US20020105814A1 - Fiber optic light source with two chamber cooling - Google Patents
Fiber optic light source with two chamber cooling Download PDFInfo
- Publication number
- US20020105814A1 US20020105814A1 US09/747,570 US74757000A US2002105814A1 US 20020105814 A1 US20020105814 A1 US 20020105814A1 US 74757000 A US74757000 A US 74757000A US 2002105814 A1 US2002105814 A1 US 2002105814A1
- Authority
- US
- United States
- Prior art keywords
- housing
- cooling air
- fiber optic
- disposed
- interior volume
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 77
- 238000001816 cooling Methods 0.000 title claims abstract description 58
- 230000003287 optical effect Effects 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims 4
- 230000004888 barrier function Effects 0.000 claims 2
- 238000013461 design Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229910001507 metal halide Inorganic materials 0.000 description 4
- 150000005309 metal halides Chemical class 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001795 light effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 239000011215 ultra-high-temperature ceramic Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/60—Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
- F21V29/67—Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0005—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
- G02B6/0006—Coupling light into the fibre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
- F21V29/74—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
- F21V29/76—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0005—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
- G02B6/0008—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/40—Lighting for industrial, commercial, recreational or military use
- F21W2131/401—Lighting for industrial, commercial, recreational or military use for swimming pools
Definitions
- Fiber optic lighting systems are used in a variety of applications to provide a cool, flexible, safe source of light.
- the assignee of the present invention provides fiber optic light systems for use in signs, displays, swimming pools, landscapes and general area lighting.
- One such fiber optic light system for providing multi-color light effects is described in U.S. Pat. No. 5,528,714 issued Jun. 18, 1996, to guitariste et al., assigned to the assignee of the present invention and incorporated by reference herein.
- a fiber optic lighting system may typically include a light source having a fiber optic cable bundle for transmitting light from the light source to a location remote from the light source.
- the light source may include an enclosure containing a light bulb, a means for securing the end of a fiber optic cable bundle near the light bulb, a power supply or other electronic equipment, and a fan for providing cooling air to the enclosure.
- One of the limiting characteristics of a fiber optic light system is the amount of light that can be delivered from the fiber optic cable.
- the output of the system depends upon numerous variables, such as the intensity of the light produced by the bulb, the effectiveness of the delivery of the light into the fiber end, and the efficiency of the transmission of the light by the fiber optic cable.
- prior art fiber optic cable systems incorporating the higher light output of metal halide lamps have been limited. Although these lamps produce more visible light than incandescent and halogen lamps, they also produce more infrared and ultraviolet energy, thereby making it more difficult to provide the necessary cooling to the fiber ends in order to take advantage of these higher output lamps.
- Prior art fiber optic light sources generally include an apparatus for positioning a bulb and an associated reflector along an optical axis to direct a beam of light through a lens to the fiber ends.
- Such an apparatus can be seen in FIG. 2 of the aforementioned U.S. Pat. No. 5,838,860.
- the reflector design described in that patent is a one piece glass reflector having a generally truncated ellipsoid reflecting portion formed to be integral with a rearward rectangular or rounded base portion.
- the bulb is typically affixed within the base portion of the reflector with a high temperature adhesive. Therefore, when a bulb fails, it is necessary to replace not only the bulb but also the reflector assembly.
- the cable ends are held in position by a ferrule assembly that is attached to the light source housing, and the ferrule and reflector are positioned relative to each other by an optical bench.
- the lighting apparatus described herein includes a housing; a wall disposed within the housing and defining a first interior volume and a second interior volume; a lamp assembly disposed within the first interior volume and adapted to produce a beam of light; a fiber optic cable having an input end disposed within the second interior volume and extending through the housing; a lens forming a portion of the wall and positioned to focus the beam of light onto the fiber optic cable input end; a first fan in fluid communication with the first interior volume for moving a first flow of cooling air from exterior of the housing through the first interior volume; and a second fan in fluid communication with the second interior volume and adapted to move a second flow of cooling air from exterior of the housing through the second interior volume across the fiber optic cable input end, the first flow of cooling air and the second flow of cooling air being isolated from each other within the housing.
- FIG. 1 is a plan view of a fiber optic light source.
- FIG. 2 is an exploded view of the lamp assembly used in the fiber optic light source of FIG. 1.
- FIG. 3 is an exploded view of the fiber cable connector assembly used in the fiber optic light source of FIG. 1.
- FIG. 4 is a cross sectional view of a collar adapted for quick connecting and disconnecting with the connector of FIG. 3.
- the fiber optic light source 10 illustrated in FIG. 1 has a housing 12 including a generally horizontal base 14 mounted on a plurality of feet (not shown), four vertical side walls 16 attached to the base 14 along respective edges, and a top (not shown) generally parallel to the base 14 and removably connected along edges of the side walls 16 opposed the base 14 .
- the housing 12 defines an interior space for the assembly of various other components of the light source 10 .
- a generally vertical interior wall 18 is attached at its respective edges to the base 14 , two of the side walls 16 , and the top to divide the interior space into a first interior volume 20 and a second interior volume 22 within the housing 12 .
- the housing 12 may be fabricated from sheet metal or other known materials by processes known in the art.
- Joints between the various portions of the housing 12 are preferably formed to be air tight, such as by soldering, welding, gluing, the use of gaskets, or by forming adjoining portions from a single piece of material.
- An optical member 24 forms a portion of the interior wall 18 for the purpose of allowing a beam of light to pass from the first interior volume 20 to the second interior volume 22 , as will be discussed more fully below.
- a lamp assembly 26 is disposed within the first interior volume 20 and may be removably affixed to the base 14 at a predetermined position in alignment with the optical member 24 .
- the lamp assembly 26 receives electrical power from a power supply 28 through a wire 30 , also disposed within the first interior volume 20 .
- Lamp assembly 26 produces a beam of light that is directed through optical member 24 toward an input end 32 of a fiber optic cable 34 .
- the input end 32 of fiber optic cable 34 is disposed within the second interior volume 22 and is held at a predetermined position by a connector 36 which supports the fiber optic cable 34 as it extends through one side wall 16 of housing 12 .
- the heat energy produced by lamp assembly 26 , power supply 28 and any other exothermic components that may be located within the first interior volume 20 is removed from the housing 12 by a first flow of cooling air 38 .
- a first fan 40 in fluid communication with the first interior volume 20 produces the first flow of cooling air 38 .
- the first fan 40 may be mounted directly over an opening (not shown) located in the base 14 for drawing air into the first interior volume 20 and across the lamp assembly 26 and other exothermic components.
- the heated first flow of cooling air 38 is then directed out of the first interior volume 20 through one or more ventilation openings 42 formed in one of the walls 16 .
- the cooling air inlet and outlet may be located at any convenient locations on housing 12 , preferably in locations wherein the heated air is not directly drawn back into the interior of the housing.
- Input end 32 of fiber optic cable end 34 is isolated from the first flow of cooling air 38 by interior wall 18 , however it will receive a significant amount of thermal energy from the lamp assembly 26 in the form of radiant energy.
- Optical member 24 may be a lens that focuses the beam of light produced by the lamp assembly 26 onto the input end 32 , thereby concentrating the heating effect of the radiant energy.
- Optical member 24 may be formed to be an infrared filter to lessen the heating effect on the input end 32 of the fiber optic cable 34 , however, supplemental cooling is necessary to prevent the overheating of the cable ends.
- Such cooling is provided by a second flow of cooling air 44 , isolated from the first flow of cooling air 38 , and produced by a second fan 46 in fluid communication with the second interior volume 22 .
- the second flow of cooling air 44 may be directed into and out of the second interior volume 22 through respective inlet and outlet openings 48 , 50 formed in the walls 16 or base of the housing 12 .
- the base 14 may have dividers located along its bottom surface to divide the air space under the housing 12 into four volumes, one each for the respective inlets and outlets of first and second interior volumes 20 , 22 .
- the position of the various cooling air openings 42 , 48 , 50 are formed to minimize the mixing of the first 38 and second 48 flows of cooling air outside of the housing 12 .
- the second flow of cooling air 44 need not be a high volume flow, but is preferably a very high velocity flow directed toward and concentrated at the input end 32 of the fiber optic cable 34 .
- a baffle plate or tube 52 may be used to concentrate and direct the second flow of cooling air 44 from the second fan 46 onto the fiber ends.
- the temperature of the second flow of cooling air 48 as it impacts the input end 32 is essentially at ambient temperature.
- Prior art devices that utilize a single flow of cooling air for cooling both the lamp and the cable ends have an air temperature directed onto the cable ends that is higher than ambient as a result of mixing of the air within the housing volume.
- the present invention isolates the second flow of cooling air 48 from the cooling air 38 used to cool the lamp assembly 26 . Therefore, a cooler temperature flow of air can be provided at the cable ends than is possible with prior art devices, thereby significantly improving the efficiency of the cooling of the input end 32 of the fiber optic cable 34 .
- FIG. 2 illustrates an exploded view of the lamp assembly 26 of the fiber optic light source 10 of FIG. 1.
- the lamp assembly 26 includes a bulb 60 , which may be any commercially available high intensity gas discharge lamp, such as a Thorn ArcStream 4000 metal halide lamp.
- the reflector assembly of the present invention includes a separate metal base portion 62 and a glass reflector portion 64 .
- the base 62 may be machined from metal bar stock, with aluminum being preferred due to its heat transfer properties.
- Base 62 may have a generally round or rectangular external cross-sectional shape, and includes a central bore opening 66 adapted to receive bulb 60 .
- One or more fins 68 may be formed on the outside diameter surface of the base 62 to improve heat transfer from the base to the first flow of cooling air 38 .
- Reflector 64 is formed of glass and may have a hollow generally truncated ellipsoidal shape with a reflective coating 68 disposed thereon. Reflector 64 may be made thicker than prior art one piece designs which were purposefully made thin to simplify the manufacturing of an integral base and reflector.
- Reflector 64 includes a bulb opening 70 adapted to align with the bore opening 66 of base 62 .
- Bulb 60 is inserted into base 62 and positioned so that its light emitting electrode discharge will be centered at a focal point of the ellipsoidal reflection surface of reflector 64 .
- Bulb 60 may be attached to base 62 by an ultra high temperature ceramic adhesive such as 904 Zirconia available from Caltronics Corporation in Brooklyn, N.Y.
- the base 62 may be attached to the reflector 64 with a flexible epoxy such as Duralxo 538 available from Caltronics Corporation.
- the entire lamp assembly 26 may be provided as a pre-assembled unit, or only the bulb 60 and base 62 may be pre-assembled, with the joint between the base 62 and reflector 64 remaining unglued in order to lower the cost of bulb replacement.
- a mounting fixture must be provided within the housing 12 that is capable of holding the base 62 and reflector 64 together in a predetermined position during operation of the light source 10 .
- the output of lamp assembly 26 is sensitive to the relative positioning of the light-emitting portion of the bulb 60 and the focal point of the reflector 64 . Because the location of the light-emitting portion may vary from bulb to bulb, assembly of lamp assembly 26 may be accomplished in a fixture which allows the output of light to be measured as the bulb 60 is adjusted to various positions within the bore opening 66 . The bulb 60 is moved to a position providing at least a predetermined amount of light output, or to the position of maximum light output, and the assembly is held in this position until the glue adjoining the pieces has hardened. The inventors have found that such a two-piece reflector assembly design is less expensive to manufacture than prior art one-piece base/reflector designs.
- FIG. 3 illustrates an exploded view of a connector 80 adapted for attachment to the input end 32 of fiber optic cable 34 .
- the fiber optic cable 34 is not illustrated in FIG. 3, but one may envision the cable 34 inserted through the center openings of the various pieces of connector 80 , as will be described in more detail below.
- Connector 80 includes an internal clamp assembly 82 comprising a hollow double-ended connector 84 having a first threaded end 86 and a second end 88 threaded over a partial extent and having a distal portion containing a plurality of flexible longitudinal fingers 90 .
- a connector cap 92 has internal threads 94 sized for engagement with the threads on the second end 88 of the clamp assembly 82 .
- Connector cap 92 also contains an internal taper (not shown) that compresses the longitudinal fingers 90 onto an inserted fiber optic cable 34 as the connector cap 92 is threaded onto the clamp assembly 82 .
- Elastomeric washer 96 fits within fingers 90 to protect the cable and to distribute the force exerted by the fingers 90 .
- a cover 98 fits over the clamp assembly 82 by a friction fit to protect the various components.
- a bayonet portion 100 includes internal threads on a first end 101 sized for engagement with the external threads on the first threaded end 86 of the internal clamp assembly 82 .
- the inside diameter of the opposed end portion 102 of bayonet 100 is selected to provide a friction fit with the outside diameter of the inserted fiber optic cable 34 .
- Assembly of connector 80 onto fiber optic cable 34 is accomplished by sliding each of the respective pieces 98 , 92 , 96 , 84 , 100 over an end of the cable 34 .
- Connector cap 92 is threaded onto double-ended connector 84 to provide a compression attachment to the cable 34 .
- Bayonet portion is then threaded onto first threaded end 86 of double-ended connector 84 .
- Cover 98 is slide over double-ended connector 84 to abut the first end 101 of bayonet portion 100 .
- the end of the fiber optic cable 34 which is now protruding out of end portion 102 of bayonet 100 is then cut flush with the end of the end portion 102 to form the input end 32 of cable 34 .
- this cutting step may be accomplished by using a hot knife, as is known in the art.
- FIG. 4 illustrates a collar 110 adapted for installation into an opening in the wall 16 of housing 12 of fiber optic light source 10 and to receive bayonet 100 .
- Collar 110 includes a body 112 having a central opening 114 for receiving the end portion 102 of bayonet 100 .
- the body 112 may be secured into an opening in a side wall 16 of housing 12 by any known mechanism, such as with screws threaded into holes (not shown) formed in the body 112 .
- a spring-loaded pin 116 is retained in an opening formed perpendicular to the central opening 114 .
- Pin 116 is spring biased to protrude into the central opening 114 .
- the pin is sized to fit into a groove 104 formed in the outside surface of bayonet 100 (as seen in FIG.
- a taper 106 formed on the surface of the bayonet 100 facilitates the retraction of pin 116 as the bayonet 100 is inserted into the collar 110 .
- the diameter of pin 116 is selected to be only slightly smaller than the width of groove 104 , for example 0.010 inch smaller, in order to hold the input end 32 of fiber optic cable close to a predetermined position.
- the outside diameter of end portion 102 of bayonet 100 is selected to be only about 0.010 inch smaller than the inside diameter of the central opening 114 of collar 110 .
- fiber optic cable 34 can be quickly and accurately inserted into housing 12 to position input end 32 at a desired position with respect to optical member 24 and lamp assembly 26 .
- the fiber optic cable 34 may be withdrawn by simply lifting pin 116 away from bayonet 100 and pulling the bayonet 100 out of collar 110 .
- the device described herein provides the capability for higher light output than prior art devices by incorporating a low cost, high intensity metal halide lamp assembly without risk of cable melting, and by ensuring precise alignment of the fiber ends with regard to the lamp assembly while permitting a quick-disconnect fiber cable attachment.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Optical Couplings Of Light Guides (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
Abstract
Description
- This application claims the benefit of the Mar. 17, 2000, filing date of U.S. provisional patent application No. 60/190,432.
- Fiber optic lighting systems are used in a variety of applications to provide a cool, flexible, safe source of light. The assignee of the present invention provides fiber optic light systems for use in signs, displays, swimming pools, landscapes and general area lighting. One such fiber optic light system for providing multi-color light effects is described in U.S. Pat. No. 5,528,714 issued Jun. 18, 1996, to Kingstone et al., assigned to the assignee of the present invention and incorporated by reference herein. A fiber optic lighting system may typically include a light source having a fiber optic cable bundle for transmitting light from the light source to a location remote from the light source. The light source may include an enclosure containing a light bulb, a means for securing the end of a fiber optic cable bundle near the light bulb, a power supply or other electronic equipment, and a fan for providing cooling air to the enclosure.
- One of the limiting characteristics of a fiber optic light system is the amount of light that can be delivered from the fiber optic cable. The output of the system depends upon numerous variables, such as the intensity of the light produced by the bulb, the effectiveness of the delivery of the light into the fiber end, and the efficiency of the transmission of the light by the fiber optic cable.
- Numerous advances have been made to improve the optical performance of the fiber optic cables themselves. For example, U.S. Pat. No. 5,333,228 issued Jul. 26, 1994, to Kingstone, assigned to the assignee of the present invention and incorporated by reference herein, describes a fiber optic cable having a reflective center core for reflecting inwardly directed emissions back toward the outside surface of the cable.
- It is known to increase the amount of light introduced at the inlet end of the fiber optic cable bundle in order to increase the amount of light produced by the system. However, light bulbs used to produce such light, for example incandescent and halogen lamps, produce a significant amount of heat energy along with the visible light energy. As the power of the light bulb is increased, the bulb is placed closer to the ends of the fiber optic cables, and the light is focused onto the fiber ends, it becomes increasingly difficult to provide cooling for the cable ends. It is known that plastic cable fibers will melt at approximately 125 degrees Centigrade. Even local melting of the cable will cause a depression in the cable end, thus causing the cooling air to become stagnant and intensifying the local heating effect. In this manner, even a small local hot spot will quickly destroy the functionality of a cable fiber. Therefore, in order to improve the performance of a fiber optic light source, it is necessary to provide an additional margin of safety against melting of the cable ends. U.S. Pat. No. 5,838,860 issued Nov. 17, 1998, to Kingstone et al., assigned to the assignee of the present invention and incorporated by reference herein, describes the use of a plate of heat absorbing material as part of a temperature control scheme within the enclosure of a fiber optic illumination system. In most designs of fiber optic lighting systems the factor limiting the brightness that can be achieved in the cable is the cooling of the cable ends.
- In a light source for a fiber optic system it is necessary to provide both local cooling to the ends of the cable bundle fibers and general cooling for the bulb and other components included in the light source enclosure. The large amount of heat generated by the bulb and other electronics within the enclosure mandates the supply of a high volume of cooling air. However, for cooling the cable end, the volume of air is not as critical as is the velocity of the air, due to the geometry of the cable end and the relatively poor thermal conductivity of the air. In order to provide the required velocity for cooling the fiber end, prior art systems have used fans that are much larger than necessary for the general cooling requirements. As a result, such fans have proven to be noisy and have consumed more electrical power than is necessary for the overall application requirements. Furthermore, prior art fiber optic cable systems incorporating the higher light output of metal halide lamps have been limited. Although these lamps produce more visible light than incandescent and halogen lamps, they also produce more infrared and ultraviolet energy, thereby making it more difficult to provide the necessary cooling to the fiber ends in order to take advantage of these higher output lamps.
- Prior art fiber optic light sources generally include an apparatus for positioning a bulb and an associated reflector along an optical axis to direct a beam of light through a lens to the fiber ends. Such an apparatus can be seen in FIG. 2 of the aforementioned U.S. Pat. No. 5,838,860. The reflector design described in that patent is a one piece glass reflector having a generally truncated ellipsoid reflecting portion formed to be integral with a rearward rectangular or rounded base portion. The bulb is typically affixed within the base portion of the reflector with a high temperature adhesive. Therefore, when a bulb fails, it is necessary to replace not only the bulb but also the reflector assembly. The cable ends are held in position by a ferrule assembly that is attached to the light source housing, and the ferrule and reflector are positioned relative to each other by an optical bench.
- What is desired is an improved fiber optic lighting system capable of providing a higher level of light intensity. It is an object of this invention to provide an improved fiber optic light source capable of providing high intensity light into the fiber ends without causing damage to the fibers.
- It is a further object of this invention to provide such an apparatus with an improved cooling arrangement.
- It is a further object of this invention to provide a light source wherein the fiber optic cable can be replaced quickly and without the need for disassembly of the light source housing, while ensuring that the location of the cable ends is held in tight tolerance to a preferred position.
- It is a further object of this invention to provide a lower cost apparatus for replacing failed bulbs in a fiber optic light source.
- It is a further object of this invention to provide a fiber optic light source that incorporates a metal halide light bulb without the danger of melting of the fiber optic cable bundle ends.
- It is yet another object of this invention to provide an efficient and quiet cooling arrangement for a fiber optic cable light source.
- These and other objects, features and advantages of the present invention are provided by an improved light source apparatus and methods that are described in greater detail below. The lighting apparatus described herein includes a housing; a wall disposed within the housing and defining a first interior volume and a second interior volume; a lamp assembly disposed within the first interior volume and adapted to produce a beam of light; a fiber optic cable having an input end disposed within the second interior volume and extending through the housing; a lens forming a portion of the wall and positioned to focus the beam of light onto the fiber optic cable input end; a first fan in fluid communication with the first interior volume for moving a first flow of cooling air from exterior of the housing through the first interior volume; and a second fan in fluid communication with the second interior volume and adapted to move a second flow of cooling air from exterior of the housing through the second interior volume across the fiber optic cable input end, the first flow of cooling air and the second flow of cooling air being isolated from each other within the housing.
- For a better understanding of the present invention, the following detailed description may be taken in conjunction with the accompanying drawings in which:
- FIG. 1 is a plan view of a fiber optic light source.
- FIG. 2 is an exploded view of the lamp assembly used in the fiber optic light source of FIG. 1.
- FIG. 3 is an exploded view of the fiber cable connector assembly used in the fiber optic light source of FIG. 1.
- FIG. 4 is a cross sectional view of a collar adapted for quick connecting and disconnecting with the connector of FIG. 3.
- The fiber
optic light source 10 illustrated in FIG. 1 has ahousing 12 including a generallyhorizontal base 14 mounted on a plurality of feet (not shown), fourvertical side walls 16 attached to thebase 14 along respective edges, and a top (not shown) generally parallel to thebase 14 and removably connected along edges of theside walls 16 opposed thebase 14. Thehousing 12 defines an interior space for the assembly of various other components of thelight source 10. A generally vertical interior wall 18 is attached at its respective edges to thebase 14, two of theside walls 16, and the top to divide the interior space into a firstinterior volume 20 and a secondinterior volume 22 within thehousing 12. Thehousing 12 may be fabricated from sheet metal or other known materials by processes known in the art. Joints between the various portions of thehousing 12 are preferably formed to be air tight, such as by soldering, welding, gluing, the use of gaskets, or by forming adjoining portions from a single piece of material. Anoptical member 24 forms a portion of the interior wall 18 for the purpose of allowing a beam of light to pass from the firstinterior volume 20 to the secondinterior volume 22, as will be discussed more fully below. - A
lamp assembly 26 is disposed within the firstinterior volume 20 and may be removably affixed to thebase 14 at a predetermined position in alignment with theoptical member 24. Thelamp assembly 26 receives electrical power from a power supply 28 through a wire 30, also disposed within the firstinterior volume 20.Lamp assembly 26 produces a beam of light that is directed throughoptical member 24 toward an input end 32 of a fiberoptic cable 34. The input end 32 of fiberoptic cable 34 is disposed within the secondinterior volume 22 and is held at a predetermined position by aconnector 36 which supports the fiberoptic cable 34 as it extends through oneside wall 16 ofhousing 12. - The heat energy produced by
lamp assembly 26, power supply 28 and any other exothermic components that may be located within the firstinterior volume 20 is removed from thehousing 12 by a first flow of coolingair 38. Afirst fan 40 in fluid communication with the firstinterior volume 20 produces the first flow of coolingair 38. Thefirst fan 40 may be mounted directly over an opening (not shown) located in thebase 14 for drawing air into the firstinterior volume 20 and across thelamp assembly 26 and other exothermic components. The heated first flow of coolingair 38 is then directed out of the firstinterior volume 20 through one or more ventilation openings 42 formed in one of thewalls 16. One may appreciate that the cooling air inlet and outlet may be located at any convenient locations onhousing 12, preferably in locations wherein the heated air is not directly drawn back into the interior of the housing. - Input end32 of fiber
optic cable end 34 is isolated from the first flow of coolingair 38 by interior wall 18, however it will receive a significant amount of thermal energy from thelamp assembly 26 in the form of radiant energy.Optical member 24 may be a lens that focuses the beam of light produced by thelamp assembly 26 onto the input end 32, thereby concentrating the heating effect of the radiant energy.Optical member 24 may be formed to be an infrared filter to lessen the heating effect on the input end 32 of thefiber optic cable 34, however, supplemental cooling is necessary to prevent the overheating of the cable ends. Such cooling is provided by a second flow of coolingair 44, isolated from the first flow of coolingair 38, and produced by a second fan 46 in fluid communication with the secondinterior volume 22. The second flow of coolingair 44 may be directed into and out of the secondinterior volume 22 through respective inlet andoutlet openings walls 16 or base of thehousing 12. In one embodiment, thebase 14 may have dividers located along its bottom surface to divide the air space under thehousing 12 into four volumes, one each for the respective inlets and outlets of first and secondinterior volumes cooling air openings housing 12. The second flow of coolingair 44 need not be a high volume flow, but is preferably a very high velocity flow directed toward and concentrated at the input end 32 of thefiber optic cable 34. A baffle plate or tube 52 may be used to concentrate and direct the second flow of coolingair 44 from the second fan 46 onto the fiber ends. Importantly, because the first and second flows of coolingair housing 12, the temperature of the second flow of coolingair 48 as it impacts the input end 32 is essentially at ambient temperature. Prior art devices that utilize a single flow of cooling air for cooling both the lamp and the cable ends have an air temperature directed onto the cable ends that is higher than ambient as a result of mixing of the air within the housing volume. The present invention isolates the second flow of coolingair 48 from the coolingair 38 used to cool thelamp assembly 26. Therefore, a cooler temperature flow of air can be provided at the cable ends than is possible with prior art devices, thereby significantly improving the efficiency of the cooling of the input end 32 of thefiber optic cable 34. - FIG. 2 illustrates an exploded view of the
lamp assembly 26 of the fiberoptic light source 10 of FIG. 1. Thelamp assembly 26 includes abulb 60, which may be any commercially available high intensity gas discharge lamp, such as a Thorn ArcStream 4000 metal halide lamp. Unlike prior art designs that utilize a one-piece glass reflector assembly, the reflector assembly of the present invention includes a separatemetal base portion 62 and aglass reflector portion 64. The base 62 may be machined from metal bar stock, with aluminum being preferred due to its heat transfer properties.Base 62 may have a generally round or rectangular external cross-sectional shape, and includes a central bore opening 66 adapted to receivebulb 60. One ormore fins 68 may be formed on the outside diameter surface of the base 62 to improve heat transfer from the base to the first flow of coolingair 38.Reflector 64 is formed of glass and may have a hollow generally truncated ellipsoidal shape with areflective coating 68 disposed thereon.Reflector 64 may be made thicker than prior art one piece designs which were purposefully made thin to simplify the manufacturing of an integral base and reflector.Reflector 64 includes a bulb opening 70 adapted to align with the bore opening 66 ofbase 62.Bulb 60 is inserted intobase 62 and positioned so that its light emitting electrode discharge will be centered at a focal point of the ellipsoidal reflection surface ofreflector 64.Bulb 60 may be attached tobase 62 by an ultra high temperature ceramic adhesive such as 904 Zirconia available from Caltronics Corporation in Brooklyn, N.Y. The base 62 may be attached to thereflector 64 with a flexible epoxy such as Duralxo 538 available from Caltronics Corporation. Theentire lamp assembly 26 may be provided as a pre-assembled unit, or only thebulb 60 andbase 62 may be pre-assembled, with the joint between the base 62 andreflector 64 remaining unglued in order to lower the cost of bulb replacement. For such an embodiment, a mounting fixture must be provided within thehousing 12 that is capable of holding thebase 62 andreflector 64 together in a predetermined position during operation of thelight source 10. - The output of
lamp assembly 26 is sensitive to the relative positioning of the light-emitting portion of thebulb 60 and the focal point of thereflector 64. Because the location of the light-emitting portion may vary from bulb to bulb, assembly oflamp assembly 26 may be accomplished in a fixture which allows the output of light to be measured as thebulb 60 is adjusted to various positions within thebore opening 66. Thebulb 60 is moved to a position providing at least a predetermined amount of light output, or to the position of maximum light output, and the assembly is held in this position until the glue adjoining the pieces has hardened. The inventors have found that such a two-piece reflector assembly design is less expensive to manufacture than prior art one-piece base/reflector designs. - FIG. 3 illustrates an exploded view of a
connector 80 adapted for attachment to the input end 32 offiber optic cable 34. Thefiber optic cable 34 is not illustrated in FIG. 3, but one may envision thecable 34 inserted through the center openings of the various pieces ofconnector 80, as will be described in more detail below.Connector 80 includes aninternal clamp assembly 82 comprising a hollow double-endedconnector 84 having a first threadedend 86 and a second end 88 threaded over a partial extent and having a distal portion containing a plurality of flexible longitudinal fingers 90. A connector cap 92 hasinternal threads 94 sized for engagement with the threads on the second end 88 of theclamp assembly 82. Connector cap 92 also contains an internal taper (not shown) that compresses the longitudinal fingers 90 onto an insertedfiber optic cable 34 as the connector cap 92 is threaded onto theclamp assembly 82.Elastomeric washer 96 fits within fingers 90 to protect the cable and to distribute the force exerted by the fingers 90. A cover 98 fits over theclamp assembly 82 by a friction fit to protect the various components. Abayonet portion 100 includes internal threads on a first end 101 sized for engagement with the external threads on the first threadedend 86 of theinternal clamp assembly 82. The inside diameter of the opposed end portion 102 ofbayonet 100 is selected to provide a friction fit with the outside diameter of the insertedfiber optic cable 34. - Assembly of
connector 80 ontofiber optic cable 34 is accomplished by sliding each of therespective pieces cable 34. Connector cap 92 is threaded onto double-endedconnector 84 to provide a compression attachment to thecable 34. Bayonet portion is then threaded onto first threadedend 86 of double-endedconnector 84. Cover 98 is slide over double-endedconnector 84 to abut the first end 101 ofbayonet portion 100. The end of thefiber optic cable 34 which is now protruding out of end portion 102 ofbayonet 100 is then cut flush with the end of the end portion 102 to form the input end 32 ofcable 34. Forplastic cable 34 this cutting step may be accomplished by using a hot knife, as is known in the art. - FIG. 4 illustrates a
collar 110 adapted for installation into an opening in thewall 16 ofhousing 12 of fiber opticlight source 10 and to receivebayonet 100.Collar 110 includes a body 112 having acentral opening 114 for receiving the end portion 102 ofbayonet 100. The body 112 may be secured into an opening in aside wall 16 ofhousing 12 by any known mechanism, such as with screws threaded into holes (not shown) formed in the body 112. A spring-loadedpin 116 is retained in an opening formed perpendicular to thecentral opening 114.Pin 116 is spring biased to protrude into thecentral opening 114. The pin is sized to fit into agroove 104 formed in the outside surface of bayonet 100 (as seen in FIG. 3) when thebayonet 100 is inserted to a desired position withincollar 110. Ataper 106 formed on the surface of thebayonet 100 facilitates the retraction ofpin 116 as thebayonet 100 is inserted into thecollar 110. The diameter ofpin 116 is selected to be only slightly smaller than the width ofgroove 104, for example 0.010 inch smaller, in order to hold the input end 32 of fiber optic cable close to a predetermined position. Similarly, the outside diameter of end portion 102 ofbayonet 100 is selected to be only about 0.010 inch smaller than the inside diameter of thecentral opening 114 ofcollar 110. In this manner,fiber optic cable 34 can be quickly and accurately inserted intohousing 12 to position input end 32 at a desired position with respect tooptical member 24 andlamp assembly 26. Thefiber optic cable 34 may be withdrawn by simply liftingpin 116 away frombayonet 100 and pulling thebayonet 100 out ofcollar 110. - Thus, the device described herein provides the capability for higher light output than prior art devices by incorporating a low cost, high intensity metal halide lamp assembly without risk of cable melting, and by ensuring precise alignment of the fiber ends with regard to the lamp assembly while permitting a quick-disconnect fiber cable attachment.
- While the invention has been described in what is presently considered to be a preferred embodiment, many variations and modifications will become apparent to those skilled in the art. Accordingly, it is intended that the invention not be limited to the specific illustrated embodiment, but that it be interpreted within the full scope and spirit of the appended claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/747,570 US6422730B1 (en) | 2000-03-17 | 2000-12-22 | Fiber optic light source with two chamber cooling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US19043200P | 2000-03-17 | 2000-03-17 | |
US09/747,570 US6422730B1 (en) | 2000-03-17 | 2000-12-22 | Fiber optic light source with two chamber cooling |
Publications (2)
Publication Number | Publication Date |
---|---|
US6422730B1 US6422730B1 (en) | 2002-07-23 |
US20020105814A1 true US20020105814A1 (en) | 2002-08-08 |
Family
ID=26886114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/747,570 Expired - Lifetime US6422730B1 (en) | 2000-03-17 | 2000-12-22 | Fiber optic light source with two chamber cooling |
Country Status (1)
Country | Link |
---|---|
US (1) | US6422730B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080123342A1 (en) * | 2006-11-08 | 2008-05-29 | Michael Robert Gluszczak | Device and system for an optical element holder |
WO2012087088A1 (en) * | 2010-12-20 | 2012-06-28 | Gonzalez Herrera Juan Luis | Light-generating device for a fibre optic transilluminator |
WO2012087089A1 (en) * | 2010-12-20 | 2012-06-28 | Gonzalez Herrera Juan Luis | Fibre optic transillumination device |
US20120188748A1 (en) * | 2011-01-25 | 2012-07-26 | Hui Wing-Kin | Pool light assembly with cooling structure |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7187141B2 (en) | 1997-08-26 | 2007-03-06 | Color Kinetics Incorporated | Methods and apparatus for illumination of liquids |
US7482764B2 (en) | 1997-08-26 | 2009-01-27 | Philips Solid-State Lighting Solutions, Inc. | Light sources for illumination of liquids |
US7427840B2 (en) | 1997-08-26 | 2008-09-23 | Philips Solid-State Lighting Solutions, Inc. | Methods and apparatus for controlling illumination |
DE19814300B4 (en) * | 1998-03-31 | 2008-09-25 | Bernhard Weber | Headlight or light |
US7290915B2 (en) * | 2001-07-20 | 2007-11-06 | Solovay Kenneth S | Light coupling assembly |
US6856475B2 (en) * | 2001-10-31 | 2005-02-15 | The Furukawa Electric Co., Ltd | Optical module having temperature adjustment features |
US6795316B2 (en) * | 2001-12-21 | 2004-09-21 | Redfern Broadband Networks, Inc. | WDM add/drop multiplexer module |
EP1464133A4 (en) | 2001-12-21 | 2005-06-15 | Redfern Broadband Networks Inc | WDM ADD / DROP multiplexer |
US7130507B2 (en) * | 2002-10-18 | 2006-10-31 | Exfo Photonic Solutions Inc. | Light source unit for use with a light guide and lamp mounting arrangement |
US6733157B1 (en) * | 2002-11-19 | 2004-05-11 | Lité-on Technology Corp. | Radiating apparatus for U-shape projector system |
WO2004049028A1 (en) * | 2002-11-22 | 2004-06-10 | Super Vision International, Inc. | Fiber optic illuminating apparatus and method |
US7062129B2 (en) * | 2002-11-25 | 2006-06-13 | Super Vision International, Inc. | Fiber optic illuminating apparatus and method |
US7573713B2 (en) | 2005-09-13 | 2009-08-11 | Pacific Star Communications | High velocity air cooling for electronic equipment |
US7535861B2 (en) * | 2005-10-07 | 2009-05-19 | Pacific Star Communications Inc. | Self-contained portable broadband communication system |
US7817589B2 (en) | 2006-02-21 | 2010-10-19 | Pacific Star Communications, Inc. | Self-contained portable broadband communications system |
US20080005380A1 (en) * | 2006-02-21 | 2008-01-03 | Pacific Star Communications, Inc. | Integrated configuration and management of hardware devices |
TWI317845B (en) * | 2006-05-18 | 2009-12-01 | Qisda Corp | Electronic device |
WO2009142644A1 (en) * | 2008-05-23 | 2009-11-26 | Hewlett-Packard Development Company, L.P. | Computer chassis |
EP2369410A4 (en) * | 2008-11-26 | 2012-05-30 | Sanyo Electric Co | Illuminating device and projection image display device |
US8022641B2 (en) * | 2009-05-01 | 2011-09-20 | Focal Point, L.L.C. | Recessed LED down light |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1537228A (en) * | 1922-06-03 | 1925-05-12 | Western Electric Co | Means for cooling carrier-wave apparatus |
US4704660A (en) | 1985-03-27 | 1987-11-03 | Lumenyte Corporation | High-intensity light source for a fiber optics illumination system |
US4782430A (en) | 1986-07-22 | 1988-11-01 | Lumenyte Corporation | Light conduit illumination system for underwater lighting |
US4922385A (en) | 1987-11-17 | 1990-05-01 | Fiberstars, Inc. | Cooled lighting apparatus and method |
US4825341A (en) | 1987-11-17 | 1989-04-25 | Fiberstars, Inc. | Cooled lighting apparatus and method |
US5016152A (en) | 1989-09-21 | 1991-05-14 | Fiberstars, Inc. | Focused light source and method |
US5295052A (en) * | 1992-10-09 | 1994-03-15 | Luxtec Corporation | Light source assembly |
US5345531A (en) | 1993-02-26 | 1994-09-06 | Fiberstars, Inc. | Optical fiber lighting apparatus and method |
US5838860A (en) | 1993-05-21 | 1998-11-17 | Super Vision International, Inc. | Fiber optic light source apparatus and method |
US5479322A (en) | 1993-07-16 | 1995-12-26 | Fiberstars, Inc. | Lighting system and method for fiber optic and area illumination |
US5653519A (en) * | 1993-12-16 | 1997-08-05 | Glass Illuminations, Inc. | Fiber optics illuminator system |
WO1997009564A1 (en) | 1995-09-01 | 1997-03-13 | Fiberstars, Inc. | Lighting apparatus and method |
US5779353A (en) | 1996-04-16 | 1998-07-14 | Fiberstars, Inc. | Weather-protected lighting apparatus and method |
US5813243A (en) * | 1997-04-04 | 1998-09-29 | Micron Electronics, Inc. | Chambered forced cooling system |
US6050715A (en) | 1998-01-13 | 2000-04-18 | Fiberstars, Inc. | Method and apparatus for forming surface lighting |
-
2000
- 2000-12-22 US US09/747,570 patent/US6422730B1/en not_active Expired - Lifetime
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080123342A1 (en) * | 2006-11-08 | 2008-05-29 | Michael Robert Gluszczak | Device and system for an optical element holder |
EP2086390A4 (en) * | 2006-11-08 | 2010-01-20 | Lumenis Inc | DEVICE AND SYSTEM FOR SUPPORTING OPTICAL ELEMENTS |
US20100142206A1 (en) * | 2006-11-08 | 2010-06-10 | Michael Robert Gluszczak | Device and system for an optical element holder |
US7740378B2 (en) | 2006-11-08 | 2010-06-22 | Lumenis Ltd. | Device and system for an optical element holder |
US8100562B2 (en) | 2006-11-08 | 2012-01-24 | Lumenis Ltd. | Device and system for an optical element holder |
WO2012087088A1 (en) * | 2010-12-20 | 2012-06-28 | Gonzalez Herrera Juan Luis | Light-generating device for a fibre optic transilluminator |
WO2012087089A1 (en) * | 2010-12-20 | 2012-06-28 | Gonzalez Herrera Juan Luis | Fibre optic transillumination device |
US20120188748A1 (en) * | 2011-01-25 | 2012-07-26 | Hui Wing-Kin | Pool light assembly with cooling structure |
Also Published As
Publication number | Publication date |
---|---|
US6422730B1 (en) | 2002-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6422730B1 (en) | Fiber optic light source with two chamber cooling | |
US7130507B2 (en) | Light source unit for use with a light guide and lamp mounting arrangement | |
US5788364A (en) | Compact high-intensity UVA inspection lamp | |
US6880954B2 (en) | High intensity photocuring system | |
US5099399A (en) | High efficiency fiber optics illuminator with thermally controlled light guide bushing | |
US6814470B2 (en) | Highly efficient LED lamp | |
JP5869027B2 (en) | Light emitting diode light engine | |
JP6140672B2 (en) | Insulated LED device | |
US20050201100A1 (en) | Led lighting assembly | |
US6609816B2 (en) | High efficiency illuminator | |
US4922385A (en) | Cooled lighting apparatus and method | |
JPH01186908A (en) | Coolable light irradiation apparatus and method | |
JP2948248B2 (en) | Transmission source for synthetic optical fibers | |
US7062129B2 (en) | Fiber optic illuminating apparatus and method | |
CN102834663A (en) | Arrangement for emitting light | |
US20060018125A1 (en) | High-efficiency fiber optic lighting system | |
US8613538B2 (en) | Illumination system for endoscopy or microscopy | |
CN112032581B (en) | Lighting system | |
CN115325510B (en) | Light source system and light source replacement method | |
US20020136028A1 (en) | Lighting apparatus to provide concentrate illumination to an end of a fiber optic bundle | |
WO2004049028A1 (en) | Fiber optic illuminating apparatus and method | |
RU2253887C2 (en) | Linear light-emitting diode array | |
RU2190868C2 (en) | Process and device to form radiation for fiber-optical employment | |
CN219222615U (en) | Heating device with lighting function | |
EP1939521B1 (en) | Photo-optical module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUPER VISION INTERNATIONAL,INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PINHAS, PAUL KOREN;ROY, ARCHER;REEL/FRAME:011402/0846 Effective date: 20001220 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: NEXXUS LIGHTING, INC., FLORIDA Free format text: CHANGE OF NAME;ASSIGNOR:SUPER VISION INTERNATIONAL, INC.;REEL/FRAME:019260/0410 Effective date: 20060322 |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 8 |
|
SULP | Surcharge for late payment |
Year of fee payment: 7 |
|
AS | Assignment |
Owner name: NEXT STEP PRODUCTS LLC, FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEXXUS LIGHTING, INC.;REEL/FRAME:026868/0274 Effective date: 20101028 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
AS | Assignment |
Owner name: ZODIAC POOL SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEXT STEP PRODUCTS, LLC;REEL/FRAME:033118/0292 Effective date: 20140603 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., CALIFORNIA Free format text: ABL INTELLECTUAL PROPERTY SECURITY AGREEMENT;ASSIGNORS:COVER-POOLS INCORPORATED;ZODIAC POOL SYSTEMS LLC;AQUA PRODUCTS, INC.;REEL/FRAME:046500/0291 Effective date: 20180702 Owner name: CREDIT SUISSE INTERNATIONAL, ENGLAND Free format text: SECURITY INTEREST;ASSIGNORS:COVER-POOLS INCORPORATED;ZODIAC POOL SYSTEMS LLC;AQUA PRODUCTS, INC.;REEL/FRAME:046622/0001 Effective date: 20180702 |
|
AS | Assignment |
Owner name: ZODIAC POOL SYSTEMS LLC, DELAWARE Free format text: CHANGE OF NAME;ASSIGNOR:ZODIAC POOL SYSTEMS, INC.;REEL/FRAME:046634/0267 Effective date: 20170929 |
|
AS | Assignment |
Owner name: HSBC BANK USA, N.A., NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT ASSIGNMENT;ASSIGNOR:CREDIT SUISSE INTERNATIONAL;REEL/FRAME:058922/0901 Effective date: 20220127 |
|
AS | Assignment |
Owner name: ZODIAC POOL SYSTEMS. INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:058982/0912 Effective date: 20220127 Owner name: ZODIAC POOL SYSTEMS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:058982/0912 Effective date: 20220127 Owner name: COVER-POOLS INCORPORATED, UTAH Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:058982/0912 Effective date: 20220127 Owner name: AQUA PRODUCTS, INC., NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:058982/0912 Effective date: 20220127 |