US20020107270A1 - Heterocyclic aromatic oxazole compounds and use thereof - Google Patents
Heterocyclic aromatic oxazole compounds and use thereof Download PDFInfo
- Publication number
- US20020107270A1 US20020107270A1 US09/906,762 US90676201A US2002107270A1 US 20020107270 A1 US20020107270 A1 US 20020107270A1 US 90676201 A US90676201 A US 90676201A US 2002107270 A1 US2002107270 A1 US 2002107270A1
- Authority
- US
- United States
- Prior art keywords
- compound
- optionally substituted
- fluorophenyl
- pharmaceutically acceptable
- cyclohexyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 Heterocyclic aromatic oxazole compounds Chemical class 0.000 title claims abstract description 131
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 34
- 150000003839 salts Chemical class 0.000 claims abstract description 30
- 125000005843 halogen group Chemical group 0.000 claims abstract description 25
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 15
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims abstract description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 13
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims abstract description 13
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 11
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 10
- 239000002260 anti-inflammatory agent Substances 0.000 claims abstract description 8
- 125000003107 substituted aryl group Chemical group 0.000 claims abstract description 7
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims abstract description 7
- 125000003282 alkyl amino group Chemical group 0.000 claims abstract description 5
- 229940121363 anti-inflammatory agent Drugs 0.000 claims abstract description 5
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 43
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 36
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 19
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 claims description 14
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims description 12
- 125000001153 fluoro group Chemical group F* 0.000 claims description 12
- 125000001544 thienyl group Chemical group 0.000 claims description 11
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 8
- 125000004211 3,5-difluorophenyl group Chemical group [H]C1=C(F)C([H])=C(*)C([H])=C1F 0.000 claims description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- 125000002541 furyl group Chemical group 0.000 claims description 6
- MIMJSJSRRDZIPW-UHFFFAOYSA-N tilmacoxib Chemical compound C=1C=C(S(N)(=O)=O)C(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 MIMJSJSRRDZIPW-UHFFFAOYSA-N 0.000 claims description 6
- OJTXKPGPZRSMLT-UHFFFAOYSA-N 4-cyclohexyl-5-(3-fluoro-4-methylsulfonylphenyl)-2-methyl-1,3-oxazole Chemical compound C=1C=C(S(C)(=O)=O)C(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 OJTXKPGPZRSMLT-UHFFFAOYSA-N 0.000 claims description 5
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 claims description 5
- 239000004480 active ingredient Substances 0.000 claims description 4
- 125000005936 piperidyl group Chemical group 0.000 claims description 4
- 125000000168 pyrrolyl group Chemical group 0.000 claims description 4
- NKFUGHMWDKIDBC-UHFFFAOYSA-N 2-fluoro-4-[4-(4-fluorophenyl)-2-methyl-1,3-oxazol-5-yl]benzenesulfonamide Chemical compound O1C(C)=NC(C=2C=CC(F)=CC=2)=C1C1=CC=C(S(N)(=O)=O)C(F)=C1 NKFUGHMWDKIDBC-UHFFFAOYSA-N 0.000 claims description 3
- 239000004305 biphenyl Substances 0.000 claims description 3
- 235000010290 biphenyl Nutrition 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- QLFATDKBOTYFQQ-UHFFFAOYSA-N 4-(4-cyclohexyl-2-methyl-1,3-oxazol-5-yl)-2,6-difluorobenzenesulfonamide Chemical compound C=1C(F)=C(S(N)(=O)=O)C(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 QLFATDKBOTYFQQ-UHFFFAOYSA-N 0.000 claims description 2
- VKIMZYFPESMAFY-UHFFFAOYSA-N 4-cyclohexyl-5-(3,5-difluoro-4-methylsulfonylphenyl)-2-methyl-1,3-oxazole Chemical compound C=1C(F)=C(S(C)(=O)=O)C(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 VKIMZYFPESMAFY-UHFFFAOYSA-N 0.000 claims description 2
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 claims description 2
- 125000004193 piperazinyl group Chemical group 0.000 claims description 2
- 229940093444 Cyclooxygenase 2 inhibitor Drugs 0.000 claims 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 abstract description 24
- 230000000694 effects Effects 0.000 abstract description 14
- 230000002401 inhibitory effect Effects 0.000 abstract description 12
- 210000001035 gastrointestinal tract Anatomy 0.000 abstract description 8
- 230000000202 analgesic effect Effects 0.000 abstract description 4
- 230000003110 anti-inflammatory effect Effects 0.000 abstract description 4
- 230000001754 anti-pyretic effect Effects 0.000 abstract description 4
- 102000010907 Cyclooxygenase 2 Human genes 0.000 abstract 2
- 150000001875 compounds Chemical class 0.000 description 165
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 78
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 45
- 239000002904 solvent Substances 0.000 description 42
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 39
- 239000000203 mixture Substances 0.000 description 39
- 239000000243 solution Substances 0.000 description 39
- 0 *C1=C([1*])CC([2*])=N1 Chemical compound *C1=C([1*])CC([2*])=N1 0.000 description 36
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 36
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 30
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 25
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 20
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 20
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 20
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 20
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 20
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical class CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 19
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 19
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 18
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 235000011054 acetic acid Nutrition 0.000 description 15
- 238000001816 cooling Methods 0.000 description 15
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 108010037464 Cyclooxygenase 1 Proteins 0.000 description 13
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Substances OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 13
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical class CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 11
- 239000012043 crude product Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- 239000002585 base Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 235000017557 sodium bicarbonate Nutrition 0.000 description 10
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 10
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 9
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 9
- 229920006395 saturated elastomer Polymers 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 7
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 7
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 7
- 229940124599 anti-inflammatory drug Drugs 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000012442 inert solvent Substances 0.000 description 7
- 239000012044 organic layer Substances 0.000 description 7
- 239000001632 sodium acetate Substances 0.000 description 7
- 235000017281 sodium acetate Nutrition 0.000 description 7
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 241000907661 Pieris rapae Species 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 6
- 208000035475 disorder Diseases 0.000 description 6
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 150000003180 prostaglandins Chemical class 0.000 description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 5
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 5
- 229940114079 arachidonic acid Drugs 0.000 description 5
- 235000021342 arachidonic acid Nutrition 0.000 description 5
- 229920001525 carrageenan Polymers 0.000 description 5
- 235000010418 carrageenan Nutrition 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- YIBNHAJFJUQSRA-YNNPMVKQSA-N prostaglandin H2 Chemical compound C1[C@@H]2OO[C@H]1[C@H](/C=C/[C@@H](O)CCCCC)[C@H]2C\C=C/CCCC(O)=O YIBNHAJFJUQSRA-YNNPMVKQSA-N 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 239000005695 Ammonium acetate Substances 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 235000019257 ammonium acetate Nutrition 0.000 description 4
- 229940043376 ammonium acetate Drugs 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000005457 ice water Substances 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 235000019260 propionic acid Nutrition 0.000 description 4
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 4
- 238000010898 silica gel chromatography Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- LLRYBEARGCVBPZ-UHFFFAOYSA-N 4-cyclohexyl-5-(3-fluorophenyl)-2-methyl-1,3-oxazole Chemical compound C=1C=CC(F)=CC=1C=1OC(C)=NC=1C1CCCCC1 LLRYBEARGCVBPZ-UHFFFAOYSA-N 0.000 description 3
- NEJHUWXBRKJBPT-UHFFFAOYSA-N 5-(2-chloro-4-methylsulfonylphenyl)-4-cyclohexyl-2-methyl-1,3-oxazole Chemical compound C=1C=C(S(C)(=O)=O)C=C(Cl)C=1C=1OC(C)=NC=1C1CCCCC1 NEJHUWXBRKJBPT-UHFFFAOYSA-N 0.000 description 3
- ANCZYJLDNFEUPI-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C=C2)O1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C=C2)O1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1 ANCZYJLDNFEUPI-UHFFFAOYSA-N 0.000 description 3
- LMHIPJMTZHDKEW-XQYLJSSYSA-M Epoprostenol sodium Chemical compound [Na+].O1\C(=C/CCCC([O-])=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 LMHIPJMTZHDKEW-XQYLJSSYSA-M 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000003973 alkyl amines Chemical class 0.000 description 3
- 238000005576 amination reaction Methods 0.000 description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229940111134 coxibs Drugs 0.000 description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 3
- XEYBRNLFEZDVAW-ARSRFYASSA-N dinoprostone Chemical compound CCCCC[C@H](O)\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1C\C=C/CCCC(O)=O XEYBRNLFEZDVAW-ARSRFYASSA-N 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 3
- 125000001072 heteroaryl group Chemical group 0.000 description 3
- 229960000905 indomethacin Drugs 0.000 description 3
- ACKFDYCQCBEDNU-UHFFFAOYSA-J lead(2+);tetraacetate Chemical compound [Pb+2].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O ACKFDYCQCBEDNU-UHFFFAOYSA-J 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 125000002971 oxazolyl group Chemical group 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 230000008327 renal blood flow Effects 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000010189 synthetic method Methods 0.000 description 3
- 230000000304 vasodilatating effect Effects 0.000 description 3
- FMNQRUKVXAQEAZ-JNRFBPFXSA-N (5z,8s,9r,10e,12s)-9,12-dihydroxy-8-[(1s)-1-hydroxy-3-oxopropyl]heptadeca-5,10-dienoic acid Chemical compound CCCCC[C@H](O)\C=C\[C@@H](O)[C@H]([C@@H](O)CC=O)C\C=C/CCCC(O)=O FMNQRUKVXAQEAZ-JNRFBPFXSA-N 0.000 description 2
- CANZNDYNIOZMJW-UHFFFAOYSA-N 1-cyclohexyl-2-(3-fluorophenyl)ethanone Chemical compound FC1=CC=CC(CC(=O)C2CCCCC2)=C1 CANZNDYNIOZMJW-UHFFFAOYSA-N 0.000 description 2
- 150000000565 5-membered heterocyclic compounds Chemical group 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- JBFUSMDKBJSMMC-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C=C2)O1 JBFUSMDKBJSMMC-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 2
- 239000012346 acetyl chloride Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000004471 alkyl aminosulfonyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 235000012501 ammonium carbonate Nutrition 0.000 description 2
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 2
- 230000001741 anti-phlogistic effect Effects 0.000 description 2
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 2
- 208000006673 asthma Diseases 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- RVOJTCZRIKWHDX-UHFFFAOYSA-N cyclohexanecarbonyl chloride Chemical compound ClC(=O)C1CCCCC1 RVOJTCZRIKWHDX-UHFFFAOYSA-N 0.000 description 2
- 125000004772 dichloromethyl group Chemical group [H]C(Cl)(Cl)* 0.000 description 2
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 2
- 210000001156 gastric mucosa Anatomy 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 229940071125 manganese acetate Drugs 0.000 description 2
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 150000002916 oxazoles Chemical class 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- SGUKUZOVHSFKPH-YNNPMVKQSA-N prostaglandin G2 Chemical compound C1[C@@H]2OO[C@H]1[C@H](/C=C/[C@@H](OO)CCCCC)[C@H]2C\C=C/CCCC(O)=O SGUKUZOVHSFKPH-YNNPMVKQSA-N 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 150000007979 thiazole derivatives Chemical class 0.000 description 2
- 125000003396 thiol group Chemical class [H]S* 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- FQVJALWTFNYNBL-UHFFFAOYSA-N 1-(bromomethyl)-2-chloro-4-methylsulfonylbenzene Chemical compound CS(=O)(=O)C1=CC=C(CBr)C(Cl)=C1 FQVJALWTFNYNBL-UHFFFAOYSA-N 0.000 description 1
- SCBZBMXPJYMXRC-UHFFFAOYSA-N 1-(bromomethyl)-3-fluorobenzene Chemical compound FC1=CC=CC(CBr)=C1 SCBZBMXPJYMXRC-UHFFFAOYSA-N 0.000 description 1
- ZOXOBHVLZJICAL-UHFFFAOYSA-N 2-(2-chloro-4-methylsulfonylphenyl)-1-cyclohexylethanone Chemical compound ClC1=CC(S(=O)(=O)C)=CC=C1CC(=O)C1CCCCC1 ZOXOBHVLZJICAL-UHFFFAOYSA-N 0.000 description 1
- CVVVAKVOCWNDLJ-UHFFFAOYSA-N 2-acetamido-2-cyclohexylacetic acid Chemical compound CC(=O)NC(C(O)=O)C1CCCCC1 CVVVAKVOCWNDLJ-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- YKNANVRDVZYJIP-UHFFFAOYSA-N 2-bromo-2-(2-chloro-4-methylsulfonylphenyl)-1-cyclohexylethanone Chemical compound ClC1=CC(S(=O)(=O)C)=CC=C1C(Br)C(=O)C1CCCCC1 YKNANVRDVZYJIP-UHFFFAOYSA-N 0.000 description 1
- UHMINCSUEKRNKZ-UHFFFAOYSA-N 2-cyclohexyl-1h-imidazole Chemical class C1CCCCC1C1=NC=CN1 UHMINCSUEKRNKZ-UHFFFAOYSA-N 0.000 description 1
- ABUJRBHPDLEQJL-UHFFFAOYSA-N 2-ethyl-4-(4-methoxyphenyl)-5-pyridin-3-yl-1,3-thiazole Chemical compound S1C(CC)=NC(C=2C=CC(OC)=CC=2)=C1C1=CC=CN=C1 ABUJRBHPDLEQJL-UHFFFAOYSA-N 0.000 description 1
- YDRVXCWEUYSRBQ-UHFFFAOYSA-N 2-fluoro-4-[4-(4-fluorophenyl)-2-methyl-1,3-oxazol-5-yl]benzenesulfonyl chloride Chemical compound O1C(C)=NC(C=2C=CC(F)=CC=2)=C1C1=CC=C(S(Cl)(=O)=O)C(F)=C1 YDRVXCWEUYSRBQ-UHFFFAOYSA-N 0.000 description 1
- BSKHPKMHTQYZBB-UHFFFAOYSA-N 2-methylpyridine Chemical class CC1=CC=CC=N1 BSKHPKMHTQYZBB-UHFFFAOYSA-N 0.000 description 1
- NGSHBCZJSVAIMK-UHFFFAOYSA-N 2-methylsulfanyl-5-phenyl-4-pyridin-3-yl-1,3-thiazole Chemical compound S1C(SC)=NC(C=2C=NC=CC=2)=C1C1=CC=CC=C1 NGSHBCZJSVAIMK-UHFFFAOYSA-N 0.000 description 1
- PPOYVIWWHOTKIU-UHFFFAOYSA-N 2-tert-butyl-5-cyclohexyl-4-phenyl-1h-imidazole Chemical compound C=1C=CC=CC=1C=1NC(C(C)(C)C)=NC=1C1CCCCC1 PPOYVIWWHOTKIU-UHFFFAOYSA-N 0.000 description 1
- APTPOHBDWBGOML-UHFFFAOYSA-N 3-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)thiophene Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=CSC=C1C1=CC=C(F)C=C1 APTPOHBDWBGOML-UHFFFAOYSA-N 0.000 description 1
- BMUDPLZKKRQECS-UHFFFAOYSA-K 3-[18-(2-carboxyethyl)-8,13-bis(ethenyl)-3,7,12,17-tetramethylporphyrin-21,24-diid-2-yl]propanoic acid iron(3+) hydroxide Chemical compound [OH-].[Fe+3].[N-]1C2=C(C)C(CCC(O)=O)=C1C=C([N-]1)C(CCC(O)=O)=C(C)C1=CC(C(C)=C1C=C)=NC1=CC(C(C)=C1C=C)=NC1=C2 BMUDPLZKKRQECS-UHFFFAOYSA-K 0.000 description 1
- ANTQKDKVWRBAEW-UHFFFAOYSA-N 3-[2-(2,2-dimethoxyethyl)-5-phenyl-1h-imidazol-4-yl]pyridine Chemical compound N1C(CC(OC)OC)=NC(C=2C=CC=CC=2)=C1C1=CC=CN=C1 ANTQKDKVWRBAEW-UHFFFAOYSA-N 0.000 description 1
- SYVNVEGIRVXRQH-UHFFFAOYSA-N 3-fluorobenzoyl chloride Chemical compound FC1=CC=CC(C(Cl)=O)=C1 SYVNVEGIRVXRQH-UHFFFAOYSA-N 0.000 description 1
- KQBVVLOYXDVATK-UHFFFAOYSA-N 4,5,6,7-tetrahydro-1h-indole Chemical compound C1CCCC2=C1C=CN2 KQBVVLOYXDVATK-UHFFFAOYSA-N 0.000 description 1
- ICIJMDHJVQIVKT-UHFFFAOYSA-N 4-(4-cyclohexyl-2-methyl-1,3-oxazol-5-yl)benzenesulfonamide Chemical compound C=1C=C(S(N)(=O)=O)C=CC=1C=1OC(C)=NC=1C1CCCCC1 ICIJMDHJVQIVKT-UHFFFAOYSA-N 0.000 description 1
- HYEBIIAQOZKAGA-UHFFFAOYSA-N 4-[4-(4-fluorophenyl)-2-methyl-1,3-oxazol-5-yl]benzenesulfonamide Chemical compound O1C(C)=NC(C=2C=CC(F)=CC=2)=C1C1=CC=C(S(N)(=O)=O)C=C1 HYEBIIAQOZKAGA-UHFFFAOYSA-N 0.000 description 1
- DVXZFRFBRFZVJL-UHFFFAOYSA-N 4-cyclohexyl-2-methyl-2h-1,3-oxazol-5-one Chemical compound CC1OC(=O)C(C2CCCCC2)=N1 DVXZFRFBRFZVJL-UHFFFAOYSA-N 0.000 description 1
- FKLSPLJQMIUMDE-UHFFFAOYSA-N 4-cyclohexyl-4-(3-fluorobenzoyl)-2-methyl-1,3-oxazol-5-one Chemical compound O=C1OC(C)=NC1(C(=O)C=1C=C(F)C=CC=1)C1CCCCC1 FKLSPLJQMIUMDE-UHFFFAOYSA-N 0.000 description 1
- ANSXNTQYBXUXQJ-UHFFFAOYSA-N 4-cyclohexyl-5-(4-methylsulfonylphenyl)-2-phenyl-1,3-oxazole Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C2CCCCC2)N=C(C=2C=CC=CC=2)O1 ANSXNTQYBXUXQJ-UHFFFAOYSA-N 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- 125000002373 5 membered heterocyclic group Chemical group 0.000 description 1
- PJJGZPJJTHBVMX-UHFFFAOYSA-N 5,7-Dihydroxyisoflavone Chemical compound C=1C(O)=CC(O)=C(C2=O)C=1OC=C2C1=CC=CC=C1 PJJGZPJJTHBVMX-UHFFFAOYSA-N 0.000 description 1
- BGWSRGLMQXGKRS-UHFFFAOYSA-N 5-(3-fluorophenyl)-4-(4-fluorophenyl)-2-methyl-1,3-oxazole Chemical compound O1C(C)=NC(C=2C=CC(F)=CC=2)=C1C1=CC=CC(F)=C1 BGWSRGLMQXGKRS-UHFFFAOYSA-N 0.000 description 1
- 208000009304 Acute Kidney Injury Diseases 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- LBZZFUIIKFMRHC-UHFFFAOYSA-N CC(=O)NC(C(=O)C1=CC=CC(F)=C1)C1CCCCC1.CC1=NC(C(=O)C2=CC=CC(F)=C2)(C2CCCCC2)C(=O)O1 Chemical compound CC(=O)NC(C(=O)C1=CC=CC(F)=C1)C1CCCCC1.CC1=NC(C(=O)C2=CC=CC(F)=C2)(C2CCCCC2)C(=O)O1 LBZZFUIIKFMRHC-UHFFFAOYSA-N 0.000 description 1
- SKRAJJPTOCTSDB-UHFFFAOYSA-N CC(=O)NC(C(=O)C1=CC=CC(F)=C1)C1CCCCC1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C=C2)O1 Chemical compound CC(=O)NC(C(=O)C1=CC=CC(F)=C1)C1CCCCC1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C=C2)O1 SKRAJJPTOCTSDB-UHFFFAOYSA-N 0.000 description 1
- HZVQLCGMQIFICW-UHFFFAOYSA-N CC(=O)NC(C(=O)C1=CC=CC(F)=C1)C1CCCCC1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1 Chemical compound CC(=O)NC(C(=O)C1=CC=CC(F)=C1)C1CCCCC1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1 HZVQLCGMQIFICW-UHFFFAOYSA-N 0.000 description 1
- HQMVWARKVCUROV-UHFFFAOYSA-N CC(=O)NC(C(=O)O)C1CCCCC1.CC1=NC(C2CCCCC2)C(=O)O1 Chemical compound CC(=O)NC(C(=O)O)C1CCCCC1.CC1=NC(C2CCCCC2)C(=O)O1 HQMVWARKVCUROV-UHFFFAOYSA-N 0.000 description 1
- MEQFMFISAPZJKM-UHFFFAOYSA-N CC(=O)OC(C(=O)C1CCCCC1)C1=C(Cl)C=C(S(C)(=O)=O)C=C1.CC1=CC=C(C2=C(C3CCCCC3)N=C(C)O2)C(Cl)=C1 Chemical compound CC(=O)OC(C(=O)C1CCCCC1)C1=C(Cl)C=C(S(C)(=O)=O)C=C1.CC1=CC=C(C2=C(C3CCCCC3)N=C(C)O2)C(Cl)=C1 MEQFMFISAPZJKM-UHFFFAOYSA-N 0.000 description 1
- KFVCUZZNUPJVNX-UHFFFAOYSA-N CC(=O)OC(C(=O)C1CCCCC1)C1=C(Cl)C=C(S(C)(=O)=O)C=C1.CS(=O)(=O)C1=CC(Cl)=C(C(Br)C(=O)C2CCCCC2)C=C1 Chemical compound CC(=O)OC(C(=O)C1CCCCC1)C1=C(Cl)C=C(S(C)(=O)=O)C=C1.CS(=O)(=O)C1=CC(Cl)=C(C(Br)C(=O)C2CCCCC2)C=C1 KFVCUZZNUPJVNX-UHFFFAOYSA-N 0.000 description 1
- WJKZNYCPUNBOAX-UHFFFAOYSA-N CC(=O)OC(C(=O)C1CCCCC1)C1=CC(F)=CC=C1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1 Chemical compound CC(=O)OC(C(=O)C1CCCCC1)C1=CC(F)=CC=C1.CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1 WJKZNYCPUNBOAX-UHFFFAOYSA-N 0.000 description 1
- HVQXZCOIYYNPHL-UHFFFAOYSA-N CC(=O)OC(C(=O)C1CCCCC1)C1=CC(F)=CC=C1.O=C(CC1=CC(F)=CC=C1)C1CCCCC1 Chemical compound CC(=O)OC(C(=O)C1CCCCC1)C1=CC(F)=CC=C1.O=C(CC1=CC(F)=CC=C1)C1CCCCC1 HVQXZCOIYYNPHL-UHFFFAOYSA-N 0.000 description 1
- MJZLUSRCSSOHED-UHFFFAOYSA-N CC(C(N)=O)NC(N)=O Chemical compound CC(C(N)=O)NC(N)=O MJZLUSRCSSOHED-UHFFFAOYSA-N 0.000 description 1
- ZIRFAKRWPORLAZ-UHFFFAOYSA-N CC1=CC(Cl)=C(CBr)C=C1.CS(=O)(=O)C1=CC(Cl)=C(CC(=O)C2CCCCC2)C=C1.O=C(Cl)C1CCCCC1 Chemical compound CC1=CC(Cl)=C(CBr)C=C1.CS(=O)(=O)C1=CC(Cl)=C(CC(=O)C2CCCCC2)C=C1.O=C(Cl)C1CCCCC1 ZIRFAKRWPORLAZ-UHFFFAOYSA-N 0.000 description 1
- WWIQWOFINVTZEJ-UHFFFAOYSA-N CC1=CC=C(C2=C(C3=CC=C(F)C=C3)N=C(C)O2)C=C1 Chemical compound CC1=CC=C(C2=C(C3=CC=C(F)C=C3)N=C(C)O2)C=C1 WWIQWOFINVTZEJ-UHFFFAOYSA-N 0.000 description 1
- HJDSDUBSPJUQGL-UHFFFAOYSA-N CC1=CC=C(C2=C(C3CCCCC3)N=C(C)O2)C=C1 Chemical compound CC1=CC=C(C2=C(C3CCCCC3)N=C(C)O2)C=C1 HJDSDUBSPJUQGL-UHFFFAOYSA-N 0.000 description 1
- NGRMNAPPOBIBAK-UHFFFAOYSA-N CC1=NC(C(=O)C2=CC=CC(F)=C2)(C2CCCCC2)C(=O)O1.CC1=NC(C2CCCCC2)C(=O)O1 Chemical compound CC1=NC(C(=O)C2=CC=CC(F)=C2)(C2CCCCC2)C(=O)O1.CC1=NC(C2CCCCC2)C(=O)O1 NGRMNAPPOBIBAK-UHFFFAOYSA-N 0.000 description 1
- PSYPIUMKLWGVJI-UHFFFAOYSA-N CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=C(C)C=C2)O1 Chemical compound CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=C(C)C=C2)O1 PSYPIUMKLWGVJI-UHFFFAOYSA-N 0.000 description 1
- OVKRLDGJRDSQFG-UHFFFAOYSA-N CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=C(C)C=C2)O1.CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=CC=C2)O1 Chemical compound CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=C(C)C=C2)O1.CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=CC=C2)O1 OVKRLDGJRDSQFG-UHFFFAOYSA-N 0.000 description 1
- LGNZDKXUCUXTDZ-UHFFFAOYSA-N CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=C(SOON)C=C2)O1 Chemical compound CC1=NC(C2=CC=C(F)C=C2)=C(C2=CC(F)=C(SOON)C=C2)O1 LGNZDKXUCUXTDZ-UHFFFAOYSA-N 0.000 description 1
- GAJXBQWZOVAMTH-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(C)=C(C)C=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(C)=C(C)C=C2)O1 GAJXBQWZOVAMTH-UHFFFAOYSA-N 0.000 description 1
- KCLZJKXOBXBJNA-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(C)=C(SOON)C=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(C)=C(SOON)C=C2)O1 KCLZJKXOBXBJNA-UHFFFAOYSA-N 0.000 description 1
- OYMOMNVUGLUSGM-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(Cl)=C(C)C=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(Cl)=C(C)C=C2)O1 OYMOMNVUGLUSGM-UHFFFAOYSA-N 0.000 description 1
- HWNFEQUAKQTQDO-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(Cl)=C(SOON)C=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(Cl)=C(SOON)C=C2)O1 HWNFEQUAKQTQDO-UHFFFAOYSA-N 0.000 description 1
- HYMWOQRSQBDTTR-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C(F)=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(C)C(F)=C2)O1 HYMWOQRSQBDTTR-UHFFFAOYSA-N 0.000 description 1
- HSMWCDZBCUBJPL-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(SOON)C(F)=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(SOON)C(F)=C2)O1 HSMWCDZBCUBJPL-UHFFFAOYSA-N 0.000 description 1
- WTXDKGZPCXXKDW-UHFFFAOYSA-N CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(SOON)C=C2)O1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(F)=C(SOON)C=C2)O1 WTXDKGZPCXXKDW-UHFFFAOYSA-N 0.000 description 1
- JRLMAGNLFVPMEK-BBTPFERUSA-N CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1.O/N=C(\CC1=CC(F)=CC=C1)C1CCCCC1 Chemical compound CC1=NC(C2CCCCC2)=C(C2=CC(F)=CC=C2)O1.O/N=C(\CC1=CC(F)=CC=C1)C1CCCCC1 JRLMAGNLFVPMEK-BBTPFERUSA-N 0.000 description 1
- QYXHVYWEJMZWRW-UHFFFAOYSA-N COOSC1=C(F)C=C(C2=C(C3CCCCC3)N=C(C)O2)C=C1 Chemical compound COOSC1=C(F)C=C(C2=C(C3CCCCC3)N=C(C)O2)C=C1 QYXHVYWEJMZWRW-UHFFFAOYSA-N 0.000 description 1
- PYTKVVRAVAVTTJ-UHFFFAOYSA-N COOSC1=CC=C(C2=C(C3CCCCC3)N=C(C)O2)C(Cl)=C1 Chemical compound COOSC1=CC=C(C2=C(C3CCCCC3)N=C(C)O2)C(Cl)=C1 PYTKVVRAVAVTTJ-UHFFFAOYSA-N 0.000 description 1
- CKTUXSZJDRYGCX-UHFFFAOYSA-N CS(=O)(=O)C1=CC(Cl)=C(C(Br)C(=O)C2CCCCC2)C=C1.CS(=O)(=O)C1=CC(Cl)=C(CC(=O)C2CCCCC2)C=C1 Chemical compound CS(=O)(=O)C1=CC(Cl)=C(C(Br)C(=O)C2CCCCC2)C=C1.CS(=O)(=O)C1=CC(Cl)=C(CC(=O)C2CCCCC2)C=C1 CKTUXSZJDRYGCX-UHFFFAOYSA-N 0.000 description 1
- JDSCXOTUMUFZKH-UHFFFAOYSA-N Cc(c(N)c(cc1N)N)c1N Chemical compound Cc(c(N)c(cc1N)N)c1N JDSCXOTUMUFZKH-UHFFFAOYSA-N 0.000 description 1
- WOTNDJZBWMTQPH-UHFFFAOYSA-N Cc1nc(C2CCCCC2)c(-c(cc2)cc(Cl)c2S(N)(=O)=O)[o]1 Chemical compound Cc1nc(C2CCCCC2)c(-c(cc2)cc(Cl)c2S(N)(=O)=O)[o]1 WOTNDJZBWMTQPH-UHFFFAOYSA-N 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 1
- VMQMZMRVKUZKQL-UHFFFAOYSA-N Cu+ Chemical compound [Cu+] VMQMZMRVKUZKQL-UHFFFAOYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical class C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- OUYYBCKFKCBOFJ-UHFFFAOYSA-N FC1=CC=CC(CBr)=C1.O=C(CC1=CC(F)=CC=C1)C1CCCCC1.O=C(Cl)C1CCCCC1 Chemical compound FC1=CC=CC(CBr)=C1.O=C(CC1=CC(F)=CC=C1)C1CCCCC1.O=C(Cl)C1CCCCC1 OUYYBCKFKCBOFJ-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 101000605127 Homo sapiens Prostaglandin G/H synthase 2 Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical class NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- UKEZTIHVHQAYDS-BACBYAOASA-N O/N=C(\CC1=CC(F)=CC=C1)C1CCCCC1.O=C(CC1=CC(F)=CC=C1)C1CCCCC1 Chemical compound O/N=C(\CC1=CC(F)=CC=C1)C1CCCCC1.O=C(CC1=CC(F)=CC=C1)C1CCCCC1 UKEZTIHVHQAYDS-BACBYAOASA-N 0.000 description 1
- NVCBDZVGFJSZKM-JQIJEIRASA-N O/N=C(\Cc1cc(F)ccc1)/C1CCCCC1 Chemical compound O/N=C(\Cc1cc(F)ccc1)/C1CCCCC1 NVCBDZVGFJSZKM-JQIJEIRASA-N 0.000 description 1
- TWIBGAFGNJHHBY-UHFFFAOYSA-N O=S(=O)NC1=NC=CS1 Chemical class O=S(=O)NC1=NC=CS1 TWIBGAFGNJHHBY-UHFFFAOYSA-N 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 208000033626 Renal failure acute Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000026062 Tissue disease Diseases 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- PTEXXFZWROLIOM-UHFFFAOYSA-N [1-(2-chloro-4-methylsulfonylphenyl)-2-cyclohexyl-2-oxoethyl] acetate Chemical compound C=1C=C(S(C)(=O)=O)C=C(Cl)C=1C(OC(=O)C)C(=O)C1CCCCC1 PTEXXFZWROLIOM-UHFFFAOYSA-N 0.000 description 1
- XYQQWZUTSXVBPF-UHFFFAOYSA-N [2-cyclohexyl-1-(3-fluorophenyl)-2-oxoethyl] acetate Chemical compound C=1C=CC(F)=CC=1C(OC(=O)C)C(=O)C1CCCCC1 XYQQWZUTSXVBPF-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- ZGUNAGUHMKGQNY-UHFFFAOYSA-N alpha-phenylglycine Chemical compound OC(=O)C(N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 125000000637 arginyl group Chemical class N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- JUHORIMYRDESRB-UHFFFAOYSA-N benzathine Chemical class C=1C=CC=CC=1CNCCNCC1=CC=CC=C1 JUHORIMYRDESRB-UHFFFAOYSA-N 0.000 description 1
- ZQCQMIFJSVUAPH-UHFFFAOYSA-N benzene;2-iodoacetic acid Chemical compound OC(=O)CI.C1=CC=CC=C1 ZQCQMIFJSVUAPH-UHFFFAOYSA-N 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 125000005997 bromomethyl group Chemical group 0.000 description 1
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000006309 butyl amino group Chemical group 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- AOGYCOYQMAVAFD-UHFFFAOYSA-M carbonochloridate Chemical compound [O-]C(Cl)=O AOGYCOYQMAVAFD-UHFFFAOYSA-M 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 125000002603 chloroethyl group Chemical group [H]C([*])([H])C([H])([H])Cl 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000004915 dibutylamino group Chemical group C(CCC)N(CCCC)* 0.000 description 1
- 125000006003 dichloroethyl group Chemical group 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 125000006001 difluoroethyl group Chemical group 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- WIXQRJCLTMXBSF-UHFFFAOYSA-N ethyl 1-(4-fluorophenyl)-5-(4-methylsulfonylphenyl)pyrazole-3-carboxylate Chemical compound C=1C=C(F)C=CC=1N1N=C(C(=O)OCC)C=C1C1=CC=C(S(C)(=O)=O)C=C1 WIXQRJCLTMXBSF-UHFFFAOYSA-N 0.000 description 1
- NWJFJJCGBDJCFT-UHFFFAOYSA-N ethyl 2-(4-phenyl-5-pyridin-3-yl-1,3-oxazol-2-yl)propanoate Chemical compound O1C(C(C)C(=O)OCC)=NC(C=2C=CC=CC=2)=C1C1=CC=CN=C1 NWJFJJCGBDJCFT-UHFFFAOYSA-N 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- 210000003414 extremity Anatomy 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000003784 fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 1
- 125000001207 fluorophenyl group Chemical group 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000024924 glomerular filtration Effects 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 210000002503 granulosa cell Anatomy 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 229940109738 hematin Drugs 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000030603 inherited susceptibility to asthma Diseases 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000003141 lower extremity Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229940057948 magnesium stearate Drugs 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- NVCBDZVGFJSZKM-UHFFFAOYSA-N n-[1-cyclohexyl-2-(3-fluorophenyl)ethylidene]hydroxylamine Chemical compound C1CCCCC1C(=NO)CC1=CC=CC(F)=C1 NVCBDZVGFJSZKM-UHFFFAOYSA-N 0.000 description 1
- BBAVIZNGISZDIX-UHFFFAOYSA-N n-[5-cyclohexyl-4-(4-methoxyphenyl)-1,3-thiazol-2-yl]-1,1,1-trifluoromethanesulfonamide Chemical compound C1=CC(OC)=CC=C1C1=C(C2CCCCC2)SC(NS(=O)(=O)C(F)(F)F)=N1 BBAVIZNGISZDIX-UHFFFAOYSA-N 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 239000002644 phorbol ester Substances 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 229940032147 starch Drugs 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 230000006103 sulfonylation Effects 0.000 description 1
- 238000005694 sulfonylation reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000002437 synoviocyte Anatomy 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229940033134 talc Drugs 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000006318 tert-butyl amino group Chemical group [H]N(*)C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- DSNBHJFQCNUKMA-SCKDECHMSA-N thromboxane A2 Chemical compound OC(=O)CCC\C=C/C[C@@H]1[C@@H](/C=C/[C@@H](O)CCCCC)O[C@@H]2O[C@H]1C2 DSNBHJFQCNUKMA-SCKDECHMSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 125000006000 trichloroethyl group Chemical group 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/30—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms
- C07C233/31—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by doubly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/45—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
- C07C233/46—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
- C07C233/47—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C251/00—Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
- C07C251/32—Oximes
- C07C251/34—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C251/42—Oximes with oxygen atoms of oxyimino groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with the carbon atom of at least one of the oxyimino groups bound to a carbon atom of a ring other than a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/15—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
- C07C311/16—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/22—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms
- C07C311/29—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound oxygen atoms having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/30—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/31—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms
- C07C311/32—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atoms of the sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/30—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/37—Sulfonamides, the carbon skeleton of the acid part being further substituted by singly-bound nitrogen atoms, not being part of nitro or nitroso groups having the sulfur atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/24—Sulfones; Sulfoxides having sulfone or sulfoxide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/26—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C317/32—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/004—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with organometalhalides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/527—Unsaturated compounds containing keto groups bound to rings other than six-membered aromatic rings
- C07C49/567—Unsaturated compounds containing keto groups bound to rings other than six-membered aromatic rings containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/80—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
- C07C49/813—Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/007—Esters of unsaturated alcohols having the esterified hydroxy group bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/32—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to novel heterocyclic aromatic oxazole compounds. More particularly, the present invention relates to heterocyclic aromatic oxazole compounds having antipyretic activity, analgesic activity, anti-inflammatory activity, and in particular, selective inhibitory activity against cyclooxygenase-2 (COX-2), pharmaceutically acceptable salts thereof, intermediates for producing them and pharmaceuticals useful as anti-inflammatory agents causing less side-effects such as disorders in the digestive tract, which comprise these heterocyclic aromatic oxazole compounds.
- COX-2 cyclooxygenase-2
- Cyclooxygenase is a synthase which produces prostaglandin H 2 (PGH 2 ) from arachidonic acid via prostaglandin G 2 (PGG 2 ), and includes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2).
- COX-1 systemically and constantly exists in almost all cells and is physiologically concerned with the generation of prostaglandin (PG) necessary for the functions of, for example, stomach and kidney. Therefore, when COX-1 is inhibited, the biosynthesis of PG by vasodilative PGE 2 and PGI 2 , which protect gastric mucosa, is suppressed, and the protective action on the gastric mucosa becomes degraded, as a result of which ulcer is caused.
- the renal blood flow can be increased by promoting the production of vasodilative PGE 2 in the body, thereby to appropriately maintain glomerular filtration rate.
- the production of such vasodilative PG is suppressed due to the inhibition of COX-1, the renal blood flow becomes less, so that a side-effect such as the onset of ischemic acute renal insufficiency is sometimes caused.
- COX-2 exists in particular sites such as monocytes, synovial cells, granulosa cells and intravenous endothelial cells, and is topically expressed when inflammation is caused. It is therefore considered that PG generated by COX-2 is deeply concerned with inflammation and tissue disorders.
- NSAID non-steroidal anti-inflammatory drugs
- COX cyclooxygenase
- side-effects are considered to be caused by the fact that they, though certainly selectively inhibit COX, inhibit both COX-1 and COX-2.
- WO94/15932 discloses, as COX-2 inhibitors, 5-membered heterocyclic compounds substituted by bisaryl, such as thiophene, furan and pyrrole, which are specifically exemplified by 3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thiophene.
- this publication merely shows a 5-membered heterocyclic compound such as thiophene having aryl or heteroaryl at the 3-position or 4-position.
- Japanese Patent Unexamined Publication No. 141261/1991 discloses pyrazole derivatives such as ethyl 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]pyrazole-3-carboxylate; Japanese Patent Unexamined Publication No. 183767/1982 discloses thiazole derivatives such as 2-methylthio-5-phenyl-4-(3-pyridyl)-thiazole; and Japanese Patent Unexamined Publication No. 58981/1985 discloses thiazole derivatives such as 2-ethyl-4-(4-methoxyphenyl)-5-(3-pyridyl)-1,3-thiazole.
- These publications mention that they are useful as anti-inflammatory drugs, whereas they do not disclose if they have selective inhibitory action on COX-2 to reduce side-effects, or any suggestion of it.
- U.S. Pat. No. 4,632,930 discloses oxazole compounds such as 5-cyclohexyl-4-(4-methylsulfonylphenyl)- ⁇ , ⁇ -bis(trifluoro-methyl)oxazole-2-methanol. Yet, the compounds disclosed therein are effective for hypertension and their usefulness as anti-inflammatory drugs or any suggestion to that effect are not included.
- Japanese Patent Application under PCT laid-open under Kohyo No. 500054/1984 discloses oxazole derivatives having heteroaryl or carbon ring aryl at the 4-position or 5-position of oxazole ring and having carboxy, ester or amidized carboxy via lower alkylene at the 2-position thereof, such as ethyl 2-[4-phenyl-5-(3-pyridyl)-oxazol-2-yl]-propionate; and Japanese Patent Application under PCT laid-open under Kohyo No.
- imidazole derivatives having heteroaryl and/or carbon ring aryl at the 4-position or 5-position of imidazole ring and having formyl or acetalized formyl via lower alkylene at the 2-position thereof, such as 2-[4-phenyl-5-(3-pyridyl)-imidazol-2-yl]-acetaldehyde dimethyl acetal.
- These publications teach that these compounds are effective as dermal antiphlogistic or mucosal antiphlogistic for inflammatory dermal diseases, but do not teach or even suggest that they have selective inhibitory action on COX-2.
- Japanese Patent Unexamined Publication No. 70446/1993 discloses N-thiazolylsulfonamide derivatives such as N-[5-cyclohexyl-4-(4-methoxyphenyl)thiazol-2-yl]trifluoromethanesulfonamide; and Japanese Patent Unexamined Publication No. 83372/1990 discloses cyclohexylimidazole derivatives such as 4-cyclohexyl-5-phenyl-2-t-butyl-imidazole.
- WO94/27980 discloses oxazole compounds such as 2-phenyl-4-cyclohexyl-5-(4-methylsulfonylphenyl)oxazole as COX-2 inhibitors.
- the compounds described in this publication are mainly characterized by 4-fluorophenyl and 4-methylsulfonylphenyl at the 4-position and 5-position of oxazole ring, and do not suggest the compounds having specific substituents in combination, as in the present invention.
- phenyl substituent for 5-membered heterocyclic ring skeleton has been conventionally considered to be monosubstituted phenyl such as 4-methylsulfonylphenyl and 4-methoxyphenyl, and di-substituted phenyl has been barely tried (e.g., UK Patent No. 1206403).
- the present inventors have intensively studied with the aim of providing a novel compound having antipyretic activity, analgesic activity and anti-inflammatory activity, which is free of side-effects such as disorders in the digestive tract.
- a compound having a secondary substituent such as halogen atom, in particular, fluorine atom, introduced into phenyl such as 4-lower alkylsulfonylphenyl, 4-aminosulfonylphenyl or 4-lower alkylaminosulfonylphenyl, as a substituent for oxazole, has superior selective inhibitory action on COX-2, which resulted in the completion of the present invention.
- the present invention relates to heterocyclic aromatic oxazole compounds as shown in the following (1) to (21), pharmaceutically acceptable salts thereof, intermediate compounds for producing such compounds and pharmaceutical compositions comprising such heterocyclic aromatic oxazole compound.
- Z is an oxygen atom
- R and R 1 are a group of the formula
- R 3 is lower alkyl, amino or lower alkylamino
- R 4 , R 5 , R 6 and R 7 are the same or different and each is hydrogen atom, halogen atom, lower alkyl, lower alkoxy, trifluoromethyl, hydroxy or amino, provided that at least one of R 4 , R 5 , R 6 and R 7 is not hydrogen atom, and the other is optionally substituted cycloalkyl, optionally substituted heterocyclic group or optionally substituted aryl;
- R 2 is a lower alkyl or a halogenated lower alkyl, and pharmaceutically acceptable salts thereof.
- R 3 ′ is lower alkyl or amino
- at least one of R 4 ′, R 5 ′, R 6 ′ and R 7 ′ is halogen atom or lower alkyl and the rest is hydrogen atom or halogen atom, and pharmaceutically acceptable salts thereof.
- R 3 ′′ is methyl or amino
- R 5 ′′ is fluorine atom and R 6 ′′ is hydrogen atom or fluorine atom
- R 2 is methyl
- R 3 ′′, R 5 ′′ and R 6 ′′ are as defined in the above (3);
- R is optionally substituted cycloalkyl having 5 to 7 carbon atoms, optionally substituted thienyl, optionally substituted furyl, optionally substituted pyrrolyl, optionally substituted morpholino, optionally substituted piperazinyl, optionally substituted piperidyl, optionally substituted phenyl, optionally substituted naphthyl or optionally substituted biphenyl, and R 2 is methyl, and pharmaceutically acceptable salts thereof.
- Heterocyclic aromatic oxazole compounds of the above (1) which are selected from the group of:
- R 4 , R 5 , R 6 and R 7 are as defined in the above (1), and R′′ is optionally substituted cycloalkyl or optionally substituted aryl.
- R 1 ′′ and R′′ are respectively as defined in the above (9).
- R′′′ is optionally substituted cycloalkyl having 5 to 7 carbon atoms, optionally substituted phenyl or optionally substituted thienyl
- R 1 ′′′ is a group of the formula
- R 3 ′, R 4 ′, R 5 ′, R 6 ′ and R 7 ′ are as defined in the above (2).
- R, R 1 , R 2 and Z are as defined in the above (1).
- R 1 ′′ and R′′ are respectively as defined in the above (9), and Z and R 2 are as defined in the above (1).
- compositions comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of the above (1) or a pharmaceutically acceptable salt thereof.
- Cyclooxygenase-2 inhibitors comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of the above (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
- Anti-inflammatory agents comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of the above (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
- lower alkyl means an optionally branched alkyl having 1 to 4 carbon atoms, which is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, with preference given to methyl.
- Lower alkylamino is that wherein amino group is substituted by the above-mentioned lower alkyl, and is exemplified by methylamino, dimethylamino, ethylamino, diethylamino, propylamino, isopropylamino, butylamino, isobutylamino, sec-butylamino and tert-butylamino. Preferred are methylamino and dimethylamino.
- Halogen atom means chlorine atom, bromine atom, fluorine atom and the like, with preference given to chlorine atom and fluorine atom. Particularly preferred is fluorine atom.
- Lower alkoxy is an optionally branched alkoxy having 1 to 4 carbon atoms, which is exemplified by methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and tert-butoxy, with preference given to methoxy.
- Cycloalkyl means a cycloalkyl having 3 to 8 carbon atoms, which is exemplified by cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, with preference given to cycloalkyl having 5 to 7 carbon atoms, such as cyclopentyl, cyclohexyl and cycloheptyl. Particularly preferred is cyclohexyl.
- Heterocyclic group is a 5- or 6-membered aromatic heterocyclic ring, saturated heterocyclic ring or condensed heterocyclic ring of these heterocyclic rings and benzene ring, all having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom as atom(s) constituting the ring.
- Examples thereof include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, morpholino, piperazinyl, piperidyl, pyranyl, thiopyranyl, pyridyl, benzothienyl, benzofuranyl, indole, 4,5,6,7-tetrahydroindole, 4,5,6,7-tetrahydrobenzothienyl and 4,5,6,7-tetrahydrobenzofuranyl, with preference given to thienyl, furyl, pyrrolyl, morpholino, piperazinyl and piperidyl, and particular preference given to thienyl.
- Aryl is, for example, phenyl, naphthyl or biphenyl. Preferred is phenyl.
- Halogenated lower alkyl is that wherein lower alkyl is substituted by the above-mentioned halogen atom, and is exemplified by fluoromethyl, chloromethyl, bromomethyl, iodomethyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, fluoroethyl, chloroethyl, difluoroethyl, dichloroethyl, trifluoroethyl, trichloroethyl, tetrachloroethyl, pentafluoroethyl and fluoropropoyl, with preference given to fluoromethyl, chloromethyl, dichloromethyl, difluoromethyl, trichloromethyl and trifluoromethyl.
- “Optionally substituted” means that the group may be substituted by 1 to 3 substituents wherein said substituents may be the same or different.
- the position of the substituents is optional and is not particularly limited. Specific examples include lower alkyl such as methyl, ethyl, propyl, isopropyl, butyl and tert-butyl; hydroxy; lower alkoxy such as methoxy, ethoxy, propoxy and butoxy; halogen atom such as fluorine, chlorine and bromine; nitro; cyano; acyl such as formyl, acetyl and propionyl; acyloxy such as formyloxy, acetyloxy and propionyloxy; mercapto; alkylthio such as methylthio, ethylthio, propylthio, butylthio and isobutylthio; amino; alkylamino such as methylamino, ethylamino, propyl
- optionally substituted aryl means an aryl which may be substituted-by halogen atom, hydroxy, lower alkyl, lower alkoxy, lower alkylsulfonyl and aminosulfonyl, particularly phenyl, and is exemplified by phenyl, fluorophenyl, methylphenyl, methoxyphenyl, methylsulfonylphenyl and aminosulfonylphenyl, with preference given to phenyl and 4-fluorophenyl.
- Optionally substituted heterocyclic group means a heterocyclic group which may be substituted by halogen atom, hydroxy, lower alkyl, lower alkoxy, lower alkylsulfonyl and aminosulfonyl, and particularly means thienyl, furyl, 5-methylthienyl and 5-chlorothienyl.
- Optionally substituted cycloalkyl means a cycloalkyl which may be substituted by the same substituents as above, with preference given to cyclohexyl.
- R of the heterocyclic aromatic oxazole compounds of the present invention examples include cyclohexyl, 4-fluorophenyl and 5-chlorothienyl, with particular preference given to cyclohexyl.
- Preferred as R 1 is a group of the formula
- R 3 , R 4 , R 5 , R 6 and R 7 are as defined above, with particular preference given to a group wherein R 3 is amino or methyl, R 4 and R 7 are hydrogen atoms and at least one of R 5 and R 6 is fluorine atom.
- Specific examples include 4-aminosulfonyl-3-fluorophenyl, 3-fluoro-4-methylsulfonylphenyl, 4-aminosulfonyl-3,5-difluorophenyl and 3,5-difluoro-4-methylsulfonylphenyl, with particular preference given to 4-aminosulfonyl-3-fluorophenyl.
- R 2 is methyl.
- Pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with the oxazole derivative of the formula (I).
- Alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, ammonium salt, organic base salts such as trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, dicyclohexylamine salt and N,N′-dibenzylethylenediamine salt, and amino acid salts such as lysine salt and arginine salt are among the examples. It may be a hydrate as the case demands.
- the compound of the present invention has particularly superior selective inhibitory action on COX-2 and is expected to make a therapeutic drug useful for antipyresis, pain relief and anti-inflammation, which is free of side-effects such as digestive tract disorders.
- the compound of the formula (I) of the present invention or a pharmaceutically acceptable salt thereof is used as a pharmaceutical preparation, it is generally admixed with pharmacologically acceptable carriers, excipients, diluents, extenders, disintegrators, stabilizers, preservatives, buffers, emulsifying agents, aromatics, colorings, sweeteners, thickeners, flavorings, solubilizers and other additives known per se, such as water, vegetable oil, alcohol such as ethanol and benzyl alcohol, polyethylene glycol, glycerol triacetate gelatin, carbohydrates such as lactose and starch, magnesium stearate, talc, lanolin and petrolatum, and formulated into, by a conventional method, tablets, pills, powders, granules, suppositories, injections, eye drops, liquids, capsules, troches, aerosols, elixirs, suspensions, emulsions, syrups and the like,
- the compounds of the present invention can be produced, for example, by the following methods. It is needless to say that the method for producing the compounds of the present invention is not limited to these methods.
- R 2 ′ is lower alkyl or halogenated lower alkyl wherein R 2 ′ may be the same with or different from R 2 , X and X′ are the same or different and each is halogen atom such as bromine atom and chlorine atom, X 1 is halogen atom or hydroxy, X 1 ′ is halogen atom or hydroxy or alkali metal derivative thereof, and R, R 1 , R 2 and Z are as defined above.
- Compound (IV) can be synthesized by reacting compound (II) with compound (III) in the presence of a metal such as zinc and magnesium in an inert solvent such as 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene at room temperature.
- a catalyst such as palladium(O) complex and copper(I) complex may be added.
- Compound (V) can be synthesized by reacting compound (IV) in acetic acid solvent in the presence of lead tetraacetate, or by refluxing compound (IV) under heating in the presence of a complex such as manganese acetate, in lower alkanecarboxylic acid such as acetic acid and propionic acid corresponding to R 2 COOH wherein R 2 is as defined above and benzoic acid and a solvent such as benzene as necessary.
- Compound (I) can be synthesized by refluxing compound (V) under heating in the presence of ammonium salt (e.g., lower alkanecarboxylic acid ammonium such as ammonium acetate and ammonium formate), and inorganic ammonium such as ammonium carbonate in an acidic solvent such as lower alkanecarboxylic acid (e.g., formic acid, acetic acid and propionic acid).
- ammonium salt e.g., lower alkanecarboxylic acid ammonium such as ammonium acetate and ammonium formate
- inorganic ammonium such as ammonium carbonate
- an acidic solvent such as lower alkanecarboxylic acid
- R or R 1 is aromatic heterocycle, isomers may be produced wherein the 4-position R and the 5-position R 1 are reversed.
- Compound (I) can be also synthesized by the following route.
- Step 4 wherein X 1 is hydroxy
- Step 6 and Step 7 are advantageous when R 2 (e.g., methyl) is converted to other R 2 (e.g., R 2 ′ such as ethyl).
- R 2 e.g., methyl
- R 2 ′ such as ethyl
- compound (VI) can be synthesized by reacting compound (V) in the presence of a base such as potassium carbonate, lithium hydroxide, sodium hydroxide and potassium hydroxide in an organic solvent such as methanol, ethanol and dioxane, water or a mixed solvent thereof from under cooling to under heating.
- a base such as potassium carbonate, lithium hydroxide, sodium hydroxide and potassium hydroxide
- organic solvent such as methanol, ethanol and dioxane, water or a mixed solvent thereof from under cooling to under heating.
- Compound (VI) can be also synthesized by the following Step 5.
- Step 5 wherein X 1 is halogen atom or hydroxy
- Compound (VI) can be synthesized by reacting compound (IV) in the presence of a halogenating agent such as bromine, chlorine and N-bromosuccinimide in an inert solvent such as acetic acid, 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene to give compound (VI) wherein X 1 is halogen atom.
- a halogenating agent such as bromine, chlorine and N-bromosuccinimide
- an inert solvent such as acetic acid, 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene
- Compound (VI) wherein X 1 is hydroxy can be synthesized by oxidizing compound (IV) with an oxidizing agent such as benzene iodoacetate, or by treating the halogenated compound (VI) obtained above with water in an inert solvent such as acetone, 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, benzene and toluene.
- an oxidizing agent such as benzene iodoacetate
- Compound (V′) can be obtained by reacting compound (VI) and compound (VII′) by a known method. Specifically, compound (VI) wherein X 1 is hydroxy and compound (VII′) wherein X 1 ′ is halogen atom, or compound (VI) wherein X 1 is halogen atom and compound (VII′) wherein X 1 ′ is hydroxy are reacted in pyridine, or in the presence of a base such as triethylamine and sodium hydroxide, in an organic solvent such as methylene chloride, chloroform and ethanol, from under cooling to under heating.
- a base such as sodium acetate may be used instead of carboxylic acid compound (VII′). In this case, a base may or may not be added.
- Compound (I′) can be obtained by treating compound (V′) in the same manner as in Step 3.
- the compound when a compound wherein either R or R 1 is 4-aminosulfonyl-3-fluorophenyl is desired, the compound can be produced from a compound having 3-fluoro-4-methylsulfonylphenyl corresponding to the objective compound by a known method.
- R 4 , R 5 , R 6 and R 7 are as defined above, may be used as a starting material to give compound (IV′) according to Step 10, which compound is then converted to aminosulfonyl or methylsulfonyl according to the method of Step 15 to give compound (IV).
- starting materials (II′) and (III′) may be used to give a non-sulfonylated oxazole compound (XIII) corresponding to the ultimate compound (I) or (I′) according to Step 1 to Step 7, and the obtained compound (XIII) may be subjected to sulfonylation in the same manner as in Step 15 to give the objective compound (I) or (I′).
- R 8 or R 9 is methoxysulfonylphenyl of the formula
- R 4 , R 5 , R 6 and R 7 are as defined above, and the other is optionally substituted cycloalkyl, optionally substituted heterocyclic group or optionally substituted aryl, and R, R 1 , X and X′ are as defined above.
- Compound (X) can be synthesized in the same manner as in Step 1, using compound (VIII) and compound (IX).
- compound (IV) can be synthesized by heating compound (X) in pyridine, or refluxing compound (X) under heating in the presence of sodium iodide, potassium iodide, lithium iodide and the like, in an organic solvent such as acetone and tetrahydrofuran, after which the obtained compound is reacted with thionyl chloride or oxalyl chloride under heating. Then, the resulting product is aminated or alkylaminated or alkylated by a known method.
- amination or alkylamination is carried out by reacting the resulting product in the presence of aqueous ammonia or alkylamine, or a base such as sodium acetate and ammonium salt such as alkylamine hydrochloride, in an organic solvent such as tetrahydrofuran, ether, toluene, benzene, methylene chloride and dioxane from under cooling to under heating.
- aqueous ammonia or alkylamine or a base such as sodium acetate and ammonium salt such as alkylamine hydrochloride
- an organic solvent such as tetrahydrofuran, ether, toluene, benzene, methylene chloride and dioxane from under cooling to under heating.
- the alkylation can be carried out by the method described in J. Org. Chem., 56: 4974-4976 (1991).
- Compound (I) can be also synthesized by the method of the following Step 10 to Step 15.
- R′ or R 1 ′ is phenyl of the formula
- R 4 , R 5 , R 6 and R 7 are as defined above, and the other is a group corresponding to one of R and R 1 , cycloalkyl which may be substituted by a substituent such as lower alkyl, heterocyclic group such as thienyl and furyl, which may be substituted by a substituent lower alkyl or halogen atom, or aryl which may be substituted by a substituent such as halogen atom, lower alkyl and lower alkoxy, and R, R 1 , X, X′ and Z are as defined above.
- Compound (IV′) can be synthesized in the same manner as in Step 1, wherein compound (II′) and compound (III′) are reacted in the presence of a metal such as zinc and magnesium in an inert solvent such as 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene at room temperature.
- a metal such as zinc and magnesium
- an inert solvent such as 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene at room temperature.
- a catalyst such as palladium(O) complex and copper(I) iodide complex may be added.
- Compound (XI) can be synthesized by refluxing under heating compound (IV′) and hydroxylammine hydrochloride in the presence of a base such as sodium acetate, sodium hydroxide and potassium carbonate in an organic solvent such as methanol, ethanol and tetrahydrofuran, water or a mixed solvent thereof.
- a base such as sodium acetate, sodium hydroxide and potassium carbonate
- an organic solvent such as methanol, ethanol and tetrahydrofuran, water or a mixed solvent thereof.
- Compound (XII) can be synthesized by reacting compound (XI) in the presence of an acylating agent such as acetic anhydride and acetyl chloride, in pyridine, or in the presence of a base such as triethylamine in an organic solvent such as methylene chloride and chloroform from under cooling to under heating.
- an acylating agent such as acetic anhydride and acetyl chloride
- a base such as triethylamine
- organic solvent such as methylene chloride and chloroform
- Compound (XIII) can be synthesized by refluxing under heating compound (XII) in an acidic solvent such as formic acid and acetic acid.
- a dehydrating agent such as magnesium sulfate and sodium sulfate may be added.
- This step is for the synthesis of compound (XIII) from compound (XI) in a single step, and compound (XIII) can be synthesized from compound (XI) and carboxylic acid chloride such as acetyl chloride by the method described in Indian J. Chem., 20B: 322-323 (1981).
- compound (XIII) can be synthesized by reacting compound (XI) and acetic anhydride while heating in acetic acid.
- Compound (I) can be synthesized by reacting compound (XIII) in the presence of a chlorosulfonylating agent such as chlorosulfonic acid in an organic solvent such as chloroform and methylene chloride, or without solvent, and subjecting the resulting product to amination, alkylamination or alkylation by a known method.
- a chlorosulfonylating agent such as chlorosulfonic acid
- organic solvent such as chloroform and methylene chloride
- the amination and alkylamination in Step 15 specifically comprise reacting in the presence of aqueous ammonia, alkylamine or a base such as sodium acetate and ammonium salt such as alkylamine hydrochloride in an organic solvent such as tetrahydrofuran, ether, toluene, benzene, methylene chloride and dioxane from under cooling to under heating.
- aqueous ammonia, alkylamine or a base such as sodium acetate and ammonium salt
- alkylamine hydrochloride in an organic solvent such as tetrahydrofuran, ether, toluene, benzene, methylene chloride and dioxane from under cooling to under heating.
- Compound (V′′) can be synthesized in the same manner as in Step 2 wherein compound (IV′) is reacted in the presence of lead tetraacetate in acetic acid solvent, or by heating compound (IV′) in the presence of a complex such as manganese acetate in lower alkanecarboxylic acid such as acetic acid and propionic acid corresponding to R 2 COOH wherein R 2 is as defined above, and benzoic acid and in a solvent such as benzene as necessary.
- a complex such as manganese acetate in lower alkanecarboxylic acid such as acetic acid and propionic acid corresponding to R 2 COOH wherein R 2 is as defined above, and benzoic acid and in a solvent such as benzene as necessary.
- Compound (XIII) can be synthesized in the same manner as in Step 3 wherein compound (V′′) is refluxed under heating in the presence of ammonium salt such as lower alkanecarboxylic acid ammonium (e.g., ammonium acetate and ammonium formate) and inorganic ammonium (e.g., ammonium carbonate) in an acidic solvent of lower alkanecarboxylic acid such as formic acid, acetic acid and propionic acid.
- ammonium salt such as lower alkanecarboxylic acid ammonium (e.g., ammonium acetate and ammonium formate) and inorganic ammonium (e.g., ammonium carbonate) in an acidic solvent of lower alkanecarboxylic acid such as formic acid, acetic acid and propionic acid.
- ammonium salt such as lower alkanecarboxylic acid ammonium (e.g., ammonium acetate and ammonium formate) and inorgan
- Compound (I) can be also synthesized by the method shown in the following Step 18 to Step 21.
- Compound (XV) can be synthesized by reacting compound (XIV) with chlorocarbonate such as ethyl chlorocaronate in an inert solvent such as tetrahydrofuran, toluene and ethyl acetate in the presence of a base such as triethylamine, or by heating compound (XIV) in acetic anhydride.
- chlorocarbonate such as ethyl chlorocaronate
- an inert solvent such as tetrahydrofuran, toluene and ethyl acetate
- a base such as triethylamine
- Compound (XVII) can be synthesized by reacting compound (XV) with compound (XVI) or an acid anhydride corresponding to compound (XVI) in an inert solvent such as tetrahydrofuran, acetonitrile, ethyl acetate and toluene in the presence of magnesium salt such as magnesium chloride and a base such as triethylamine, pyridine and potassium carbonate.
- Compound (XVII) can be also synthesized by the method described in Chem. Ber., 102: 883-898 (1969).
- Compound (XVIII) can be synthesized by treating compound (XVII) with an acid such as 1N-4N hydrochloric acid, oxalic solid and dilute sulfuric acid in an inert solvent such as tetrahydrofuran, dioxane, methylene chloride and toluene, or heating compound (XVII) in the presence of pyridine and acetic acid.
- an acid such as 1N-4N hydrochloric acid, oxalic solid and dilute sulfuric acid in an inert solvent such as tetrahydrofuran, dioxane, methylene chloride and toluene, or heating compound (XVII) in the presence of pyridine and acetic acid.
- Compound (I) is obtained by reacting compound (XVIII) with a chlorosulfonylating agent such as chlorosulfonic acid in an organic solvent such as chloroform and methylene chloride, or without solvent. Then, the obtained product is reacted with aqueous ammonia or alkylamine in an orgnic solvent such as tetrahydrofuran, ether, toluene, methylene chloride and dioxane, or reacted with ammonium salt such as alkylamine hydrochloride in the presence of a base such as sodium acetate, pyridine and sodium hydroxide.
- a chlorosulfonylating agent such as chlorosulfonic acid
- organic solvent such as chloroform and methylene chloride, or without solvent.
- Compound (I) can be also synthesized from compound (XVIII) by the following Step 22 and Step 23.
- Compound (XIII) can be synthesized by reacting compound (XVIII) with inorganic acid such as concentrated sulfuric acid and polyphosphoric acid in acetic anhydride, or without solvent, at room temperature to under heating.
- inorganic acid such as concentrated sulfuric acid and polyphosphoric acid in acetic anhydride, or without solvent
- Compound (I) can be synthesized by reacting compound (XIII) in the same manner as in the aforementioned Step 15.
- Step 22 and Step 23 alkylsulfonylation or aminosulfonylation in the final Step 23 has been exemplarily discussed. It is possible to subject a compound having R and R 1 instead of R′ and R 1 ′ to the reaction according to Step 18 to Step 20, followed by Step 22 to give an oxazole compound (I). In this case, Step 23 is not necessary.
- the compound (I) thus obtained can be isolated and purified by a known method for separation and purification, such as concentration, concentration under reduced pressure, solvent extraction, crystal precipitation, recrystallization and chromatography.
- Aqueous ammonia (28%) was added to a solution of the obtained compound (10.00 g) in tetrahydrofuran (40 ml) with stirring at room temperature, and the mixture was stirred at room temperature for one hour.
- the solvent was evaporated under reduced pressure and ethyl acetate was added to the residue.
- the mixture was washed with water and saturated brine, and dried over anhydrous sodium sulfate.
- Triethylamine (8.39 ml) was added to a suspension of DL-N-acetyl-2-cyclohexylglycine (10.00 g) obtained from ⁇ -aminophenylacetic acid according to a known method [Collect. Czeck. Chem. Commun., 31: 4563 (1996)] in ethyl acetate (50 ml).
- Ethyl chlorocarbonate (5.28 ml) was dropwise added to the mixture under ice-cooling. The mixture was stirred under ice-cooling for one hour, added with ethyl acetate (150 ml), and washed successively with water and saturated brine. The ethyl acetate solution was concentrated under reduced pressure to give 9.86 g of the title compound as an oil.
- the enzymatic activity was determined from the percent conversion of 14 C arachidonic acid into prostaglandin H 2 (PGH 2 ) and the decomposed product thereof. That is, a test sample (20 ⁇ l), an enzyme solution (20 ⁇ l) and distilled water (10 ⁇ l) were added to 100 mM Tris-HCl buffer (pH 8, 140 ⁇ l) containing hematin (2 ⁇ M) and tryptophan (5 mM), and the mixture was thoroughly stirred, which was followed by preincubation at 24° C. for 5 minutes.
- control compound 1 was 5-(4-aminosulfonylphenyl)-4-cyclohexyl-2-methyloxazole, a patent application to which has been previously filed by us, and control compound 2 was a known analogous compound, 5-(4-aminosulfonylphenyl)-4-(4-fluorophenyl)-2-methyloxazole.
- the compound of the present invention in particular, a compound wherein R 3 is methyl or amino, R 5 is fluorine atom, R 6 is hydrogen atom or fluorine atom, and R 4 and R 7 are hydrogen atom, and pharmaceutically acceptable salts thereof surprisingly selectively inhibit COX-2 alone, while scarcely inhibiting COX-1. Accordingly, the compound of the present invention possesses superior antipyretic action, analgesic action and anti-inflammatory action that the conventional products cannot afford, and scarcely show side-effects in the digestive tract.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pain & Pain Management (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Rheumatology (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
wherein R3 is lower alkyl, amino or lower alkylamino, and R4, R5, R6 and R7 are the same or different and each is hydrogen atom, halogen atom, lower alkyl, lower alkoxy, trifluoromethyl, hydroxy or amino, provided that at least one of R4, R5, R6 and R7 is not hydrogen atom, and the other is an optionally substituted cycloalkyl, an optionally substituted heterocyclic group or an optionally substituted aryl; and R2 is a lower alkyl or a halogenated lower alkyl, and a pharmaceutically acceptable salt thereof. The heterocyclic-aromatic oxazole compound and pharmaceutically acceptable salts thereof have antipyretic action, analgesic action, anti-inflammatory action, and particularly, selective inhibitory action on cyclooxygenase-2 (COX-2), and are expected to be useful as anti-inflammatory agents with less side-effects such as digestive tract disorders.
Description
- The present invention relates to novel heterocyclic aromatic oxazole compounds. More particularly, the present invention relates to heterocyclic aromatic oxazole compounds having antipyretic activity, analgesic activity, anti-inflammatory activity, and in particular, selective inhibitory activity against cyclooxygenase-2 (COX-2), pharmaceutically acceptable salts thereof, intermediates for producing them and pharmaceuticals useful as anti-inflammatory agents causing less side-effects such as disorders in the digestive tract, which comprise these heterocyclic aromatic oxazole compounds.
- It has been conventionally known that arachidonic acid metabolites, prostaglandin E2 (PGE2), prostaglandin I2 (PGI2) and thromboxane B2 (TXB2) are deeply involved in inflammations. An important enzyme in this arachidonic acid metabolism is cyclooxygenase. Cyclooxygenase is a synthase which produces prostaglandin H2 (PGH2) from arachidonic acid via prostaglandin G2 (PGG2), and includes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2).
- With respect to COX-1, cDNA cloning was performed in 1988 and its primary structure and induction by various factors have been clarified [Yokoyama, C. et al.: Biochem. Biophys. Res. Commun., 165: 888-894 (1989); Smith, W. L. et al.: Biochim. Biophys. Acta, 1083: 1-17 (1991); DeWitt, D. L.: Biochim. Biophys. Acta, 1083: 121-134 (1991)]. On the other hand, the existence of an isozyme of COX-1, namely, COX-2, was suggested in 1989 [Holtzman, M. J. et al.: J. Biol. Chem., 267: 21438-21445 (1992)], and cDNAs of COX-2 of chicken, mouse and human have been cloned since 1991 [Xie, W. et al.: Proc. Natl. Acad. Sci. USA, 88: 2692-2696 (1991); Kujubu, D. A. et al.: J. Biol. Chem., 266: 12866-12872 (1991); Hla, T. et al.: Proc. Natl. Acad. Sci. USA, 89: 7384-7388 (1992)]. COX-2 is quickly induced by phorbol ester, lipopolysaccharide (LPS) and the like, and the relationship with inflammation and bronchial asthma has been inferred.
- COX-1 systemically and constantly exists in almost all cells and is physiologically concerned with the generation of prostaglandin (PG) necessary for the functions of, for example, stomach and kidney. Therefore, when COX-1 is inhibited, the biosynthesis of PG by vasodilative PGE2 and PGI2, which protect gastric mucosa, is suppressed, and the protective action on the gastric mucosa becomes degraded, as a result of which ulcer is caused. With regard to a symptom associated with a decrease in renal blood flow, in general terms, the renal blood flow can be increased by promoting the production of vasodilative PGE2 in the body, thereby to appropriately maintain glomerular filtration rate. However, if the production of such vasodilative PG is suppressed due to the inhibition of COX-1, the renal blood flow becomes less, so that a side-effect such as the onset of ischemic acute renal insufficiency is sometimes caused.
- On the other hand, COX-2 exists in particular sites such as monocytes, synovial cells, granulosa cells and intravenous endothelial cells, and is topically expressed when inflammation is caused. It is therefore considered that PG generated by COX-2 is deeply concerned with inflammation and tissue disorders.
- Currently, non-steroidal anti-inflammatory drugs (NSAID) such as aspirin, mefenamic acid, diclofenac, indomethacin, ibuprofen and naproxen have been widely used in clinical situations. Most of these NSAIDs are anti-inflammatory drugs which selectively inhibit cyclooxygenase (COX) and are associated with side-effects such as disorders in the digestive tract. Such side-effects are considered to be caused by the fact that they, though certainly selectively inhibit COX, inhibit both COX-1 and COX-2.
- It follows therefrom that selective inhibition, without inhibition of COX-1, of solely COX-2 which is specifically induced at the inflammatory sites, would enable provision of a superior anti-inflammatory drug free of side-effects such as disorders in the digestive tract (e.g., ulcer).
- There are various reports on anti-inflammatory drugs having selective COX-2 inhibitory activity, which aim at reducing side-effects such as disorders in the digestive tract.
- For example, WO94/15932 discloses, as COX-2 inhibitors, 5-membered heterocyclic compounds substituted by bisaryl, such as thiophene, furan and pyrrole, which are specifically exemplified by 3-(4-methylsulfonylphenyl)-4-(4-fluorophenyl)thiophene. However, this publication merely shows a 5-membered heterocyclic compound such as thiophene having aryl or heteroaryl at the 3-position or 4-position.
- Moreover, various reports deal with anti-inflammatory drugs having cyclooxygenase-inhibitory action, prostaglandin synthesis-inhibitory action or thromboxane A2 synthesis-inhibitory action.
- For example, Japanese Patent Unexamined Publication No. 141261/1991 discloses pyrazole derivatives such as ethyl 1-(4-fluorophenyl)-5-[4-(methylsulfonyl)phenyl]pyrazole-3-carboxylate; Japanese Patent Unexamined Publication No. 183767/1982 discloses thiazole derivatives such as 2-methylthio-5-phenyl-4-(3-pyridyl)-thiazole; and Japanese Patent Unexamined Publication No. 58981/1985 discloses thiazole derivatives such as 2-ethyl-4-(4-methoxyphenyl)-5-(3-pyridyl)-1,3-thiazole. These publications mention that they are useful as anti-inflammatory drugs, whereas they do not disclose if they have selective inhibitory action on COX-2 to reduce side-effects, or any suggestion of it.
- There are other reports on the following heterocyclic aromatic compounds.
- For example, U.S. Pat. No. 4,632,930 discloses oxazole compounds such as 5-cyclohexyl-4-(4-methylsulfonylphenyl)-α,α-bis(trifluoro-methyl)oxazole-2-methanol. Yet, the compounds disclosed therein are effective for hypertension and their usefulness as anti-inflammatory drugs or any suggestion to that effect are not included.
- Japanese Patent Application under PCT laid-open under Kohyo No. 500054/1984 discloses oxazole derivatives having heteroaryl or carbon ring aryl at the 4-position or 5-position of oxazole ring and having carboxy, ester or amidized carboxy via lower alkylene at the 2-position thereof, such as ethyl 2-[4-phenyl-5-(3-pyridyl)-oxazol-2-yl]-propionate; and Japanese Patent Application under PCT laid-open under Kohyo No. 500055/1984 discloses imidazole derivatives having heteroaryl and/or carbon ring aryl at the 4-position or 5-position of imidazole ring and having formyl or acetalized formyl via lower alkylene at the 2-position thereof, such as 2-[4-phenyl-5-(3-pyridyl)-imidazol-2-yl]-acetaldehyde dimethyl acetal. These publications teach that these compounds are effective as dermal antiphlogistic or mucosal antiphlogistic for inflammatory dermal diseases, but do not teach or even suggest that they have selective inhibitory action on COX-2.
- Japanese Patent Unexamined Publication No. 70446/1993 discloses N-thiazolylsulfonamide derivatives such as N-[5-cyclohexyl-4-(4-methoxyphenyl)thiazol-2-yl]trifluoromethanesulfonamide; and Japanese Patent Unexamined Publication No. 83372/1990 discloses cyclohexylimidazole derivatives such as 4-cyclohexyl-5-phenyl-2-t-butyl-imidazole. These publications only exemplify cyclohexyl as a substituent and include no suggestion as to the substitution with phenyl substituted by aminosulfonyl, lower alkylaminosulfonyl or lower alkylsulfonyl.
- WO94/27980 discloses oxazole compounds such as 2-phenyl-4-cyclohexyl-5-(4-methylsulfonylphenyl)oxazole as COX-2 inhibitors. However, the compounds described in this publication are mainly characterized by 4-fluorophenyl and 4-methylsulfonylphenyl at the 4-position and 5-position of oxazole ring, and do not suggest the compounds having specific substituents in combination, as in the present invention.
- Not only in COX-2 inhibitors but also in the field of anti-inflammatory drugs, preferable phenyl substituent for 5-membered heterocyclic ring skeleton has been conventionally considered to be monosubstituted phenyl such as 4-methylsulfonylphenyl and 4-methoxyphenyl, and di-substituted phenyl has been barely tried (e.g., UK Patent No. 1206403).
- The present inventors have intensively studied with the aim of providing a novel compound having antipyretic activity, analgesic activity and anti-inflammatory activity, which is free of side-effects such as disorders in the digestive tract. Surprisingly, they have found that a compound having a secondary substituent such as halogen atom, in particular, fluorine atom, introduced into phenyl such as 4-lower alkylsulfonylphenyl, 4-aminosulfonylphenyl or 4-lower alkylaminosulfonylphenyl, as a substituent for oxazole, has superior selective inhibitory action on COX-2, which resulted in the completion of the present invention.
- That is, the present invention relates to heterocyclic aromatic oxazole compounds as shown in the following (1) to (21), pharmaceutically acceptable salts thereof, intermediate compounds for producing such compounds and pharmaceutical compositions comprising such heterocyclic aromatic oxazole compound.
-
- wherein
- Z is an oxygen atom;
-
- wherein R3 is lower alkyl, amino or lower alkylamino, and R4, R5, R6 and R7 are the same or different and each is hydrogen atom, halogen atom, lower alkyl, lower alkoxy, trifluoromethyl, hydroxy or amino, provided that at least one of R4, R5, R6 and R7 is not hydrogen atom, and the other is optionally substituted cycloalkyl, optionally substituted heterocyclic group or optionally substituted aryl; and
- R2 is a lower alkyl or a halogenated lower alkyl, and pharmaceutically acceptable salts thereof.
-
- wherein R3′ is lower alkyl or amino, at least one of R4′, R5′, R6′ and R7′ is halogen atom or lower alkyl and the rest is hydrogen atom or halogen atom, and pharmaceutically acceptable salts thereof.
-
- wherein R3″ is methyl or amino, R5″ is fluorine atom and R6″ is hydrogen atom or fluorine atom, and R2 is methyl, and pharmaceutically acceptable salts thereof.
-
- wherein R3″, R5″ and R6″ are as defined in the above (3); R is optionally substituted cycloalkyl having 5 to 7 carbon atoms, optionally substituted thienyl, optionally substituted furyl, optionally substituted pyrrolyl, optionally substituted morpholino, optionally substituted piperazinyl, optionally substituted piperidyl, optionally substituted phenyl, optionally substituted naphthyl or optionally substituted biphenyl, and R2 is methyl, and pharmaceutically acceptable salts thereof.
- (5) Heterocyclic aromatic oxazole compounds of the above (4), wherein R3″ is amino, and pharmaceutically acceptable salts thereof.
- (6) Heterocyclic aromatic oxazole compounds of the above (4), wherein R is optionally substituted cycloalkyl having 5 to 7 carbon atoms, optionally substituted phenyl or optionally substituted thienyl, and pharmaceutically acceptable salts thereof.
- (7) Heterocyclic aromatic oxazole compounds of the above (4), wherein R is cyclohexyl or 4-fluorophenyl, and R1 is 4-aminosulfonyl-3-fluorophenyl, 4-aminosulfonyl-3,5-difluorophenyl, 3-fluoro-4-methylsulfonylphenyl or 3,5-difluoro-4-methylsulfonylphenyl, and pharmaceutically acceptable salts thereof.
- (8) Heterocyclic aromatic oxazole compounds of the above (1), which are selected from the group of:
- 4-cyclohexyl-5-(3-fluoro-4-methylsulfonylphenyl)-2-methyloxazole,
- 5-(4-aminosulfonyl-3-fluorophenyl)-4-cyclohexyl-2-methyloxazole,
- 5-(4-aminosulfonyl-3,5-difluorophenyl)-4-cyclohexyl-2-methyloxazole,
- 4-cyclohexyl-5-(3,5-difluoro-4-methylsulfonylphenyl)-2-methyloxazole, and
- 5-(4-aminosulfonyl-3-fluorophenyl)-4-(4-fluorophenyl)-2-methyloxazole, and pharmaceutically acceptable salts thereof.
-
-
- wherein R4, R5, R6 and R7 are as defined in the above (1), and R″ is optionally substituted cycloalkyl or optionally substituted aryl.
- (10) Oxime compounds of the above (9) wherein R1″ is 3-fluorophenyl or 3,5-difluorophenyl, and R″ is cyclohexyl or 4-fluorophenyl.
-
- wherein R1″ and R″ are respectively as defined in the above (9).
- (12) Ketone compounds of the above (11) wherein R1″ is 3-fluorophenyl or 3,5-difluorophenyl, and R″ is cyclohexyl or 4-fluorophenyl.
-
-
- wherein R3′, R4′, R5′, R6′ and R7′ are as defined in the above (2).
- (14) Ketomethylene compounds of the above (13) wherein R′″ is cyclohexyl, and R1′″ is 4-aminosulfonyl-3-fluorophenyl, 4-aminosulfonyl-3,5-difluorophenyl, 3-fluoro-4-methylsulfonylphenyl or 3,5-difluoro-4-methylsulfonylphenyl.
-
- wherein R, R1, R2 and Z are as defined in the above (1).
- (16) Ester compounds of the above (15) wherein R is cycloalkyl and R2 is lower alkyl.
-
- wherein R1″ and R″ are respectively as defined in the above (9), and Z and R2 are as defined in the above (1).
- (18) Amide compounds of the above (17) wherein R1″ is 3-fluorophenyl or 3,5-difluorophenyl, R″ is cyclohexyl or 4-fluorophenyl, and R2 is lower alkyl.
- (19) Pharmaceutical compositions comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of the above (1) or a pharmaceutically acceptable salt thereof.
- (20) Cyclooxygenase-2 inhibitors comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of the above (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
- (21) Anti-inflammatory agents comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of the above (1) or a pharmaceutically acceptable salt thereof as an active ingredient.
- As used herein, lower alkyl means an optionally branched alkyl having 1 to 4 carbon atoms, which is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, with preference given to methyl.
- Lower alkylamino is that wherein amino group is substituted by the above-mentioned lower alkyl, and is exemplified by methylamino, dimethylamino, ethylamino, diethylamino, propylamino, isopropylamino, butylamino, isobutylamino, sec-butylamino and tert-butylamino. Preferred are methylamino and dimethylamino.
- Halogen atom means chlorine atom, bromine atom, fluorine atom and the like, with preference given to chlorine atom and fluorine atom. Particularly preferred is fluorine atom.
- Lower alkoxy is an optionally branched alkoxy having 1 to 4 carbon atoms, which is exemplified by methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy and tert-butoxy, with preference given to methoxy.
- Cycloalkyl means a cycloalkyl having 3 to 8 carbon atoms, which is exemplified by cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl, with preference given to cycloalkyl having 5 to 7 carbon atoms, such as cyclopentyl, cyclohexyl and cycloheptyl. Particularly preferred is cyclohexyl.
- Heterocyclic group is a 5- or 6-membered aromatic heterocyclic ring, saturated heterocyclic ring or condensed heterocyclic ring of these heterocyclic rings and benzene ring, all having, besides carbon atom, 1 to 3 hetero atoms selected from nitrogen atom, oxygen atom and sulfur atom as atom(s) constituting the ring. Examples thereof include thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, morpholino, piperazinyl, piperidyl, pyranyl, thiopyranyl, pyridyl, benzothienyl, benzofuranyl, indole, 4,5,6,7-tetrahydroindole, 4,5,6,7-tetrahydrobenzothienyl and 4,5,6,7-tetrahydrobenzofuranyl, with preference given to thienyl, furyl, pyrrolyl, morpholino, piperazinyl and piperidyl, and particular preference given to thienyl.
- Aryl is, for example, phenyl, naphthyl or biphenyl. Preferred is phenyl.
- Halogenated lower alkyl is that wherein lower alkyl is substituted by the above-mentioned halogen atom, and is exemplified by fluoromethyl, chloromethyl, bromomethyl, iodomethyl, difluoromethyl, dichloromethyl, trifluoromethyl, trichloromethyl, fluoroethyl, chloroethyl, difluoroethyl, dichloroethyl, trifluoroethyl, trichloroethyl, tetrachloroethyl, pentafluoroethyl and fluoropropoyl, with preference given to fluoromethyl, chloromethyl, dichloromethyl, difluoromethyl, trichloromethyl and trifluoromethyl.
- “Optionally substituted” means that the group may be substituted by 1 to 3 substituents wherein said substituents may be the same or different. The position of the substituents is optional and is not particularly limited. Specific examples include lower alkyl such as methyl, ethyl, propyl, isopropyl, butyl and tert-butyl; hydroxy; lower alkoxy such as methoxy, ethoxy, propoxy and butoxy; halogen atom such as fluorine, chlorine and bromine; nitro; cyano; acyl such as formyl, acetyl and propionyl; acyloxy such as formyloxy, acetyloxy and propionyloxy; mercapto; alkylthio such as methylthio, ethylthio, propylthio, butylthio and isobutylthio; amino; alkylamino such as methylamino, ethylamino, propylamino and butylamino; dialkylamino such as dimethylamino, diethylamino, dipropylamino and dibutylamino; carbonyl; alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl and propoxycarbonyl; amide; trifluoromethyl; alkylsulfonyl such as methylsulfonyl and ethanesulfonyl; aminosulfonyl; cycloalkyl such as cyclopentyl and cyclohexyl; phenyl; and acylamide such as acetamide and propionylamide. Preferred are hydroxy, lower alkyl, lower alkoxy, mercapto, lower alkylthio, halogen atom, trifluoromethyl, alkylcarbonyl, alkoxycarbonyl and acylamide.
- More specifically, optionally substituted aryl means an aryl which may be substituted-by halogen atom, hydroxy, lower alkyl, lower alkoxy, lower alkylsulfonyl and aminosulfonyl, particularly phenyl, and is exemplified by phenyl, fluorophenyl, methylphenyl, methoxyphenyl, methylsulfonylphenyl and aminosulfonylphenyl, with preference given to phenyl and 4-fluorophenyl.
- Optionally substituted heterocyclic group means a heterocyclic group which may be substituted by halogen atom, hydroxy, lower alkyl, lower alkoxy, lower alkylsulfonyl and aminosulfonyl, and particularly means thienyl, furyl, 5-methylthienyl and 5-chlorothienyl. Optionally substituted cycloalkyl means a cycloalkyl which may be substituted by the same substituents as above, with preference given to cyclohexyl.
-
- wherein R3, R4, R5, R6 and R7 are as defined above, with particular preference given to a group wherein R3 is amino or methyl, R4 and R7 are hydrogen atoms and at least one of R5 and R6 is fluorine atom. Specific examples include 4-aminosulfonyl-3-fluorophenyl, 3-fluoro-4-methylsulfonylphenyl, 4-aminosulfonyl-3,5-difluorophenyl and 3,5-difluoro-4-methylsulfonylphenyl, with particular preference given to 4-aminosulfonyl-3-fluorophenyl. Preferred as R2 is methyl.
- Pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with the oxazole derivative of the formula (I). Alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, ammonium salt, organic base salts such as trimethylamine salt, triethylamine salt, pyridine salt, picoline salt, dicyclohexylamine salt and N,N′-dibenzylethylenediamine salt, and amino acid salts such as lysine salt and arginine salt are among the examples. It may be a hydrate as the case demands.
- The compound of the present invention has particularly superior selective inhibitory action on COX-2 and is expected to make a therapeutic drug useful for antipyresis, pain relief and anti-inflammation, which is free of side-effects such as digestive tract disorders.
- When the compound of the formula (I) of the present invention or a pharmaceutically acceptable salt thereof is used as a pharmaceutical preparation, it is generally admixed with pharmacologically acceptable carriers, excipients, diluents, extenders, disintegrators, stabilizers, preservatives, buffers, emulsifying agents, aromatics, colorings, sweeteners, thickeners, flavorings, solubilizers and other additives known per se, such as water, vegetable oil, alcohol such as ethanol and benzyl alcohol, polyethylene glycol, glycerol triacetate gelatin, carbohydrates such as lactose and starch, magnesium stearate, talc, lanolin and petrolatum, and formulated into, by a conventional method, tablets, pills, powders, granules, suppositories, injections, eye drops, liquids, capsules, troches, aerosols, elixirs, suspensions, emulsions, syrups and the like, which can be administered orally or parenterally.
- While the dose varies depending on the kind and severity of the disease, compound to be administered, administration route, and age, sex, body weight etc. of patients, 0.1 mg-1,000 mg, particularly 1 mg-300 mg of compound (I) is generally administered orally to an adult per day.
-
- wherein R2′ is lower alkyl or halogenated lower alkyl wherein R2′ may be the same with or different from R2, X and X′ are the same or different and each is halogen atom such as bromine atom and chlorine atom, X1 is halogen atom or hydroxy, X1′ is halogen atom or hydroxy or alkali metal derivative thereof, and R, R1, R2 and Z are as defined above.
- Compound (IV) can be synthesized by reacting compound (II) with compound (III) in the presence of a metal such as zinc and magnesium in an inert solvent such as 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene at room temperature. In this case, a catalyst such as palladium(O) complex and copper(I) complex may be added.
- Compound (V) can be synthesized by reacting compound (IV) in acetic acid solvent in the presence of lead tetraacetate, or by refluxing compound (IV) under heating in the presence of a complex such as manganese acetate, in lower alkanecarboxylic acid such as acetic acid and propionic acid corresponding to R2COOH wherein R2 is as defined above and benzoic acid and a solvent such as benzene as necessary.
- Compound (I) can be synthesized by refluxing compound (V) under heating in the presence of ammonium salt (e.g., lower alkanecarboxylic acid ammonium such as ammonium acetate and ammonium formate), and inorganic ammonium such as ammonium carbonate in an acidic solvent such as lower alkanecarboxylic acid (e.g., formic acid, acetic acid and propionic acid). In this reaction, when R or R1 is aromatic heterocycle, isomers may be produced wherein the 4-position R and the 5-position R1 are reversed.
- Compound (I) can be also synthesized by the following route.
- This step, Step 6 and Step 7 are advantageous when R2 (e.g., methyl) is converted to other R2 (e.g., R2′ such as ethyl).
- When X1 is hydroxy, compound (VI) can be synthesized by reacting compound (V) in the presence of a base such as potassium carbonate, lithium hydroxide, sodium hydroxide and potassium hydroxide in an organic solvent such as methanol, ethanol and dioxane, water or a mixed solvent thereof from under cooling to under heating.
- Compound (VI) can be also synthesized by the following Step 5.
- Compound (VI) can be synthesized by reacting compound (IV) in the presence of a halogenating agent such as bromine, chlorine and N-bromosuccinimide in an inert solvent such as acetic acid, 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene to give compound (VI) wherein X1 is halogen atom. Compound (VI) wherein X1 is hydroxy can be synthesized by oxidizing compound (IV) with an oxidizing agent such as benzene iodoacetate, or by treating the halogenated compound (VI) obtained above with water in an inert solvent such as acetone, 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, benzene and toluene.
- Compound (V′) can be obtained by reacting compound (VI) and compound (VII′) by a known method. Specifically, compound (VI) wherein X1 is hydroxy and compound (VII′) wherein X1 ′ is halogen atom, or compound (VI) wherein X1 is halogen atom and compound (VII′) wherein X1′ is hydroxy are reacted in pyridine, or in the presence of a base such as triethylamine and sodium hydroxide, in an organic solvent such as methylene chloride, chloroform and ethanol, from under cooling to under heating. When X1 is halogen atom, alkali metal salt-such as sodium acetate may be used instead of carboxylic acid compound (VII′). In this case, a base may or may not be added.
- Compound (I′) can be obtained by treating compound (V′) in the same manner as in Step 3.
- When a compound wherein either R or R1 is 4-aminosulfonyl-3-fluorophenyl is desired, the compound can be produced from a compound having 3-fluoro-4-methylsulfonylphenyl corresponding to the objective compound by a known method.
-
-
- wherein R4, R5, R6 and R7 are as defined above, may be used as a starting material to give compound (IV′) according to Step 10, which compound is then converted to aminosulfonyl or methylsulfonyl according to the method of Step 15 to give compound (IV). Alternatively, such starting materials (II′) and (III′) may be used to give a non-sulfonylated oxazole compound (XIII) corresponding to the ultimate compound (I) or (I′) according to Step 1 to Step 7, and the obtained compound (XIII) may be subjected to sulfonylation in the same manner as in Step 15 to give the objective compound (I) or (I′).
-
-
- wherein R4, R5, R6 and R7 are as defined above, and the other is optionally substituted cycloalkyl, optionally substituted heterocyclic group or optionally substituted aryl, and R, R1, X and X′ are as defined above.
- Compound (X) can be synthesized in the same manner as in Step 1, using compound (VIII) and compound (IX).
- When at least one of R and R1 is phenyl having aminosulfonyl or alkylsulfonyl at the 4-position, compound (IV) can be synthesized by heating compound (X) in pyridine, or refluxing compound (X) under heating in the presence of sodium iodide, potassium iodide, lithium iodide and the like, in an organic solvent such as acetone and tetrahydrofuran, after which the obtained compound is reacted with thionyl chloride or oxalyl chloride under heating. Then, the resulting product is aminated or alkylaminated or alkylated by a known method. More specifically, amination or alkylamination is carried out by reacting the resulting product in the presence of aqueous ammonia or alkylamine, or a base such as sodium acetate and ammonium salt such as alkylamine hydrochloride, in an organic solvent such as tetrahydrofuran, ether, toluene, benzene, methylene chloride and dioxane from under cooling to under heating. The alkylation can be carried out by the method described in J. Org. Chem., 56: 4974-4976 (1991).
- Compound (I) can be also synthesized by the method of the following Step 10 to Step 15.
-
-
- wherein R4, R5, R6 and R7 are as defined above, and the other is a group corresponding to one of R and R1, cycloalkyl which may be substituted by a substituent such as lower alkyl, heterocyclic group such as thienyl and furyl, which may be substituted by a substituent lower alkyl or halogen atom, or aryl which may be substituted by a substituent such as halogen atom, lower alkyl and lower alkoxy, and R, R1, X, X′ and Z are as defined above.
- Compound (IV′) can be synthesized in the same manner as in Step 1, wherein compound (II′) and compound (III′) are reacted in the presence of a metal such as zinc and magnesium in an inert solvent such as 1,2-dimethoxyethane, dioxane, ether, tetrahydrofuran, methylene chloride, benzene and toluene at room temperature. In this case, a catalyst such as palladium(O) complex and copper(I) iodide complex may be added.
- Compound (XI) can be synthesized by refluxing under heating compound (IV′) and hydroxylammine hydrochloride in the presence of a base such as sodium acetate, sodium hydroxide and potassium carbonate in an organic solvent such as methanol, ethanol and tetrahydrofuran, water or a mixed solvent thereof.
- Compound (XII) can be synthesized by reacting compound (XI) in the presence of an acylating agent such as acetic anhydride and acetyl chloride, in pyridine, or in the presence of a base such as triethylamine in an organic solvent such as methylene chloride and chloroform from under cooling to under heating.
- Compound (XIII) can be synthesized by refluxing under heating compound (XII) in an acidic solvent such as formic acid and acetic acid. In this case, a dehydrating agent such as magnesium sulfate and sodium sulfate may be added.
- This step is for the synthesis of compound (XIII) from compound (XI) in a single step, and compound (XIII) can be synthesized from compound (XI) and carboxylic acid chloride such as acetyl chloride by the method described in Indian J. Chem., 20B: 322-323 (1981). When R2 is methyl, compound (XIII) can be synthesized by reacting compound (XI) and acetic anhydride while heating in acetic acid.
- Compound (I) can be synthesized by reacting compound (XIII) in the presence of a chlorosulfonylating agent such as chlorosulfonic acid in an organic solvent such as chloroform and methylene chloride, or without solvent, and subjecting the resulting product to amination, alkylamination or alkylation by a known method. The amination and alkylamination in Step 15 specifically comprise reacting in the presence of aqueous ammonia, alkylamine or a base such as sodium acetate and ammonium salt such as alkylamine hydrochloride in an organic solvent such as tetrahydrofuran, ether, toluene, benzene, methylene chloride and dioxane from under cooling to under heating. When alkylsulfonation is carried out, the method described in J. Org. Chem., 56: 4974-4976 (1991) can be used for the synthesis.
- In the above description, alkylsulfonation or aminosulfonation in the final Step 15 has been exemplarily discussed. It is possible to use compound (II) and compound (III) instead of the starting materials (II′) and (III′) to give compound (IV), which is followed by Step 11 to Step 14 to give an oxazole compound (I). In this case, Step 15 is not necessary.
-
- wherein R′, R1′, R2 and Z are as defined above. Step 16
- Compound (V″) can be synthesized in the same manner as in Step 2 wherein compound (IV′) is reacted in the presence of lead tetraacetate in acetic acid solvent, or by heating compound (IV′) in the presence of a complex such as manganese acetate in lower alkanecarboxylic acid such as acetic acid and propionic acid corresponding to R2COOH wherein R2 is as defined above, and benzoic acid and in a solvent such as benzene as necessary.
- Compound (XIII) can be synthesized in the same manner as in Step 3 wherein compound (V″) is refluxed under heating in the presence of ammonium salt such as lower alkanecarboxylic acid ammonium (e.g., ammonium acetate and ammonium formate) and inorganic ammonium (e.g., ammonium carbonate) in an acidic solvent of lower alkanecarboxylic acid such as formic acid, acetic acid and propionic acid. In this reaction, when R′ or R1″ is an aromatic heterocycle, isomers may be produced wherein the 4-position R′ and the 5-position R1′ are reversed.
-
- wherein X2 is halogen atom, and R, R1, R′, R1′, R2 and Z are as defined above.
- Compound (XV) can be synthesized by reacting compound (XIV) with chlorocarbonate such as ethyl chlorocaronate in an inert solvent such as tetrahydrofuran, toluene and ethyl acetate in the presence of a base such as triethylamine, or by heating compound (XIV) in acetic anhydride.
- Compound (XVII) can be synthesized by reacting compound (XV) with compound (XVI) or an acid anhydride corresponding to compound (XVI) in an inert solvent such as tetrahydrofuran, acetonitrile, ethyl acetate and toluene in the presence of magnesium salt such as magnesium chloride and a base such as triethylamine, pyridine and potassium carbonate. Compound (XVII) can be also synthesized by the method described in Chem. Ber., 102: 883-898 (1969).
- Compound (XVIII) can be synthesized by treating compound (XVII) with an acid such as 1N-4N hydrochloric acid, oxalic solid and dilute sulfuric acid in an inert solvent such as tetrahydrofuran, dioxane, methylene chloride and toluene, or heating compound (XVII) in the presence of pyridine and acetic acid.
- Compound (I) is obtained by reacting compound (XVIII) with a chlorosulfonylating agent such as chlorosulfonic acid in an organic solvent such as chloroform and methylene chloride, or without solvent. Then, the obtained product is reacted with aqueous ammonia or alkylamine in an orgnic solvent such as tetrahydrofuran, ether, toluene, methylene chloride and dioxane, or reacted with ammonium salt such as alkylamine hydrochloride in the presence of a base such as sodium acetate, pyridine and sodium hydroxide.
- Compound (I) can be also synthesized from compound (XVIII) by the following Step 22 and Step 23.
- Compound (XIII) can be synthesized by reacting compound (XVIII) with inorganic acid such as concentrated sulfuric acid and polyphosphoric acid in acetic anhydride, or without solvent, at room temperature to under heating.
- Compound (I) can be synthesized by reacting compound (XIII) in the same manner as in the aforementioned Step 15.
- In the above Step 22 and Step 23, alkylsulfonylation or aminosulfonylation in the final Step 23 has been exemplarily discussed. It is possible to subject a compound having R and R1 instead of R′ and R1′ to the reaction according to Step 18 to Step 20, followed by Step 22 to give an oxazole compound (I). In this case, Step 23 is not necessary.
- The compound (I) thus obtained can be isolated and purified by a known method for separation and purification, such as concentration, concentration under reduced pressure, solvent extraction, crystal precipitation, recrystallization and chromatography.
- The present invention is described in more detail in the following by illustrative Examples and Experimental Examples, to which the present invention is not limited.
-
- To a solution of tetrakis(triphenylphosphine)palladium (1.29 g) and zinc powder (2.19 g) in 1,2-dimethoxyethane (10 ml) was added a solution of cyclohexanecarbonyl chloride (3.60 g) in 1,2-dimethoxyethane (10 ml) at room temperature under a nitrogen atmosphere. A solution of 2-chloro-4-methylsulfonylbenzyl bromide (9.40 g) in 1,2-dimethoxyethane (20 ml) was gradually added dropwise to the mixture at room temperature with stirring. The mixture was further stirred at room temperature for 3 hours. The insoluble matter was removed by filtration and the filtrate was concentrated under reduced pressure. Then, ethyl acetate (200 ml) was added to the residue, and the mixture was washed with 1N hydrochloric acid, and then with saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated, and ethyl acetate and diisopropyl ether were added. The precipitated solid was collected by filtration to give 3.47 g of the title compound as a white solid.
-
- To a solution of the compound (3.40 g) obtained in the above Step 1) in benzene (20 ml) was dropwise added a solution of bromine (1.73 g) in benzene (20 ml) with stirring under ice-cooling, and the mixture was stirred for one hour. This solution was poured into water and extracted with ethyl acetate. The organic layer was washed with saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 4.20 g of the title compound.
-
- Sodium acetate (1.06 g) and ethanol (40 ml) were added to the compound (4.20 g) obtained in the above Step 5). The mixture was refluxed under heating for 4 hours, and the solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. The mixture was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated to give 3.85 g of a crude product of the title compound.
-
- A solution of the compound (3.85 g) obtained in the above Step 6) and ammonium acetate (2.08 g) in acetic acid (40 ml) was refluxed under heating for 5 hours. The solvent was evaporated under reduced pressure, and ethyl acetate was added to the residue. The mixture was washed with water, saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 1.95 g of the title compound (yield 53%).
-
- To a solution of tetrakis(triphenylphosphine)palladium (2.00 g) and zinc powder (17.98 g) in 1,2-dimethoxyethane (50 ml) was added a solution of cyclohexanecarbonyl chloride (20.00 g) in 1,2-dimethoxyethane (50 ml) at room temperature under a nitrogen atmosphere. A solution of 3-fluorobenzyl bromide (26.00 g) in 1,2-dimethoxyethane (100 ml) was gradually added dropwise to the mixture with stirring under ice-cooling. The mixture was stirred under ice-cooling for 30 minutes, and at room temperature for 2 hours. The insoluble matter was removed by filtration and the filtrate was concentrated under reduced pressure. Then, ethyl acetate (200 ml) was added to the residue, and the mixture was washed with 1N hydrochloric acid, and then with saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated to give 29.20 g of an oily crude product.
-
- Lead tetraacetate (75.00 g) was added to a solution of the compound (29.20 g) obtained in the above Step 10) in acetic acid (300 ml). The mixture was refluxed under heating for 1.5 hours, and the solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. The mixture was washed with water, a saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=9:1) to give 18.30 g of the title compound as an oil (yield 50%).
-
- A solution of the compound (18.00 g) obtained in the above Step 16) and ammonium acetate (15.00 g) in acetic acid (100 ml) was refluxed under heating for 5 hours, and the solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. The mixture was washed with water, saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 17.20 g of an oily crude product.
-
- To a solution of the compound (17.00 g) obtained in the above Step 17) in chloroform (80 ml) was added dropwise chlorosulfonic acid (27 ml) with stirring under ice-cooling, and the mixture was heated at 100° C. for 3 hours. The reaction mixture was cooled to room temperature, and dropwise added tc ice-water (300 ml) with stirring. The organic layer was separated, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 20.31 g of a crude product.
- Aqueous ammonia (28%) was added to a solution of the obtained compound (10.00 g) in tetrahydrofuran (40 ml) with stirring at room temperature, and the mixture was stirred at room temperature for one hour. The solvent was evaporated under reduced pressure and ethyl acetate was added to the residue. The mixture was washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated, and the residue was separated and purified by silica gel column chromatography (developing solvent; dichloromethane:ethyl acetate=6:1) to give 5.74 g of the title compound (yield 61%).
- The compound of Example 2 (formula (I); R=cyclohexyl, R1=4-aminosulfonyl-3-fluorophenyl, R2=methyl, Z=oxygen atom) was synthesized according to another synthetic method.
-
- To a solution of the compound (353 g) obtained according to a method similar to that of the above Example 2, Step 10) in ethanol (1300 ml) were added hydroxylamine hydrochloride (123 g) and sodium acetate (158 g). The mixture was refluxed under heating for 2 hours, and the solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue. The mixture was washed with water, saturated aqueous sodium hydrogencarbonate solution and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the crude product was recrystallized from n-heptane to give 160 g of the title compound (yield 42%).
-
- Acetic anhydride (95 ml) was dropwise added to a solution of the compound (158 g) obtained in the above Step 11) in acetic acid (900 ml) with stirring at room temperature, and the mixture was refluxed under heating for 7 hours. The solvent was evaporated under reduced pressure and n-heptane was added to the residue. The mixture was washed with water, saturated aqueous sodium hydrogencarbonate solution, saturated brine and acetonitrile. The solvent was evaporated under reduced pressure to give 119 g of the title compound as an oil.
- Then, the obtained compound (119 g) was reacted in the same manner as in the above Example 2, Step 15) to give a compound of Example 2 (formula (I); R=cyclohexyl, R1=4-aminosulfonyl-3-fluorophenyl, R2=methyl, Z=oxygen atom).
- Synthesis of 4-cyclohexyl-5-(3-fluoro-4-methylsulfonylphenyl)-2-methyloxazole (formula (I); R=cyclohexyl, R1=3-fluoro-4-methylsulfonylphenyl, R2=methyl, Z=oxygen atom)
-
- To a solution of the compound (17.00 g) obtained in the above Example 2, Step 17) in chloroform (80 ml) was dropwise added chlorosulfonic acid (27 ml) with stirring under ice-cooling. The mixture was heated at 100° C. for 3 hours. The reaction mixture was cooled to room temperature and dropwise added to ice-water (300 ml) with stirring. The organic layer was separated, washed with saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 20.31 g of a crude product.
- Water (25 ml) was added to the obtained compound (3.66 g). To the mixture were added sodium sulfite (1.42 g) and sodium hydrogencarbonate (1.89 g) successively with stirring at room temperature. The mixture was heated at 70° C. for 2 hours. Ethanol (25 ml) and methyl iodide (2.20 g) were added to the mixture, and the mixture was heated at 100° C. for 2 hours. The mixture was cooled to room temperature and extracted with ethyl acetate. The extract was washed with saturated brine and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure, and the residue was saparated and purified by silica gel column chromatography (developing solvent; hexane:ethyl acetate=2:1) to give 0.82 g of the title compound (yield 24%).
- The compounds of Examples 4-6 were obtained in the same manner as in Examples 1-3 or Example 7 to be mentioned below.
- The structures and properties of the compounds of Examples 1-6 are shown in the following Tables. In the Tables, Me means methyl.
TABLE 1 Ex. Compound m.p. 1H NMR(δ) ppm IR cm−1 MS Elem. analysis 1 119˜121° C. white crystals CDCl3 300 MHz 1.1-1.2(3H, m) 1.6-1.8(7H, m) 2.48(1H, m) 2.51(3H, s) 3.12(3H, s) 7.55(1H, d, J=8.1 Hz) 7.88(1H, dd, J=1.8, 8.1 Hz) 8.07(1H, d, J=1.8 Hz) neat 2928 1578 1317 1155 1100 960 # FAB +354(MH+) 2 166˜167° C. white crystals CDCl3 300 MHz 1.3-1.5(3H, m) 1.6-1.9(7H, m) 2.51(3H, s) 2.79(1H, tt, J=3.7, 11.3 Hz) 5.11(2H, s) 7.36-7.44(2H, m) 7.94(1H, t, J=7.9 Hz) neat 3280 2929 1613 1343 1170 FAB +339(MH+) # Calculated C 56.79% H 5.66% N 8.28% Found C 56.41% H 5.73% N 8.19% 3 111˜112° C. white crystals CDCl3 300 MHz 1.3-1.5(3H, m) 1.6-1.8(7H, m) 2.52(3H, s) 2.80(1H, tt, J=4.0, 11.4 Hz) 3.25(3H, s) 7.40(1H, dd, J=1.6, 11.2 Hz) 7.48(1H, dd, J=1.6, 8.3 Hz) 7.99(1H, dd, J=8.3, 8.4 Hz) neat 2929 1612 1320 1161 # 1144 769 FAB +338(MH+) Calculated C 60.52% H 5.97% N 4.15% Found C 60.70% H 6.10% N 4.12% -
TABLE 2 Ex. Compound m.p. 1H NMR(δ) ppm IR cm−1 MS Elem. analysis 4 200˜201° C. white crystals CDCl3 300 MHz 1.28-1.44(4H, m) 1.62-1.92(6H, m) 2.51(3H,s) 2.72-2.83(1H, m) 5.18(2H, s) 7.53(1H, dd, J=8.4, 1.6 Hz) 7.69(1H, d, J=1.6 Hz) 8.13(1H, d, J=8.4 Hz) KBr 3353 3255 2928 1606 # 1342 1166 FAB +355(MH+) Calculated C 54.16% H 5.40% N 7.89% Found C 54.11% H 5.45% N 7.78% 5 183.2-184.2° C. white crystals CDCl3 300 MHz 1.3-1.5(3H, m) 1.7-1.9(7H, m) 2.50(3H, s) 2.73(3H, s) 2.80(1H, m) 4.92(2H, s) 7.43-7.49(2H, m) 8.05(1H, d, J=8.3 Hz) KBr 3294 2929 1609 1299 1170 FAB +335(MH+) # Calculated C 61.05% H 6.63% N 8.38% Found C 61.24% H 6.73% N 8.43% 6 amorphous CDCl3 300 MHz 1.28-1.47(3H, m) 1.57-1.95(7H, m) 2.51(3H, s) 2.68-2.80(1H, m) 5.37(2H, brs) 7.18(2H, ddd, J=9.9, 1.7, 1.4 Hz) KBr 2931 1622 1557 1422 1359 1175 1035 FAB +357(MH+) -
- A solution of 5-(3-fluorophenyl)-4-(4-fluorophenyl)-2-methyloxazole (1.10 g) obtained by the method as mentioned above and chlorosulfonic acid (1.6 ml) in chloroform (2 ml) was heated with stirring at 90° C. for 2 hours. The reaction mixture was poured into ice-water and extracted with chloroform. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated to give 1.06 g of a crude product of 5-(4-chlorosulfonyl-3-fluorophenyl)-4-(4-fluorophenyl)-2-methyloxazole.
- To a solution of this crude product (1.06 g) in tetrahydrofuran (6 ml) was added 28% aqueous ammonia (0.6 ml) and the mixture was stirred at room temperature for 2 hours. The reaction mixture was concentrated, added with ethyl acetate, and washed with water and saturated brine. The ethyl acetate solution was dried over anhydrous magnesium sulfate, and concentrated to give 981 mg of a crude product. This crude product was recrystallized from ethanol to give 629 mg of the title compound (yield 44%). The structure and properties of this compound are shown in the following Table.
TABLE 3 Ex. Compound m.p. 1H NMR(δ) ppm IR cm−1 MS Elem. analysis 7 208° C. white crystals CDCl3 300 MHz 2.58(3H, s) 5.07(2H, s) 7.14(2H, tt, J=2.2, 8.8 Hz) 7.36(1H, dd, J=1.5, 11.0 Hz) 7.47(1H, dd, J=1.8, 7.7 Hz) 7.59(2H, ddd, J=2.2, 5.5, 8.8 Hz) 7.88(1H, t, J=7.7 Hz) neat 3278 2359 1613 1562 1510 1342 1171 # FAB +351(M+ + 1) Calculated C 54.74% H 3.86% N 7.66% Found C 54.40% H 3.74% N 7.59% - The compound of Example 2 (formula (I); R=cyclohexyl, R1=4-aminosulfonyl-3-fluorophenyl, R2-methyl, Z=oxygen atom) was synthesized according to another synthetic method.
-
- Triethylamine (8.39 ml) was added to a suspension of DL-N-acetyl-2-cyclohexylglycine (10.00 g) obtained from α-aminophenylacetic acid according to a known method [Collect. Czeck. Chem. Commun., 31: 4563 (1996)] in ethyl acetate (50 ml). Ethyl chlorocarbonate (5.28 ml) was dropwise added to the mixture under ice-cooling. The mixture was stirred under ice-cooling for one hour, added with ethyl acetate (150 ml), and washed successively with water and saturated brine. The ethyl acetate solution was concentrated under reduced pressure to give 9.86 g of the title compound as an oil.
-
- A solution of the compound (9.86 g) obtained in the above Step 18) in tetrahydrofuran (15 ml) was added to a suspension of magnesium chloride (3.56 g) in tetrahydrofuran (20 ml). Triethylamine (9.49 ml) was added with stirring under ice-cooling, and the mixture was stirred for 15 minutes. 3-Fluorobenzoyl chloride (4.55 ml) was dropwise added to the mixture, and the mixture was stirred under ice-cooling for one hour. The reaction mixture was diluted with ethyl acetate, washed with water, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 11.69 g of the title compound as an oil.
-
- To a solution of the compound (527 mg) obtained in the above Step 19) in tetrahydrofuran (3.5 ml) was added 1N hydrochloric acid (0.35 ml). The mixture was stirred at room temperature for one hour, added with ethyl acetate, and washed successively with water, saturated aqueous sodium hydrogencarbonate solution and saturated brine. The organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give 404 mg of the title compound as a solid (yield 84%). The solid was recrystallized from n-heptane to give white crystals, melting point 116-117° C.
-
- Chlorosulfonic acid (0.34 ml) was added to a solution of the compound (200 mg) obtained in the above Step 20) in chloroform (2 ml) with stirring under ice-cooling, and the mixture was refluxed under heating for 5 hours. The reaction mixture was diluted with chloroform and poured into ice-water. The organic layer was separated, washed successively with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 181 mg of a crude product.
- To a solution of the obtained compound (169 mg) in tetrahydrofuran (2 ml) was added 28% aqueous ammonia (0.1 ml) with stirring at room temperature, and the mixture was stirred for 30 minutes. The solvent was evaporated under reduced pressure. Ethyl acetate was added to the residue, and the mixture was washed successively with water and saturated brine, which was followed by drying over anhydrous sodium sulfate. The solvent was evaporated, and the residue was separated and purified by silica gel column chromatography (developing solvent; dichloromethane:ethyl acetate=6:1) to give 126 mg of the title compound (yield 55%).
- The compound of Example 2 (formula (I); R=cyclohexyl, R1=4-aminosulfonyl-3-fluorophenyl, R2=methyl, Z=oxygen atom) was synthesized according to another synthetic method.
-
- Concentrated sulfuric acid (30 μl) was added to a suspension of the compound (141 mg) obtained in the above Example, Step 20) in acetic anhydride (2 ml), and the mixture was stirred at 100° C. for 30 minutes. The reaction mixture was concentrated under reduced pressure, added with aqueous potassium carbonate solution, and extracted with ethyl acetate. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was evaporated under reduced pressure to give 135 mg of the title compound as an oil.
-
- In the same manner as in the above Example 2, Step 15), the compound obtained in the above Step 22) was reacted to give the compound of Example 2 (formula (I); R=cyclohexyl, R1=4-aminosulfonyl-3-fluorophenyl, R2=methyl, Z=oxygen atom).
- The enzymatic activity was determined from the percent conversion of14C arachidonic acid into prostaglandin H2 (PGH2) and the decomposed product thereof. That is, a test sample (20 μl), an enzyme solution (20 μl) and distilled water (10 μl) were added to 100 mM Tris-HCl buffer (pH 8, 140 μl) containing hematin (2 μM) and tryptophan (5 mM), and the mixture was thoroughly stirred, which was followed by preincubation at 24° C. for 5 minutes. Then, a 14C arachidonic acid solution (10 μl) was added and the mixture was reacted at 24° C., whereafter a solution (40 μl) of ethyl ether/methanol/1M citric acid (30/4/1) ice-cooled to −20° C. was added to stop the reaction. The reaction mixture was centrifuged for 5 minutes at 3,000 rpm to give an ether layer which was placed on a thin plate, and developed with ethyl ether/methanol/acetic acid (90/2/0.1) to determine percent conversion (A) from arachidonic acid to PGH2 and the decomposed product thereof. The percent conversion (B) without a test sample was also determined, based on which percent inhibition was calculated from the following formula, and a concentration (IC50) necessary for 50% inhibition of the test sample was determined.
- Inhibition (%)=(1−A/B)×100
- An enzyme prepared from human platelets was used as an enzyme solution of cyclooxygenase-1, and an enzyme expressed by a yeast, into which cDNA of human cyclooxygenase-2 had been introduced using a kit of Invitrogen Corp., was used as an enzyme solution of cyclooxygenase-2. As used herein, control compound 1 was 5-(4-aminosulfonylphenyl)-4-cyclohexyl-2-methyloxazole, a patent application to which has been previously filed by us, and control compound 2 was a known analogous compound, 5-(4-aminosulfonylphenyl)-4-(4-fluorophenyl)-2-methyloxazole.
- The results are shown in Table 4.
- As is evident from the comparison of control compound 1 and the compound of Example 2, as well as control compound 2 and the compound of Example 7, a remarkable reduction of the action on COX-1 while retaining the activity on COX-2 has become possible particularly by introducing fluorine atom.
TABLE 4 Experimental Example 1 (inhibitory action on cyclooxygenase) Structural IC50(μM) Example formula COX-2 COX-1 COX-1/COX-2 2 0.07 >100 >1,428 3 0.3 >100 >333 4 >10 5 >10 6 0.16 >100 >625 7 0.03 37 1,233 Indomethacin 8 0.5 0.063 Control 1 0.07 45 643 Control 2 0.02 5 250 - Carrageenin (1%, 0.05 ml) dissolved in physiological saline was subcutaneously injected to the left hindlimb of male Donryu rats to induce podedema. The degree of podedema was evaluated by measuring the volume of the limb 3 hours after carrageenin administration. A test compound (1, 3, 10 or 30 mg/kg) was orally administered one hour before carrageenin administration, and suppression thereby was studied. Inhibitory activity was expressed by the dose (ED30) of the test compound necessary for inhibiting by 30% relative to the control group. The results are shown in Table 5.
TABLE 5 Experimental Example 2 (effects on carrageenin-induced podedema in rats) carrageenin-induced podedema Example in rats, ED30 (mg/kg p.o.) 2 5.5 indomethacin 2.9 - The compound of the present invention, in particular, a compound wherein R3 is methyl or amino, R5 is fluorine atom, R6 is hydrogen atom or fluorine atom, and R4 and R7 are hydrogen atom, and pharmaceutically acceptable salts thereof surprisingly selectively inhibit COX-2 alone, while scarcely inhibiting COX-1. Accordingly, the compound of the present invention possesses superior antipyretic action, analgesic action and anti-inflammatory action that the conventional products cannot afford, and scarcely show side-effects in the digestive tract.
- Consequently, the development of a superior anti-inflammatory agent heretofor not existed has been enabled, which in turn produces great expectation of the provision of a practical therapeutic agent for the diseases possibly caused by COX-2 product, such as asthma and rheumatism.
Claims (21)
1. A heterocyclic aromatic oxazole compound of the formula (I)
wherein
Z is an oxygen atom;
one of R and R1 is a group of the formula
wherein R3 is lower alkyl, amino or lower alkylamino, and R4, R5, R6 and R7 are the same or different and each is hydrogen atom, halogen atom, lower alkyl, lower alkoxy, trifluoromethyl, hydroxy or amino, provided that at least one of R4, R5, R6 and R7 is not hydrogen atom, and the other is optionally substituted cycloalkyl, optionally substituted heterocyclic group or optionally substituted aryl; and
R2 is a lower alkyl or a halogenated lower alkyl, or a pharmaceutically acceptable salt thereof:
4. The heterocyclic aromatic oxazole compound of claim 1 , wherein R1 is a group of the formula
wherein R3″, R5″ and R6″ are as defined in claim 3; R is optionally substituted cycloalkyl having 5 to 7 carbon atoms, optionally substituted thienyl, optionally substituted furyl, optionally substituted pyrrolyl, optionally substituted morpholino, optionally substituted piperazinyl, optionally substituted piperidyl, optionally substituted phenyl, optionally substituted naphthyl or optionally substituted biphenyl, and R2 is methyl, or a pharmaceutically acceptable salt thereof.
5. The heterocyclic aromatic oxazole compound of claim 4 , wherein R3″ is amino, or a pharmaceutically acceptable salt thereof.
6. The heterocyclic aromatic oxazole compound of claim 4 , wherein R is optionally substituted cycloalkyl having 5 to 7 carbon atoms, optionally substituted phenyl or optionally substituted thienyl, or a pharmaceutically acceptable salt thereof.
7. The heterocyclic aromatic oxazole compound of claim 4 , wherein R is cyclohexyl or 4-fluorophenyl, and R1 is 4-aminosulfonyl-3-fluorophenyl, 4-aminosulfonyl-3,5-difluorophenyl, 3-fluoro-4-methylsulfonylphenyl or 3,5-difluoro-4-methylsulfonylphenyl, or a pharmaceutically acceptable salt thereof.
8. The heterocyclic aromatic oxazole compound of claim 1 , which is selected from the group consisting of:
4-cyclohexyl-5-(3-fluoro-4-methylsulfonylphenyl)-2-methyloxazole,
5-(4-aminosulfonyl-3-fluorophenyl)-4-cyclohexyl-2-methyloxazole,
5-(4-aminosulfonyl-3,5-difluorophenyl)-4-cyclohexyl-2-methyloxazole,
4-cyclohexyl-5-(3,5-difluoro-4-methylsulfonylphenyl)-2-methyloxazole, and
5-(4-aminosulfonyl-3-fluorophenyl)-4-(4-fluorophenyl)-2-methyloxazole, or a pharmaceutically acceptable salt thereof.
10. The oxime compound of claim 9 wherein R1″ is 3-fluorophenyl or 3,5-difluorophenyl, and R″ is cyclohexyl or 4-fluorophenyl.
12. The ketone compound of claim 11 , wherein R1″ is 3-fluorophenyl or 3,5-difluorophenyl, and R″ is cyclohexyl or 4-fluorophenyl.
13. A ketomethylene compound of the following formula (IV′″)
wherein R′″ is an optionally substituted cycloalkyl having 5 to 7 carbon atoms, an optionally substituted phenyl or an optionally substituted thienyl, and R1′″ is a group of the formula
wherein R3′, R4′, R5′, R6′ and R7′ are as defined in claim 2 .
14. The ketomethylene compound of claim 13 , wherein R′″ is cyclohexyl, and R1′″ is 4-aminosulfonyl-3-fluorophenyl, 4-aminosulfonyl-3,5-difluorophenyl, 3-fluoro-4-methylsulfonylphenyl or 3,5-difluoro-4-methylsulfonylphenyl.
16. The ester compound of claim 15 , wherein R is cycloalkyl and R2 is lower alkyl.
18. The amide compound of claim 17 , wherein R1″ is 3-fluorophenyl or 3,5-difluorophenyl, R″ is cyclohexyl or 4-fluorophenyl, and R2 is lower alkyl.
19. A pharmaceutical composition comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of claim 1 or a pharmaceutically acceptable salt thereof.
20. A cyclooxygenase-2 inhibitor comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
21. An anti-inflammatory agent comprising a pharmaceutically acceptable carrier, and a heterocyclic aromatic oxazole compound of claim 1 or a pharmaceutically acceptable salt thereof as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/906,762 US20020107270A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP335838/1994 | 1994-12-20 | ||
JP33583894 | 1994-12-20 | ||
JP93099/1995 | 1995-03-27 | ||
JP9309995 | 1995-03-27 | ||
JP16465695 | 1995-06-06 | ||
JP164656/1995 | 1995-06-06 | ||
JP326571 | 1995-11-20 | ||
JP7326571A JP2636819B2 (en) | 1994-12-20 | 1995-11-20 | Oxazole-based heterocyclic aromatic compounds |
US08/693,051 US5994381A (en) | 1994-12-20 | 1995-12-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/398,997 US6362209B1 (en) | 1994-12-20 | 1999-09-17 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,762 US20020107270A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/398,997 Continuation US6362209B1 (en) | 1994-12-20 | 1999-09-17 | Heterocyclic aromatic oxazole compounds and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020107270A1 true US20020107270A1 (en) | 2002-08-08 |
Family
ID=27468109
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/693,051 Expired - Fee Related US5994381A (en) | 1994-12-20 | 1995-12-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/398,997 Expired - Fee Related US6362209B1 (en) | 1994-12-20 | 1999-09-17 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,765 Abandoned US20020115701A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,762 Abandoned US20020107270A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,761 Abandoned US20020143040A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,764 Abandoned US20020198244A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,763 Abandoned US20020107271A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,766 Abandoned US20020198245A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/693,051 Expired - Fee Related US5994381A (en) | 1994-12-20 | 1995-12-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/398,997 Expired - Fee Related US6362209B1 (en) | 1994-12-20 | 1999-09-17 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,765 Abandoned US20020115701A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/906,761 Abandoned US20020143040A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,764 Abandoned US20020198244A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,763 Abandoned US20020107271A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
US09/906,766 Abandoned US20020198245A1 (en) | 1994-12-20 | 2001-07-18 | Heterocyclic aromatic oxazole compounds and use thereof |
Country Status (22)
Country | Link |
---|---|
US (8) | US5994381A (en) |
EP (1) | EP0745596B1 (en) |
JP (1) | JP2636819B2 (en) |
KR (1) | KR100201581B1 (en) |
CN (1) | CN1146204A (en) |
AT (1) | ATE180253T1 (en) |
AU (1) | AU695045B2 (en) |
BR (1) | BR9506815A (en) |
CA (2) | CA2183645A1 (en) |
CZ (1) | CZ285476B6 (en) |
DE (1) | DE69509753T2 (en) |
DK (1) | DK0745596T3 (en) |
ES (1) | ES2132751T3 (en) |
FI (1) | FI963238A (en) |
GR (1) | GR3030643T3 (en) |
HU (1) | HUT76541A (en) |
MX (1) | MX9603506A (en) |
NO (1) | NO306778B1 (en) |
NZ (1) | NZ297105A (en) |
SK (1) | SK281468B6 (en) |
TW (1) | TW403742B (en) |
WO (1) | WO1996019463A1 (en) |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2636819B2 (en) * | 1994-12-20 | 1997-07-30 | 日本たばこ産業株式会社 | Oxazole-based heterocyclic aromatic compounds |
CA2221692A1 (en) | 1995-05-19 | 1996-11-21 | G.D. Searle & Co. | Substituted oxazoles for the treatment of inflammation |
ES2125161B1 (en) | 1996-03-21 | 1999-11-16 | Grupo Farmaceutico Almirall S | NEW DERIVATIVES OF 2- (3H) -OXAZOLONA. |
US5908858A (en) * | 1996-04-05 | 1999-06-01 | Sankyo Company, Limited | 1,2-diphenylpyrrole derivatives, their preparation and their therapeutic uses |
EP1288206B1 (en) * | 1996-04-12 | 2008-09-17 | G.D. Searle LLC | Substituted benzenesulfonamide derivatives as prodrugs of COX-2 inhibitors |
EP1006114B1 (en) * | 1997-04-11 | 2003-01-22 | Grelan Pharmaceutical Co., Ltd. | Pyrazole derivatives and cox inhibitors containing them |
US20040072889A1 (en) * | 1997-04-21 | 2004-04-15 | Pharmacia Corporation | Method of using a COX-2 inhibitor and an alkylating-type antineoplastic agent as a combination therapy in the treatment of neoplasia |
WO1998051667A1 (en) * | 1997-05-16 | 1998-11-19 | Chugai Seiyaku Kabushiki Kaisha | Indole derivatives and mono- and diazaindole derivatives |
US6255304B1 (en) * | 1997-05-30 | 2001-07-03 | Pharmacia & Upjohn Company | Oxazolidinone antibacterial agents having a thiocarbonyl functionality |
NZ333399A (en) * | 1997-12-24 | 2000-05-26 | Sankyo Co | Cyclooxygenase-2 inhibitors (COX-2) for the prevention and treatment of tumors, cachexia and tumor-metastasis |
US6727238B2 (en) * | 1998-06-11 | 2004-04-27 | Pfizer Inc. | Sulfonylbenzene compounds as anti-inflammatory/analgesic agents |
US6294558B1 (en) | 1999-05-31 | 2001-09-25 | Pfizer Inc. | Sulfonylbenzene compounds as anti-inflammatory/analgesic agents |
TW477789B (en) | 1998-09-03 | 2002-03-01 | Japan Tobacco Inc | Production method of oxazole compound |
ES2234324T3 (en) * | 1998-11-02 | 2005-06-16 | MERCK & CO., INC. | COMBINATIONS OF A 5HT1B / 1D AGONIST AND A COX-2 SELECTIVE INHIBITOR FOR THE TREATMENT OF MIGRAINE. |
US20040122011A1 (en) * | 1998-12-23 | 2004-06-24 | Pharmacia Corporation | Method of using a COX-2 inhibitor and a TACE inhibitors as a combination therapy |
EP1156855A1 (en) * | 1999-03-01 | 2001-11-28 | Ortho-McNeil Pharmaceutical, Inc. | Composition comprising a tramadol material and a selective cox-2 inhibitor drug |
SK12672001A3 (en) | 1999-12-08 | 2002-04-04 | Pharmacia Corporation | Compositions of cyclooxygenase-2 inhibitor having rapid onset of therapeutic effect |
CN100486573C (en) | 1999-12-23 | 2009-05-13 | 硝化医药股份有限公司 | Nitrosated and nitrosylated cyclooxygenase-2 inhibitors, compositions and use |
AU2001253749A1 (en) * | 2000-04-25 | 2001-11-07 | Pharmacia Corporation | 2-fluorobenzenesulfonyl compounds for the treatment of inflammation |
JP2002179657A (en) * | 2000-05-26 | 2002-06-26 | Japan Tobacco Inc | Crystal polymorphism of 5-( 4-aminosulfonyl-3- fluorophenyl)-4-cyclohexyl-2-methyloxazole |
AU2001268103A1 (en) * | 2000-05-26 | 2001-12-11 | Ortho-Mcneil Pharmaceutical, Inc. | Amorphous oxazole coumpound and its use as cox-2 inhibitor |
CA2414674A1 (en) * | 2000-07-13 | 2002-01-24 | Pharmacia Corporation | Use of cox-2 inhibitors in the treatment and prevention of ocular cox-2 mediated disorders |
US7115565B2 (en) * | 2001-01-18 | 2006-10-03 | Pharmacia & Upjohn Company | Chemotherapeutic microemulsion compositions of paclitaxel with improved oral bioavailability |
WO2002062391A2 (en) * | 2001-02-02 | 2002-08-15 | Pharmacia Corporation | Method of using a cyclooxygenase-2 inhibitor and sex steroids as a combination therapy for the treatment and prevention of dismenorrhea |
PE20021017A1 (en) | 2001-04-03 | 2002-11-24 | Pharmacia Corp | RECONSTITUABLE PARENTERAL COMPOSITION |
US6673818B2 (en) * | 2001-04-20 | 2004-01-06 | Pharmacia Corporation | Fluoro-substituted benzenesulfonyl compounds for the treatment of inflammation |
DE10129320A1 (en) * | 2001-06-19 | 2003-04-10 | Norbert Mueller | Use of cyclooxygenase-2 inhibitor in the preparation of a medicament for treating psychiatric disorders e.g. schizophrenia |
US20060167074A1 (en) * | 2001-06-19 | 2006-07-27 | Norbert Muller | Methods and compositions for the treatment of psychiatric disorders |
UA80682C2 (en) * | 2001-08-06 | 2007-10-25 | Pharmacia Corp | Orally deliverable stabilized oral suspension formulation and process for the incresaing physical stability of thixotropic pharmaceutical composition |
AR038957A1 (en) | 2001-08-15 | 2005-02-02 | Pharmacia Corp | COMBINATION THERAPY FOR CANCER TREATMENT |
US20040062823A1 (en) * | 2001-12-13 | 2004-04-01 | Obukowicz Mark G. | Selective cox-2 inhibition from non-edible plant extracts |
US20030212138A1 (en) * | 2002-01-14 | 2003-11-13 | Pharmacia Corporation | Combinations of peroxisome proliferator-activated receptor-alpha agonists and cyclooxygenase-2 selective inhibitors and therapeutic uses therefor |
US20030220374A1 (en) * | 2002-01-14 | 2003-11-27 | Pharmacia Corporation | Compositions and methods of treatment involving peroxisome proliferator-activated receptor-gamma agonists and cyclooxygenase-2 selective inhibitors |
ITMI20021391A1 (en) * | 2002-06-25 | 2003-12-29 | Nicox Sa | NITRO-DERIVATIVES OF CYCLOOXYGENASE-2 INHIBITORS |
US7087630B2 (en) * | 2002-06-27 | 2006-08-08 | Nitromed, Inc. | Cyclooxygenase 2 selective inhibitors, compositions and methods of use |
AU2003279622A1 (en) * | 2002-06-28 | 2004-01-19 | Nitromed, Inc. | Oxime and/or hydrazone containing nitrosated and/or nitrosylated cyclooxigenase-2 selective inhibitors, compositions and methods of use |
US20040147581A1 (en) * | 2002-11-18 | 2004-07-29 | Pharmacia Corporation | Method of using a Cox-2 inhibitor and a 5-HT1A receptor modulator as a combination therapy |
SI1572173T1 (en) | 2002-12-13 | 2010-08-31 | Warner Lambert Co | Alpha-2-delta ligand to treat lower urinary tract symptoms |
ES2215474B1 (en) | 2002-12-24 | 2005-12-16 | J. URIACH & CIA S.A. | NEW DERIVATIVES OF PHOSPHORAMIDE. |
TW200505446A (en) * | 2003-01-17 | 2005-02-16 | Fuj Isawa Pharmaceutical Co Ltd | Inhibitor of cox |
US20040220155A1 (en) * | 2003-03-28 | 2004-11-04 | Pharmacia Corporation | Method of providing a steroid-sparing benefit with a cyclooxygenase-2 inhibitor and compositions therewith |
EP2266584B1 (en) | 2003-05-07 | 2012-09-05 | Osteologix A/S | Composition with strontium and vitamin D for the prophylaxis and/or treatment of cartilage and/or bone conditions |
EP1745791B1 (en) * | 2003-05-07 | 2013-06-26 | Osteologix A/S | Treating cartilage/bone conditions with water-soluble strontium salts |
US20050014729A1 (en) * | 2003-07-16 | 2005-01-20 | Pharmacia Corporation | Method for the treatment or prevention of dermatological disorders with a cyclooxygenase-2 inhibitor alone and in combination with a dermatological treatment agent and compositions therewith |
US20050119262A1 (en) * | 2003-08-21 | 2005-06-02 | Pharmacia Corporation | Method for preventing or treating an optic neuropathy with a cox-2 inhibitor and an intraocular pressure reducing agent |
US20050107350A1 (en) * | 2003-08-22 | 2005-05-19 | Pharmacia Corporation | Method for the treatment or prevention of bone disorders with a cyclooxygenase-2 inhibitor alone and in combination with a bone disorder treatment agent and compositions therewith |
US20050187278A1 (en) * | 2003-08-28 | 2005-08-25 | Pharmacia Corporation | Treatment or prevention of vascular disorders with Cox-2 inhibitors in combination with cyclic AMP-specific phosphodiesterase inhibitors |
WO2005023189A2 (en) * | 2003-09-03 | 2005-03-17 | Pharmacia Corporation | Method of cox-2 selective inhibitor and nitric oxide-donating agent |
WO2005079808A1 (en) | 2004-01-22 | 2005-09-01 | Pfizer Limited | Triazole derivatives which inhibit vasopressin antagonistic activity |
BRPI0510340A (en) * | 2004-04-28 | 2007-10-30 | Pfizer | 3-heterocyclyl-4-phenyltriazole derivatives as vasopressin pathway receptor inhibitors |
US7521435B2 (en) * | 2005-02-18 | 2009-04-21 | Pharma Diagnostics, N.V. | Silicon containing compounds having selective COX-2 inhibitory activity and methods of making and using the same |
US20060251702A1 (en) * | 2005-05-05 | 2006-11-09 | Cook Biotech Incorporated | Implantable materials and methods for inhibiting tissue adhesion formation |
EP1885713A1 (en) * | 2005-05-18 | 2008-02-13 | Pfizer Limited | 1, 2, 4 -triazole derivatives as vasopressin antagonists |
EA017171B1 (en) | 2006-12-22 | 2012-10-30 | Рекордати Айерленд Лимитед | COMBINATION THERAPY OF LOWER URINARY TRACT DISORDERS WITH αδ LIGANDS AND NON-STEROIDAL ANTI-INFLAMMATORY DRUGS (NSAIDs) |
WO2008156601A1 (en) | 2007-06-14 | 2008-12-24 | Amgen Inc. | Tricyclic inhibitors of hydroxysteroid dehydrogenases |
WO2009009778A1 (en) | 2007-07-12 | 2009-01-15 | Tragara Pharmaceuticals, Inc. | Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders |
US10842653B2 (en) | 2007-09-19 | 2020-11-24 | Ability Dynamics, Llc | Vacuum system for a prosthetic foot |
GB0903493D0 (en) | 2009-02-27 | 2009-04-08 | Vantia Ltd | New compounds |
CN102329280A (en) * | 2011-08-05 | 2012-01-25 | 上海大学 | Trifluoromethyl-substituted oxazole derivative and preparation method thereof |
CN102997862B (en) * | 2011-09-13 | 2015-12-16 | 上海汇众汽车制造有限公司 | Welding penetration measuring method |
US11583516B2 (en) | 2016-09-07 | 2023-02-21 | Trustees Of Tufts College | Dash inhibitors, and uses related thereto |
IL305573A (en) | 2021-03-15 | 2023-10-01 | Saul Yedgar | Hyaluronic acid conjugated with dipalmitoyl phosphatidyl ethanolamine in combination with non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment or suppression of inflammatory diseases |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3546342A (en) | 1966-11-18 | 1970-12-08 | Wyeth John & Brother Ltd | Method of relieving inflammation by administration of 2,4 - diarylthiazole- 5 - alkanoic acids and derivatives thereof |
GB1206403A (en) | 1966-12-15 | 1970-09-23 | Wyeth John & Brother Ltd | Oxazoles |
GB1145884A (en) | 1966-11-18 | 1969-03-19 | Wyeth John & Brother Ltd | Thiazole derivatives |
IE32084B1 (en) | 1967-06-07 | 1973-04-04 | Wyeth John & Brother Ltd | Thiazole derivatives |
FI53314C (en) | 1967-06-14 | 1978-04-10 | Wyeth John & Brother Ltd | PROCEDURE FOR THE FRAMEWORK OF PHARMACEUTICALS ANVAENDBAR 2- (PHENYLELLER P-CHLORPHENYL) OXAZOL-4-YL |
US3901908A (en) * | 1970-12-28 | 1975-08-26 | Ciba Geigy Corp | 2-alkyl- and 2-cycloalkyl-4,5-bis-phenyl-imidazoles |
US4451171A (en) | 1980-11-07 | 1984-05-29 | Owens-Corning Fiberglas Corporation | Polyamide as a primer for use with asphaltic membranes |
US4451471A (en) | 1981-03-18 | 1984-05-29 | Ciba-Geigy Corporation | Certain 2,4,5-tri-substituted thiazoles, pharmaceutical compositions containing same and methods of using same |
GB2123831B (en) | 1981-07-20 | 1986-01-15 | Ciba Geigy Ag | Trisubstituted oxazo compounds |
JPS59500054A (en) | 1982-01-22 | 1984-01-12 | チバ・ガイギ−・アクチエンゲゼルシヤフト | Tri-substituted oxaza compounds |
JPS59500055A (en) | 1982-01-25 | 1984-01-12 | チバ・ガイギ−・アクチエンゲゼルシヤフト | trisubstituted diaza derivatives |
EP0117578A3 (en) * | 1983-02-23 | 1985-01-30 | Shionogi & Co., Ltd. | Azole-substituted alcohol derivatives |
JPS59155365A (en) * | 1983-02-23 | 1984-09-04 | Shionogi & Co Ltd | 2-hydroxypropiophenone derivative |
JPS6058981A (en) | 1983-09-09 | 1985-04-05 | Takeda Chem Ind Ltd | 5-pyridyl-1,3-thiazole derivative, production thereof and medicinal composition containing the same |
EP0149884B1 (en) | 1983-09-09 | 1992-12-16 | Takeda Chemical Industries, Ltd. | 5-pyridyl-1,3-thiazole derivatives, their production and use |
US4632930A (en) | 1984-11-30 | 1986-12-30 | E. I. Du Pont De Nemours And Company | Antihypertensive alkyl-arylimidazole, thiazole and oxazole derivatives |
US4782058A (en) | 1985-04-26 | 1988-11-01 | Pennwalt Corporation | 1,3,4,6,7,11b-Hexahydro-6-phenyl-2H-pyrazino-(2,1-a)isoquinolines, for anti-histamine or anti-depression treatment |
US4849007A (en) | 1985-12-02 | 1989-07-18 | Ciba-Geigy Corporation | Herbicidal epoxides |
JPS62138485A (en) * | 1985-12-02 | 1987-06-22 | チバ−ガイギ− アクチエンゲゼルシヤフト | Herbicidal and plant growth regulatory composition |
IL83467A0 (en) | 1986-08-15 | 1988-01-31 | Fujisawa Pharmaceutical Co | Imidazole derivatives,processes for their preparation and pharmaceutical compositions containing the same |
JPH0283372A (en) | 1988-09-19 | 1990-03-23 | Taisho Pharmaceut Co Ltd | Cyclohexylimidazole derivatives |
PH27357A (en) | 1989-09-22 | 1993-06-21 | Fujisawa Pharmaceutical Co | Pyrazole derivatives and pharmaceutical compositions comprising the same |
JPH03116048A (en) * | 1989-09-29 | 1991-05-17 | Toshiba Corp | Photosensitive composition |
JPH03208056A (en) * | 1990-01-11 | 1991-09-11 | Toshiba Corp | Photosensitive composition |
GB9012936D0 (en) | 1990-06-11 | 1990-08-01 | Fujisawa Pharmaceutical Co | Thiophene derivatives,processes for preparation thereof and pharmaceutical composition comprising the same |
JPH0545883A (en) * | 1991-03-26 | 1993-02-26 | Toshiba Corp | Photosensitive composition |
JPH0570446A (en) | 1991-09-13 | 1993-03-23 | Taisho Pharmaceut Co Ltd | N-thiazolylsulfonamide derivative |
US5541080A (en) * | 1991-11-01 | 1996-07-30 | Wisconsin Alumni Research Fdn. | Method for preparing L-alpha-amino acids |
US5219731A (en) * | 1991-11-01 | 1993-06-15 | Wisconsin Alumni Research Foundation | Method for preparing optically-active amino acid derivatives |
JP3116048B2 (en) | 1991-11-09 | 2000-12-11 | ローム株式会社 | Semiconductor device having ferroelectric layer and method of manufacturing the same |
JP3141261B2 (en) | 1992-10-22 | 2001-03-05 | 松下電工株式会社 | Alarm indicator |
DK0679157T3 (en) | 1993-01-15 | 1998-07-27 | Searle & Co | Novel 3,4-diarylthiophenes and analogs thereof for use as anti-inflammatory agents |
WO1994026731A1 (en) | 1993-05-13 | 1994-11-24 | Merck Frosst Canada Inc. | 2-substituted-3,4-diarylthiophene derivatives as inhibitors of cyclooxygenase |
US5380738A (en) * | 1993-05-21 | 1995-01-10 | Monsanto Company | 2-substituted oxazoles further substituted by 4-fluorophenyl and 4-methylsulfonylphenyl as antiinflammatory agents |
US6090834A (en) | 1993-05-21 | 2000-07-18 | G.D. Searle & Co. | Substituted oxazoles for the treatment of inflammation |
US5474995A (en) * | 1993-06-24 | 1995-12-12 | Merck Frosst Canada, Inc. | Phenyl heterocycles as cox-2 inhibitors |
JP2636819B2 (en) * | 1994-12-20 | 1997-07-30 | 日本たばこ産業株式会社 | Oxazole-based heterocyclic aromatic compounds |
CA2221692A1 (en) | 1995-05-19 | 1996-11-21 | G.D. Searle & Co. | Substituted oxazoles for the treatment of inflammation |
JP3208056B2 (en) | 1996-01-29 | 2001-09-10 | 株式会社ノリタケカンパニーリミテド | Polishing method for composite materials |
-
1995
- 1995-11-20 JP JP7326571A patent/JP2636819B2/en not_active Expired - Lifetime
- 1995-12-18 AU AU41897/96A patent/AU695045B2/en not_active Ceased
- 1995-12-18 AT AT95940466T patent/ATE180253T1/en not_active IP Right Cessation
- 1995-12-18 MX MX9603506A patent/MX9603506A/en not_active IP Right Cessation
- 1995-12-18 CA CA002183645A patent/CA2183645A1/en not_active Abandoned
- 1995-12-18 DK DK95940466T patent/DK0745596T3/en active
- 1995-12-18 SK SK1175-96A patent/SK281468B6/en unknown
- 1995-12-18 BR BR9506815A patent/BR9506815A/en not_active IP Right Cessation
- 1995-12-18 CA CA002341921A patent/CA2341921A1/en not_active Abandoned
- 1995-12-18 US US08/693,051 patent/US5994381A/en not_active Expired - Fee Related
- 1995-12-18 HU HU9602576A patent/HUT76541A/en unknown
- 1995-12-18 CZ CZ962749A patent/CZ285476B6/en not_active IP Right Cessation
- 1995-12-18 ES ES95940466T patent/ES2132751T3/en not_active Expired - Lifetime
- 1995-12-18 EP EP95940466A patent/EP0745596B1/en not_active Expired - Lifetime
- 1995-12-18 KR KR1019960704530A patent/KR100201581B1/en not_active IP Right Cessation
- 1995-12-18 DE DE69509753T patent/DE69509753T2/en not_active Expired - Fee Related
- 1995-12-18 CN CN95192620A patent/CN1146204A/en active Pending
- 1995-12-18 NZ NZ297105A patent/NZ297105A/en unknown
- 1995-12-18 WO PCT/JP1995/002600 patent/WO1996019463A1/en active IP Right Grant
-
1996
- 1996-02-06 TW TW085101428A patent/TW403742B/en not_active IP Right Cessation
- 1996-08-19 FI FI963238A patent/FI963238A/en unknown
- 1996-08-19 NO NO963450A patent/NO306778B1/en unknown
-
1999
- 1999-06-30 GR GR990401729T patent/GR3030643T3/en unknown
- 1999-09-17 US US09/398,997 patent/US6362209B1/en not_active Expired - Fee Related
-
2001
- 2001-07-18 US US09/906,765 patent/US20020115701A1/en not_active Abandoned
- 2001-07-18 US US09/906,762 patent/US20020107270A1/en not_active Abandoned
- 2001-07-18 US US09/906,761 patent/US20020143040A1/en not_active Abandoned
- 2001-07-18 US US09/906,764 patent/US20020198244A1/en not_active Abandoned
- 2001-07-18 US US09/906,763 patent/US20020107271A1/en not_active Abandoned
- 2001-07-18 US US09/906,766 patent/US20020198245A1/en not_active Abandoned
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6362209B1 (en) | Heterocyclic aromatic oxazole compounds and use thereof | |
US5945539A (en) | Oxazole derivatives and use thereof | |
JP2512751B2 (en) | Pharmacologically active 1,5-diaryl-3-substituted-pyrazols and process for their preparation | |
JP5474769B2 (en) | Peroxisome proliferator-activated receptor activator | |
JPH0753725B2 (en) | 4H-1-benzopyran-4-one derivative and its salt, their production method and anti-inflammatory agent containing them | |
JP2007197324A (en) | 2,4,5-substituted-1,3-azole derivative | |
US5866596A (en) | 3,4-diaryloxazolone derivatives, their methods of preparation and their uses in therapeutics | |
US5686460A (en) | Carbocyclic diarylmethylene derivatives, processes for their preparation and their uses in therapeutics | |
US6080876A (en) | Process for making phenyl heterocycles useful as COX-2 inhibitors | |
IE60015B1 (en) | Antiallergy and antiinflammatory agents | |
KR20000005146A (en) | Novel furan diarylmethylidene derivatives, method for their preparation and therapeutical uses thereof | |
NO832146L (en) | PROCEDURE FOR THE PREPARATION OF OXAZOLEDOIC ACID DERIVATIVES | |
CN101402562B (en) | Novel benzophenone derivatives or salts thereof | |
KR20020087942A (en) | Novel imidazole derivatives with anti-inflammatory activity | |
US20080021084A1 (en) | Derivatives Of Pyrazoline, Procedure For obtaining Them And Use Thereof As Therapeutic Agents | |
HUT55372A (en) | Process for producing substituted isoxazole and isothiazole derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |