasing demand for new functionality. As the computational power of the DSPCPU core increases over time, video-processing functions will tend to migrate from hardware implementations on coprocessors to software implementations on the DSPCPU core. At the same time, the emergence of new audio/visual processing functionality will mandate the application of coprocessors.
- Software implementation of audio/video processing functions on the DSPCPU core, creates opportunities for algorithm scalability by allowing trade-off between the usage of available computational resources (i.e. CPU cycles, cache, memory size, memory bandwidth, coprocessor load, etc.) and subjective image quality. Although the DSPCPU core is getting more and more powerful, reducing cost by constraining CPU usage while still generating satisfactory results is a big challenge for video algorithm designs driven by consumer electronics.
- The application of scalable video algorithms (SVAs) will allow multiple video functions to run concurrently on the DSPCPU core and the coprocessors while the total computational resources are on constraint. SVAs can also lead to the reduction of coprocessors and other external hardware. The system cost is then reduced with smaller silicon area of the multimedia processor chip.
- One potential application for SVAs is in video decoders. Video decoders should be capable of decoding incoming compressed digital video signals at real-time speed. In a typical application such as a set-top box, the computational resource available for video decoding varies over time because the total available resource has to be divided among many different tasks. When the computational resource available at any given time is insufficient, the decoder should then intelligently adapt the complexity of the decoding algorithm, albeit, with some loss in the visual quality of the decoded video.
- The most prevalently used compression techniques for digital video and images are MPEG and JPEG respectively. Both these techniques use the block based DCT as one of the basic blocks in the compression. A video decoder performs the following algorithmic steps in decoding video: variable length decoding, inverse quantization, inverse DCT (IDCT) and motion compensation. The IDCT requires a substantial portion of the computational resource and by using an approximate algorithm its complexity can be adapted to scale to the available resource.
- Techniques to reduce the IDCT complexity based on input data are known. These techniques classify the input data into different categories and use different IDCT algorithms of varying complexities for different categories of data. However such techniques have the additional overhead of classifying the input data into the selected categories.
- Accordingly, a need exists for an IDCT having a complexity which scales to the computational resources available in the microprocessor of the decoder at any given time and which is input data-independent.
- A method of scaling image and video processing computational complexity in accordance with maximum available quantities of computational resource units, the method comprising the steps of: performing a plurality of data multiplications which processes digital image and video data, each data multiplication having a data dependent value multiplied by data independent value, the performance of each data multiplication requiring a predetermined quantity of computational resource units; selecting one of the data multiplications; selecting a shift/add-operation, a shift/substract-operation, or a shift-operation using the data independent value associated with the selected multiplication that requires a quantity of computational resource units which is less than the predetermined quantity of computational resource units required for performing the selected multiplication; and approximating the selected multiplication with the selected operation.
- Also described herein is a decoder which scales video and still image decoding computational complexity with available computational resources. The decoder comprises a variable length decoder; an inverse quantizer which dequantizes signals received from the variable length decoder; and an approximate inverse discrete cosine transform that scales decoding computational complexity in accordance with the above method.
- The advantages, nature, and various additional features of the invention will appear more fully upon consideration of the illustrative embodiments now to be described in detail in connection with accompanying drawings where like numerals are used to identify like elements and wherein:
- FIG. 1 is a block diagram illustrating the steps performed by the approximate IDCT of the present invention;
- FIG. 2 is a flowchart which illustrates an exemplary implementation of the approximate IDCT of the present invention; and
- FIG. 3 is a schematic illustration of a video decoder in which the approximate IDCT of the present invention can be implemented.
- The present invention sets forth an approximate inverse discrete cosine transform (IDCT) for digital video and still image decoding as respectively used in MPEG and JPEG compression/decompression techniques. Conventional IDCTs utilize algorithms with fixed computational complexities to process data. Therefore, conventional IDCTs can not scale their computational complexity to the computational resources that are available in the microprocessor of the decoder at any given time.
- The approximate IDCT of the present invention utilizes an algorithmic process whose complexity scales to the computational resources available in the microprocessor of the decoder at any given time. Hence, the approximate IDCT of the invention can be utilized in MPEG and JPEG to enable scalable computation decoding of digital video and still images respectively which is not possible with conventional IDCTs that utilize algorithmic processes of fixed computational complexity.
- FIG. 1 is a block diagram illustrating the steps performed by the approximate IDCT of the present invention to provide complexity scaling. In
step 10, the maximum number of available computational units is observed for each multiplication to be performed by the IDCT. Step 12 it determines whether the maximum number of computational units available (the maximum computational complexity available) for each multiplication is sufficient. If it is determined that the maximum number of available computational units is sufficient, the multiplication is performed instep 14. If it is determined that the maximum number of available computational units is insufficient, then instep 16 multiplications are replaced by one or more shift/add-operations, shift/substract-operations, or a shift-operation (all three of these operations being collectively referred to hereinafter as shift-operation) the exact number and type of such operations being dependent upon the maximum number of computational units required therefore. - Note that a multiplication requires approximately three times the number of cycles to perform as compared to an addition, a subtraction, or a shift-operation in popular INTEL architecture processors.
- In particular, if it is determined that the number of computational units required for performing multiple shift/add-operations, shift/subtract-operations, or a shift-operation is greater than or equal to that required for the multiplication, the multiplication is approximated with an abbreviated shift-operation. Approximation is typically performed when the multiplication is by a value that is not a single power of two. Such a multiplication may involve a shift-operation comprised of two or more shifts, the results of which are then added or subtracted. The abbreviated shift-operation of the present invention neglects one or more of these shifts and additions/subtractions to scale the complexity of the IDCT to the available computational units.
- In order to illustrate the concepts of the present invention, the following discussion references a DCT/IDCT algorithm adopted from the original Chen-Wang algorithm described by W. H. Chen, C. H. Smith, S. Fralick, “A Fast Computational Algorithm For The Discrete Cosine Transform,” IEEE Transactions on Communications, Vol. COM-25, No. 9, pp. 1004-1009, September, 1977 and by Z. Wang, “Reconsideration Of A Fast Computational Algorithm For The Discrete Cosine Transform,” IEEE Transactions on Communications, Vol. COM-31, pp. 121-123, January 1983. The reference C code of the Chen-Wang algorithm can be found in the C code of a decoder used at the University of California, at Berkeley. The decoder performs an IDCT based on a multi-stage network. It should be understood, however, that the present invention can be applied to any IDCT including IDCTs which use matrix multiplications to obtain a 2-D IDCT directly or IDCTs which use two 1-D IDCTs, one of which is performed over the rows and the other which is performed over the columns. Moreover, the present invention can also be applied to DCTs or any other computer computation involving multiplications.
- Typically the above IDCT is performed on a two-dimensional block of 8 by 8 pixels. In this implementation the two dimensional IDCT is achieved by performing one-dimensional IDCT on the columns followed by one-dimensional IDCT on the rows. The following set of equations as provided below in Table 1 shows the four states of a 4-stage network. The first column of equations corresponds to the operations performed in the first stage and so forth.
TABLE 1 Stage I Stage II Y8 = x0 + x1 T8 = w7 * (x4 + x5) Y0 = x0 − x1 Y4 = T8 + x4 * (w1 − w7) T1 = w6 * (x3 + x2) Y5 = T8 − x4 * (w1 + w7) Y2 = T1 − (w2 + w6) * x2 T8 = w3 * (x6 + x7) Y3 = T1 + (w2 − w6) * x3 Y6 = T8 − x6 * (w3 − w5) Y1 = x4 + x6 Y7 = T8 − x7 * (w3 + w5) Y4 = x4 − x6 Y1 = x1 Y6 = x5 + x7 Y2 = x2 Y5 = x5 − x7 Y3 = x3 Y0 = x0 Stage III Stage IV Y7 = x8 + x3 Y0 = (x7 + x1)>>8 Y8 = x8 − x3 Y1 = (x3 + x2)>>8 Y3 = x0 + x2 Y2 = (x0 + x4)>>8 Y0 = x0 − x2 Y3 = (x8 + x6)>>8 Y2 = (181*(x4 + x5) + 128)>>8 Y4 = (x8 − x6)>>8 Y4 = (181*(x4 − x5) + 128)>>8 Y5 = (x0 − x4)>>8 Y1 = x1 Y6 = (x3 − x2)>>8 Y6 = x6 Y7 = (x7 − x1)>>8 - Here x1 are the inputs and Y1. are the outputs of each stage and T1. are temporary variables that are computed. Also, the output of each stage is the input to the subsequent stage, i.e. the output of the first stage is the input of the second stage and so on. The x1 and Y1 values are dependent on the received bitstream data. The w1 values are independent of the received bitstream data and these values are replaced or approximated with shift-operations in accordance with the present invention. Accordingly, the approximate IDCT of the present invention is input data-independent, hence, avoiding the additional overhead in terms of computational resources of classifying the input data into selected categories as required in prior IDCT complexity reduction techniques.
- As shown in the above set of equations, the operations in stage I require 6 multiplications, 6 additions and no shift-operations. In accordance with an illustrative implementation of the principles of the present invention, if there are insufficient computational resources or units available for performing a multiplication by wi in stage I, the multiplication can be replaced or approximated by with a shift operation as described above.
- As described earlier, a multiplication can be replaced with a shift-operation if wi is a value that is equal to a single power of two because the shift-operation requires only a single shift with no additions or subtractions. Specifically, if w7 in the first equation of stage I is 64, the multiplication by w7 can be replaced with a single shift with no additions or subtractions because 64 is equal to a single power of two or 26. Accordingly, multiplication by 64 can be achieved by left shifting the value of (x4+x5) by 6. Assuming for example, a multiplication requires 3 computational units and a single-shift operation requires 1 computational unit, then the above shift-operation provides a savings of 2 computational units.
- If w1, is a value that is not equal to a single power of two, the multiplication by w1 can be replaced with a set of shift-operations and additions or subtractions if the maximum number of computational units available for the multiplication are insufficient and the number of computational units required for the shift-operations are less than what is required for the multiplication. As described earlier, values that are not equal to a single power of two can be decomposed or split into a sum of values each of which is a power of two. In particular, if w7 in the first equation of stage I is 84 (which is not a single power of two), 84 can be split into the sum of three values each of which is a power of two or 64 (26)+16 (24)+4 (22). Multiplication by 84 is therefore achieved by multiplying the value of (x4+x5) by 64, 16 and 4 and adding the results. Each of these multiplications can be achieved in the approximate IDCT of the present invention through a shift-operation, i.e. 64 * (x4+x5) is achieved by left shifting the value of (x4+x5) by 6, 16 * (x4+x5) is achieved by left shifting the value of (x4+x5) by 4 places, 4 * (x4+x5) is achieved by left shifting (x4+x5) by 2. Accordingly, multiplication by 84 is replaced by 3 shift-operations and 2 additions.
- However, the replacement of the multiplication is performed in the present invention only if the computational resources or units required by the shift-operations and the additions is less than that required by a multiplication. If the computational resources required for the 3 shift-operations and 2 additions is not less than that required by the multiplication, then the multiplication is approximated by omitting some of the shifts and additions. Assuming again that an addition and a shift-operation are each equivalent to 1 unit of computation and a multiplication is equivalent of 3 units of computation, then the shift-operation actually requires 5 units of computation which is 2 more than the multiplication. Accordingly, an abbreviated shift-operation which omits the shifts involving the
values 16 and 4 would be performed to approximate the multiplication by 84. - The above process can be used in one or more of the other multiplications in stage I as well as the multiplications in the other stages, depending upon how much scaling back of the computational complexity is needed to accommodate the available computational resources.
- The values that are not equal to a single power of two can also be decomposed or split into a “difference” of values each of which is a power of two. For example, if w7 in the first equation of stage I is 63, 63 can be decomposed or split into 64 (26)−1 (20). The decision to select a decomposition made up of a sum or difference is typically based on which decomposition method requires less computational units to implement and is the best approximation of the multiplication. Using the above example, the multiplication by 63 can be replaced in its entirety by 2 shift-operations and 1 subtraction. A corresponding sum decomposition of 63 would equal 32 (25)+16 (24)+8 (23)+4 (22)+2 (21)+1 (20) which requires 6 shifts and 5 additions. Hence, in this example, the difference decomposition of 63 requires less computational units to implement in its entirety than the sum decomposition of 63. Assuming again that an addition and a shift-operation are each equivalent to 1 unit of computation and a multiplication is equivalent of 3 units of computation, an abbreviated shift operation using the difference decomposition of 63 would require one computational unit, thus providing a 2 computational unit savings over the multiplication with only a small loss in accuracy. An abbreviated shift operation using the sum decomposition of 63 would also require only 1 computational unit to implement but would involve a much greater loss of accuracy.
- FIG. 2 is a flowchart which illustrates an exemplary implementation of the approximate IDCT of the present invention. In the flow chart, C is the maximum number of computational units available for the multiplication (the maximum computation complexity available for the multiplication), Cm is the number of computational units required to perform the multiplication w * x without any approximation, Cs is the number of computational units required for shifting, Ca is the number of computational units required for adding or subtracting, and Csa is total number of computational units required for shifting, adding or subtracting the powers of two.
- FIG. 3 schematically illustrates a video decoder30 in which the approximate IDCT of the present invention can be implemented. The video decoder 30 includes a
channel buffer 32, a variable length decoder (VLD) 34, aninverse quantizer 36, the approximate IDCT 38 of the invention, amotion compensator 40, anadder 42 and amemory 46 for storing reference frames for motion compensation. The IDCT 38 of the invention enables the video decoder to scale its video decoding computational complexity with the computational resources available from thecontroller 44 of the decoder 30. - Table II below shows the number of multiplications, additions and shift-operations required by the four different stages of equations shown in Table I above. Assuming additions and shift-operations are equivalent to one unit of computation and a multiplication is equivalent to three units of computation, the total requirement is 74 units.
Stage 1Stage II Stage III Stage IV Number of Multiplications 6 3 2 0 Number of Additions 6 9 8 8 Number of Shift Operations 0 0 2 8 Total number of computation 24 18 16 16 units - In a preferred embodiment of the approximate IDCT of the present invention, computational complexity reduction through replacement or approximation of the multiplications required at different stages of a multistage network with shift-operations will now be described by referring again to earlier described four stage IDCT of Tables I and II. For the discussion here, all approximations utilizing abbreviated shift-operations are assumed to be accomplished with a single shift-operation. The multiplications in stage III are the preferred initial candidates to be replaced or approximated by shift-operations, since any approximations introduced at this stage propagates to only one more stage. If the two multiplications at stage III are replaced or approximated by shift-operations, then the total computation requirement is 70 units, or 70/74=94.6% of the original complexity. If the computational resources available from the controller of the decoder falls below 100% but stays above 94.6% then the decoder, via the approximate IDCT of the present invention will automatically replace or approximate the multiplications at stage III to scale to the current resource availability.
- If the computational resources fall below 94.6%, the multiplications in stage II are also replaced or approximated by shift-operations in addition to the stage III replacements and approximations. If the three multiplications in stage II and the two in Stage III are replaced or approximated by shift-operations, the total computational requirement will be 64, which is 86.5%, of the original complexity.
- If the computational resource falls below 86.5%, then all the multiplications in all the stages are replaced or approximated by shift-operations. Accordingly, the resulting computational requirement will be 52 units, or 70.3% of the original complexity.
- Using the approximate IDCT process of the present invention, the computational requirement can be scaled to three different levels of 94.6%, 86.5% and 70.3% by replacing or approximating the multiplications at different stages with shift-operations. To obtain more levels of scalability, some of the multiplications (and not all) in each stage can be replaced or approximated. For example, to achieve a complexity level that is less than 90% (but above 86.5%), two multiplications in Stage III and two in Stage II can be replaced or approximated with shift-operations. This will result in (66/74) 89.2% complexity. To select the two out of three multiplications that are to be approximated with shift-operations at Stage II, the error introduced in approximating multiplications with abbreviated shift-operations is calculated for each multiplication and the two multiplication approximations that result in the lower error values is selected. This process can be done a priori and is data independent.
- While the foregoing invention has been described with reference to the above embodiments, various modifications and changes can be made without departing from the spirit of the invention. Accordingly, such modifications and changes are considered to be within the scope of the appended claims.
Claims (28)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/741,724 US6859815B2 (en) | 2000-12-19 | 2000-12-19 | Approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding |
JP2002552329A JP2004516760A (en) | 2000-12-19 | 2001-12-05 | Approximate inverse discrete cosine transform for video and still image decoding with scalable computational complexity |
KR1020027010801A KR20030005199A (en) | 2000-12-19 | 2001-12-05 | An approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding |
PCT/IB2001/002309 WO2002051160A2 (en) | 2000-12-19 | 2001-12-05 | An approximate idct for scalable video decoding |
EP01271758A EP1350395A2 (en) | 2000-12-19 | 2001-12-05 | An approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding |
CNB018081444A CN1193621C (en) | 2000-12-19 | 2001-12-05 | Approximate IDCT for scalable video and image decoding of computational complexity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/741,724 US6859815B2 (en) | 2000-12-19 | 2000-12-19 | Approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020111978A1 true US20020111978A1 (en) | 2002-08-15 |
US6859815B2 US6859815B2 (en) | 2005-02-22 |
Family
ID=24981902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/741,724 Expired - Fee Related US6859815B2 (en) | 2000-12-19 | 2000-12-19 | Approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding |
Country Status (6)
Country | Link |
---|---|
US (1) | US6859815B2 (en) |
EP (1) | EP1350395A2 (en) |
JP (1) | JP2004516760A (en) |
KR (1) | KR20030005199A (en) |
CN (1) | CN1193621C (en) |
WO (1) | WO2002051160A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080120098A1 (en) * | 2006-11-21 | 2008-05-22 | Nokia Corporation | Complexity Adjustment for a Signal Encoder |
US20210304357A1 (en) * | 2020-03-27 | 2021-09-30 | Alibaba Group Holding Limited | Method and system for video processing based on spatial or temporal importance |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7343389B2 (en) * | 2002-05-02 | 2008-03-11 | Intel Corporation | Apparatus and method for SIMD modular multiplication |
US7139900B2 (en) | 2003-06-23 | 2006-11-21 | Intel Corporation | Data packet arithmetic logic devices and methods |
ATE553455T1 (en) | 2004-11-16 | 2012-04-15 | Thomson Licensing | METHOD FOR SIMULATING FILM GRAIN BASED ON PRECALCULATED TRANSFORMATION COEFFICIENTS |
CA2587117C (en) | 2004-11-17 | 2014-02-11 | Thomson Licensing | Bit-accurate film grain simulation method based on pre-computed transformed coefficients |
US8571340B2 (en) | 2006-06-26 | 2013-10-29 | Qualcomm Incorporated | Efficient fixed-point approximations of forward and inverse discrete cosine transforms |
US8606023B2 (en) | 2006-06-26 | 2013-12-10 | Qualcomm Incorporated | Reduction of errors during computation of inverse discrete cosine transform |
RU2496139C2 (en) * | 2006-06-26 | 2013-10-20 | Квэлкомм Инкорпорейтед | Efficient fixed-point approximation for direct and inverse discrete cosine transforms |
RU2419855C2 (en) * | 2006-06-26 | 2011-05-27 | Квэлкомм Инкорпорейтед | Reducing errors when calculating inverse discrete cosine transform |
US8300698B2 (en) | 2006-10-23 | 2012-10-30 | Qualcomm Incorporated | Signalling of maximum dynamic range of inverse discrete cosine transform |
JP5352448B2 (en) * | 2007-03-28 | 2013-11-27 | パナソニック株式会社 | Inverse quantization circuit, inverse quantization method, and image reproduction apparatus |
US10715834B2 (en) | 2007-05-10 | 2020-07-14 | Interdigital Vc Holdings, Inc. | Film grain simulation based on pre-computed transform coefficients |
FR2925818A1 (en) | 2007-12-21 | 2009-06-26 | France Telecom | VARIABLE COMPLEXITY DECODING METHOD OF IMAGE SIGNAL, DECODING TERMINAL, ENCODING METHOD, ENCODING DEVICE, SIGNAL AND CORRESPONDING COMPUTER PROGRAMS |
KR20130049524A (en) * | 2011-11-04 | 2013-05-14 | 오수미 | Method for generating intra prediction block |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4449194A (en) * | 1981-09-25 | 1984-05-15 | Motorola Inc. | Multiple point, discrete cosine processor |
US4849922A (en) * | 1987-01-20 | 1989-07-18 | Cselt - Centro Studi E Laboratori Telecomunicazioni Spa | Circuit for computing the quantized coefficient discrete cosine transform of digital signal samples |
US5629882A (en) * | 1992-09-17 | 1997-05-13 | Sony Corporation | Discrete cosine transformation system and inverse discrete cosine transformation system, having simple structure and operable at high speed |
US5654910A (en) * | 1992-08-26 | 1997-08-05 | Sony Corporation | Processing method and apparatus for performing 4 ×4 discrete cosine transformation or inverse discrete cosing transformation |
US5805476A (en) * | 1995-11-01 | 1998-09-08 | Korea Telecommunication Authority | Very large scale integrated circuit for performing bit-serial matrix transposition operation |
US5864494A (en) * | 1996-08-08 | 1999-01-26 | Sharp Kabushiki Kaisha | Discrete cosine transformer and inverse discrete cosine transformer |
US6223195B1 (en) * | 1994-05-27 | 2001-04-24 | Hitachi, Ltd. | Discrete cosine high-speed arithmetic unit and related arithmetic unit |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5285402A (en) | 1991-11-22 | 1994-02-08 | Intel Corporation | Multiplyless discrete cosine transform |
US5361220A (en) | 1991-11-29 | 1994-11-01 | Fuji Photo Film Co., Ltd. | Discrete cosine transformation with reduced components |
US5523847A (en) | 1992-10-09 | 1996-06-04 | International Business Machines Corporation | Digital image processor for color image compression |
US5729484A (en) * | 1994-02-28 | 1998-03-17 | Intel Corporation | Processes, apparatuses, and systems of encoding and decoding signals using transforms |
JP4035789B2 (en) | 1994-10-13 | 2008-01-23 | 富士通株式会社 | Inverse discrete cosine transform device |
JP3129392B2 (en) | 1996-02-02 | 2001-01-29 | 日本電気株式会社 | Two-dimensional IDCT circuit |
US5999958A (en) | 1996-04-24 | 1999-12-07 | National Science Council | Device for computing discrete cosine transform and inverse discrete cosine transform |
US6192079B1 (en) | 1998-05-07 | 2001-02-20 | Intel Corporation | Method and apparatus for increasing video frame rate |
-
2000
- 2000-12-19 US US09/741,724 patent/US6859815B2/en not_active Expired - Fee Related
-
2001
- 2001-12-05 WO PCT/IB2001/002309 patent/WO2002051160A2/en not_active Application Discontinuation
- 2001-12-05 JP JP2002552329A patent/JP2004516760A/en not_active Withdrawn
- 2001-12-05 KR KR1020027010801A patent/KR20030005199A/en not_active Withdrawn
- 2001-12-05 EP EP01271758A patent/EP1350395A2/en not_active Withdrawn
- 2001-12-05 CN CNB018081444A patent/CN1193621C/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4449194A (en) * | 1981-09-25 | 1984-05-15 | Motorola Inc. | Multiple point, discrete cosine processor |
US4849922A (en) * | 1987-01-20 | 1989-07-18 | Cselt - Centro Studi E Laboratori Telecomunicazioni Spa | Circuit for computing the quantized coefficient discrete cosine transform of digital signal samples |
US5654910A (en) * | 1992-08-26 | 1997-08-05 | Sony Corporation | Processing method and apparatus for performing 4 ×4 discrete cosine transformation or inverse discrete cosing transformation |
US5629882A (en) * | 1992-09-17 | 1997-05-13 | Sony Corporation | Discrete cosine transformation system and inverse discrete cosine transformation system, having simple structure and operable at high speed |
US6223195B1 (en) * | 1994-05-27 | 2001-04-24 | Hitachi, Ltd. | Discrete cosine high-speed arithmetic unit and related arithmetic unit |
US5805476A (en) * | 1995-11-01 | 1998-09-08 | Korea Telecommunication Authority | Very large scale integrated circuit for performing bit-serial matrix transposition operation |
US5864494A (en) * | 1996-08-08 | 1999-01-26 | Sharp Kabushiki Kaisha | Discrete cosine transformer and inverse discrete cosine transformer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080120098A1 (en) * | 2006-11-21 | 2008-05-22 | Nokia Corporation | Complexity Adjustment for a Signal Encoder |
US20210304357A1 (en) * | 2020-03-27 | 2021-09-30 | Alibaba Group Holding Limited | Method and system for video processing based on spatial or temporal importance |
US12039696B2 (en) * | 2020-03-27 | 2024-07-16 | Alibaba Group Holding Limited | Method and system for video processing based on spatial or temporal importance |
Also Published As
Publication number | Publication date |
---|---|
JP2004516760A (en) | 2004-06-03 |
WO2002051160A2 (en) | 2002-06-27 |
KR20030005199A (en) | 2003-01-17 |
CN1193621C (en) | 2005-03-16 |
WO2002051160A3 (en) | 2003-01-03 |
US6859815B2 (en) | 2005-02-22 |
CN1428051A (en) | 2003-07-02 |
EP1350395A2 (en) | 2003-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10678747B2 (en) | Video encoding and decoding using parallel processors | |
US8467448B2 (en) | Apparatus and method for fast intra/inter macro-block mode decision for video encoding | |
US6859815B2 (en) | Approximate inverse discrete cosine transform for scalable computation complexity video and still image decoding | |
KR100965704B1 (en) | 2D conversion for image and video coding | |
US8537895B2 (en) | Method and apparatus for parallel processing of in-loop deblocking filter for H.264 video compression standard | |
US6717988B2 (en) | Scalable MPEG-2 decoder | |
KR20030014716A (en) | Dynamic complexity prediction and regulation of mpeg2 decoding in a media processor | |
JP2010501911A (en) | Reducing errors during computation of inverse discrete cosine transform | |
JPH1175186A (en) | Scaled forward and backward discrete cosine transform and video compression and expansion system using the conversion | |
KR20040018501A (en) | Reduced complexity video decoding by reducing the IDCT computation on B-frames | |
US7130876B2 (en) | Systems and methods for efficient quantization | |
JP4425824B2 (en) | Fast implementation of video codec conversion | |
Ramkishor et al. | Real time implementation of MPEG-4 video decoder on ARM7TDMI | |
US20020172284A1 (en) | Scalable MPEG-2 video decoder with selective motion compensation | |
US6631163B1 (en) | Dynamic adaptation of complexity in an MPEG-2 scalable decoder | |
US5986709A (en) | Adaptive lossy IDCT for multitasking environment | |
US8861600B2 (en) | Method and system for dynamically configurable DCT/IDCT module in a wireless handset | |
US20070041653A1 (en) | System and method of quantization | |
JP2002516528A (en) | Encoding block organized data | |
US20050238241A1 (en) | Image compression apparatus generating and using assistant images for deblocking processing and a method thereof | |
JPH10116267A (en) | Arithmetic unit and information processor | |
US10531088B2 (en) | Encoder slice size control with cost estimation | |
Konstantinides | Key Components in the design of image and video compression ICs | |
JP2007129662A (en) | Image encoder | |
US20050276332A1 (en) | Method of communicating data within a coder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PHILIPS ELECTRONICS NORTH AMERICA CORPORATION, NEW Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRISHNAMACHARI, SANTHANA;PENG, SHAOMIN (SHARON);REEL/FRAME:011403/0303 Effective date: 20001206 |
|
AS | Assignment |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PHILIPS ELECTRONICS NORTH AMERICA CORPORATION;REEL/FRAME:015421/0191 Effective date: 20041201 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: IPG ELECTRONICS 503 LIMITED Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N.V.;REEL/FRAME:022203/0791 Effective date: 20090130 Owner name: IPG ELECTRONICS 503 LIMITED, GUERNSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KONINKLIJKE PHILIPS ELECTRONICS N.V.;REEL/FRAME:022203/0791 Effective date: 20090130 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: PENDRAGON WIRELESS LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IPG ELECTRONICS 503 LIMITED;REEL/FRAME:028594/0224 Effective date: 20120410 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20170222 |