US20020107349A1 - Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation - Google Patents
Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation Download PDFInfo
- Publication number
- US20020107349A1 US20020107349A1 US09/377,050 US37705099A US2002107349A1 US 20020107349 A1 US20020107349 A1 US 20020107349A1 US 37705099 A US37705099 A US 37705099A US 2002107349 A1 US2002107349 A1 US 2002107349A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- meth
- butylperoxy
- butyl
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 131
- 239000000853 adhesive Substances 0.000 title claims abstract description 47
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 47
- 239000007795 chemical reaction product Substances 0.000 title claims abstract description 17
- 230000015556 catabolic process Effects 0.000 title claims abstract description 10
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims abstract description 27
- 230000001939 inductive effect Effects 0.000 claims abstract description 19
- 125000003118 aryl group Chemical group 0.000 claims description 37
- 125000000217 alkyl group Chemical group 0.000 claims description 34
- -1 (meth)acryl Chemical group 0.000 claims description 31
- 125000000524 functional group Chemical group 0.000 claims description 22
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 claims description 18
- 239000004342 Benzoyl peroxide Substances 0.000 claims description 13
- 235000019400 benzoyl peroxide Nutrition 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 claims description 12
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 12
- 150000003254 radicals Chemical class 0.000 claims description 12
- 125000003342 alkenyl group Chemical group 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 125000005409 triarylsulfonium group Chemical group 0.000 claims description 9
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 8
- 125000004122 cyclic group Chemical group 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 8
- 150000002432 hydroperoxides Chemical class 0.000 claims description 8
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 8
- 150000002978 peroxides Chemical class 0.000 claims description 8
- 150000003457 sulfones Chemical group 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 125000004181 carboxyalkyl group Chemical group 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 150000002367 halogens Chemical class 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- 150000003462 sulfoxides Chemical group 0.000 claims description 6
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 claims description 5
- 125000005842 heteroatom Chemical group 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 claims description 4
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 claims description 4
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 claims description 4
- ZACVGCNKGYYQHA-UHFFFAOYSA-N 2-ethylhexoxycarbonyloxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOC(=O)OCC(CC)CCCC ZACVGCNKGYYQHA-UHFFFAOYSA-N 0.000 claims description 4
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 claims description 4
- IFXDUNDBQDXPQZ-UHFFFAOYSA-N 2-methylbutan-2-yl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CC IFXDUNDBQDXPQZ-UHFFFAOYSA-N 0.000 claims description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 4
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 4
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 claims description 4
- 229940106691 bisphenol a Drugs 0.000 claims description 4
- 239000001294 propane Substances 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 claims description 4
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 claims description 4
- YZKFSEGDRNNSMJ-UHFFFAOYSA-N (4-hydroxy-2-methylpentan-2-yl)oxy 4,4-dimethylpentaneperoxoate Chemical compound CC(O)CC(C)(C)OOOC(=O)CCC(C)(C)C YZKFSEGDRNNSMJ-UHFFFAOYSA-N 0.000 claims description 3
- BLKRGXCGFRXRNQ-SNAWJCMRSA-N (z)-3-carbonoperoxoyl-4,4-dimethylpent-2-enoic acid Chemical compound OC(=O)/C=C(C(C)(C)C)\C(=O)OO BLKRGXCGFRXRNQ-SNAWJCMRSA-N 0.000 claims description 3
- HSLFISVKRDQEBY-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)cyclohexane Chemical compound CC(C)(C)OOC1(OOC(C)(C)C)CCCCC1 HSLFISVKRDQEBY-UHFFFAOYSA-N 0.000 claims description 3
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 claims description 3
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 claims description 3
- AQKYLAIZOGOPAW-UHFFFAOYSA-N 2-methylbutan-2-yl 2,2-dimethylpropaneperoxoate Chemical compound CCC(C)(C)OOC(=O)C(C)(C)C AQKYLAIZOGOPAW-UHFFFAOYSA-N 0.000 claims description 3
- BIISIZOQPWZPPS-UHFFFAOYSA-N 2-tert-butylperoxypropan-2-ylbenzene Chemical compound CC(C)(C)OOC(C)(C)C1=CC=CC=C1 BIISIZOQPWZPPS-UHFFFAOYSA-N 0.000 claims description 3
- WSNMPAVSZJSIMT-UHFFFAOYSA-N COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 Chemical compound COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 WSNMPAVSZJSIMT-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 125000003302 alkenyloxy group Chemical group 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 150000001491 aromatic compounds Chemical group 0.000 claims description 3
- BXIQXYOPGBXIEM-UHFFFAOYSA-N butyl 4,4-bis(tert-butylperoxy)pentanoate Chemical compound CCCCOC(=O)CCC(C)(OOC(C)(C)C)OOC(C)(C)C BXIQXYOPGBXIEM-UHFFFAOYSA-N 0.000 claims description 3
- 125000005520 diaryliodonium group Chemical group 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- HARQWLDROVMFJE-UHFFFAOYSA-N ethyl 3,3-bis(tert-butylperoxy)butanoate Chemical compound CCOC(=O)CC(C)(OOC(C)(C)C)OOC(C)(C)C HARQWLDROVMFJE-UHFFFAOYSA-N 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 claims description 3
- 229940081974 saccharin Drugs 0.000 claims description 3
- 235000019204 saccharin Nutrition 0.000 claims description 3
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- RIPYNJLMMFGZSX-UHFFFAOYSA-N (5-benzoylperoxy-2,5-dimethylhexan-2-yl) benzenecarboperoxoate Chemical compound C=1C=CC=CC=1C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C1=CC=CC=C1 RIPYNJLMMFGZSX-UHFFFAOYSA-N 0.000 claims description 2
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 claims description 2
- AYMDJPGTQFHDSA-UHFFFAOYSA-N 1-(2-ethenoxyethoxy)-2-ethoxyethane Chemical compound CCOCCOCCOC=C AYMDJPGTQFHDSA-UHFFFAOYSA-N 0.000 claims description 2
- CDDDRVNOHLVEED-UHFFFAOYSA-N 1-cyclohexyl-3-[1-[[1-(cyclohexylcarbamoylamino)cyclohexyl]diazenyl]cyclohexyl]urea Chemical compound C1CCCCC1(N=NC1(CCCCC1)NC(=O)NC1CCCCC1)NC(=O)NC1CCCCC1 CDDDRVNOHLVEED-UHFFFAOYSA-N 0.000 claims description 2
- HQOVXPHOJANJBR-UHFFFAOYSA-N 2,2-bis(tert-butylperoxy)butane Chemical compound CC(C)(C)OOC(C)(CC)OOC(C)(C)C HQOVXPHOJANJBR-UHFFFAOYSA-N 0.000 claims description 2
- JGBAASVQPMTVHO-UHFFFAOYSA-N 2,5-dihydroperoxy-2,5-dimethylhexane Chemical compound OOC(C)(C)CCC(C)(C)OO JGBAASVQPMTVHO-UHFFFAOYSA-N 0.000 claims description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 claims description 2
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 claims description 2
- ZIDNXYVJSYJXPE-UHFFFAOYSA-N 2-methylbutan-2-yl 7,7-dimethyloctaneperoxoate Chemical compound CCC(C)(C)OOC(=O)CCCCCC(C)(C)C ZIDNXYVJSYJXPE-UHFFFAOYSA-N 0.000 claims description 2
- FSGAMPVWQZPGJF-UHFFFAOYSA-N 2-methylbutan-2-yl ethaneperoxoate Chemical compound CCC(C)(C)OOC(C)=O FSGAMPVWQZPGJF-UHFFFAOYSA-N 0.000 claims description 2
- NUIZZJWNNGJSGL-UHFFFAOYSA-N 2-phenylpropan-2-yl 2,2-dimethyloctaneperoxoate Chemical compound CCCCCCC(C)(C)C(=O)OOC(C)(C)c1ccccc1 NUIZZJWNNGJSGL-UHFFFAOYSA-N 0.000 claims description 2
- WFAUFYAGXAXBEG-UHFFFAOYSA-N 2-phenylpropan-2-yl 4,4-dimethylpentaneperoxoate Chemical compound CC(C)(C)CCC(=O)OOC(C)(C)C1=CC=CC=C1 WFAUFYAGXAXBEG-UHFFFAOYSA-N 0.000 claims description 2
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 claims description 2
- ODMBLKQTVUQJFT-UHFFFAOYSA-N 3,7-dimethyloct-6-enyl 2-methylprop-2-enoate Chemical compound CC(C)=CCCC(C)CCOC(=O)C(C)=C ODMBLKQTVUQJFT-UHFFFAOYSA-N 0.000 claims description 2
- QPBVYDIIQIYFQO-UHFFFAOYSA-N 3,7-dimethyloct-6-enyl prop-2-enoate Chemical compound CC(C)=CCCC(C)CCOC(=O)C=C QPBVYDIIQIYFQO-UHFFFAOYSA-N 0.000 claims description 2
- IKVYHNPVKUNCJM-UHFFFAOYSA-N 4-propan-2-ylthioxanthen-9-one Chemical compound S1C2=CC=CC=C2C(=O)C2=C1C(C(C)C)=CC=C2 IKVYHNPVKUNCJM-UHFFFAOYSA-N 0.000 claims description 2
- XKXGWYAQJRXDPI-UHFFFAOYSA-N 7-methyloctanoyl 7-methyloctaneperoxoate Chemical compound CC(C)CCCCCC(=O)OOC(=O)CCCCCC(C)C XKXGWYAQJRXDPI-UHFFFAOYSA-N 0.000 claims description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- JUIBLDFFVYKUAC-UHFFFAOYSA-N [5-(2-ethylhexanoylperoxy)-2,5-dimethylhexan-2-yl] 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)CCC(C)(C)OOC(=O)C(CC)CCCC JUIBLDFFVYKUAC-UHFFFAOYSA-N 0.000 claims description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Natural products CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 claims description 2
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- 125000003710 aryl alkyl group Chemical group 0.000 claims description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 claims description 2
- 239000012965 benzophenone Substances 0.000 claims description 2
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 2
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 2
- VBWIZSYFQSOUFQ-UHFFFAOYSA-N cyclohexanecarbonitrile Chemical compound N#CC1CCCCC1 VBWIZSYFQSOUFQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012955 diaryliodonium Substances 0.000 claims description 2
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 claims description 2
- QZYRMODBFHTNHF-UHFFFAOYSA-N ditert-butyl benzene-1,2-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1C(=O)OOC(C)(C)C QZYRMODBFHTNHF-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- NICWAKGKDIAMOD-UHFFFAOYSA-N ethyl 3,3-bis(2-methylbutan-2-ylperoxy)butanoate Chemical compound CCOC(=O)CC(C)(OOC(C)(C)CC)OOC(C)(C)CC NICWAKGKDIAMOD-UHFFFAOYSA-N 0.000 claims description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 claims description 2
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 239000011976 maleic acid Substances 0.000 claims description 2
- UICBCXONCUFSOI-UHFFFAOYSA-N n'-phenylacetohydrazide Chemical compound CC(=O)NNC1=CC=CC=C1 UICBCXONCUFSOI-UHFFFAOYSA-N 0.000 claims description 2
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 claims description 2
- 150000002825 nitriles Chemical class 0.000 claims description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 2
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 claims description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 claims description 2
- UKASIOIEWZDBIT-UHFFFAOYSA-N phenyl-(2,3,4-trimethylphenyl)methanone Chemical compound CC1=C(C)C(C)=CC=C1C(=O)C1=CC=CC=C1 UKASIOIEWZDBIT-UHFFFAOYSA-N 0.000 claims description 2
- YPVDWEHVCUBACK-UHFFFAOYSA-N propoxycarbonyloxy propyl carbonate Chemical compound CCCOC(=O)OOC(=O)OCCC YPVDWEHVCUBACK-UHFFFAOYSA-N 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 2
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 claims description 2
- MZGMQAMKOBOIDR-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCO MZGMQAMKOBOIDR-UHFFFAOYSA-N 0.000 claims 1
- VETIYACESIPJSO-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound OCCOCCOCCOC(=O)C=C VETIYACESIPJSO-UHFFFAOYSA-N 0.000 claims 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical class C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 claims 1
- BSAKKMQHOSYINC-UHFFFAOYSA-N 2-ethyl-2-(4-hydroxy-2-methylpentan-2-yl)peroxyhexanoic acid Chemical compound CCCCC(CC)(C(=O)O)OOC(C)(C)CC(C)O BSAKKMQHOSYINC-UHFFFAOYSA-N 0.000 claims 1
- PHIGUQOUWMSXFV-UHFFFAOYSA-N 2-methyl-2-[2-(2-methylbutan-2-ylperoxy)propan-2-ylperoxy]butane Chemical compound CCC(C)(C)OOC(C)(C)OOC(C)(C)CC PHIGUQOUWMSXFV-UHFFFAOYSA-N 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical class [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- NSGQRLUGQNBHLD-UHFFFAOYSA-N butan-2-yl butan-2-yloxycarbonyloxy carbonate Chemical compound CCC(C)OC(=O)OOC(=O)OC(C)CC NSGQRLUGQNBHLD-UHFFFAOYSA-N 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 125000001424 substituent group Chemical group 0.000 claims 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 claims 1
- 0 Cc1ccccc1.[1*]C(C)=C[2*].[3*]C.[4*]C Chemical compound Cc1ccccc1.[1*]C(C)=C[2*].[3*]C.[4*]C 0.000 description 19
- WOCGGVRGNIEDSZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical compound C=1C=C(O)C(CC=C)=CC=1C(C)(C)C1=CC=C(O)C(CC=C)=C1 WOCGGVRGNIEDSZ-UHFFFAOYSA-N 0.000 description 11
- 238000001723 curing Methods 0.000 description 11
- 239000000178 monomer Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 8
- 238000005821 Claisen rearrangement reaction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- AWLPPBSWOMXWGA-UHFFFAOYSA-N 2-[1,2,2-tris(carboxymethylsulfanyl)ethylsulfanyl]acetic acid Chemical compound OC(=O)CSC(SCC(O)=O)C(SCC(O)=O)SCC(O)=O AWLPPBSWOMXWGA-UHFFFAOYSA-N 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- DSCFFEYYQKSRSV-UHFFFAOYSA-N 1L-O1-methyl-muco-inositol Natural products COC1C(O)C(O)C(O)C(O)C1O DSCFFEYYQKSRSV-UHFFFAOYSA-N 0.000 description 4
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000003377 acid catalyst Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 3
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- IMYCVFRTNVMHAD-UHFFFAOYSA-N 1,1-bis(2-methylbutan-2-ylperoxy)cyclohexane Chemical compound CCC(C)(C)OOC1(OOC(C)(C)CC)CCCCC1 IMYCVFRTNVMHAD-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- ODBCKCWTWALFKM-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhex-3-yne Chemical compound CC(C)(C)OOC(C)(C)C#CC(C)(C)OOC(C)(C)C ODBCKCWTWALFKM-UHFFFAOYSA-N 0.000 description 2
- ULIKDJVNUXNQHS-UHFFFAOYSA-N 2-Propene-1-thiol Chemical group SCC=C ULIKDJVNUXNQHS-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 2
- XZSRTPRTLKOKCO-UHFFFAOYSA-N 2-prop-1-enoxyethenylbenzene Chemical class CC=COC=CC1=CC=CC=C1 XZSRTPRTLKOKCO-UHFFFAOYSA-N 0.000 description 2
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 125000005336 allyloxy group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical class I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000011417 postcuring Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 150000004053 quinones Chemical class 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- YJMUOPDZZMNVMR-UHFFFAOYSA-N (2,5-dioxopyrrol-1-yl)methyl acetate Chemical compound CC(=O)OCN1C(=O)C=CC1=O YJMUOPDZZMNVMR-UHFFFAOYSA-N 0.000 description 1
- ROLAGNYPWIVYTG-UHFFFAOYSA-N 1,2-bis(4-methoxyphenyl)ethanamine;hydrochloride Chemical compound Cl.C1=CC(OC)=CC=C1CC(N)C1=CC=C(OC)C=C1 ROLAGNYPWIVYTG-UHFFFAOYSA-N 0.000 description 1
- KOMNUTZXSVSERR-UHFFFAOYSA-N 1,3,5-tris(prop-2-enyl)-1,3,5-triazinane-2,4,6-trione Chemical compound C=CCN1C(=O)N(CC=C)C(=O)N(CC=C)C1=O KOMNUTZXSVSERR-UHFFFAOYSA-N 0.000 description 1
- BHPDNFUVYQFFNK-UHFFFAOYSA-N 1-(hydroxymethyl)pyrrole-2,5-dione Chemical compound OCN1C(=O)C=CC1=O BHPDNFUVYQFFNK-UHFFFAOYSA-N 0.000 description 1
- IPJGAEWUPXWFPL-UHFFFAOYSA-N 1-[3-(2,5-dioxopyrrol-1-yl)phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC(N2C(C=CC2=O)=O)=C1 IPJGAEWUPXWFPL-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical class CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- HIDBROSJWZYGSZ-UHFFFAOYSA-N 1-phenylpyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1 HIDBROSJWZYGSZ-UHFFFAOYSA-N 0.000 description 1
- SCZZNWQQCGSWSZ-UHFFFAOYSA-N 1-prop-2-enoxy-4-[2-(4-prop-2-enoxyphenyl)propan-2-yl]benzene Chemical compound C=1C=C(OCC=C)C=CC=1C(C)(C)C1=CC=C(OCC=C)C=C1 SCZZNWQQCGSWSZ-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- YGFLYIFQVUCTCU-UHFFFAOYSA-N 2-ethylhexoxy 2-methylbutan-2-yl carbonate Chemical compound CCCCC(CC)COOC(=O)OC(C)(C)CC YGFLYIFQVUCTCU-UHFFFAOYSA-N 0.000 description 1
- SAPGBCWOQLHKKZ-UHFFFAOYSA-N 6-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCOC(=O)C(C)=C SAPGBCWOQLHKKZ-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- 241001156002 Anthonomus pomorum Species 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- ROECVVIPSBGBIH-KFQUDJHMSA-N C1=CC=C(/C=C/COC2=CC=C(SC3=CC=C(OC/C=C/C4=CC=CC=C4)C=C3)C=C2)C=C1.C=CCOC1=CC=C(SC2=CC=C(OCC=C)C=C2)C=C1.CC(C)=CCOC1=CC=C(C(C)(CCC(=O)O)C2=CC=C(OCC=C(C)C)C=C2)C=C1.CC(C)=CCOC1=CC=CC=C1COCC1=CC=CC=C1OCC=C(C)C Chemical compound C1=CC=C(/C=C/COC2=CC=C(SC3=CC=C(OC/C=C/C4=CC=CC=C4)C=C3)C=C2)C=C1.C=CCOC1=CC=C(SC2=CC=C(OCC=C)C=C2)C=C1.CC(C)=CCOC1=CC=C(C(C)(CCC(=O)O)C2=CC=C(OCC=C(C)C)C=C2)C=C1.CC(C)=CCOC1=CC=CC=C1COCC1=CC=CC=C1OCC=C(C)C ROECVVIPSBGBIH-KFQUDJHMSA-N 0.000 description 1
- LINPMJJKLLTWIM-UHFFFAOYSA-N C=C(C)COC1=CC=C(S(=O)C2=CC=C(OCC(=C)C)C=C2)C=C1.C=C(C)COC1=CC=C2C=C(OCC(=C)C)C=CC2=C1.C=CCOC1=C2C=CC=CC2=C(OCC=C)C=C1.C=CCOC1=CC=C(C(C)(C)C2=CC=C(C(C)(C)C3=CC(OCC=C)=CC=C3)C=C2)C=C1.C=CCOC1=CC=C(CC2=CC=C(CC3=CC(OCC=C)=C(CC=C)C=C3)C=C2)C=C1CC=C.C=CCOC1=CC=C(S(=O)(=O)C2=CC=C(OCC=C)C=C2)C=C1.C=CCOC1=CC=C2C(=C1CC=C)C=CC(OCC=C)=C2CC=C Chemical compound C=C(C)COC1=CC=C(S(=O)C2=CC=C(OCC(=C)C)C=C2)C=C1.C=C(C)COC1=CC=C2C=C(OCC(=C)C)C=CC2=C1.C=CCOC1=C2C=CC=CC2=C(OCC=C)C=C1.C=CCOC1=CC=C(C(C)(C)C2=CC=C(C(C)(C)C3=CC(OCC=C)=CC=C3)C=C2)C=C1.C=CCOC1=CC=C(CC2=CC=C(CC3=CC(OCC=C)=C(CC=C)C=C3)C=C2)C=C1CC=C.C=CCOC1=CC=C(S(=O)(=O)C2=CC=C(OCC=C)C=C2)C=C1.C=CCOC1=CC=C2C(=C1CC=C)C=CC(OCC=C)=C2CC=C LINPMJJKLLTWIM-UHFFFAOYSA-N 0.000 description 1
- KKXQJRWIBJSRLK-AMKHCSIGSA-N C=CCOC1=C2C=CC=CC2=C(OCC=C)C=C1.C=CCOC1=CC=C(/C=C/C)C=C1OC.C=CCOC1=CC=C(OCC=C)C=C1.C=CCOC1=CC=CC(C)=C1.C=CCOC1=CC=CC(OCC=C)=C1.C=CCOC1=CC=CC=C1C1=C(OCC=C)C=CC=C1.C=CCOC1=CC=CC=C1CC=C Chemical compound C=CCOC1=C2C=CC=CC2=C(OCC=C)C=C1.C=CCOC1=CC=C(/C=C/C)C=C1OC.C=CCOC1=CC=C(OCC=C)C=C1.C=CCOC1=CC=CC(C)=C1.C=CCOC1=CC=CC(OCC=C)=C1.C=CCOC1=CC=CC=C1C1=C(OCC=C)C=CC=C1.C=CCOC1=CC=CC=C1CC=C KKXQJRWIBJSRLK-AMKHCSIGSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- VQDZSZYDIGQSIS-UHFFFAOYSA-N [4-(oxan-2-yloxy)phenyl]methyl 2-methylprop-2-enoate Chemical compound C1=CC(COC(=O)C(=C)C)=CC=C1OC1OCCCC1 VQDZSZYDIGQSIS-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 239000013466 adhesive and sealant Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- RSJLWBUYLGJOBD-UHFFFAOYSA-M diphenyliodanium;chloride Chemical compound [Cl-].C=1C=CC=CC=1[I+]C1=CC=CC=C1 RSJLWBUYLGJOBD-UHFFFAOYSA-M 0.000 description 1
- 238000007336 electrophilic substitution reaction Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N omega-Hydroxydodecanoic acid Natural products OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 description 1
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 1
- QUPCNWFFTANZPX-UHFFFAOYSA-M paramenthane hydroperoxide Chemical compound [O-]O.CC(C)C1CCC(C)CC1 QUPCNWFFTANZPX-UHFFFAOYSA-M 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003847 radiation curing Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
- C08F222/103—Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/062—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J4/00—Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
- C09J4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
Definitions
- the present invention is directed to radical-curable adhesive compositions which include a (meth)acrylate component; a thermal resistance-conferring component; and a radical cure-inducing composition. Reaction products of the compositions of this invention exhibit superior resistance to thermal degradation.
- Radical-curable adhesive compositions generally are well-known.
- anaerobic adhesives see e.g., R. D. Rich, “Anaerobic Adhesives” in Handbook of Adhesive Technology, 29, 467-79, A. Pizzi and K. L. Mittal, eds., Marcel Dekker, Inc., New York (1994) and references cited therein.
- radiation-curable adhesives see e.g., J. G. Woods, “Radiation Curable Adhesives” in Radiation Curing: Science and Technology, 333-98, S. P. Pappas, ed., Plenum Press, New York (1992).
- U.S. Pat. No. 3,988,299 refers to a heat curable composition having improved thermal properties, which includes certain acrylate monomers and maleimide compounds.
- U.S. Pat. No. 4,216,134 speaks to one-component anaerobic adhesive compositions which include ethylenically unsaturated diluent monomers (such as styrene, divinylbenzene, diallyl carbonates, diallyl maleate, diallyl phthalate, diallyl isophthalate and the like), prepolymers (such as 1,2-polybutadienes and copolymers thereof, isophthalic polymers, bisphenol A fumates, epoxy resins, polyallylvinyl ethers and the like) and triallyl cyanurate or triallyl isocyanurate as reaction components.
- ethylenically unsaturated diluent monomers such as styrene, divinylbenzene, diallyl carbonates, diallyl maleate, diallyl phthalate, diallyl isophthalate and the like
- prepolymers such as 1,2-polybutadienes and copolymers thereof, iso
- the '134 patent is at least a three component composition (in addition to its cure components) and requires a prepolymer which may be included in addition to or as a replacement for the ethylenically unsaturated diluent monomer.
- the prepolymer are given as “high vinyl 1,2-polybutadienes and copolymers thereof especially styrene; isophthalic polymers; bisphenol A fumates and other alkyls; epoxy resins; polyalkyl vinylethers and related polymers; alkylic resins based on polyfunctional ethers and esters and mixtures of two or more of these prepolymers.” (Col. 5, lines 32-39.)
- maleimide compounds While the addition to radical-curable adhesive compositions of such maleimide compounds to render them resistant to thermal degradation provides reaction products with acceptable performance, it would be desirable to find alternative compounds to include in such formulations. Moreover, in certain adhesive compositions, maleimides (which tend to be insoluble) often function to reduce radiation penetration thereby inhibiting photoinitated cure of acrylate-based compositions.
- U.S. Pat. No. 4,540,829 (Heffner) speaks to alkylated di and polycyclopentadiene diphenols.
- U.S. Pat. No. 5,495,051 (Wang) speaks to certain phenol alkyl ethers, their preparation and cure together with bismaleimides.
- U.S. Pat. No. 5,166,290 (Hayashi) describes a resin composition for composites that requires a bismaleimide mixture with certain allyl phenyl ethers.
- R 1 and R 2 are H, or one of R 1 and R 2 is H and the other is alkyl;
- R 3 and R 4 (which may be the same or different) are H, C 1-5 alkyl or C 1-5 alkenyl; or one of R 3 and R 4 may be —OR 5 or C 1-5 alkoxy or C 1-5 alkenyloxy, if R 2 is not methyl; and R 5 is selected from
- R 6 is C 15 alkyl
- R 7 , R 8 and R 9 may be the same or different and are H or C 1-5 alkyl.
- U.S. Pat. No. 5,369,200 (Schadeli) describes terpolymers of two different maleimide monomers and an olefinically unsaturated phenyl ether monomer in which the phenyl ether is defined by an acid cleavable group —OR 2 linked to a phenyl ring.
- Examples of such monomers are given as a terpolymer of 4-(2-tetrahydropyranyloxy) benzyl methacrylate, N-hydroxymethylmaleimide and N-(acetoxymethyl)maleimide.
- the terpolymers are used as positive resists with acid generating photocatalysts and therefore it is imperative that the OR 2 group be selected to be acid cleavable.
- the present invention meets the desire discussed above by providing radical-curable adhesive compositions, reaction products of which exhibit superior performance at elevated temperatures.
- the compositions include a (meth)acrylate component; a thermal resistance-conferring component; and a radical cure-inducing composition.
- polymerizable aromatic materials having at least one Claisen rearrangable functional group.
- Claisen rearrangable functional groups include allyloxy and allylthiol groups, where the oxygen and the sulfur, respectively, are bound to the aromatic ring.
- polymerizable aromatic materials should include at least two reactive functional groups, at least one of which is a Claisen rearrangable functional group.
- a reactive functional group other than a Claisen rearrangable one is also present on thermal resistance-conferring component, such a group may be selected from (meth)acrylate, vinyl, styryloxyl, and combinations thereof.
- Thermal resistance-conferring components capable of undergoing Claisen rearrangement include those aromatic materials within structure II below:
- Ar is an aromatic ring or ring system substituted with a Claisen rearrangable functional group, having at least one aromatic ring which may be joined or fused to additional rings of an aromatic or non-aromatic nature;
- A is O or S
- R 10 , R 11 and R 12 may be the same or different and are selected from H, alkyl (such as C 1-3 ), phenyl or substituted derivatives;
- R 13 and R 14 ma be the same or different and are selected from H, or A—Ch 2 —CR 12 ⁇ CR 11 R 12 , where A, R 10 , R 11 and R 12 are as defined above;
- n 1 or 2, provided that
- Z and Z′ are nor present when Y is H
- Z or Z 1 are present when Y is carbonyl, sulfoxide, or sulfone
- Z and Z 1 are present when Y is linear, branched, cyclic or polycyclic alkyl or alkenyl (such as C 1-60 ), or bisalkyl phenylene
- Z or Z 1 may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C 1-6 );
- Z or Z′ is present when Y is alkyl or alkenyl, and Z or Z′ may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C 1-6 ), and Z or Z 1 is not present when Y is carbonyl, sulfoxide, sulfone, heteroatoms (such as O or S) or a single bond.
- the invention also provides a process for preparing reaction products from the radical-curable adhesive compositions of the present invention, the steps of which include applying the composition to a desired substrate surface and exposing the coated substrate surface to conditions which are appropriate to effect cure thereof —e.g., exposure to conditions in which air is substantially excluded therefrom for anaerobic applications, exposure to radiation in the electromagnetic spectrum for photoinitated applications, oxygen in the atmosphere for oxygen triggered cure or heating for thermally activated cure.
- conditions which are appropriate to effect cure thereof e.g., exposure to conditions in which air is substantially excluded therefrom for anaerobic applications, exposure to radiation in the electromagnetic spectrum for photoinitated applications, oxygen in the atmosphere for oxygen triggered cure or heating for thermally activated cure.
- the invention provides the reaction products so-formed by the above-described process, which reaction products demonstrate superior thermal properties, such as resistance to degradation at elevated temperatures.
- FIG. 1 depicts break torque strength versus heat aging time at a temperature of 200° C. for a composition within the present invention [i.e., a TRIEGMA/DABPA blend, represented as (A/T)] compared to a control composition [PEGMA, represented as (P)].
- a composition within the present invention i.e., a TRIEGMA/DABPA blend, represented as (A/T)
- PEGMA represented as (P)
- FIG. 2 depicts a plot of prevailing torque strength versus heat aging time at a temperature of 200° C. for a composition within the scope of the present invention [i.e., a TRIEGMA/DABPA blend) represented as (A/T)] compared to a control composition [PEGMA, represented as (P)].
- a composition within the scope of the present invention i.e., a TRIEGMA/DABPA blend
- P control composition
- FIG. 3 depicts a plot of IR spectra of a composition within the scope of the present invention (i.e., DABPA/TRIEGMA blend) before heating (upper spectra) and after heating (lower spectra) at a temperature of 200° C. for a period of 1 hour.
- a composition within the scope of the present invention i.e., DABPA/TRIEGMA blend
- the present invention is directed to radical-curable adhesive compositions which include a (meth)acrylate component; a thermal resistance-conferring component as set forth herein to confer resistance to thermal degradation to reactions products of the compositions; and a radical cure-inducing composition.
- Reaction products of the compositions of this invention exhibit superior performance, particularly under elevated temperature conditions.
- H 2 C ⁇ CGCO 2 R 15 Within the (meth)acrylate component are a wide variety of materials represented by H 2 C ⁇ CGCO 2 R 15 , where G may be hydrogen, halogen or alkyl of 1 to about 4 carbon atoms, and R 15 may be selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl or aryl groups of 1 to about 16 carbon atoms, any of which may be optionally substituted or interrupted as the case may be with silane, silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulonate, sulfone and the like.
- G may be hydrogen, halogen or alkyl of 1 to about 4 carbon atoms
- R 15 may be selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl
- More specific (meth)acrylate monomers particularly desirable for use herein include polyethylene glycol di(meth)acrylates, bisphenol-A di(meth)acrylates, such as ethoxylated bisphenol-A (meth)acrylate (“EBIPA” or “EBIPMA”), and tetrahydrofuran (meth)acrylates and di(meth)acrylates, citronellyl acrylate and citronellyl methacrylate, hydroxypropyl (meth)acrylate, hexanediol di(meth)acrylate (“HDDA” or “HDDMA”), trimethylol propane tri(meth)acrylate, tetrahydrodicyclopentadienyl (meth)acrylate, ethoxylated trimethylol propane triacrylate (“ETTA”), triethylene glycol diacrylate and triethylene glycol dimethacrylate (“TRIEGMA”), and an acrylate ester corresponding to structure III as shown below:
- EBIPA eth
- R 16 may be selected from hydrogen, alkyl of 1 to about 4 carbon atoms, hydroxyalkyl of 1 to about 4 carbon atoms or
- R 17 may be selected from hydrogen, halogen, and alkyl of 1 to about 4 carbon atoms;
- R 18 may be selected from hydrogen, hydroxy and
- m is an integer equal to at least 1, e.g., from 1 to about 8 or higher, for instance, from 1 to about 4;
- n is an integer equal to at least 1, e.g., 1 to about 20 or more;
- v is 0 or 1.
- the (meth)acrylate component should be present in the inventive compositions in an amount within the range of from about 10 to about 90, such as about 50 parts per hundred (“phr”).
- polymerizable aromatic materials having at least one Claisen rearrangable functional group.
- Claisen rearrangable functional groups include allyloxy and allylthiol groups where the oxygen and the sulfur, respectively, are bound to the aromatic ring.
- such polymerizable aromatic materials should include at least two reactive functional groups, at least one of which is a Claisen rearrangable functional group.
- a reactive functional group other than a Claisen rearrangable one is also present on the thermal resistance conferring component, such a group may be selected from (meth)acrylate, vinyl, styryloxyl, and combinations thereof.
- thermal resistance-conferring component aromatic compounds, with or without heteroatoms in the ring structure.
- Thermal resistance-conferring components capable of undergoing Claisen rearrangement include those aromatic materials within structure II below:
- Ar is an aromatic compound substituted with a Claisen rearrangable functional group, having at least one aromatic ring which may be joined or fused to additional rings of an aromatic or non-aromatic nature;
- A is O or S
- R 10 , R 11 and R 12 may be the same or different and are selected from H, alkyl (such as C 1-3 ), phenyl or substituted derivatives;
- R 13 and R 14 may be the same or different and are selected from H, or A—CH 2 —CR ⁇ CR 1 R 2 , where A, R, R 1 and R 2 are as defined above;
- n 1 or 2, provided that
- Z and Z′ are not present when Y is H
- Z or Z 1 is present when Y is carbonyl, sulfoxide, or sulfone
- Z and Z′ are present when Y is linear, branched, cyclic or polycyclic alkyl or alkenyl (such as C 1-60 ), or bisalkyl phenylene
- Z or Z 1 may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C 1-6 );
- Z or Z 1 is present when Y is alkyl or alkenyl, and Z or Z′ may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C 1-6 ), and when Z or Z 1 is not present Y is carbonyl, sulfoxide, sulfone, heteroatoms (such as O or S) or a single bond.
- More specific representations of Y include:
- A, R, R 1 , and R 2 are as defined above, and m is an integer between 0 and 10, inclusive.
- the aromatic ring or ring system having at least one Claisen rearrangable functional group indicates that at least one of the ortho positions to that group is unfunctionalized—that is, substituted with a hydrogen group.
- the aromatic ring or ring system having at least one Claisen rearrangable functional group indicates that at least one of the ortho positions to that group is unfunctionalized—that is, substituted with a hydrogen group.
- neither ortho position to that group needs to be unfunctionalized provided the para position remains unfunctionalized.
- aromatic rings may be individual rings, or aromatic ring systems having multiple aromatic units joined in fused ring systems, joined in bi-aryl (such as, biphenyl) or bis-aryl (such as, bis-phenol A or bis-phenol F, or bis-phenol compounds joined by a heteroatom) systems, joined in cycloalaphatic-aromatic hybrid ring systems, or joined in oligomeric (such as, novalak-type) systems, examples of which are given below.
- bi-aryl such as, biphenyl
- bis-aryl such as, bis-phenol A or bis-phenol F, or bis-phenol compounds joined by a heteroatom
- cycloalaphatic-aromatic hybrid ring systems such as, novalak-type
- Structure IV below represents a class of thermal resistance-conferring components having a fused aromatic structure, a cycloaliphatic-joined aromatic structure, or a cycloaliphatic-aromatic fused/joined aromatic structure having at least one Claisen rearrangable functional group:
- R 10 , R 11 , R 12 , R 13 , and R 14 are as defined above.
- Fused aromatic ring structures include, among others, naphthalene, anthracene, phenanthracene and fluorene.
- Two or more Claissen rearrangable functional groups may be present on the structure as a whole, such as two groups on one aromatic ring, or where more than one aromatic ring is present in the structure, the groups may be arranged as appropriate. See e.g., U.S. Pat. No. 5,243,058 (Shiobara), the disclosure of which is hereby expressing incorporated herein by reference.
- references to structures V and VI shows oligomeric aromatic structures having Claisen rearrangable functional groups on each aromatic ring of the respective oligomer.
- R 10 , R 11 , R 12 , R 13 , and R 14 are as defined above, and o and p are integers between 1 and 1000, inclusive, such as between 5 and 200, inclusive.
- thermal resistance-conferring components having Claisen rearrangable functional groups include styryloxy compounds within structure I:
- R 1 and R 2 are H, or one of R′ and R 2 is H and the other is alkyl;
- R 3 and R 4 (which may be the same or different) are H, C 1-5 alkyl or C 1-5 alkenyl; or one of R 3 and R 4 may be —OR 5 or C 1-5 alkoxy or C 1-5 alkenyloxy, if R 2 is not methyl; and R 5 is selected from
- R 6 is C 1-5 alkyl
- R 7 , R 8 and R 9 may be the same or, different and are H or C 1-5 alkyl.
- thermal resistance-conferring components include
- n and m are as defined above
- the thermal resistance-conferring component should be present in the inventive compositions in an amount within the range of about 5 phr to about 90 phr, such as 50 phr.
- Radical cure-inducing compositions may be chosen from those which initiate cure through anaerobic mechanisms, photoinitiated (such as UV radiation and UV/VIS radiation) mechanisms, oxygen-activated mechanisms, thermally-activated mechanisms and the like.
- Anaerobic cure-inducing compositions useful in anaerobically-curable compositions in accordance with the present invention include a variety of components, such as amines (including amine oxides, sulfonamides and triazines).
- a desirable composition to induce cure in accordance with the present invention includes saccharin, toluidenes, such as N,N-diethyl-p-toluidene and N,N-dimethyl-o-toluidene, acetyl phenylhydrazine (“APH”), and maleic acid.
- APH acetyl phenylhydrazine
- maleic acid maleic acid
- other materials known to induce anaerobic cure may also be included or substituted therefor. See e.g., U.S. Pat. No.
- Anaerobically curable compositions in accordance with the present invention may also include other components common to conventional anaerobic adhesive formulation, such as free-radical initiators, free-radical accelerators, inhibitors of free-radical generation, as well as metal catalysts.
- compositions of the present invention including, without limitation, hydroperoxides, such as cumene hydroperoxide (“CHP”), para-menthane hydroperoxide, t-butyl hydroperoxide (“TBH”) and t-butyl perbenzoate.
- hydroperoxides such as cumene hydroperoxide (“CHP”), para-menthane hydroperoxide, t-butyl hydroperoxide (“TBH”) and t-butyl perbenzoate.
- Such peroxide compounds may be employed in the present invention in the range of from about 0.1 phr to about 10 phr, with about 0.5 phr to about 5 phr being desirable.
- Stabilizers and inhibitors such as phenols including hydroquinone and quinones
- Stabilizers and inhibitors may also be employed to control and prevent premature peroxide decomposition and polymerization of the composition of the present invention, as well as chelating agents [such as diethylenetriamine pentaacetic acid (“DTPA”) or the tetrasodium salt of ethylenediamine tetraacetic acid (“EDTA”)] to remove trace amounts of metal contaminants therefrom.
- DTPA diethylenetriamine pentaacetic acid
- EDTA tetrasodium salt of ethylenediamine tetraacetic acid
- Accelerators may be employed to enhance the rate of cure propagation, such as in amounts in the range of about 0.1 phr to about 5 phr, desirably about 1 phr to about 3 phr.
- the accelerator When the accelerator is in the form of a metal catalyst solution or a pre-mix, it may be used in an amount in the range of about 0.03 phr to about 0.1 phr.
- Photoinitiated cure-inducing compositions may be chosen from a variety of materials, such as those commercially available from Ciba Specialty Chemicals Corp., Tarrytown, N.Y. under the tradename “IRGACURE” and “DAROCUR”, such as “IRGACURE” 184 (1-hydroxycyclohexyl phenyl ketone), 907 (2-methyl-1-[4-(methylthio)phenyl]-2-morpholino propan-1-one), 369 [2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone], 500 (the combination of 1-hydroxy cyclohexyl phenyl ketone and benzophenone), 651 (2,2-dimethoxy-2-phenyl acetophenone), 1700 [the combination of bis(2,6-dimethoxybenzoyl-2,4-,4-trimethyl pentyl) phosphine oxide and 2-hydroxy-2-methyl-1
- CYRACURE tradename, such as “CYRACURE” UVI-6974 (mixed triaryl sulfonium hexafluoroantimonate salts) and UVI-6990 (mixed triaryl sulfonium hexafluorophosphate salts); and the visible light [blue] photoinitiators, dl-camphorquinone and “IRGACURE” 784DC.
- Additional photoinitiated cure-inducing compositions may be chosen from those available from Sartomer, Inc., Exton, Pa. under the tradenames “ESACURE” and “SARCAT”. Examples include “ESACURE” KB1 (benzil dimethyl ketal), “ESACURE” EB3 (mixture of benzoin and butyl ethers), “ESACURE” TZT (trimethylbenzophenone blend), “ESACURE” KIP100F ( ⁇ -hydroxy ketone), “ESACURE” KIP150 (polymeric hydroxy ketone), “ESACURE” KT37 (blend of “ESACURE” TZT and KIP150), “ESACURE” KT046 (blend of triphenyl phosphine oxide, “ESACURE” KIP150 and TZT), “ESACURE” X33 (blend of 2- and 4-isopropylthioxanthone, ethyl 4-(dimethyl amino) benzoate and “ESACURE” KB
- Photoinitiated cure-inducing compositions include triarylsulfonium and diaryliodonium salts containing non-nucleophilic counterions and aryl diazonium salts, examples of which include 4-methoxybenzenediazonium hexafluorophosphate, benzenediazonium tetrafluoroborate, diphenyl iodonium chloride, diphenyl iodonium hexafluorophosphate, 4,4-dioctyloxydiphenyl iodonium hexafluorophosphate, triphenylsulfonium tetrafluoroborate, diphenyltolylsulfonium hexafluorophosphate, phenylditolylsulfonium hexafluoroarsenate, and diphenyl-thiophenoxyphenylsulfonium hexafluoroantimonate.
- Thermally-activated latent curing compositions may be chosen from those available commercially from E.I. duPont and de Nemeurs, Wilmington, Del. under the tradenames “LUPERSOL”, “IDELANOX-F”, “ALPEROX-F”, “LUCIDOL”, “LUPERCO”, and “LUPEROX”.
- Examples include “LUPERSOL” DDM-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DDM-30 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DELTA-X-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DHD-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DFR (mixtures of peroxides and hydroperoxides), “LUPERSOL” DSW-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” 224 (2,4-pentanedione peroxide), “LUPERSOL” 221 [di(n-propyl)peroxydicarbonate], “LUPERSOL” 225 [di(s-butyl)peroxydicarbonate], “LUPERSOL” 225-M75 [di(s-butyl)peroxydicarbonate], “LUPERSOL
- thermally-activated latent curing compositions include those available commercially from DuPont under the “VAZO” tradename, such as “VAZO” 64 (azobis-isobutyrile nitrile), “VAZO” 67 (butane nitrile, 2-methyl, 2,2′-azobis) and “VAZO” 88 (cyclohexane carbonitrile, 1,1′-azobis).
- VAZO azobis-isobutyrile nitrile
- VAZO butane nitrile, 2-methyl, 2,2′-azobis
- VAZO cyclohexane carbonitrile, 1,1′-azobis
- the radical cure-inducing composition should be present generally within the range of from about 0.001 phr to about 10 phr, such as from about 1 phr to about 5 phr.
- compositions of the present invention may be prepared using conventional methods, well known to those persons of skill in the art.
- the components of the inventive compositions may be combined together with mixing in any convenient order consistent with the roles and functions the components are to perform in the compositions.
- Conventional mixing techniques using known apparatus may be employed.
- compositions of this invention may be applied to a variety of substrates, such as steel, brass, aluminum, zinc and other metals and alloys.
- substrates such as steel, brass, aluminum, zinc and other metals and alloys.
- synthetic or composite substrates may be used, provided an appropriate primer or activator composition is first applied thereon, if necessary.
- compositions of this invention may also be used to impregnate the pores of substrates constructed from such materials. See e.g., U.S. Pat. No. 5,618,857, the disclosure of which is hereby expressly incorporated herein by reference.
- A-stage curing of the compositions occurs ordinarily upon the generation of radicals, such as under anaerobic conditions—that is, upon the exclusion of air from the environment surrounding the applied composition.
- A-stage curing radical polymerization should occur at a lower temperature than the temperature at which B-stage curing, or Claisen rearrangement, occurs (from about ambient to about 100° C.)
- the radically-cured composition may be exposed to elevated temperature conditions, such as at least about 100° C., desirably within the range of from about 150° C. to about 250° C.
- a reaction time in the range of about 2-4 hours is generally suitable at a temperature of about 150° C. At higher temperatures shorter times may be employed, while at lower temperatures longer times may be required.
- Claisen rearrangement reactions occur in the presence of an acid catalyst.
- the acid catalyst is believed to promote B-stage curing as well.
- certain radically-cured adhesive compositions within the scope of the invention may undergo Claisen rearrangement even in the absence of an added acid catalyst, rendering the catalyst an optional component.
- A/T is representative of a composition within the scope of the present invention
- P is representative of a comparative anaerobic adhesive [such as polyethylene glycol dimethacrylate (“PEGMA”)], which iteself does not provide the improved physical properties discussed herein.
- PEGMA polyethylene glycol dimethacrylate
- the iodonium salt, UV9310c is a latent acid catalyst [a solution of bis(4-dodecylphenyl)iodonium hexafluoroantimonate in inert solvent], commercially available from General Electric Company.
- test method IS010964 The ability of the anaerobic adhesives to maintain adhesive strength on threaded fasteners after prolonged exposure to high temperatures was determined by torque strength testing, according to test method IS010964. Test specimens were assembled by applying adhesive to the threads of cleaned M10 steel bolts. When the threads of the bolts were wet with the adhesive, the corresponding nuts were applied. The assembled nut and bolt specimens were kept at room temperature for 24 hours to allow for complete curing. Five specimens were selected and the average break and prevailing torque strength determined using a calibrated torque analyzer. The remaining specimens were placed in an oven maintained at a temperature 200° C. and samples withdrawn each week over a six-week period.
- An equimolar blend of DABPA and ethoxylated trimethylolpropane triacrylate (“ETTA”) was prepared by dissolving 30.8 g of DABPA in 42.8 g of ETTA.
- Photocurable adhesive compositions were then prepared by mixing together the components shown in Table 3.
- the composition designated A/E is representative of a photocurable adhesive composition within the scope of the invention, whereas E is representative of acomparative photocurable adhesive composition.
- Thin film coatings approximately 0.5 mm in film thickness, of A/E and E were prepared on glass plates by means of a drawdown bar.
- the coatings were exposed to UV light from an Oriel lamp projector, fitted with a mercury arc lamp, for a time period of 60 seconds
- the incident light intensity was 30 mW/cm 2 in the wavelength range of about 300-400 nm.
- the liquid films hardened to clear solid films having tacky uncured top-layers.
- the process was repeated with a thin polyethylene film on the surface of the dispensed liquid films. After exposure, the polyethylene film was removed from the films to give completely dry clear solid films of compositions A/E and E, respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
The present invention is directed to radical-curable adhesive compositions which include a (meth)acrylate component; a thermal resistance-conferring component; and a radical cure-inducing composition. Reaction products of the compositions of the compositions of this invention exhibit superior resistance to thermal degradation.
Description
- 1. Field of the Invention
- The present invention is directed to radical-curable adhesive compositions which include a (meth)acrylate component; a thermal resistance-conferring component; and a radical cure-inducing composition. Reaction products of the compositions of this invention exhibit superior resistance to thermal degradation.
- 2. Brief Description of Related Technology
- Radical-curable adhesive compositions generally are well-known. In the context of anaerobic adhesives, see e.g., R. D. Rich, “Anaerobic Adhesives” inHandbook of Adhesive Technology, 29, 467-79, A. Pizzi and K. L. Mittal, eds., Marcel Dekker, Inc., New York (1994) and references cited therein. In the context of radiation-curable adhesives, see e.g., J. G. Woods, “Radiation Curable Adhesives” in Radiation Curing: Science and Technology, 333-98, S. P. Pappas, ed., Plenum Press, New York (1992).
- Uses of radical-curable adhesives are legion and new applications continue to be developed.
- In the past, many adhesives particularly anaerobic adhesives, have been rendered resistant to degradation at elevated temperatures by the inclusion of certain additives.
- For instance, U.S. Pat. No. 3,988,299 (Malofsky) refers to a heat curable composition having improved thermal properties, which includes certain acrylate monomers and maleimide compounds.
- L. J. Baccei and B. M. Malofsky, “Anaerobic Adhesives Containing Maleimides Having Improved Thermal Resistance” inAdhesive Chemicals, 589-601, L -H, Lee, ed., Plenum Publishing Corp. (1984) report the use of maleimides—specifically, N-phenyl maleimide, m-phenylene dimaleimide and a reaction product of methylene dianiline and methylene dianiline bismaleimide—to increase the thermal resistance of anaerobic adhesives which are fully cured at temperatures of at least 150° C.
- U.S. Pat. No. 4,216,134 (Brenner) speaks to one-component anaerobic adhesive compositions which include ethylenically unsaturated diluent monomers (such as styrene, divinylbenzene, diallyl carbonates, diallyl maleate, diallyl phthalate, diallyl isophthalate and the like), prepolymers (such as 1,2-polybutadienes and copolymers thereof, isophthalic polymers, bisphenol A fumates, epoxy resins, polyallylvinyl ethers and the like) and triallyl cyanurate or triallyl isocyanurate as reaction components. The '134 patent is at least a three component composition (in addition to its cure components) and requires a prepolymer which may be included in addition to or as a replacement for the ethylenically unsaturated diluent monomer. Examples of the prepolymer are given as “
high vinyl 1,2-polybutadienes and copolymers thereof especially styrene; isophthalic polymers; bisphenol A fumates and other alkyls; epoxy resins; polyalkyl vinylethers and related polymers; alkylic resins based on polyfunctional ethers and esters and mixtures of two or more of these prepolymers.” (Col. 5, lines 32-39.) - While the addition to radical-curable adhesive compositions of such maleimide compounds to render them resistant to thermal degradation provides reaction products with acceptable performance, it would be desirable to find alternative compounds to include in such formulations. Moreover, in certain adhesive compositions, maleimides (which tend to be insoluble) often function to reduce radiation penetration thereby inhibiting photoinitated cure of acrylate-based compositions.
- U.S. Pat. No. 4,540,829 (Heffner) speaks to alkylated di and polycyclopentadiene diphenols.
- U.S. Pat. No. 5,495,051 (Wang) speaks to certain phenol alkyl ethers, their preparation and cure together with bismaleimides.
- U.S. Pat. No. 5,166,290 (Hayashi) describes a resin composition for composites that requires a bismaleimide mixture with certain allyl phenyl ethers.
- U.S. Patent No. 5,084,490 (McArdle) and U.S. Pat. No. 5,141,970 (McArdle) describe polyfunctional cationically polymerizable styryloxy compounds, curable compositions including such styryloxy compounds and methods of forming high-temperature resistant polymers therefrom. These compounds may be described in more detail with reference to structure I:
-
- where R6 is C15 alkyl, and R7, R8 and R9 may be the same or different and are H or C1-5 alkyl.
- These cationically curable propenyloxystyrene compounds possess outstanding thermal and mechanical properties in their cured state. To reach the cured state, the compounds undergo a 2-stage curing process involving an initial acid catalyzed addition polymerization or copolymerization of the styrene group (called A-stage polymerization), followed by a heat-triggered, post-curing reaction of the propenyloxyphenyl group (called B-stage polymerization). During the post-curing reaction, the A-stage polymer rearranges to form a reactive phenolic polymer, which spontaneously reacts with the propenyloxy group through an electrophilic substitution reaction. This results in the formation of a cross-linked polymer that exhibits a high decomposition temperature (“Td”) [Td>400° C., as measured by thermal gravimetric analysis (“TGA”)], a high glass transition (“Tg”) [T g>300° C., as measured by dynamic mechanical analysis (“DMA”)] and good adhesion. See also J. Woods et al., “Alkenyloxy Styrene Monomers for High-Temperature Adhesives and Sealants” in Photopolymerization, ch. 9, pp. 107-20 (1997).
- While this information describes styryloxy and propenyloxystyrene compounds and suggests their usefulness as adhesives, sealants and/or coatings and/or in compositions destined for such use, their use to confer resistance to thermal degradation on such compositions, particularly (meth)acrylate-containing radical-curable adhesive compostions, remained unknown until the discovery of the invention described herein.
- U.S. Pat. No. 5,369,200 (Schadeli) describes terpolymers of two different maleimide monomers and an olefinically unsaturated phenyl ether monomer in which the phenyl ether is defined by an acid cleavable group —OR2 linked to a phenyl ring. Examples of such monomers are given as a terpolymer of 4-(2-tetrahydropyranyloxy) benzyl methacrylate, N-hydroxymethylmaleimide and N-(acetoxymethyl)maleimide. The terpolymers are used as positive resists with acid generating photocatalysts and therefore it is imperative that the OR2 group be selected to be acid cleavable.
- U.S. Pat. Nos. 4,387,204 (Zahir) and U.S. Pat. No. 4,468,524 (Zahir) describe alkenylphenyl substituted acrylates or methacrylates and cross-linkable compositions thereof.
- Notwithstanding the state-of-the-technology, there is an on-going search for additives to improve the thermal performance of reaction products of radical-curable adhesives. In addition, it would be desirable to provide alternatives, replacements and/or supplements for maleimide-type materials for improving the resistance to thermal degradation of reaction products of radical-curable adhesive compositions.
- In particular, it would be desirable to provide additives that tend to be soluble which would lead to adhesive compositions having improved homogenity.
- The present invention meets the desire discussed above by providing radical-curable adhesive compositions, reaction products of which exhibit superior performance at elevated temperatures. The compositions include a (meth)acrylate component; a thermal resistance-conferring component; and a radical cure-inducing composition.
- Within the thermal resistance-conferring component are polymerizable aromatic materials having at least one Claisen rearrangable functional group. Such Claisen rearrangable functional groups include allyloxy and allylthiol groups, where the oxygen and the sulfur, respectively, are bound to the aromatic ring. Desirably, such polymerizable aromatic materials should include at least two reactive functional groups, at least one of which is a Claisen rearrangable functional group. In the situation where a reactive functional group other than a Claisen rearrangable one is also present on thermal resistance-conferring component, such a group may be selected from (meth)acrylate, vinyl, styryloxyl, and combinations thereof.
-
- where Ar is an aromatic ring or ring system substituted with a Claisen rearrangable functional group, having at least one aromatic ring which may be joined or fused to additional rings of an aromatic or non-aromatic nature;
- A is O or S;
- R10 , R11 and R12 may be the same or different and are selected from H, alkyl (such as C1-3), phenyl or substituted derivatives;
- R13 and R14 ma be the same or different and are selected from H, or A—Ch2—CR12═CR11R12, where A, R10, R11 and R12 are as defined above;
- n is 1 or 2, provided that
- when n is 1, Z and Z′ are nor present when Y is H, Z or Z1 are present when Y is carbonyl, sulfoxide, or sulfone, and Z and Z1 are present when Y is linear, branched, cyclic or polycyclic alkyl or alkenyl (such as C1-60 ), or bisalkyl phenylene, and Z or Z1 may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C1-6); and
- when n is 2, Z or Z′ is present when Y is alkyl or alkenyl, and Z or Z′ may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C1-6), and Z or Z1 is not present when Y is carbonyl, sulfoxide, sulfone, heteroatoms (such as O or S) or a single bond.
- The invention also provides a process for preparing reaction products from the radical-curable adhesive compositions of the present invention, the steps of which include applying the composition to a desired substrate surface and exposing the coated substrate surface to conditions which are appropriate to effect cure thereof —e.g., exposure to conditions in which air is substantially excluded therefrom for anaerobic applications, exposure to radiation in the electromagnetic spectrum for photoinitated applications, oxygen in the atmosphere for oxygen triggered cure or heating for thermally activated cure.
- Also, the invention provides the reaction products so-formed by the above-described process, which reaction products demonstrate superior thermal properties, such as resistance to degradation at elevated temperatures.
- The present invention will be more fully appreciated by a reading of the section entitled, “Detailed Description of the Invention”, together with the illustrative examples which follow thereafter and the figures.
- FIG. 1 depicts break torque strength versus heat aging time at a temperature of 200° C. for a composition within the present invention [i.e., a TRIEGMA/DABPA blend, represented as (A/T)] compared to a control composition [PEGMA, represented as (P)].
- FIG. 2 depicts a plot of prevailing torque strength versus heat aging time at a temperature of 200° C. for a composition within the scope of the present invention [i.e., a TRIEGMA/DABPA blend) represented as (A/T)] compared to a control composition [PEGMA, represented as (P)].
- FIG. 3 depicts a plot of IR spectra of a composition within the scope of the present invention (i.e., DABPA/TRIEGMA blend) before heating (upper spectra) and after heating (lower spectra) at a temperature of 200° C. for a period of 1 hour.
- As noted above, the present invention is directed to radical-curable adhesive compositions which include a (meth)acrylate component; a thermal resistance-conferring component as set forth herein to confer resistance to thermal degradation to reactions products of the compositions; and a radical cure-inducing composition. Reaction products of the compositions of this invention exhibit superior performance, particularly under elevated temperature conditions.
- Within the (meth)acrylate component are a wide variety of materials represented by H2C═CGCO2R15, where G may be hydrogen, halogen or alkyl of 1 to about 4 carbon atoms, and R15 may be selected from alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl or aryl groups of 1 to about 16 carbon atoms, any of which may be optionally substituted or interrupted as the case may be with silane, silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulonate, sulfone and the like.
- More specific (meth)acrylate monomers particularly desirable for use herein include polyethylene glycol di(meth)acrylates, bisphenol-A di(meth)acrylates, such as ethoxylated bisphenol-A (meth)acrylate (“EBIPA” or “EBIPMA”), and tetrahydrofuran (meth)acrylates and di(meth)acrylates, citronellyl acrylate and citronellyl methacrylate, hydroxypropyl (meth)acrylate, hexanediol di(meth)acrylate (“HDDA” or “HDDMA”), trimethylol propane tri(meth)acrylate, tetrahydrodicyclopentadienyl (meth)acrylate, ethoxylated trimethylol propane triacrylate (“ETTA”), triethylene glycol diacrylate and triethylene glycol dimethacrylate (“TRIEGMA”), and an acrylate ester corresponding to structure III as shown below:
-
- R17 may be selected from hydrogen, halogen, and alkyl of 1 to about 4 carbon atoms;
-
- m is an integer equal to at least 1, e.g., from 1 to about 8 or higher, for instance, from 1 to about 4;
- n is an integer equal to at least 1, e.g., 1 to about 20 or more; and
- v is 0 or 1.
- Of course, combinations of these (meth)acrylate monomers may also be used.
- The (meth)acrylate component should be present in the inventive compositions in an amount within the range of from about 10 to about 90, such as about 50 parts per hundred (“phr”).
- Within the thermal resistance-conferring component are polymerizable aromatic materials having at least one Claisen rearrangable functional group. Such Claisen rearrangable functional groups include allyloxy and allylthiol groups where the oxygen and the sulfur, respectively, are bound to the aromatic ring. Desirably, such polymerizable aromatic materials should include at least two reactive functional groups, at least one of which is a Claisen rearrangable functional group. In the situation where a reactive functional group other than a Claisen rearrangable one is also present on the thermal resistance conferring component, such a group may be selected from (meth)acrylate, vinyl, styryloxyl, and combinations thereof.
- Within the thermal resistance-conferring component are aromatic compounds, with or without heteroatoms in the ring structure.
-
- where Ar is an aromatic compound substituted with a Claisen rearrangable functional group, having at least one aromatic ring which may be joined or fused to additional rings of an aromatic or non-aromatic nature;
- A is O or S;
- R10, R11 and R12 may be the same or different and are selected from H, alkyl (such as C1-3), phenyl or substituted derivatives;
- R13 and R14 may be the same or different and are selected from H, or A—CH2—CR═CR1R2, where A, R, R1 and R2 are as defined above;
- n is 1 or 2, provided that
- when n is 1, Z and Z′ are not present when Y is H, Z or Z1 is present when Y is carbonyl, sulfoxide, or sulfone, and Z and Z′ are present when Y is linear, branched, cyclic or polycyclic alkyl or alkenyl (such as C1-60), or bisalkyl phenylene, and Z or Z1 may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C1-6); and
- when n is 2, Z or Z1 is present when Y is alkyl or alkenyl, and Z or Z′ may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl (such as C1-6), and when Z or Z1 is not present Y is carbonyl, sulfoxide, sulfone, heteroatoms (such as O or S) or a single bond.
-
- where A, R, R1, and R2 are as defined above, and m is an integer between 0 and 10, inclusive.
- In addition, the aromatic ring or ring system having at least one Claisen rearrangable functional group indicates that at least one of the ortho positions to that group is unfunctionalized—that is, substituted with a hydrogen group. Alternatively, in the case of six-membered aromatic rings or ring systems including at least one six-membered aromatic ring, neither ortho position to that group needs to be unfunctionalized provided the para position remains unfunctionalized.
- These aromatic rings may be individual rings, or aromatic ring systems having multiple aromatic units joined in fused ring systems, joined in bi-aryl (such as, biphenyl) or bis-aryl (such as, bis-phenol A or bis-phenol F, or bis-phenol compounds joined by a heteroatom) systems, joined in cycloalaphatic-aromatic hybrid ring systems, or joined in oligomeric (such as, novalak-type) systems, examples of which are given below.
-
- where A, R10, R11, R12, R13, and R14 are as defined above.
- Fused aromatic ring structures include, among others, naphthalene, anthracene, phenanthracene and fluorene.
- Two or more Claissen rearrangable functional groups may be present on the structure as a whole, such as two groups on one aromatic ring, or where more than one aromatic ring is present in the structure, the groups may be arranged as appropriate. See e.g., U.S. Pat. No. 5,243,058 (Shiobara), the disclosure of which is hereby expressing incorporated herein by reference.
-
- where A, R10, R11, R12, R13, and R14 are as defined above, and o and p are integers between 1 and 1000, inclusive, such as between 5 and 200, inclusive.
-
-
- where R6 is C1-5 alkyl, and R7, R8 and R9 may be the same or, different and are H or C1-5 alkyl.
-
-
-
- The thermal resistance-conferring component should be present in the inventive compositions in an amount within the range of about 5 phr to about 90 phr, such as 50 phr.
- Radical cure-inducing compositions may be chosen from those which initiate cure through anaerobic mechanisms, photoinitiated (such as UV radiation and UV/VIS radiation) mechanisms, oxygen-activated mechanisms, thermally-activated mechanisms and the like.
- Anaerobic cure-inducing compositions useful in anaerobically-curable compositions in accordance with the present invention include a variety of components, such as amines (including amine oxides, sulfonamides and triazines). A desirable composition to induce cure in accordance with the present invention includes saccharin, toluidenes, such as N,N-diethyl-p-toluidene and N,N-dimethyl-o-toluidene, acetyl phenylhydrazine (“APH”), and maleic acid. Of course, other materials known to induce anaerobic cure may also be included or substituted therefor. See e.g., U.S. Pat. No. 3,218,305 (Krieble), U.S. Pat. No. 4,180,640 (Melody), U.S. Pat. No. 4,287,330 (Rich) and U.S. Pat. NO. 4,321,349 (Rich). Quinones, such as napthoquinone and anthraquinone, may also be included to scavenge free radicals that may form.
- Anaerobically curable compositions in accordance with the present invention may also include other components common to conventional anaerobic adhesive formulation, such as free-radical initiators, free-radical accelerators, inhibitors of free-radical generation, as well as metal catalysts.
- A number of well-known initiators of free-radical polymerization may be incorporated into compositions of the present invention including, without limitation, hydroperoxides, such as cumene hydroperoxide (“CHP”), para-menthane hydroperoxide, t-butyl hydroperoxide (“TBH”) and t-butyl perbenzoate.
- Such peroxide compounds may be employed in the present invention in the range of from about 0.1 phr to about 10 phr, with about 0.5 phr to about 5 phr being desirable.
- Stabilizers and inhibitors (such as phenols including hydroquinone and quinones) may also be employed to control and prevent premature peroxide decomposition and polymerization of the composition of the present invention, as well as chelating agents [such as diethylenetriamine pentaacetic acid (“DTPA”) or the tetrasodium salt of ethylenediamine tetraacetic acid (“EDTA”)] to remove trace amounts of metal contaminants therefrom.
- Accelerators may be employed to enhance the rate of cure propagation, such as in amounts in the range of about 0.1 phr to about 5 phr, desirably about 1 phr to about 3 phr. When the accelerator is in the form of a metal catalyst solution or a pre-mix, it may be used in an amount in the range of about 0.03 phr to about 0.1 phr.
- Other well-known additives such as thickeners, plasticizers, fillers, and the like may be incorporated into the inventive compositions as seen desirable the art-skilled person.
- Photoinitiated cure-inducing compositions may be chosen from a variety of materials, such as those commercially available from Ciba Specialty Chemicals Corp., Tarrytown, N.Y. under the tradename “IRGACURE” and “DAROCUR”, such as “IRGACURE” 184 (1-hydroxycyclohexyl phenyl ketone), 907 (2-methyl-1-[4-(methylthio)phenyl]-2-morpholino propan-1-one), 369 [2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone], 500 (the combination of 1-hydroxy cyclohexyl phenyl ketone and benzophenone), 651 (2,2-dimethoxy-2-phenyl acetophenone), 1700 [the combination of bis(2,6-dimethoxybenzoyl-2,4-,4-trimethyl pentyl) phosphine oxide and 2-hydroxy-2-methyl-1-phenyl-propan-1-one] and “DAROCUR” 1173 (2-hydroxy-2-methyl-1- phenyl-1-propane) and 4265 (the combination of 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide and 2-hydroxy 2-methyl-1-phenyl-propan-1-one); photoinitiators available commercially from Union Carbide Chemicals and Plastics Co., Inc., Danbury, Conn. under the “CYRACURE” tradename, such as “CYRACURE” UVI-6974 (mixed triaryl sulfonium hexafluoroantimonate salts) and UVI-6990 (mixed triaryl sulfonium hexafluorophosphate salts); and the visible light [blue] photoinitiators, dl-camphorquinone and “IRGACURE” 784DC.
- Additional photoinitiated cure-inducing compositions may be chosen from those available from Sartomer, Inc., Exton, Pa. under the tradenames “ESACURE” and “SARCAT”. Examples include “ESACURE” KB1 (benzil dimethyl ketal), “ESACURE” EB3 (mixture of benzoin and butyl ethers), “ESACURE” TZT (trimethylbenzophenone blend), “ESACURE” KIP100F (α-hydroxy ketone), “ESACURE” KIP150 (polymeric hydroxy ketone), “ESACURE” KT37 (blend of “ESACURE” TZT and KIP150), “ESACURE” KT046 (blend of triphenyl phosphine oxide, “ESACURE” KIP150 and TZT), “ESACURE” X33 (blend of 2- and 4-isopropylthioxanthone, ethyl 4-(dimethyl amino) benzoate and “ESACURE” TZT], “SARCAT” CD 1010 [triaryl sulfonium hexafluoroantimonate (50% in propylene carbonate)], “SARCAT” DC 1011 [triaryl sulfonium hexafluorophosphate (50% n-propylene carbonate)], “SARCAT” DC 1012 (diaryl iodonium hexafluoroantimonate), and “SARCAT” K185 [triaryl sulfonium hexafluorophosphate (50% in propylene carbonate)].
- Photoinitiated cure-inducing compositions include triarylsulfonium and diaryliodonium salts containing non-nucleophilic counterions and aryl diazonium salts, examples of which include 4-methoxybenzenediazonium hexafluorophosphate, benzenediazonium tetrafluoroborate, diphenyl iodonium chloride, diphenyl iodonium hexafluorophosphate, 4,4-dioctyloxydiphenyl iodonium hexafluorophosphate, triphenylsulfonium tetrafluoroborate, diphenyltolylsulfonium hexafluorophosphate, phenylditolylsulfonium hexafluoroarsenate, and diphenyl-thiophenoxyphenylsulfonium hexafluoroantimonate.
- Of course, combinations of such photoinitiated cure-inducing compositions may be used as deemed appropriate by those of ordinary skill in the art.
- Thermally-activated latent curing compositions may be chosen from those available commercially from E.I. duPont and de Nemeurs, Wilmington, Del. under the tradenames “LUPERSOL”, “IDELANOX-F”, “ALPEROX-F”, “LUCIDOL”, “LUPERCO”, and “LUPEROX”.
- Examples include “LUPERSOL” DDM-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DDM-30 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DELTA-X-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DHD-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” DFR (mixtures of peroxides and hydroperoxides), “LUPERSOL” DSW-9 (mixtures of peroxides and hydroperoxides), “LUPERSOL” 224 (2,4-pentanedione peroxide), “LUPERSOL” 221 [di(n-propyl)peroxydicarbonate], “LUPERSOL” 225 [di(s-butyl)peroxydicarbonate], “LUPERSOL” 225-M75 [di(s-butyl)peroxydicarbonate], “LUPERSOL” 225-M60 [di(s-butyl)peroxydicarbonate], “LUPERSOL” 223 [di(2-ethylhexyl)peroxydicarbonate], “LUPERSOL” 223-M75 [di(2-ethylhexyl)peroxydicarbonate], “LUPERSOL” 223-M40 [di(2-ethylhexyl)peroxydicarbonate], “LUPERSOL” 219-M60 (diisononanoyl peroxide), “LUCIDOL” 98 (benzoyl peroxide), “LUCIDOL” 78 (benzoyl peroxide), “LUCIDOL” 70 (benzoyl peroxide), “LUPERCO” AFR-400 (benzoyl peroxide), “LUPERCO” AFR-250 (benzoyl peroxide), “LUPERCO” AFR-500 (benzoyl peroxide), “LUPERCO” ANS (benzoyl peroxide), “LUPERCO” ANS-P (benzoyl peroxide), “LUPERCO” ATC (benzoyl peroxide), “LUPERCO” AST (benzoyl peroxide), “LUPERCO” AA (benzoyl peroxide), “LUPERCO” ACP (benzoyl peroxide), “LUPERSOL” 188M75 (α-cumylperoxy neodecanoate), “LUPERSOL” 688T50 (1,1-dimethyl-3-hydroxy-butyl peroxyneoheptanoate), “LUPERSOL” 688M50 (1,1-dimethyl-3-hydroxy-butyl peroxyneoheptanoate), “LUPERSOL” 288M75 (α-cumyl peroxyneoheptanoate), “LUPERSOL” 546M75 (t-amylperoxy neodecanoate), “LUPERSOL” 10 (t-butylperoxy neodecanoate), “LUPERSOL” 10M75 (t-butylperoxy neodecanoate), “LUPERSOL” 554M50 (t-amylperoxypivalate), “LUPERSOL” 554M75 (t-amylperoxypivalate), “LUPERSOL” 11 (t-butylperoxypivalate), “LUPERSOL” 665T50 (1-1-dimethyl-3-hydroxy-butylperoxy-2-ethylhexanoate), “LUPERSOL” 665M50 (1-1-dimethyl-3-hydroxy-butylperoxy-2-ethylhexanoate), “LUPERSOL” 256 [2,5-dimethyl-2,5-di(2-ethylhexanoyl peroxy) hexane], “LUPERSOL” 575 (t-amylperoxy-2-ethyl-hexanoate), “LUPERSOL” 575P75 (t-amylperoxy-2-ethyl-hexanoate), “LUPERSOL” 575M75 (t-amylperoxy-2-ethyl-hexanoate), t-BUTYL PEROCTOATE (t-butylperoxy-2-ethylhexanoate), “LUPERSOL” PMS (t-butylperoxy-2-ethylhexanoate), “LUPERSOL” PDO (t-butylperoxy-2-ethylhexanoate), “LUPERSOL” 80 (t-butyl peroxyisobutyrate), “LUPERSOL” PMA (t-butyl peroxymaleic acid), “LUPERCO” PMA-25 (t-butyl peroxymaleic acid), “LUPERSOL” 70 (t-butyl peroxyacetate), “LUPERSOL” 75-M (t-butyl peroxyacetate), LUPERSOL” 76-M (t-butyl peroxyacetate), “LUPERSOL” 555M60 (t-amyl peroxy-acetate), “LUPERSOL” KDB (di-t-butyl diperoxyphthalate), “LUPERSOL” TBIC-M75 (OO-t-butyl-O-isopropyl monoperoxycarbonate), “LUPEROX” 118 [2,5-dimethyl-2,5-di(benzoylperoxy) hexane], “LUPERSOL” TBEC [OO-t-butyl-O-(2-ethylhexyl) monoperoxycarbonate], “LUPERSOL” TAEC [OO-t-amyl-O-(2-ethylhexyl) monoperoxycarbonate], “LUPEROX” 500R (dicumyl peroxide), “LUPEROX” 500T (dicumyl peroxide), “LUPERCO” 500-40C (dicumyl peroxide), “LUPERCO” 500-40E (dicumyl peroxide), “LUPERCO” 500-SRK (dicumyl peroxide), “LUPERSOL” 101 [2,5-dimethyl-2,5-di-(t-butylperoxy) hexane], “LUPERSOL” 101-XL [2,5-dimethyl-2,5-di-(t-butylperoxy) hexane], “LUPERCO” 101-P20 [2,5-dimethyl-2,5-di-(t-butylperoxy) hexane], “LUPERSOL” 801 (t-butyl cumyl peroxide), “LUPERCO” 801-XL (t-butyl cumyl peroxide), “LUPEROX” 802 [αα-bis(t-butylperoxy)diisopropylbenzene], “LUPERCO” 802-40KE [αα-bis (t-butylperoxy)diisopropylbenzene], “LUPERSOL” 130 [2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3], “LUPERCO” 130-XL [2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3], “LUPEROX” 2,5-2,5 (2,5-dihydro-peroxy-2,5-dimethylhexane), “LUPERSOL” 230 [n-butyl-4,4-di-(t-butylperoxy)valerate], “LUPERCO” 230-XL [n-butyl-4,4-di-(t-butylperoxy)valerate], “LUPERSOL” 231 [1,1-di(t-butylperoxy)-3,3,5-trimethyl cyclohexane], “LUPERCO” 231-XL [1,1-di(t-butylperoxy) 3,3,5-trimethyl cyclohexane], “LUPERSOL” 231-P75 [1,1-di(t-butylperoxy) 3,3,5-trimethyl cyclohexane], “LUPERCO” 231-SRL [1,1-di(t-butylperoxy)-3,3,5-trimethyl cyclohexane], “LUPERSOL” 331-80B [1,1-di(t-butylperoxy)cyclohexane], “LUPERCO” 331-XL [1,1-di(t-butylperoxy)cyclohexane], “LUPERSOL” 531-80B [1,1-di(t-amylperoxy)cyclohexane], “LUPERSOL” 531-80M [1,1-di(t-amylperoxy)cyclohexane], “LUPERSOL” 220-D50 [2,2-di(t-butylperoxy)butane], “LUPERSOL” 233-M75 [ethyl-3,3-di(t-butylperoxy)butyrate], “LUPERCO” 233-XL [ethyl-3,3-di(t-butylperoxy)butyrate], “LUPERSOL” P-31 [2,2-di-(t-amylperoxy) propane], “LUPERSOL” P-33 [2,2-di-(t-amylperoxy) propane], and “LUPERSOL” 553-M75 [ethyl 3,3-di(t-amylperoxy)butyrate].
- Other thermally-activated latent curing compositions include those available commercially from DuPont under the “VAZO” tradename, such as “VAZO” 64 (azobis-isobutyrile nitrile), “VAZO” 67 (butane nitrile, 2-methyl, 2,2′-azobis) and “VAZO” 88 (cyclohexane carbonitrile, 1,1′-azobis).
- The radical cure-inducing composition should be present generally within the range of from about 0.001 phr to about 10 phr, such as from about 1 phr to about 5 phr.
- The compositions of the present invention may be prepared using conventional methods, well known to those persons of skill in the art. For instance, the components of the inventive compositions may be combined together with mixing in any convenient order consistent with the roles and functions the components are to perform in the compositions. Conventional mixing techniques using known apparatus may be employed.
- The compositions of this invention may be applied to a variety of substrates, such as steel, brass, aluminum, zinc and other metals and alloys. In addition, in the context of anaerobic adhesives, synthetic or composite substrates may be used, provided an appropriate primer or activator composition is first applied thereon, if necessary.
- The compositions of this invention may also be used to impregnate the pores of substrates constructed from such materials. See e.g., U.S. Pat. No. 5,618,857, the disclosure of which is hereby expressly incorporated herein by reference.
- A-stage curing of the compositions occurs ordinarily upon the generation of radicals, such as under anaerobic conditions—that is, upon the exclusion of air from the environment surrounding the applied composition.
- Typically, A-stage curing radical polymerization, should occur at a lower temperature than the temperature at which B-stage curing, or Claisen rearrangement, occurs (from about ambient to about 100° C.) In order to induce B-stage curing of the composition through the Claisen rearrangable functional group(s), the radically-cured composition may be exposed to elevated temperature conditions, such as at least about 100° C., desirably within the range of from about 150° C. to about 250° C. A reaction time in the range of about 2-4 hours is generally suitable at a temperature of about 150° C. At higher temperatures shorter times may be employed, while at lower temperatures longer times may be required. Typically, Claisen rearrangement reactions occur in the presence of an acid catalyst. In addition, the acid catalyst is believed to promote B-stage curing as well. However, certain radically-cured adhesive compositions within the scope of the invention may undergo Claisen rearrangement even in the absence of an added acid catalyst, rendering the catalyst an optional component.
- The following examples are provided to further illustrate the present invention. Many other practical opportunities exist with respect to the teaching herein, which will become readily apparent to those persons of skill in the art upon a review of the examples.
- I. Preparation of Radical-curable Adhesive Compositions
- An equimolar blend of diallyl ether bisphenol A (“DABPA”) and triethylene glycol dimethacrylate (“TRIEGMA”) was prepared by dissolving 308 g of DABPA in 286 g of TRIEGMA. Anaerobic adhesive compositions were then prepared by mixing together the components shown in Table 1. The formulation designated A/T is representative of a composition within the scope of the present invention, whereas the formulation designated P is representative of a comparative anaerobic adhesive [such as polyethylene glycol dimethacrylate (“PEGMA”)], which iteself does not provide the improved physical properties discussed herein.
TABLE 1 Composition of Anaerobic Adhesives COMPONENT A/T P Equimolar DABPA/TRIEGMA blend 94.45 0 PEGMA 0 94.45 Cumene hydroperoxide 1.5 1.5 Saccharin 1.5 1.5 Dimethyl-p-toluidine 1.5 1.5 Iodonium salt catalyst, UV9310c 1.0 1.0 1,4-naphthoquinone 0.05 0.05 - The iodonium salt, UV9310c, is a latent acid catalyst [a solution of bis(4-dodecylphenyl)iodonium hexafluoroantimonate in inert solvent], commercially available from General Electric Company.
- II. Adhesive Testing of Anaerobic Compositions
- The ability of the anaerobic adhesives to maintain adhesive strength on threaded fasteners after prolonged exposure to high temperatures was determined by torque strength testing, according to test method IS010964. Test specimens were assembled by applying adhesive to the threads of cleaned M10 steel bolts. When the threads of the bolts were wet with the adhesive, the corresponding nuts were applied. The assembled nut and bolt specimens were kept at room temperature for 24 hours to allow for complete curing. Five specimens were selected and the average break and prevailing torque strength determined using a calibrated torque analyzer. The remaining specimens were placed in an oven maintained at a temperature 200° C. and samples withdrawn each week over a six-week period. The specimens were allowed to cool to ambient temperature and torque strengths measured by the procedure above (average of 5 measurements). The results obtained in Newton-meters are presented in Table 2 and the individual break and prevailing torque strength values given in FIGS. 1 and 2.
TABLE 2 Average Break and Prevailing Torque Strengths of Anaerobic Adhesive Compositions After Heat Aging Time Break-torque Prevailing torque (weeks @ strength (N-m) strength (N-m) 200° C.) A/T P A/ T P 0 8.8 11.4 1.4 30.2 1 11.2 3.1 20.3 5.2 2 11.2 3.3 24.5 3.4 3 9.2 2.1 23.0 2.1 4 9.5 0 23.8 0 5 9.3 0 22.0 0 6 11.2 0 21.5 0 - After curing at room temperature for 24 hours, both compositions demonstarted high break-torque strength values. However, after 1 week at a temperature of 200° C., the PEGMA composition (“P”) had lost about 75% of its original value. In contrast, the DABPA/TRIEGMA composition (“A/T”) had increased its value by about 25%. Continued heat aging shows that P rapidly lost its remaining strength and failed after 4 weeks, whereas A/T showed no loss of its original strength after 6 weeks at 200° C. (See FIG. 1.)
- The prevailing strengths showed a slightly different trend. (See FIG. 2.) In this case, the room temperature prevailing strength for A/T was observed to be very low, whereas the corresponding prevailing strength for P was observed to be high. While not wishing to be bound by theory, it is believed that DABPA is not expected to participate in the curing reaction at ambient temperature, and as such remains unreacted under these conditions, serving as a plasticizer and weakening the adhesive bond that forms.
- However, on initial heating, the prevailing torque strength of A/T rapidly increased, whereas that of P sharply decreased. On prolonged heating, the high prevailing strength of A/T was maintained, showing little deterioration after 6 weeks. In contrast, P rapidly deteriorated, failing completely within 4 weeks. (See FIG. 2.).
- IR analysis confirmed that the allylic component of A/T was rapidly converted to the corresponding phenol (by Claisen rearrangement) during the initial haeting period as indicated by the formation of an intense peak at ˜3400 cm−1 (see FIG. 3).
- III. Photocurable Adhesive Compositions
- An equimolar blend of DABPA and ethoxylated trimethylolpropane triacrylate (“ETTA”) was prepared by dissolving 30.8 g of DABPA in 42.8 g of ETTA. Photocurable adhesive compositions were then prepared by mixing together the components shown in Table 3. The composition designated A/E is representative of a photocurable adhesive composition within the scope of the invention, whereas E is representative of acomparative photocurable adhesive composition.
TABLE 3 Composition of Photocurable Adhesives COMPONENT A/E E Equimolar DABPA/ETTA blend 96 0 ETTA 0 96 2-hydroxy-2-methyl-1-phenylpropan-1- 3 3 one Sulfonium salt catalyst, 1 1 CYRACURE UVI 6974 - Thin film coatings, approximately 0.5 mm in film thickness, of A/E and E were prepared on glass plates by means of a drawdown bar. The coatings were exposed to UV light from an Oriel lamp projector, fitted with a mercury arc lamp, for a time period of 60 seconds The incident light intensity was 30 mW/cm2 in the wavelength range of about 300-400 nm. After irradiation, the liquid films hardened to clear solid films having tacky uncured top-layers. The process was repeated with a thin polyethylene film on the surface of the dispensed liquid films. After exposure, the polyethylene film was removed from the films to give completely dry clear solid films of compositions A/E and E, respectively.
- These examples are provided solely for illustrative purposes, and are in no way intended to limit the spirit and scope of the invention as defined by the claims.
Claims (17)
1. A radical curable composition, reaction products of which demonstrate resistance to thermal degradation at elevated temperatures, comprising:
(a) a (meth)acrylate component;
(b) a thermal resistance-conferring component including polymerizable aromatic materials having at least one Claisen rearrangable functional group; and
(c) a radical cure-inducing composition.
2. The composition according to claim 1 , wherein polymerizable aromatic materials should include at least two reactive functional groups, at least one of which is a Claisen rearrangable functional group.
3. The composition according to claim 1 , wherein the thermal resistance-conferring component is within structure II:
wherein Ar is an aromatic compound substituted with a Claisen rearrangable functional group, having at least one aromatic ring which may be joined or fused to additional rings of an aromatic or non-aromatic nature;
A is O or S;
R10, R11 and R12 may be the same or different and are selected from H, alkyl, phenyl or substituted derivatives;
R13 and R14 may be the same or different and are selected from H, or A—CH2—CR10═CR 11R12, wherein A, R10, R11 and R12 are as defined above; and
n is 1 or 2, provided that
where n is 1, Z and Z′ are not present when Y is H, Z or Z1 is present when Y is carbonyl, sulfoxide, or sulfone, and Z and Z′ are present when Y is linear, branched, cyclic or polycyclic alkyl or alkenyl, or bisalkyl phenylene, and Z or Z1 may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl; and
when n is 2, Z or Z1 is present when Y is alkyl or alkenyl, and Z or Z1 may be the same or different and are selected from H, linear or branched alkyl, hydroxy alkyl or carboxy alkyl, and Z or Z′ is not present when Y is carbonyl, sulfoxide, sulfone, heteroatoms, or a single bond.
4. The composition according to claim 1 , wherein the thermal resistance-conferring component is within one or more of the following structures IV, V, or VI:
wherein A is O or S;
R10, R11 and R12 may be the same or different and are selected from H, alkyl, (meth)acryl, or phenyl;
R13 and R14 may be the same or different and are selected from H, and one or more substituents that are Claisen rearrangable and/or reactive toward radicals and/or under elevated temperature conditions; and
o and p are integers between 1 and 1,000, inclusive.
5. The composition according to claim 3 , wherein the fused aromatic ring structure is selected from the group consisting of naphthalene, anthracene, phenanthracene and fluorene.
6. The composition according to claim 1 , wherein the thermal resistance-conferring component is a styryloxy compound within the following structure:
wherein R1 and R2 are H, or one of R1 and R2 is H and the other is alkyl; R3 and R4 (which may be the same or different) are H, C1-5 alkyl or C1-5 alkenyl; or one of R3 and R4 may be —OR5 or C1-5 alkoxy or C1-5 alkenyloxy, if R2 is not methyl; and R5 is selected from
where R6 is C1-5 alkyl, and R7, R8 and R9 may be the same or different and are H or C1-5 alkyl.
7. The composition according to claim 1 , wherein the (meth)acrylate component is represented by H2C═CGCO2R15, wherein G is a member selected from the group consisting of hydrogen, halogen or alkyl of 1 to about 4 carbon atoms, and R15 is a member selected from the group consisting of alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkaryl, aralkyl and aryl groups having from 1 to about 16 carbon atoms, any of which may be optionally substituted or interrupted with a member selected from the group consisting of silane, silicon, oxygen, halogen, carbonyl, hydroxyl, ester, carboxylic acid, urea, urethane, carbamate, amine, amide, sulfur, sulonate and sulfone.
8. The composition according to claim 1 , wherein the (meth)acrylate component is a member selected from the group consisting of polyethylene glycol di(meth)acrylates, citronellyl methacrylate, bisphenol-A di(meth)acrylates, citronellyl acrylate, tetrahydrofuran (meth)acrylates, tetrahydrofuran di(meth)acrylates, hydroxypropyl (meth)acrylate, hexanediol di(meth)acrylate, trimethylol propane tri(meth)acrylate, tetrahydrodicyclopentadienyl (meth)acrylate, ethoxylated trimethylol propane triacrylate, triethylene glycol acrylate, triethylene glycol methacrylate, and an acrylate ester corresponding to
wherein R16 is a member selected from the group consisting of hydrogen, and alkyl and hydroxyalkyl groups having from 1 to about 4 carbon atoms and
R17 is a member selected from the group consisting of hydrogen, halogen, and alkyl groups having from 1 to about 4 carbon atoms;
R18 is a member selected from the group consisting of hydrogen, hydroxy and
m is an integer equal to at least 1;
n is an integer equal to at least 1; and
V is 0 or 1,
and combinations of the above acrylate components.
9. The composition according to claim 1 , wherein the radical cure-inducing composition is selected from the group consisting of anaerobic curing-inducing compositions, photoinitiated cure-inducing compositions, thermally-activated cure-inducing compositions, and combinations thereof.
10. The composition according to claim 9 , wherein the anaerobic cure-inducing composition comprises saccharin, toluidenes, acetyl phenylhydrazine, and maleic acid.
11. The composition according to claim 9 , wherein the thermally-activated composition is a member selected from the group consisting of peroxides, hydroperoxides, 2,4-pentanedione peroxide, di(n-propyl)peroxydicarbonate, di(s-butyl)peroxydicarbonate, di(2-ethylhexyl)peroxydicarbonate, diisononanoyl peroxide, benzoyl peroxide, α-cumylperoxy neodecanoate, 1,1-dimethyl-3-hydroxy-butyl peroxyneoheptanoate, α-cumyl peroxyneoheptanoate, t-amylperoxy neodecanoate, t-butylperoxy neodecanoate, t-butylperoxy neodecanoate, t-amylperoxypivalate, t-butylperoxypivalate, 1,1-dimethyl-3-hydroxy-butylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di(2-ethylhexanoyl peroxy) hexane, t-amylperoxy-2-ethyl-hexanoate, t-butyl peroctanoate, t-butylperoxy-2-ethylhexanoate, t-butyl peroxyisobutyrate, t-butyl peroxymaleic acid, t-butyl peroxyacetate, t-amyl peroxy-acetate, di-t-butyl diperoxyphthalate, OO-t-butyl-O-isopropyl monoperoxycarbonate, 2,5-dimethyl-2,5-di(benzoylperoxy) hexane, OO-t-butyl-O-(2-ethylhexyl) monoperoxycarbonate, OO-t-amyl-O-(2-ethylhexyl) monoperoxycarbonate, dicumyl peroxide, 2,5-dimethyl-2,5-di-(t-butylperoxy) hexane, t-butyl cumyl peroxide, αα-bis(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di-(t-butylperoxy)hexyne-3,2,5-dihydro-peroxy-2,5-dimethylhexane, n-butyl-4,4-di-(t-butylperoxy)valerate, 1,1-di(t-butylperoxy)-3,3,5-trimethyl cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, ethyl-3,3-di(t-butylperoxy)butyrate, 2,2-di-(t-amylperoxy) propane, ethyl 3,3-di(t-amylperoxy)butyrate, azobis-isobutyrile nitrile, butane nitrile, 2-methyl, 2,2′-azobis, cyclohexane carbonitrile, 1,1′-azobis and combinations thereof.
12. The compositions according to claim 9 , wherein the photoinitiated cure-inducing composition is a member selected from the group consisting of 1-hydroxycyclohexyl phenyl ketone, (2-methyl-1-[4-(methylthio)phenyl]-2-morpholino propan-1-one), 2-benzyl-2-N,N-dimethylamino-1-(4-morpholinophenyl)-1-butanone, 1-hydroxy cyclohexyl phenyl ketone, benzophenone, 2,2-dimethoxy-2-phenyl acetophenone, bis(2,6-dimethoxybenzoyl-2,4-,4-trimethyl pentyl) phosphine oxide, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 2-hydroxy-2-methyl-1-phenyl-1-propane, 2,4,6-trimethylbenzoyldiphenyl-phosphine oxide, 2-hydroxy 2-methyl-1-phenyl-propan-1-one, mixed triaryl sulfonium hexafluoroantimonate salts, mixed triaryl sulfonium hexafluorophosphate salts, dl-camphorquinone, benzil dimethyl ketal, benzoin butyl ethers, trimethylbenzophenone blend, α-hydroxy ketone, polymeric hydroxy ketone, triphenyl phosphine oxide, 2- and 4-isopropylthioxanthone, ethyl 4-(dimethyl amino) benzoate, diaryl iodonium hexafluoroantimonate, triaryl sulfonium hexafluorophosphate, and combinations thereof.
13. Reaction products formed from the composition according to claim 1 , upon exposure to conditions in which air is substantially excluded therefrom under ambient temperature conditions.
14. Reaction products formed from the composition according to claim 1 , upon exposure to conditions in which (a) air is substantially excluded therefrom and (b) the temperature conditions are elevated beyond room temperature.
15. Reaction products formed from the composition according to claim 12 , upon exposure to UV radiation.
16. A process for preparing a reaction product from the radical-curable adhesive composition according to claim 1 , the steps of which include:
applying the composition to a substrate surface and
exposing the coated substrate surface to conditions which are appropriate to effect cure thereof.
17. A process for preparing the radical-curable adhesive composition according to claim 1 , the step of which includes:
combining with mixing the (meth)acrylate component, the coreactant, optionally the thermal resistance-conferring agent, and the radical cure-inducing composition.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/377,050 US6451948B1 (en) | 1999-08-19 | 1999-08-19 | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation |
PCT/US2000/021967 WO2001014459A1 (en) | 1999-08-19 | 2000-08-18 | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation |
AU69015/00A AU6901500A (en) | 1999-08-19 | 2000-08-18 | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/377,050 US6451948B1 (en) | 1999-08-19 | 1999-08-19 | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020107349A1 true US20020107349A1 (en) | 2002-08-08 |
US6451948B1 US6451948B1 (en) | 2002-09-17 |
Family
ID=23487557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/377,050 Expired - Fee Related US6451948B1 (en) | 1999-08-19 | 1999-08-19 | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation |
Country Status (3)
Country | Link |
---|---|
US (1) | US6451948B1 (en) |
AU (1) | AU6901500A (en) |
WO (1) | WO2001014459A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110373115A (en) * | 2019-07-22 | 2019-10-25 | 中国兵器工业第五九研究所 | A kind of UV anaerobic sealer suitable for miniature workpiece fast sealing |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6883413B2 (en) * | 1999-07-19 | 2005-04-26 | Henkel Corporation | Visible and UV/visible light anaerobic curable primer mix coating |
US7146897B1 (en) | 1999-07-19 | 2006-12-12 | Henkel Corporation | UV/visible light and anaerobic curable composition |
US6664357B1 (en) * | 2003-01-21 | 2003-12-16 | National Starch And Chemical Investment Holding Corporation | Method for the preparation of a stable anaerobic/UV/visible light curable adhesive |
US7642297B2 (en) * | 2003-08-20 | 2010-01-05 | Koninklijke Philips Electronics N.V. | Non-leaching adhesive system and its use in a liquid immersion objective |
US8034851B1 (en) * | 2008-11-25 | 2011-10-11 | Henkel Corporation | Anaerobic cure systems for an anaerobic curable compositions, and anaerobic curable compositions containing same |
KR101598826B1 (en) * | 2015-08-28 | 2016-03-03 | 영창케미칼 주식회사 | I-line negative-working photoresist composition for improving etching resistance |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3218305A (en) | 1963-12-26 | 1965-11-16 | Loctite Corp | Accelerated anaerobic compositions and method of using same |
JPS5228150B2 (en) * | 1973-01-19 | 1977-07-25 | ||
US3988299A (en) | 1974-10-10 | 1976-10-26 | Loctite Corporation | Anaerobic adhesive composition having improved strength at elevated temperature consisting of unsaturated diacrylate monomer and maleimide additive |
US4287330A (en) | 1975-05-23 | 1981-09-01 | Loctite Corporation | Accelerator for curable compositions |
US4321349A (en) | 1975-05-23 | 1982-03-23 | Loctite Corporation | Accelerator for curable compositions |
US4049750A (en) | 1975-07-29 | 1977-09-20 | Walter Brenner | One component shelf stable low shrinkage structural adhesive systems |
US4209604A (en) | 1976-01-07 | 1980-06-24 | Estech Specialty Chemicals Corporation | Anaerobic monomers and adhesives |
IE43811B1 (en) | 1976-11-08 | 1981-06-03 | Loctite Ltd | Curable acrylate ester compositions containing hydrazine acelerators and acid co-accelerators |
US4107109A (en) | 1977-03-22 | 1978-08-15 | E. I. Du Pont De Nemours And Company | Reactive compositions and polymers made therefrom |
US4216134A (en) | 1977-10-12 | 1980-08-05 | Walter Brenner | Triallylcyanurate or triallylisocyanurate based adhesive sealant systems |
US4273851A (en) | 1979-05-29 | 1981-06-16 | Richardson Graphics Company | Method of coating using photopolymerizable latex systems |
EP0035072B1 (en) | 1980-03-03 | 1984-06-13 | BBC Aktiengesellschaft Brown, Boveri & Cie. | Duroplastically hardenable resin mixture free of solvents, and its use |
US4387204A (en) | 1980-04-11 | 1983-06-07 | Ciba-Geigy Corporation | Self-crosslinkable monomer composition containing alkenylphenyl substituted acrylates or methacrylates |
US4281152A (en) * | 1980-06-20 | 1981-07-28 | Gulf Oil Corporation | Acrylate monomers and photopolymerizable compositions containing same |
US4540829A (en) | 1982-12-02 | 1985-09-10 | The Dow Chemical Company | Allylated di or polycyclopentadiene diphenols |
US4439600A (en) | 1983-06-03 | 1984-03-27 | Loctite Corporation | Cure to elastomers compositions |
US4533446A (en) * | 1983-07-20 | 1985-08-06 | Loctite (Ireland) Ltd. | Radiation-activatable anaerobic adhesive composition |
JPS6072917A (en) | 1983-09-30 | 1985-04-25 | Ajinomoto Co Inc | Latent curing agent for epoxy resin |
US4600738A (en) | 1984-03-21 | 1986-07-15 | United Technologies Corporation | Two-component acrylic modified polyester adhesive |
US4524176A (en) | 1984-03-21 | 1985-06-18 | United Technologies Corporation | Acrylic modified polyester anaerobic adhesive |
US4624725A (en) | 1984-03-21 | 1986-11-25 | United Technologies Corporation | Two-component acrylic modified polyester adhesive |
US4543397A (en) * | 1984-06-18 | 1985-09-24 | Loctite (Ireland) Ltd. | Styryloxy resins and compositions thereof |
US4578315A (en) | 1985-02-13 | 1986-03-25 | Schenectady Chemicals Inc. | Phenolic resins, carboxylic resins and the elastomers containing adhesive |
US5166290A (en) | 1987-11-30 | 1992-11-24 | Mitsubishi Rayon Co., Ltd. | Resin composition for composite material |
GB8810412D0 (en) | 1988-05-03 | 1988-06-08 | Ici Plc | Hard tissue surface treatment |
US5179172A (en) | 1988-10-06 | 1993-01-12 | Henkel Research Corporation | Epichlorohydrin or chlorine-containing vinyl or acrylate (co)polymer-modified amines |
AU4432789A (en) * | 1988-11-10 | 1990-05-17 | Loctite (Ireland) Limited | Polymerisable styryloxy resins and compositions thereof |
JP2899832B2 (en) | 1990-11-14 | 1999-06-02 | 日本ペイント株式会社 | New thermosetting resin composition |
US5084490A (en) | 1990-12-10 | 1992-01-28 | Loctite (Ireland) Limited | Styryloxy compounds and polymers thereof |
JP3016533B2 (en) | 1992-03-03 | 2000-03-06 | 株式会社トクヤマ | Photochromic composition |
EP0601974B1 (en) | 1992-12-04 | 1997-05-28 | OCG Microelectronic Materials Inc. | Positive photoresist with better properties |
TW259797B (en) | 1992-12-23 | 1995-10-11 | Ciba Geigy | |
US5270362A (en) | 1992-12-29 | 1993-12-14 | E. I. Du Pont De Nemours And Company | Refinish clear coating of acrylic anhydride polymer, a glycidyl component and low molecular weight hydroxy polyester |
US5618857A (en) | 1993-06-24 | 1997-04-08 | Loctite Corporation | Impregnation sealant composition of superior high temperature resistance, and method of making same |
US5495051A (en) | 1994-08-22 | 1996-02-27 | Shell Oil Company | Phenolic allyl ethers |
JP2955488B2 (en) * | 1995-04-25 | 1999-10-04 | セメダイン株式会社 | Fast curing bonding method |
US5630978A (en) | 1995-06-07 | 1997-05-20 | Yissum Research Development Co. Of The Hebrew University Of Jerusalem | Preparation of biologically active molecules by molecular imprinting |
US5656703A (en) | 1995-06-09 | 1997-08-12 | Sartomer Company | Coating composition of epoxy resin, metal di(meth)acrylate and poly(meth)acrylate |
TW353666B (en) * | 1996-04-18 | 1999-03-01 | Denki Kagaku Kogyo Kk | Curable resin composition |
US6231714B1 (en) * | 1998-11-24 | 2001-05-15 | Loctite Corporation | Allylic phenyl ether (meth)acrylate compositions and novel allylic phenyl ether (meth)acrylate monomers |
-
1999
- 1999-08-19 US US09/377,050 patent/US6451948B1/en not_active Expired - Fee Related
-
2000
- 2000-08-18 WO PCT/US2000/021967 patent/WO2001014459A1/en active Application Filing
- 2000-08-18 AU AU69015/00A patent/AU6901500A/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110373115A (en) * | 2019-07-22 | 2019-10-25 | 中国兵器工业第五九研究所 | A kind of UV anaerobic sealer suitable for miniature workpiece fast sealing |
Also Published As
Publication number | Publication date |
---|---|
AU6901500A (en) | 2001-03-19 |
US6451948B1 (en) | 2002-09-17 |
WO2001014459A1 (en) | 2001-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9944830B2 (en) | Toughened cyanoacrylate compositions | |
US6150479A (en) | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation | |
JP5654026B2 (en) | Anaerobic curable composition | |
US6342545B1 (en) | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation | |
US6451948B1 (en) | Radical-curable adhesive compositions, reaction products of which demonstrate superior resistance to thermal degradation | |
JP2009249485A (en) | Damping material composition and damping structural body using the same | |
US11912801B2 (en) | (Meth)acrylate urethane (urea) phosphonates as adhesion promoters | |
US20090298970A1 (en) | (meth)acrylates compositions containing dispersions of core shell rubbers in (meth)acrylates | |
TW201922906A (en) | Cure accelerators for anaerobic curable compositions | |
US20030032736A1 (en) | Acrylic adhesive compositions containing ketonyl (meth)acrylate | |
JP7130849B2 (en) | pellicle | |
WO2000032550A1 (en) | Allylic phenyl ether (meth)acrylate compositions and novel allylic phenyl ether (meth)acrylate monomers | |
WO2020178449A1 (en) | One-part anaerobically curable compositions | |
EP4244267A1 (en) | Free-radically polymerizable crosslinker, curable composition, and adhesive therefrom | |
WO2022101702A1 (en) | Free-radically polymerizable crosslinker, curable composition, and adhesive therefrom | |
JP2009221297A (en) | Adhesive composition | |
JP2020189946A (en) | (Meta) Acrylic resin composition | |
JP2023125582A (en) | Curable composition, self-healing material and cured product | |
TW202402817A (en) | Polymerizable composition | |
WO2024058117A1 (en) | Resin material and resin composition | |
KR101740057B1 (en) | Radiation curable adhesive composition | |
JP2012201801A (en) | Diallyl phthalate resin composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LOCTITE CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOODS, JOHN G.;MORRILL, SUSANNE D.;JACOBINE, ANTHONY F.;REEL/FRAME:010221/0375;SIGNING DATES FROM 19990818 TO 19990825 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060917 |