US20020103399A1 - Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof - Google Patents
Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof Download PDFInfo
- Publication number
- US20020103399A1 US20020103399A1 US10/026,726 US2672601A US2002103399A1 US 20020103399 A1 US20020103399 A1 US 20020103399A1 US 2672601 A US2672601 A US 2672601A US 2002103399 A1 US2002103399 A1 US 2002103399A1
- Authority
- US
- United States
- Prior art keywords
- halogeno
- aminocarboxylic acid
- optically active
- amino
- producing according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 112
- 239000000543 intermediate Substances 0.000 title claims abstract description 12
- LGEYIBKMWLDPJV-QMMMGPOBSA-N (2r)-2-anilino-3-sulfanylpropanoic acid Chemical class OC(=O)[C@H](CS)NC1=CC=CC=C1 LGEYIBKMWLDPJV-QMMMGPOBSA-N 0.000 title 1
- 150000003839 salts Chemical class 0.000 claims abstract description 72
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 claims abstract description 66
- -1 N-protected-S-phenylcysteines Chemical class 0.000 claims abstract description 64
- 239000002253 acid Substances 0.000 claims abstract description 57
- 238000011282 treatment Methods 0.000 claims abstract description 34
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims abstract description 31
- 230000002140 halogenating effect Effects 0.000 claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 26
- 239000003223 protective agent Substances 0.000 claims abstract description 24
- 125000003277 amino group Chemical group 0.000 claims abstract description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 12
- 125000001424 substituent group Chemical group 0.000 claims abstract description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 60
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 56
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 53
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 53
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical group ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 46
- 229960001153 serine Drugs 0.000 claims description 41
- 239000011541 reaction mixture Substances 0.000 claims description 39
- 239000002904 solvent Substances 0.000 claims description 32
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 30
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 28
- 239000003960 organic solvent Substances 0.000 claims description 28
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 23
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims description 22
- 239000007864 aqueous solution Substances 0.000 claims description 21
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims description 21
- ASBJGPTTYPEMLP-UHFFFAOYSA-N 3-chloroalanine Chemical compound ClCC(N)C(O)=O ASBJGPTTYPEMLP-UHFFFAOYSA-N 0.000 claims description 20
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 18
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 18
- 238000001556 precipitation Methods 0.000 claims description 18
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 claims description 16
- ASBJGPTTYPEMLP-REOHCLBHSA-N 3-chloro-L-alanine Chemical compound ClC[C@H]([NH3+])C([O-])=O ASBJGPTTYPEMLP-REOHCLBHSA-N 0.000 claims description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 229910000039 hydrogen halide Inorganic materials 0.000 claims description 15
- 239000012433 hydrogen halide Substances 0.000 claims description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- HSDAJNMJOMSNEV-UHFFFAOYSA-N benzyl chloroformate Chemical group ClC(=O)OCC1=CC=CC=C1 HSDAJNMJOMSNEV-UHFFFAOYSA-N 0.000 claims description 12
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 11
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 11
- 239000000047 product Substances 0.000 claims description 11
- 150000002642 lithium compounds Chemical class 0.000 claims description 10
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 9
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 9
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000002244 precipitate Substances 0.000 claims description 8
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 claims description 8
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 7
- 239000007810 chemical reaction solvent Substances 0.000 claims description 7
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 6
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 6
- 239000004473 Threonine Substances 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 6
- 230000008025 crystallization Effects 0.000 claims description 6
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 5
- 239000012320 chlorinating reagent Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- VHVGNTVUSQUXPS-YUMQZZPRSA-N L-threo-3-phenylserine Chemical compound [O-]C(=O)[C@@H]([NH3+])[C@@H](O)C1=CC=CC=C1 VHVGNTVUSQUXPS-YUMQZZPRSA-N 0.000 claims description 2
- 150000003512 tertiary amines Chemical class 0.000 claims description 2
- CVGHNFNECFWOCH-UHFFFAOYSA-N 2-amino-3-chloro-2-phenylpropanoic acid Chemical compound ClCC(N)(C(O)=O)C1=CC=CC=C1 CVGHNFNECFWOCH-UHFFFAOYSA-N 0.000 claims 1
- YFYASMWDAMXQQT-UHFFFAOYSA-N 2-amino-3-chlorobutanoic acid Chemical compound CC(Cl)C(N)C(O)=O YFYASMWDAMXQQT-UHFFFAOYSA-N 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 34
- 238000006243 chemical reaction Methods 0.000 abstract description 22
- 150000007513 acids Chemical class 0.000 abstract description 18
- 230000003287 optical effect Effects 0.000 abstract description 16
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 42
- 239000000243 solution Substances 0.000 description 41
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 239000013078 crystal Substances 0.000 description 31
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 30
- 238000003756 stirring Methods 0.000 description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 21
- 238000004128 high performance liquid chromatography Methods 0.000 description 21
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000002002 slurry Substances 0.000 description 18
- ISBOGFMUFMJWEP-HNNXBMFYSA-N (2r)-2-(phenylmethoxycarbonylamino)-3-phenylsulfanylpropanoic acid Chemical compound C([C@@H](C(=O)O)NC(=O)OCC=1C=CC=CC=1)SC1=CC=CC=C1 ISBOGFMUFMJWEP-HNNXBMFYSA-N 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- 238000005658 halogenation reaction Methods 0.000 description 13
- IENJPSDBNBGIEL-DKWTVANSSA-N (2r)-2-amino-3-chloropropanoic acid;hydrochloride Chemical compound Cl.ClC[C@H](N)C(O)=O IENJPSDBNBGIEL-DKWTVANSSA-N 0.000 description 12
- MVYBNLGHYRBYQM-VIFPVBQESA-N (2r)-3-chloro-2-(phenylmethoxycarbonylamino)propanoic acid Chemical compound OC(=O)[C@H](CCl)NC(=O)OCC1=CC=CC=C1 MVYBNLGHYRBYQM-VIFPVBQESA-N 0.000 description 12
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 10
- 238000000926 separation method Methods 0.000 description 10
- 239000012141 concentrate Substances 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- XYUBQWNJDIAEES-QMMMGPOBSA-N (2r)-2-amino-3-phenylsulfanylpropanoic acid Chemical compound OC(=O)[C@@H](N)CSC1=CC=CC=C1 XYUBQWNJDIAEES-QMMMGPOBSA-N 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 238000004440 column chromatography Methods 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 239000012535 impurity Substances 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 235000011181 potassium carbonates Nutrition 0.000 description 8
- 0 *N([1*])C(CSC1=CC=CC=C1)C(=O)O Chemical compound *N([1*])C(CSC1=CC=CC=C1)C(=O)O 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 7
- 229910052808 lithium carbonate Inorganic materials 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- STMOVTSFWYRCOB-DKWTVANSSA-N (2s)-2-amino-3-hydroxypropanoic acid;hydrochloride Chemical compound Cl.OC[C@H](N)C(O)=O STMOVTSFWYRCOB-DKWTVANSSA-N 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- 239000003463 adsorbent Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 229960002898 threonine Drugs 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 239000012736 aqueous medium Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004210 ether based solvent Substances 0.000 description 4
- 230000026030 halogenation Effects 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 3
- VKHHKQSCGXEKEE-UHFFFAOYSA-N 3-(1h-indol-5-yl)benzoic acid Chemical compound OC(=O)C1=CC=CC(C=2C=C3C=CNC3=CC=2)=C1 VKHHKQSCGXEKEE-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-Serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 description 3
- 229930195711 D-Serine Natural products 0.000 description 3
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000000010 aprotic solvent Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000001212 derivatisation Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000006340 racemization Effects 0.000 description 3
- GNIDSOFZAKMQAO-VIFPVBQESA-N (2s)-3-hydroxy-2-(phenylmethoxycarbonylamino)propanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)OCC1=CC=CC=C1 GNIDSOFZAKMQAO-VIFPVBQESA-N 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 2
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- IENJPSDBNBGIEL-UHFFFAOYSA-N 2-amino-3-chloropropanoic acid;hydron;chloride Chemical compound Cl.ClCC(N)C(O)=O IENJPSDBNBGIEL-UHFFFAOYSA-N 0.000 description 2
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001879 copper Chemical class 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- DYHSDKLCOJIUFX-UHFFFAOYSA-N tert-butoxycarbonyl anhydride Chemical compound CC(C)(C)OC(=O)OC(=O)OC(C)(C)C DYHSDKLCOJIUFX-UHFFFAOYSA-N 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- ISBOGFMUFMJWEP-OAHLLOKOSA-N (2s)-2-(phenylmethoxycarbonylamino)-3-phenylsulfanylpropanoic acid Chemical compound C([C@H](C(=O)O)NC(=O)OCC=1C=CC=CC=1)SC1=CC=CC=C1 ISBOGFMUFMJWEP-OAHLLOKOSA-N 0.000 description 1
- DUGXBGWTWDCGNP-JPPWUZRISA-N (2s)-2-amino-3-hydroxy-3-phenylpropanoic acid;hydrate Chemical compound O.OC(=O)[C@@H](N)C(O)C1=CC=CC=C1 DUGXBGWTWDCGNP-JPPWUZRISA-N 0.000 description 1
- VMVQTRSWQMRKDB-JPPWUZRISA-N (2s)-2-amino-3-hydroxy-3-phenylpropanoic acid;hydrochloride Chemical compound Cl.OC(=O)[C@@H](N)C(O)C1=CC=CC=C1 VMVQTRSWQMRKDB-JPPWUZRISA-N 0.000 description 1
- ASBJGPTTYPEMLP-UWTATZPHSA-N 3-chloro-D-alanine Chemical compound ClC[C@@H]([NH3+])C([O-])=O ASBJGPTTYPEMLP-UWTATZPHSA-N 0.000 description 1
- IJFIAVHLIUCNMA-UHFFFAOYSA-N 3-hydroxy-2-methylbenzoyl chloride Chemical compound CC1=C(O)C=CC=C1C(Cl)=O IJFIAVHLIUCNMA-UHFFFAOYSA-N 0.000 description 1
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 1
- GWWUMHGMAPVKDL-MQWKRIRWSA-N ClC([C@@H](N)C1=CC=CC=C1)C(=O)O Chemical compound ClC([C@@H](N)C1=CC=CC=C1)C(=O)O GWWUMHGMAPVKDL-MQWKRIRWSA-N 0.000 description 1
- UQBOJOOOTLPNST-UHFFFAOYSA-N Dehydroalanine Chemical compound NC(=C)C(O)=O UQBOJOOOTLPNST-UHFFFAOYSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 239000005703 Trimethylamine hydrochloride Substances 0.000 description 1
- 108010075344 Tryptophan synthase Proteins 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 229960003767 alanine Drugs 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002259 anti human immunodeficiency virus agent Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- YCOXTKKNXUZSKD-UHFFFAOYSA-N as-o-xylenol Natural products CC1=CC=C(O)C=C1C YCOXTKKNXUZSKD-UHFFFAOYSA-N 0.000 description 1
- RLZXKARDPOFVNB-UHFFFAOYSA-N aziridine-1-carboxylic acid Chemical class OC(=O)N1CC1 RLZXKARDPOFVNB-UHFFFAOYSA-N 0.000 description 1
- CIZVQWNPBGYCGK-UHFFFAOYSA-N benzenediazonium Chemical class N#[N+]C1=CC=CC=C1 CIZVQWNPBGYCGK-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- VRHAQNTWKSVEEC-UHFFFAOYSA-N ethyl 1,3-dioxoisoindole-2-carboxylate Chemical compound C1=CC=C2C(=O)N(C(=O)OCC)C(=O)C2=C1 VRHAQNTWKSVEEC-UHFFFAOYSA-N 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- OZECFIJVSAYAPH-UHFFFAOYSA-N ethyl-di(propan-2-yl)azanium;chloride Chemical compound Cl.CCN(C(C)C)C(C)C OZECFIJVSAYAPH-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000004030 hiv protease inhibitor Substances 0.000 description 1
- SNHMUERNLJLMHN-UHFFFAOYSA-N iodobenzene Chemical compound IC1=CC=CC=C1 SNHMUERNLJLMHN-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 238000007273 lactonization reaction Methods 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- NDBQJIBNNUJNHA-DFWYDOINSA-N methyl (2s)-2-amino-3-hydroxypropanoate;hydrochloride Chemical compound Cl.COC(=O)[C@@H](N)CO NDBQJIBNNUJNHA-DFWYDOINSA-N 0.000 description 1
- OZSJLLVVZFTDEY-HJXLNUONSA-N methyl (2s,3r)-2-amino-3-hydroxybutanoate;hydrochloride Chemical compound Cl.COC(=O)[C@@H](N)[C@@H](C)O OZSJLLVVZFTDEY-HJXLNUONSA-N 0.000 description 1
- MRDHRWGFGYDHFP-UHFFFAOYSA-N methyl 2-amino-3-chlorobutanoate;hydrochloride Chemical compound Cl.COC(=O)C(N)C(C)Cl MRDHRWGFGYDHFP-UHFFFAOYSA-N 0.000 description 1
- POPBCSXDEXRDSX-UHFFFAOYSA-N methyl 2-amino-3-chloropropanoate;hydrochloride Chemical compound Cl.COC(=O)C(N)CCl POPBCSXDEXRDSX-UHFFFAOYSA-N 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 1
- 238000011328 necessary treatment Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- NTTOTNSKUYCDAV-UHFFFAOYSA-N potassium hydride Chemical compound [KH] NTTOTNSKUYCDAV-UHFFFAOYSA-N 0.000 description 1
- 229910000105 potassium hydride Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003354 serine derivatives Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- HFRXJVQOXRXOPP-UHFFFAOYSA-N thionyl bromide Chemical compound BrS(Br)=O HFRXJVQOXRXOPP-UHFFFAOYSA-N 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- ILWRPSCZWQJDMK-UHFFFAOYSA-N triethylazanium;chloride Chemical compound Cl.CCN(CC)CC ILWRPSCZWQJDMK-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- SZYJELPVAFJOGJ-UHFFFAOYSA-N trimethylamine hydrochloride Chemical compound Cl.CN(C)C SZYJELPVAFJOGJ-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C229/00—Compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C229/02—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C229/04—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C229/20—Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C227/00—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
- C07C227/14—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
- C07C227/16—Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions not involving the amino or carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/14—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a method of producing a ⁇ -halogeno- ⁇ -aminocarboxylic acid or a salt thereof, which is useful as a raw material for the production of medicinals, among others.
- the invention also relates to a method of producing an optically active N-protected S-phenyl-L-cysteine or a salt thereof, which is useful as an intermediate of medicinals, in particular anti-AIDS drugs, and to a method of producing an intermediate thereof.
- the method which comprises derivatizing a ⁇ -hydroxy- ⁇ -aminocarboxylic acid into the corresponding ⁇ -hydroxy- ⁇ -aminocarboxylic acid ester, then halogenating the hydroxyl group thereof with a phosphorus halide to give the corresponding ⁇ -halogeno- ⁇ -aminocarboxylic acid ester, and hydrolyzing the ester group using a hydrohalogenic acid to give the objective ⁇ -halogeno- ⁇ -aminocarboxylic acid.
- serine is derivatized into serine methyl ester hydrochloride
- the ester salt is then treated with phosphorus pentachloride to give ⁇ -amino- ⁇ -chloropropionic acid methyl ester hydrochloride, which is further hydrolyzed with hydrochloric acid.
- the resulting ⁇ -amino- ⁇ -chloropropionic acid hydrochloride is isolated by concentrating the reaction mixture to dryness, followed by crystallization of the residue from a mixture of 1-propanol and hydrochloric acid [e.g. CHIRALITY, 8:197-200 (1996)]; and
- the halogenation of the hydroxyl group in : position usually involves three reaction steps, namely protection of the carboxyl group, halogenation of the hydroxyl group in ⁇ position and deprotection of the carboxyl group. In this case, many difficulties are encountered, for example the multiplicity of steps required, procedural complexity and low yields.
- the method 3 in which the hydroxyl group of an N-protected serine ester derivative is converted to a sulfonyloxy group and the resulting product is then subjected to substitution reaction using the sodium salt of a thiol in N,N-dimethylformamide, is also disadvantageous in that because it involves the use of a reagent relatively difficult to handle, for example sodium hydride or potassium hydride, as a base, it does not always give the desired N-protected S-phenylcysteine ester in high yield and, in particular, the optical purity is decreased, as revealed by a study made by the present inventors.
- a reagent relatively difficult to handle for example sodium hydride or potassium hydride
- the methods 4) through 7), which comprise derivatization from other starting compounds than serine cannot be said to be industrially advantageous, either, since, for example, the waste treatment is troublesome, materials requiring caution in handling or expensive materials are used and the yield and productivity are low.
- the primary object of the present invention is to provide a method of producing ⁇ -halogeno- ⁇ -aminocarboxylic acids in an industrially advantageous manner and a method of producing optically active S-phenylcysteine derivatives from optically active serine, which is readily available commercially, in an industrially advantageous manner.
- optically active S-phenylcysteine derivatives from optically active serine, namely L- or D-serine
- the point is how to prevent the optical purity from decreasing in thiophenylating the activated compound derived from optically active serine by converting its hydroxyl group to a leaving group.
- the present inventors thought that there would be the possibility of attaining the above object in an industrially advantageous manner while preventing racemization if an adequately activated carboxylic acid derivative could be synthesized from optically active serine by activating the hydroxyl group thereof in the form of a leaving group and if the thiophenylation could be realized efficiently.
- optically active ⁇ -chloroalanine can be synthesized in an efficient manner when the above method of producing ⁇ -halogeno- ⁇ -aminocarboxylic acids is utilized.
- optically active ⁇ -chloroalanine can be produced by directly chlorinating optically active serine or a salt thereof. The relevant method of production is thus novel.
- optically active ⁇ -chloroalanine obtained in the above manner can be converted to an optically active N-protected- ⁇ -chloroalanine by treatment with an amino-protecting agent and that said compound can be converted to an optically active N-protected-S-phenylcysteine by reacting with thiophenol under a basic condition.
- the present invention has now been completed. Particularly when the above three-step process is used, optically active N-protected-S-phenylcysteine derivatives can be produced in an industrially advantageous manner without any substantial reduction in the optical purity of the starting material, namely optically active L- or D-serine.
- the present invention relates to a method of producing a 8-halogeno- ⁇ -aminocarboxylic acid or a salt thereof
- the present invention also relates to a method of producing an optically active N-protected- ⁇ -chloroalanine of the general formula (2) or a salt thereof according to the above method of production:
- R 1 represents an amino-protecting group and R 0 represents a hydrogen atom or, taken together with R 1 , an amino-protecting group,
- the present invention further provides a method of producing an optically active N-protected-S-phenylcysteine of the general formula (3) or a salt thereof:
- R 1 represents an amino-protecting group and R 0 represents a hydrogen atom or, taken together with R 1 , an amino-protecting group,
- the ⁇ -hydroxy- ⁇ -aminocarboxylic acid to be used in the practice of the invention is not particularly restricted but, basically, is one whose amino group retains its basicity without being masked by the presence of a substituent thereon, for example an acyl type amino-protecting group.
- the basic skeleton of the above ⁇ -hydroxy- ⁇ -aminocarboxylic acid is a amino- ⁇ -hydroxypropionic acid (also called serine), and one, two or three of the three hydrogen atoms on the carbon chain other than those of the amino, hydroxyl and carboxyl groups of the basic skeleton may be substituted with another group or other groups unless the halogenation reaction is adversely affected.
- one or two of the hydrogen atoms of the above amino group may be substituted with a substituent or substituents (e.g. alkyl, aralkyl, aryl, etc.) unless the halogenation reaction is adversely affected and unless the basicity of the amino group is jeopardized.
- a substituent or substituents e.g. alkyl, aralkyl, aryl, etc.
- ⁇ -hydroxy- ⁇ -aminocarboxylic acid there may be mentioned, among others, serine, threonine, allothreonine, ⁇ -phenylserine and the like.
- the salt of the ⁇ -hydroxy- ⁇ -aminocarboxylic acid with an acid is not particularly restricted, either, but includes, among others, such salts as serine hydrochloride, threonine hydrochloride, allothreonine hydrochloride and ⁇ -phenylserine hydrochloride.
- the above salt may be prepared and isolated in advance, or may be prepared in the reaction vessel or formed during reaction.
- the products are ⁇ -halogeno- ⁇ -aminopropionic acids (i.e. ⁇ -haloalanines), ⁇ -halogeno- ⁇ -aminobutyric acids, ⁇ -halogeno- ⁇ -phenyl- ⁇ -aminopropionicacids (i.e. ⁇ -halophenylalanines), etc. It is a matter of course that the above ⁇ -hydroxy- ⁇ -aminocarboxylic acids may be used in an optically active form.
- the halogenating agent to be used in the practice of the invention includes, among others, thionyl halides and phosphorus halides, specifically thionyl chloride, thionyl bromide, phosphorus pentachloride, phosphorus trichloride, phosphorus oxychloride, phosphorus tribromide, etc. From the viewpoint of reaction yield and ease of handling, however, thionyl halides are preferred, in particular thionyl chloride is most preferred.
- the above halogenating agent is used in an amount of, for example 1 to 10 moles, preferably 1 to 4 moles, more preferably 1 to 2 moles, per mole of the substrate ⁇ -hydroxy- ⁇ -aminocarboxylic acid or a salt thereof with an acid.
- the above amount is the number of moles of the basic skeletal unit of the ⁇ -hydroxy- ⁇ -aminocarboxylic acid and, in cases where a plurality of such basic skeletal units as mentioned above are contained in each molecule or where the another or other substituents consume the halogenating agent or a group consuming said agent is contained, for instance, it is considered necessary to increase the amount of the halogenation agent by the corresponding equivalent amount.
- the treatment with the halogenating agent in the production method of the present invention is preferably carried out in a solvent.
- the solvent in that case are, for example, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, tert-butyl methyl ether, dibutyl ether, diethyl ether and like ether solvents; acetonitrile, methylene chloride, ethyl acetate and other aprotic solvents. These maybe used singly or two or more of them may be used combinedly.
- ether solvents are preferred and, in particular, ether solvents miscible with water, such as 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether, are more preferred. It is of course possible to use another solvent or other solvents within limits within which no adverse effect is produced.
- the treatment with the above halogenating agent can be carried out in the presence of an amine or a salt thereof.
- the amine or the salt thereof is not particularly restricted but includes, for example, triethylamine, trimethylamine, diisopropylethylamine, tetramethylethylenediamine, pyridine, dimethylaminopyridine, imidazole, triethylamine hydrochloride, trimethylamine hydrochloride, diisopropylethylamine hydrochloride and the like.
- tertiary amines such as trimethylamine and triethylamine or salts thereof are preferred. More preferred is triethylamine or its hydrochloride.
- the above amine or its salt is added preferably in an amount of 0.1 to 30 mole percent, more preferably 1 to 10 mole percent, based on the substrate ⁇ -hydroxy- ⁇ -aminocarboxylic acid or a salt thereof.
- the treatment with the above halogenating agent is carried out in the presence of a hydrogen halide, preferably hydrogen chloride (gas).
- a hydrogen halide preferably hydrogen chloride (gas).
- the hydrogen halide is used in an amount of, for example, not less than about 1 molar equivalent, preferably an amount exceeding 2.0 molar equivalents, more preferably an amount of not less than about 3 molar equivalents, based on the ⁇ -hydroxy- ⁇ -aminocarboxylic acid.
- the hydrogen halide in an amount of about 3 to 10 molar equivalents, it is possible to carry out the above treatment very smoothly.
- the amount mentioned above corresponds to the number of molar equivalents per basic skeletal unit of the ⁇ -hydroxy- ⁇ -aminocarboxylic acid (the hydrohalogenic acid salt of a ⁇ -hydroxy- ⁇ -aminocarboxylic acid corresponds to the presence of 1.0 molar equivalent of the corresponding hydrogen halide relative to the ⁇ -hydroxy- ⁇ -aminocarboxylic acid).
- the concentration of the hydrogen halide in the reaction mixture is, for example, not less than about 1 mole, preferably not less than about 2 moles, more preferably not less than about 3 moles, per liter of solvent.
- the above treatment can be carried out smoothly at a hydrogen halide concentration not higher than the saturated concentration in the reaction system.
- the above treatment may be carried out in the presence of an amine or a salt thereof.
- ⁇ -chloro- ⁇ -aminocarboxylic acid e.g. L-serine
- 1,4-dioxane 1,4-dioxane
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid obtained by the above halogenation may be isolated prior to the use in the next step or may be used without isolation.
- the above ⁇ -halogeno- ⁇ -aminocarboxylic acid may be isolated, for example, by such a technique as column chromatography commonly used in isolating amino acids. Said acid can be isolated in a simple and efficient manner by the method mentioned below, however.
- reaction mixture is subjected, either as such or after concentration, to conventional treatment for solid-liquid separation, such as filtration or centrifugation, whereby the desired product can be recovered in a very simple manner and in high yields.
- a hydrohalogenic acid salt for example hydrochloride
- the step of isolation it is of course possible to reduce the content of or remove those relatively low boiling components remaining in the reaction mixture after the halogenation reaction, such as sulfur dioxide, the excess hydrogen halide (e.g. hydrogen chloride) and the unreacted halogenating agent (e.g. thionyl halide), in advance, according to need.
- the halogenation reaction such as sulfur dioxide, the excess hydrogen halide (e.g. hydrogen chloride) and the unreacted halogenating agent (e.g. thionyl halide)
- the acid coexisting in the reaction mixture after the halogenation reaction is converted to a salt, preferably a salt soluble in an organic solvent and water (e.g. lithium halide such as lithium chloride) using a base, preferably a basic lithium compound such as lithium hydroxide or lithium carbonate, for instance, and the above ⁇ -halogeno- ⁇ -aminocarboxylic acid is caused to crystallize out from an organic solvent, water or a medium composed of an organic solvent and water while causing dissolution of the above resulting salt in such medium.
- a salt preferably a salt soluble in an organic solvent and water (e.g. lithium halide such as lithium chloride) using a base, preferably a basic lithium compound such as lithium hydroxide or lithium carbonate, for instance
- a base preferably a basic lithium compound such as lithium hydroxide or lithium carbonate
- the subsequent separation using a conventional solid-liquid separation procedure gives the desired product in a simple and convenient manner. Since, generally, the conversion of acids to salts is preferably carried out in the presence of water, it is desirable to attempt to reduce the solubility of the ⁇ -halogeno- ⁇ -aminocarboxylic acid, which is a water-soluble compound, or, in other words, increase the precipitate amount, by using a water-miscible organic solvent as said organic solvent.
- the above water-miscible organic solvent specifically includes, but is not limited to, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, acetonitrile, methanol, ethanol, n-propanol, isopropanol, tert-butanol and acetone, among others.
- acetone in particular, is preferred from the viewpoint of increased precipitation of water-soluble ⁇ -halogeno- ⁇ -aminocarboxylic acids, production of crystals having good characteristics, ease of handling and inexpensiveness, among others.
- the above ⁇ -halogeno- ⁇ -aminocarboxylic acid has a high solubility in water, it is desirable, for attaining increased precipitation, to reduce the amount of water, use the above water-miscible organic solvent in a volume ratio of not less than 1 relative to water and maintain the final cooling temperature at a low level, preferably not higher than 10° C., more preferably not higher than 0° C.
- the solubility of the above ⁇ -halogeno- ⁇ -aminocarboxylic acid tends to increase in the presence of lithium chloride or the like, hence it is effective to use acetone combinedly so that the precipitation may be maximized.
- the reaction mixture is preferably adjusted to weak acidity to neutrality, specifically to the vicinity of the isoelectric point of the ⁇ -halogeno- ⁇ -aminocarboxylic acid.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid is an ⁇ -amino- ⁇ -halopropionic acid or ⁇ -amino- ⁇ -halobutyric acid
- the pH is preferably adjusted to about 4 to 7.
- ⁇ -halogeno- ⁇ -aminocarboxylic acid is collected using a medium mainly comprising a water miscible organic solvent used as the halogenation reaction solvent, preferably a water-miscible ether solvent.
- a medium mainly comprising a water miscible organic solvent used as the halogenation reaction solvent preferably a water-miscible ether solvent.
- the excess hydrogen halide e.g. hydrogen chloride
- unreacted halogenating agent e.g.
- the reaction solvent is replaced with a small amount (preferably minimum amount) of water at a low temperature and, if necessary after treatment with an adsorbent such as activated carbon and/or separation of the insoluble matter by filtration for the purpose of removing impurities and/or decoloration, the pH is adjusted using a basic lithium compound such as lithium hydroxide or lithium carbonate, preferably lithium hydroxide and a small amount (preferably minimum amount) of water, the precipitation of the ⁇ -halogeno- ⁇ -aminocarboxylic acid is fully caused by combinedly using the above water-miscible organic solvent, preferably acetone; said acid can then be recovered.
- a basic lithium compound such as lithium hydroxide or lithium carbonate, preferably lithium hydroxide and a small amount (preferably minimum amount) of water
- thionyl halide are reduced or removed beforehand, and the reaction solvent is replaced with water at a low temperature, for instance, and, if necessary the pH is adjusted with a base such as sodium hydroxide or lithium hydroxide and, further, if necessary treatment with an adsorbent such as activated carbon and/or separation of the insoluble matter by filtration is conducted for the purpose of removing impurities and/or decoloration, whereafter the above ⁇ -halogeno- ⁇ -aminocarboxylic acid can be used in the form of an aqueous solution.
- a base such as sodium hydroxide or lithium hydroxide
- an adsorbent such as activated carbon and/or separation of the insoluble matter by filtration
- a preferred method of purifying and isolating the above ⁇ -halogeno- ⁇ -aminocarboxylic acid is now described. This is a method of purifying and isolating the ⁇ -halogeno- ⁇ -aminocarboxylic acid in its free form.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid can be used and, in the method (2) mentioned below, the ⁇ -halogeno- ⁇ -aminocarboxylic acid or a salt thereof can be used, and the salt of the ⁇ -halogeno- ⁇ -aminocarboxylic acid is preferably a hydrohalogenic acid salt such as hydrochloride. It is of course possible to use an optically active form of the above ⁇ -halogeno- ⁇ -aminocarboxylic acid.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid is caused to crystallize out.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid is caused to crystallize out from an aqueous solution thereof in the presence of a water-miscible organic solvent.
- treatment with an adsorbent such as activated carbon and/or filtration of the insoluble matter may be combined for the purpose of removing impurities and/or decoloration.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid or a salt thereof (preferably a hydrohalogenic acid salt such as hydrochloride) is first caused to coexist with, preferably dissolved in, an aqueous solution of a hydrohalogenic acid, such as hydrochloric acid, or water.
- a hydrohalogenic acid such as hydrochloric acid
- the pH is adjusted generally to 3 or below, preferably to 2 or below, and the amount of water required for fluidization, preferably dissolution is preferably minimized.
- treatment with an adsorbent such as activated carbon and/or insoluble matter separation by filtration is carried out for the purpose of removing impurities and/or decoloration.
- the hydrohalogenic acid is converted to a salt (a lithium halide such as lithium chloride) soluble in the organic solvent and water, and the ⁇ -halogeno- ⁇ -aminocarboxylic acid is caused to precipitate using the water-miscible organic solvent as a poor solvent while the above salt is caused to remain dissolved without precipitation. Thereafter, the acid is recovered by a conventional solid-liquid separation procedure, such as filtration or centrifugation.
- a basic lithium compound such as lithium hydroxide or lithium carbonate
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid or a salt thereof (preferably a hydrohalogenic acid salt thereof, such as hydrochloride) is dissolved in a medium comprising water or an aqueous solution of a hydrohalogenic acid, such as hydrochloric acid, and an organic solvent miscible with water.
- a hydrohalogenic acid such as hydrochloric acid
- the pH after dissolution is adjusted generally to 3 or below, preferably to 2 or below.
- treatment with an adsorbent such as activated carbon and/or insoluble matter separation by filtration is carried out for the purpose of removing impurities and/or decoloration.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid is caused to precipitate by adjusting the pH (converting the hydrohalogenic acid, if present, to the form of a salt) using a basic lithium compound such as lithium hydroxide or lithium carbonate while the above salt formed (lithium halide such as lithium chloride) is caused to remain dissolved without precipitation. Thereafter, the desired acid is recovered by a conventional solid-liquid separation procedure such as filtration or centrifugation.
- the water-miscible organic solvent to be used in the above methods (1) and (2) specifically includes, but is not limited to, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, acetonitrile, methanol, ethanol, n-propanol, isopropanol, tert-butanol and acetone, among others.
- acetone in particular, is preferred from the viewpoint of increased precipitation of the ⁇ -halogeno- ⁇ -aminocarboxylic acid, which is a water-soluble compound, obtaining crystals with good characteristics, ease of handling and inexpensiveness, among others.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid has a high solubility in water, it is desirable, for attaining increased precipitation, to reduce the amount of water, use the above water-miscible organic solvent in a volume ratio of not less than 1 relative to water and maintain the final cooling temperature at a low level, preferably not higher than 10° C., more preferably not higher than 0° C.
- the solubility of the above ⁇ -halogeno- ⁇ -aminocarboxylic acid tends to increase in the presence of lithium chloride or the like, hence it is effective to use acetone combinedly so that the precipitation may be maximized.
- the pH is adjusted to weak acidity to neutrality, specifically to the vicinity of the isoelectric point of the ⁇ -halogeno- ⁇ -aminocarboxylic acid.
- the ⁇ -halogeno- ⁇ -aminocarboxylic acid is an ⁇ -amino- ⁇ -halopropionic acid or ⁇ -amino- ⁇ -halobutyric acid
- the pH is preferably adjusted to about 4 to 7.
- hydrohalogenic acid is hydrogen chloride (hydrochloric acid) and, as the above basic lithium compound, lithium hydroxide or lithium carbonate, in particular lithium hydroxide, is preferred.
- the above ⁇ -halogeno- ⁇ -aminocarboxylic acid is not always stable, care is preferably taken in contacting the same with a base so as to effect contacting thereof with water or an aqueous medium approximately under acidic or neutral conditions, for instance.
- the acid is handled preferably under acidic to neutral conditions, for example at a pH of not higher than 7, and at low temperatures.
- ⁇ -halogeno- ⁇ -aminocarboxylic acids can efficiently be synthesized from ⁇ -hydroxy- ⁇ -aminocarboxylic acids in one reaction step, and high quality ⁇ -halogeno- ⁇ -aminocarboxylic acids or salts thereof can be isolated in high yields. Further, when the above reaction is carried out using the ⁇ -hydroxy- ⁇ -aminocarboxylic acid in an optically active form, the corresponding optically active ⁇ -halogeno- ⁇ -aminocarboxylic acid having the same configuration as that of the substrate can be obtained while the optical purity of the starting material is substantially maintained without accompanying substantial racemization.
- the method of the present invention for producing the optically active N-protected- ⁇ -chloroalanines of the general formula (2) given above or salts thereof comprises producing an optically active ⁇ -chloroalanine or a salt thereof by treating an optically active serine or a salt of an optically active serine with an acid with a chlorinating agent and then treating that product with an amino-protecting agent.
- the reaction for obtaining the optically active ⁇ -chloroalanine or a salt thereof can be carried out in the same manner as mentioned above.
- R 1 represents an amino-protecting group.
- amino-protecting group there may be mentioned those described in Theodora W. Green: Protective Groups in Organic Synthesis, 2nd edition, John Wiley & Sons, published 1990, such as benzyloxycarbonyl, ethoxycarbonyl, methoxycarbonyl, tert-butoxycarbonyl, acetyl, tosyl, benzoyl, phthaloyl and the like.
- the range of choice also includes such protective groups as (3S)-tetrahydrofuranyloxycarbonyl, 3-hydroxy-2-methylbenzoyl whose hydroxyl group may optionally be protected, and the like.
- benzyloxycarbonyl is preferred among others.
- R 0 generally represents a hydrogen atom but may also represent such an amino-protecting group as phthaloyl together with R 1 .
- the above amino-protecting agent corresponds to the above amino-protecting group and includes conventional amino-protecting agents without any particular restriction.
- the range of choice further includes (3S)-tetrahydrofuranyl chloroformate, 3-hydroxy-2-methylbenzoyl chloride whose hydroxyl group may optionally be protected, and the like.
- benzyl chloroformate is preferred.
- the treatment with the above amino-protecting agent may be carried out using an optically active ⁇ -chloroalanine isolated, it is preferred that the amino group protection be effected by treating, with the above amino-protecting agent, an aqueous medium containing an optically active ⁇ -chloroalanine as obtained in the manner mentioned above.
- abase is used and the base to be used is, for example, sodium hydroxide or potassium carbonate.
- the above treatment with an amino-protecting agent may be carried out in any medium comprising water and/or an organic solvent.
- the solvent to be used in that case is not particularly restricted but may be, for example, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, tert-butyl methyl ether, dibutyl ether, diethyl ether or a like other ether solvent; acetonitrile, methylene chloride, ethyl acetate, acetone, toluene or a like other aprotic solvent.
- benzyl chloroformate in an amount of 1 to 2 molar equivalents, preferably about 1.0 molar equivalent, relative to the substrate, at a temperature at which the solvent will not freeze, up to 30° C., more preferably at a temperature not higher than 5° C., while maintaining the pH at 8 to 13, preferably 9 to 12, more preferably 9 to 10, by adding a base, such as sodium hydroxide or potassium carbonate, and the resulting mixture is stirred at a temperature at which the solvent will not freeze, up to 30° C., more preferably at a temperature not higher than 5° C., preferably for 1 to 30 hours.
- a base such as sodium hydroxide or potassium carbonate
- reaction mixture may be washed with an organic solvent immiscible with water or with an aqueous medium, for example toluene, for the purpose of removing the unreacted portion of benzyl chloroformate and the byproduct benzyl alcohol.
- an organic solvent immiscible with water or with an aqueous medium, for example toluene for the purpose of removing the unreacted portion of benzyl chloroformate and the byproduct benzyl alcohol.
- optically active N-protected- ⁇ -chloroalanine produced in the above manner can be isolated, for example by a conventional extraction procedure followed by column chromatography.
- the method of the present invention for producing optically active N-protected-S-phenylcysteines of the above general formula (3) or salts thereof comprises treating an optically active serine or a salt of an optically active serine with an acid with a chlorinating agent, then treating the thus-obtained optically active ⁇ -chloroalanine with an amino-protecting agent, and further reacting the resulting optically active N-protected- ⁇ -chloroalanine or a salt thereof with thiophenol under a basic condition.
- R 0 and R 1 are the same as the R 0 and R 1 specifically mentioned above.
- the reactions for the production of the optically active N-protected- ⁇ -chloroalanine or a salt thereof can be carried out in the same manner as mentioned above.
- the thiophenylation of the above optically active N-protected- ⁇ -chloroalanine can be carried out using an optically active N-protected- ⁇ -chloroalanine isolated in the manner mentioned above. It is also possible to adjust the pH of the reaction mixture after amino-protecting agent treatment, add thiophenol directly thereto and effecting the reaction in that reaction mixture.
- the above step of reacting the optically active N-protected- ⁇ -chloroalanine with thiophenol can be conducted in water and/or an organic solvent under a basic condition.
- the organic solvent is not particularly restricted but includes, for example, ether solvents such as 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, tert-butyl methyl ether, dibutyl ether and diethyl ether; and other aprotic solvents such as acetonitrile, methylene chloride, ethyl acetate, acetone and toluene, among others.
- ether solvents such as 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene
- the above thiophenol is used generally in an amount of 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents, more preferably about 1.5 molar equivalents, relative to the optically active N-protected- ⁇ -chloroalanine.
- an inorganic base or the like is preferably added as a base.
- the inorganic base is not particularly restricted but may be, for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate or sodium hydroxide.
- An alkaline pH buffering agent may also be used.
- the amount of the above base to be used may vary depending on the species thereof. In the case of sodium hydroxide or sodium carbonate, for instance, it is used in an amount of 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents, relative to the optically active N-protected- ⁇ -chloroalanine.
- the pH of the reaction mixture is preferably about 9 to 11. Under strongly alkaline conditions, the yield tends to decrease due to side reactions.
- the product can be isolated, for example by acidifying the reaction mixture with hydrochloric acid, sulfuric acid or the like, extracting the mixture with an organic solvent such as ethyl acetate, concentrating the extract and subjecting the concentrate to column chromatography, for instance.
- the above thiophenylation can be effected, for example by adding a base such as sodium hydroxide and sodium carbonate to a solution composed of an optically active N-protected- ⁇ -chloroalanine and an amount of water to give a starting material concentration of 5 to 30% (w/v), preferably at 0° to 30° C., to thereby preferably adjust the pH to 9 to 11, and further adding thiophenol in an amount of 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents, relative to the optically active N-protected- ⁇ -chloroalanine, followed by stirring preferably at 30° to 90° C., more preferably40° to 70° C.
- a base such as sodium hydroxide and sodium carbonate
- a solution composed of an optically active N-protected- ⁇ -chloroalanine and an amount of water to give a starting material concentration of 5 to 30% (w/v), preferably at 0° to 30° C., to thereby preferably
- the thiophenylation can also be effected by adding a base to an aqueous solution containing thiophenol and an optically active N-protected- ⁇ -chloroalanine or by adding thiophenol and a base simultaneously to an aqueous solution of an optically active N-protected- ⁇ -chloroalanine.
- optically active N-protected-S-phenylcysteine obtained from the corresponding optically active serine or a salt thereof by the production method of the present invention has an optical purity as high as 98% e.e. at the step prior to purification by crystallization, for instance.
- an optically active N-protected-S-phenylcysteine having the same configuration as that of the substrate can be produced from the optically active serine or a salt thereof while substantially maintaining the optical purity thereof without accompanying substantial racemization.
- optically active N-protected-S-phenylcysteine in particular N-carbobenzyloxy-S-phenyl-L-cysteine, is a compound very useful as an intermediate of HIV protease inhibitors (WO 9532185), for instance.
- the ⁇ -chloro-L-alanine obtained had an optical purity of not less than 99.9% e. e. as determined by HPLC analysis under the conditions shown below.
- the resulting solution was further concentrated until the weight became about 200 g, 3.0 g of 50% activated carbon was then added, and the mixture was stirred at room temperature for about 10 minutes.
- the activated carbon was filtered off under reduced pressure and washed with 10 ml of water.
- the filtrate and washings obtained were combined and further concentrated to a weight of about 120 g.
- This concentrate was cooled to 0° to 10° C., and the pH was adjusted to 5.5 by gradually adding a saturated aqueous solution of lithium hydroxide while maintaining that temperature, to give a slurry. To this slurry was gradually added 600 ml of acetone for effecting sufficient precipitation of crystals, and the slurry was then cooled to ⁇ 10° to 0° C.
- the filtrate and washings obtained were combined and cooled to 0° to 10° C., and the pH was adjusted to 5.5 by gradually adding a saturated aqueous solution of lithium hydroxide while maintaining that temperature, to give a slurry.
- Acetone (58 ml) was gradually added to this slurry to thereby cause sufficient precipitation of crystals, the resulting mixture was cooled to ⁇ 10° to 0° C. and maintained at that temperature for about 1 hour.
- N-Carbobenzyloxy- ⁇ -chloro-L-alanine (0.108 g, 0.42 mmol) was dissolved in 0.5 ml of water and, then, 0.097 g (0.92 mmol) of sodium carbonate was added. Thereafter, 0.054 g (0.50 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., the reaction mixture was cooled with ice and acidified with 1 N hydrochloric acid, and then extracted with ethyl acetate.
- the solvent was distilled off and the residue was purified by column chromatography to give 0.112 g (0.34 mmol, 81%) of N-carbobenzyloxy-S-phenyl-L-cysteine.
- the compound obtained had an optical purity of not less than 98% e.e.
- the optical purity was determined by HPLC. The analytical conditions are shown below.
- N-Carbobenzyloxy- ⁇ -chloro-L-alanine (0.091 g, 0.35 mmol) was dissolved in 0.45ml of water and, then, 0.065 g (0.77 mmol) of sodium hydrogen carbonate was added. Thereafter, 0.046 g (0.42 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., the reaction mixture was cooled with ice and acidified with 1 N hydrochloric acid, and then extracted with ethyl acetate.
- N-Carbobenzyloxy- ⁇ -chloro-L-alanine (0.137 g, 0.53 mmol) was dissolved in 0.68 ml of water and, then, 0.58 ml of 2 N aqueous sodium hydroxide was added. Thereafter, 0.069 g (0.63 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C, the reaction mixture was cooled with ice and acidified with 1 N hydrochloric acid, and then extracted with ethyl acetate.
- ⁇ -Chloro-L-alanine hydrochloride (15.7 g, 98.1 mmol) was added to 160 ml of water and dissolution was effected.
- the reactor inside was cooled to 0° to 5° C. and the pH was adjusted to 10 by dropwise addition of about 36 g of a 30% (by weight) aqueous solution of sodium hydroxide with vigorous stirring.
- the resulting precipitate crystals of N-carbobenzyloxy-S-phenyl-L-cysteine were filtered off under reduced pressure and sufficiently deprived of the liquid reaction medium by washing with two 100-ml portions of water, to give wet crystals of N-carbobenzyloxy-S-phenyl-L-cysteine [29.8 g (89.9 mmol) as pure N-carbobenzyloxy-S-phenyl-L-cysteine].
- the optical purity of the N-carbobenzyloxy-S-phenyl-L-cysteine obtained was 99.9% e.e.
- a 20% (by weight) aqueous solution of sodium carbonate (2.23 g, 0.0042 mol) was added to 0.97 g (0.0088 mol) of thiophenol, and the mixture was stirred at room temperature for 0.5 hour.
- a solution composed of 1.08 g (0.0088 mol) of 8-chloro-L-alanine and water was added, and the reaction was allowed to proceed for 5 hours, during which the pH of the reaction mixture was maintained at 8 to 10 while adding 5.14 g (0.0097 mol) of a 20% (by weight) aqueous solution of sodium carbonate.
- the present invention constituted as above, makes it possible to produce ⁇ -halogeno- ⁇ -aminocarboxylic acids, which are useful as starting materials for the production of medicinals, as well as optically active N-protected-S-phenylcysteines, which are useful as intermediates of medicinals, and intermediates thereof, in a simple, efficient and industrially advantageous manner and on a commercial scale.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
An industrially advantageous method of producing β-halogeno-α-aminocarboxylic acids is provided. Methods are also provided of producing optically active N-protected-S-phenylcysteines having high optical purity and of intermediates thereof, respectively, in which the above production method is utilized.
A method of producing β-halogeno-α-aminocarboxylic acids or salts thereof is disclosed which comprises halogenating the hydroxyl group of a β-hydroxy-α-aminocarboxylic acid (in which the basicity of the amino group in α-position is not masked by the presence of a substituent on said amino group) or a salt thereof with an acid with a halogenating agent. A method of producing optically active N-protected-S-phenylcysteines represented by the general formula (3) or salts thereof is further disclosed which comprises applying the above production method to optically active serine or a salt thereof and then carrying out treatment with an amino-protecting agent and reaction with thiophenol under a basic condition.
Description
- The present invention relates to a method of producing a β-halogeno-α-aminocarboxylic acid or a salt thereof, which is useful as a raw material for the production of medicinals, among others. The invention also relates to a method of producing an optically active N-protected S-phenyl-L-cysteine or a salt thereof, which is useful as an intermediate of medicinals, in particular anti-AIDS drugs, and to a method of producing an intermediate thereof.
- The following methods, among others, are known for producing β-halogeno-α-aminocarboxylic acids:
- (1) The method which comprises derivatizing a β-hydroxy-α-aminocarboxylic acid into the corresponding β-hydroxy-α-aminocarboxylic acid ester, then halogenating the hydroxyl group thereof with a phosphorus halide to give the corresponding β-halogeno-α-aminocarboxylic acid ester, and hydrolyzing the ester group using a hydrohalogenic acid to give the objective β-halogeno-α-aminocarboxylic acid. Specifically, serine is derivatized into serine methyl ester hydrochloride, the ester salt is then treated with phosphorus pentachloride to give α-amino-β-chloropropionic acid methyl ester hydrochloride, which is further hydrolyzed with hydrochloric acid. The resulting α-amino-β-chloropropionic acid hydrochloride is isolated by concentrating the reaction mixture to dryness, followed by crystallization of the residue from a mixture of 1-propanol and hydrochloric acid [e.g. CHIRALITY, 8:197-200 (1996)]; and
- (2) The method which comprises treating β-phenylserine monohydrate with thionyl chloride and then with concentrated hydrochloric acid to give α-chloro-β-phenylalanine [Gazzetta Chimica Italiana, 119 (1989) p. 215].
- However, in the above method (1), the halogenation of the hydroxyl group in : position usually involves three reaction steps, namely protection of the carboxyl group, halogenation of the hydroxyl group in β position and deprotection of the carboxyl group. In this case, many difficulties are encountered, for example the multiplicity of steps required, procedural complexity and low yields.
- In the above method (2), such difficulties arise as the use of thionyl chloride in large amounts for the same to serve also as a solvent and the resulting complicatedness of procedure. As a result of investigations made by the present inventors, it was further found that the method is hardly applicable to the chlorination of serine, threonine or the like.
- Thus, no efficient technology has been established for producing β-halogeno-α-aminocarboxylic acids on a commercial scale.
- On the other hand, such methods of producing optically active S-phenylcysteine derivatives as mentioned below are known in the art:
- <Derivatization from serine>
- 1) The method comprising reacting serine with thiophenol in the presence of tryptophan synthase (EP 754759);
- 2) The method which involves lactonization of a serine derivative with an azodicarboxylic acid ester [J. Am. Chem. Soc., 1985, vol. 107, p. 7105; Synth. Commun., 1995, vol. 25 (16), p. 2475];
- 3) The method comprising converting the hydroxyl group of an N-protected serine ester derivative to a sulfonyloxy group and substituting a thiophenyl group therefor [Tetrahedron Lett., 1987, vol. 28, p. 6069; ibid., 1993, vol. 34, p. 6607; EP 604185 A1];
- <Derivatization from starting compounds other than serine>
- 4) The method comprising reacting cysteine with a phenyldiazonium salt in the presence of a copper salt [J. Org. Chem., 1958, vol. 23, p. 1251];
- 5) The method comprising derivatizing from an aziridinecarboxylic acid derivative in the presence of boron trifluoride-ethyl ether complex [Bull. Chem. Soc. Jpn, 1983, vol. 56, p. 520];
- 6) The method comprising reacting cysteine with iodobenzene in the presence of a copper salt [Aust. J. Chem., 1985, vol. 38, p. 899]; and
- 7) The method comprising reacting dehydroalanine with a chiral nickel complex [Tetrahedron, 1988, vol. 44, p. 5507].
- Since optically active serine, in particular L-serine, is a readily available compound, a practical method would be provided if the starting material L-serine could be converted efficiently to an optically active S-phenylcysteine derivative. However, the method 1), in which a particular enzyme is utilized, and the method 2), in which a lactone derivative is used as an intermediate, have problems from the viewpoint of operability, productivity, safety in reagents handling, and economy, among others. The method 3), in which the hydroxyl group of an N-protected serine ester derivative is converted to a sulfonyloxy group and the resulting product is then subjected to substitution reaction using the sodium salt of a thiol in N,N-dimethylformamide, is also disadvantageous in that because it involves the use of a reagent relatively difficult to handle, for example sodium hydride or potassium hydride, as a base, it does not always give the desired N-protected S-phenylcysteine ester in high yield and, in particular, the optical purity is decreased, as revealed by a study made by the present inventors.
- On the other hand, the methods 4) through 7), which comprise derivatization from other starting compounds than serine, cannot be said to be industrially advantageous, either, since, for example, the waste treatment is troublesome, materials requiring caution in handling or expensive materials are used and the yield and productivity are low.
- In view of the above state of the art, the primary object of the present invention is to provide a method of producing β-halogeno-α-aminocarboxylic acids in an industrially advantageous manner and a method of producing optically active S-phenylcysteine derivatives from optically active serine, which is readily available commercially, in an industrially advantageous manner.
- As a result of their intensive investigations made in an attempt to develop an industrially advantageous method of producing β-halogeno-α-aminocarboxylic acids, the present inventors have surprisingly found an industrially advantageous production method according to which β-halogeno-α-aminocarboxylic acids can be synthesized in an efficient manner by treating a β-hydroxy-α-aminocarboxylic acid or a salt thereof with an acid with a halogenating agent.
- On the other hand, in efficiently producing optically active S-phenylcysteine derivatives from optically active serine, namely L- or D-serine, the point is how to prevent the optical purity from decreasing in thiophenylating the activated compound derived from optically active serine by converting its hydroxyl group to a leaving group. The present inventors thought that there would be the possibility of attaining the above object in an industrially advantageous manner while preventing racemization if an adequately activated carboxylic acid derivative could be synthesized from optically active serine by activating the hydroxyl group thereof in the form of a leaving group and if the thiophenylation could be realized efficiently. Based on this way of thinking, they made intensive investigations and, as a result, found that optically active β-chloroalanine can be synthesized in an efficient manner when the above method of producing β-halogeno-α-aminocarboxylic acids is utilized. There are no prior art findings teaching or suggesting that optically active β-chloroalanine can be produced by directly chlorinating optically active serine or a salt thereof. The relevant method of production is thus novel.
- In addition, it was found that the optically active β-chloroalanine obtained in the above manner can be converted to an optically active N-protected-β-chloroalanine by treatment with an amino-protecting agent and that said compound can be converted to an optically active N-protected-S-phenylcysteine by reacting with thiophenol under a basic condition. Based on these and other findings, the present invention has now been completed. Particularly when the above three-step process is used, optically active N-protected-S-phenylcysteine derivatives can be produced in an industrially advantageous manner without any substantial reduction in the optical purity of the starting material, namely optically active L- or D-serine.
- Thus, the present invention relates to a method of producing a 8-halogeno-α-aminocarboxylic acid or a salt thereof
- which comprises halogenating the hydroxyl group of a β-hydroxy-α-aminocarboxylic acid (in which the basicity of the amino group in α-position is not masked by the presence of a substituent on said amino group) or a salt thereof with an acid by treating the same with a halogenating agent.
-
- wherein R1 represents an amino-protecting group and R0 represents a hydrogen atom or, taken together with R1, an amino-protecting group,
-
- from an optically active serine or a salt thereof with an acid, and then treating the same with an amino-protecting agent.
-
- wherein R1 represents an amino-protecting group and R0 represents a hydrogen atom or, taken together with R1, an amino-protecting group,
- which comprises preparing an optically active N-protected-β-chloroalanine or a salt thereof according to the production method mentioned above and then reacting the same with thiophenol under a basic condition.
- In the following, the invention is described in detail.
- The β-hydroxy-α-aminocarboxylic acid to be used in the practice of the invention is not particularly restricted but, basically, is one whose amino group retains its basicity without being masked by the presence of a substituent thereon, for example an acyl type amino-protecting group. The basic skeleton of the above β-hydroxy-α-aminocarboxylic acid is a amino-β-hydroxypropionic acid (also called serine), and one, two or three of the three hydrogen atoms on the carbon chain other than those of the amino, hydroxyl and carboxyl groups of the basic skeleton may be substituted with another group or other groups unless the halogenation reaction is adversely affected. Further, one or two of the hydrogen atoms of the above amino group may be substituted with a substituent or substituents (e.g. alkyl, aralkyl, aryl, etc.) unless the halogenation reaction is adversely affected and unless the basicity of the amino group is jeopardized.
- As typical examples of the β-hydroxy-α-aminocarboxylic acid, there may be mentioned, among others, serine, threonine, allothreonine, β-phenylserine and the like. The salt of the β-hydroxy-α-aminocarboxylic acid with an acid is not particularly restricted, either, but includes, among others, such salts as serine hydrochloride, threonine hydrochloride, allothreonine hydrochloride and β-phenylserine hydrochloride. The above salt may be prepared and isolated in advance, or may be prepared in the reaction vessel or formed during reaction. When these β-hydroxy-α-aminocarboxylic acids are used, the products are β-halogeno-β-aminopropionic acids (i.e. β-haloalanines), β-halogeno-α-aminobutyric acids, β-halogeno-β-phenyl-α-aminopropionicacids (i.e. β-halophenylalanines), etc. It is a matter of course that the above β-hydroxy-α-aminocarboxylic acids may be used in an optically active form.
- The halogenating agent to be used in the practice of the invention includes, among others, thionyl halides and phosphorus halides, specifically thionyl chloride, thionyl bromide, phosphorus pentachloride, phosphorus trichloride, phosphorus oxychloride, phosphorus tribromide, etc. From the viewpoint of reaction yield and ease of handling, however, thionyl halides are preferred, in particular thionyl chloride is most preferred. The above halogenating agent is used in an amount of, for example 1 to 10 moles, preferably 1 to 4 moles, more preferably 1 to 2 moles, per mole of the substrate β-hydroxy-α-aminocarboxylic acid or a salt thereof with an acid. Basically, the above amount is the number of moles of the basic skeletal unit of the β-hydroxy-α-aminocarboxylic acid and, in cases where a plurality of such basic skeletal units as mentioned above are contained in each molecule or where the another or other substituents consume the halogenating agent or a group consuming said agent is contained, for instance, it is considered necessary to increase the amount of the halogenation agent by the corresponding equivalent amount.
- The treatment with the halogenating agent in the production method of the present invention is preferably carried out in a solvent. Preferred as the solvent in that case are, for example, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, tert-butyl methyl ether, dibutyl ether, diethyl ether and like ether solvents; acetonitrile, methylene chloride, ethyl acetate and other aprotic solvents. These maybe used singly or two or more of them may be used combinedly. Among them, ether solvents are preferred and, in particular, ether solvents miscible with water, such as 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether, are more preferred. It is of course possible to use another solvent or other solvents within limits within which no adverse effect is produced.
- The treatment with the above halogenating agent can be carried out in the presence of an amine or a salt thereof. The amine or the salt thereof is not particularly restricted but includes, for example, triethylamine, trimethylamine, diisopropylethylamine, tetramethylethylenediamine, pyridine, dimethylaminopyridine, imidazole, triethylamine hydrochloride, trimethylamine hydrochloride, diisopropylethylamine hydrochloride and the like. Among them, tertiary amines such as trimethylamine and triethylamine or salts thereof are preferred. More preferred is triethylamine or its hydrochloride.
- The above amine or its salt is added preferably in an amount of 0.1 to 30 mole percent, more preferably 1 to 10 mole percent, based on the substrate β-hydroxy-α-aminocarboxylic acid or a salt thereof.
- In a mode of practice of the present invention which is more preferred in attempting to attain a higher reaction yield, the treatment with the above halogenating agent, preferably thionyl chloride, is carried out in the presence of a hydrogen halide, preferably hydrogen chloride (gas). The hydrogen halide is used in an amount of, for example, not less than about 1 molar equivalent, preferably an amount exceeding 2.0 molar equivalents, more preferably an amount of not less than about 3 molar equivalents, based on the β-hydroxy-α-aminocarboxylic acid. Generally, by using the hydrogen halide in an amount of about 3 to 10 molar equivalents, it is possible to carry out the above treatment very smoothly. Like the case mentioned above, it is fundamentally understood that the amount mentioned above corresponds to the number of molar equivalents per basic skeletal unit of the β-hydroxy-α-aminocarboxylic acid (the hydrohalogenic acid salt of a β-hydroxy-α-aminocarboxylic acid corresponds to the presence of 1.0 molar equivalent of the corresponding hydrogen halide relative to the β-hydroxy-α-aminocarboxylic acid). The concentration of the hydrogen halide in the reaction mixture is, for example, not less than about 1 mole, preferably not less than about 2 moles, more preferably not less than about 3 moles, per liter of solvent. The above treatment can be carried out smoothly at a hydrogen halide concentration not higher than the saturated concentration in the reaction system. The above treatment may be carried out in the presence of an amine or a salt thereof.
- Referring specifically to a simple reaction procedure taken as an example, a suspension composed of a β-hydroxy-α-aminocarboxylic acid (e.g. L-serine) and 1,4-dioxane, for instance, is almost or completely saturated with hydrogen chloride gas, thionyl chloride is then added and, after completion of the addition, the mixture is moderaly or vigorously stirred preferably at room temperature to 100° C., more preferably at 40° to 80° C., preferably for 0.5 to 30 hours, more preferably for 1 to 20 hours, to give the corresponding β-chloro-α-aminocarboxylic acid [e.g. L-α-amino-β-chloropropionic acid (also called β-chloro-L-alanine)].
- The β-halogeno-α-aminocarboxylic acid obtained by the above halogenation may be isolated prior to the use in the next step or may be used without isolation.
- The above β-halogeno-α-aminocarboxylic acid may be isolated, for example, by such a technique as column chromatography commonly used in isolating amino acids. Said acid can be isolated in a simple and efficient manner by the method mentioned below, however.
- For isolating the above β-halogeno-α-aminocarboxylic acid in the form of a hydrohalogenic acid salt, for example hydrochloride, after completion of the reaction, during which the precipitation of the desired product proceeds (namely reaction/crystallization proceeds) with the progress of the treatment with the above halogenating agent, the reaction mixture is subjected, either as such or after concentration, to conventional treatment for solid-liquid separation, such as filtration or centrifugation, whereby the desired product can be recovered in a very simple manner and in high yields. In the step of isolation, it is of course possible to reduce the content of or remove those relatively low boiling components remaining in the reaction mixture after the halogenation reaction, such as sulfur dioxide, the excess hydrogen halide (e.g. hydrogen chloride) and the unreacted halogenating agent (e.g. thionyl halide), in advance, according to need. By concentrating the reaction mixture, it is also possible to recover the reaction solvent.
- For isolating the above β-halogeno-α-aminocarboxylic acid in the free form, the acid coexisting in the reaction mixture after the halogenation reaction is converted to a salt, preferably a salt soluble in an organic solvent and water (e.g. lithium halide such as lithium chloride) using a base, preferably a basic lithium compound such as lithium hydroxide or lithium carbonate, for instance, and the above β-halogeno-α-aminocarboxylic acid is caused to crystallize out from an organic solvent, water or a medium composed of an organic solvent and water while causing dissolution of the above resulting salt in such medium. The subsequent separation using a conventional solid-liquid separation procedure, such as filtration or centrifugation, gives the desired product in a simple and convenient manner. Since, generally, the conversion of acids to salts is preferably carried out in the presence of water, it is desirable to attempt to reduce the solubility of the β-halogeno-α-aminocarboxylic acid, which is a water-soluble compound, or, in other words, increase the precipitate amount, by using a water-miscible organic solvent as said organic solvent.
- The above water-miscible organic solvent specifically includes, but is not limited to, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, acetonitrile, methanol, ethanol, n-propanol, isopropanol, tert-butanol and acetone, among others. Among these, acetone, in particular, is preferred from the viewpoint of increased precipitation of water-soluble β-halogeno-α-aminocarboxylic acids, production of crystals having good characteristics, ease of handling and inexpensiveness, among others.
- Since the above β-halogeno-α-aminocarboxylic acid has a high solubility in water, it is desirable, for attaining increased precipitation, to reduce the amount of water, use the above water-miscible organic solvent in a volume ratio of not less than 1 relative to water and maintain the final cooling temperature at a low level, preferably not higher than 10° C., more preferably not higher than 0° C. The solubility of the above β-halogeno-α-aminocarboxylic acid tends to increase in the presence of lithium chloride or the like, hence it is effective to use acetone combinedly so that the precipitation may be maximized.
- In the step of adding a basic lithium compound for converting the coexisting acid to the salt form for causing precipitation of the above β-halogeno-α-aminocarboxylic acid, the reaction mixture is preferably adjusted to weak acidity to neutrality, specifically to the vicinity of the isoelectric point of the β-halogeno-α-aminocarboxylic acid. When the β-halogeno-α-aminocarboxylic acid is an α-amino-α-halopropionic acid or α-amino-β-halobutyric acid, the pH is preferably adjusted to about 4 to 7.
- Specifically, in a simple procedure, taken as an example, for isolating the above β-halogeno-α-aminocarboxylic acid in its free form, those relatively low boiling components remaining in the reaction mixture after the halogenation reaction, such as sulfur dioxide, excess hydrogen halide (e.g. hydrogen chloride) and unreacted halogenating agent (e.g. thionyl halide), are preferably reduced in amount or removed in advance, the pH is then adjusted at a low temperature using a basic lithium compound such as lithium hydroxide or lithium carbonate, preferably lithium hydroxide, a small amount (preferably minimum amount) of water, and the resulting precipitate, i.e. β-halogeno-α-aminocarboxylic acid, is collected using a medium mainly comprising a water miscible organic solvent used as the halogenation reaction solvent, preferably a water-miscible ether solvent. Alternatively, after reducing or removing in advance those relatively low boiling components remaining in the reaction mixture after the halogenation reaction, such as sulfur dioxide, the excess hydrogen halide (e.g. hydrogen chloride) and the unreacted halogenating agent (e.g. thionyl halide), the reaction solvent is replaced with a small amount (preferably minimum amount) of water at a low temperature and, if necessary after treatment with an adsorbent such as activated carbon and/or separation of the insoluble matter by filtration for the purpose of removing impurities and/or decoloration, the pH is adjusted using a basic lithium compound such as lithium hydroxide or lithium carbonate, preferably lithium hydroxide and a small amount (preferably minimum amount) of water, the precipitation of the β-halogeno-α-aminocarboxylic acid is fully caused by combinedly using the above water-miscible organic solvent, preferably acetone; said acid can then be recovered.
- In cases where the above β-halogeno-α-aminocarboxylic acid is submitted to the next step without isolation, those relatively low boiling components remaining in the reaction mixture after the halogenation reaction, such as sulfur dioxide, the excess hydrogen halide (e.g. hydrogen chloride) and the unreacted halogenating agent (e.g. thionyl halide), are reduced or removed beforehand, and the reaction solvent is replaced with water at a low temperature, for instance, and, if necessary the pH is adjusted with a base such as sodium hydroxide or lithium hydroxide and, further, if necessary treatment with an adsorbent such as activated carbon and/or separation of the insoluble matter by filtration is conducted for the purpose of removing impurities and/or decoloration, whereafter the above β-halogeno-α-aminocarboxylic acid can be used in the form of an aqueous solution.
- A preferred method of purifying and isolating the above β-halogeno-α-aminocarboxylic acid is now described. This is a method of purifying and isolating the β-halogeno-α-aminocarboxylic acid in its free form. In the method (1) mentioned below, the β-halogeno-α-aminocarboxylic acid can be used and, in the method (2) mentioned below, the β-halogeno-α-aminocarboxylic acid or a salt thereof can be used, and the salt of the β-halogeno-α-aminocarboxylic acid is preferably a hydrohalogenic acid salt such as hydrochloride. It is of course possible to use an optically active form of the above β-halogeno-α-aminocarboxylic acid.
- (1) Using water as a good solvent and a water-miscible organic solvent as a poor solvent, the β-halogeno-α-aminocarboxylic acid is caused to crystallize out. Preferably, the β-halogeno-α-aminocarboxylic acid is caused to crystallize out from an aqueous solution thereof in the presence of a water-miscible organic solvent. If necessary, treatment with an adsorbent such as activated carbon and/or filtration of the insoluble matter may be combined for the purpose of removing impurities and/or decoloration.
- (2) Treatment of the aqueous solution containing the β-halogeno-α-aminocarboxylic acid and hydrogen halide with a basic lithium compound, such as lithium hydroxide or lithium carbonate, for converting the (hydrohalogenic) acid to the salt is combined with precipitation of the β-halogeno-α-aminocarboxylic acid in its free form using water as a good solvent and a water-miscible organic solvent as a poor solvent. Basically, the above-mentioned technique for isolating the β-halogeno-α-aminocarboxylic acid in its free form from the halogenation reaction mixture can be utilized. Preferably, the β-halogeno-α-aminocarboxylic acid or a salt thereof (preferably a hydrohalogenic acid salt such as hydrochloride) is first caused to coexist with, preferably dissolved in, an aqueous solution of a hydrohalogenic acid, such as hydrochloric acid, or water. The pH is adjusted generally to 3 or below, preferably to 2 or below, and the amount of water required for fluidization, preferably dissolution is preferably minimized. Then, if necessary, treatment with an adsorbent such as activated carbon and/or insoluble matter separation by filtration is carried out for the purpose of removing impurities and/or decoloration. While adjusting the pH with a basic lithium compound such as lithium hydroxide or lithium carbonate, the hydrohalogenic acid is converted to a salt (a lithium halide such as lithium chloride) soluble in the organic solvent and water, and the β-halogeno-α-aminocarboxylic acid is caused to precipitate using the water-miscible organic solvent as a poor solvent while the above salt is caused to remain dissolved without precipitation. Thereafter, the acid is recovered by a conventional solid-liquid separation procedure, such as filtration or centrifugation. Alternatively, the β-halogeno-α-aminocarboxylic acid or a salt thereof (preferably a hydrohalogenic acid salt thereof, such as hydrochloride) is dissolved in a medium comprising water or an aqueous solution of a hydrohalogenic acid, such as hydrochloric acid, and an organic solvent miscible with water. The pH after dissolution is adjusted generally to 3 or below, preferably to 2 or below. Then, if necessary, treatment with an adsorbent such as activated carbon and/or insoluble matter separation by filtration is carried out for the purpose of removing impurities and/or decoloration. The β-halogeno-α-aminocarboxylic acid is caused to precipitate by adjusting the pH (converting the hydrohalogenic acid, if present, to the form of a salt) using a basic lithium compound such as lithium hydroxide or lithium carbonate while the above salt formed (lithium halide such as lithium chloride) is caused to remain dissolved without precipitation. Thereafter, the desired acid is recovered by a conventional solid-liquid separation procedure such as filtration or centrifugation.
- The water-miscible organic solvent to be used in the above methods (1) and (2) specifically includes, but is not limited to, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, acetonitrile, methanol, ethanol, n-propanol, isopropanol, tert-butanol and acetone, among others. Among these, acetone, in particular, is preferred from the viewpoint of increased precipitation of the β-halogeno-α-aminocarboxylic acid, which is a water-soluble compound, obtaining crystals with good characteristics, ease of handling and inexpensiveness, among others.
- Since the β-halogeno-α-aminocarboxylic acid has a high solubility in water, it is desirable, for attaining increased precipitation, to reduce the amount of water, use the above water-miscible organic solvent in a volume ratio of not less than 1 relative to water and maintain the final cooling temperature at a low level, preferably not higher than 10° C., more preferably not higher than 0° C. The solubility of the above β-halogeno-α-aminocarboxylic acid tends to increase in the presence of lithium chloride or the like, hence it is effective to use acetone combinedly so that the precipitation may be maximized.
- In the step of crystallization or precipitation of the above β-halogeno-α-aminocarboxylic acid, the pH is adjusted to weak acidity to neutrality, specifically to the vicinity of the isoelectric point of the β-halogeno-α-aminocarboxylic acid. When the β-halogeno-α-aminocarboxylic acid is an α-amino-β-halopropionic acid or α-amino-β-halobutyric acid, the pH is preferably adjusted to about 4 to 7.
- Most preferred as the above hydrohalogenic acid is hydrogen chloride (hydrochloric acid) and, as the above basic lithium compound, lithium hydroxide or lithium carbonate, in particular lithium hydroxide, is preferred.
- Since the above β-halogeno-α-aminocarboxylic acid is not always stable, care is preferably taken in contacting the same with a base so as to effect contacting thereof with water or an aqueous medium approximately under acidic or neutral conditions, for instance. Generally, the acid is handled preferably under acidic to neutral conditions, for example at a pH of not higher than 7, and at low temperatures.
- According to the method of the present invention, β-halogeno-α-aminocarboxylic acids can efficiently be synthesized from β-hydroxy-α-aminocarboxylic acids in one reaction step, and high quality β-halogeno-α-aminocarboxylic acids or salts thereof can be isolated in high yields. Further, when the above reaction is carried out using the β-hydroxy-α-aminocarboxylic acid in an optically active form, the corresponding optically active β-halogeno-α-aminocarboxylic acid having the same configuration as that of the substrate can be obtained while the optical purity of the starting material is substantially maintained without accompanying substantial racemization.
- For converting the optically active β-chloroalanine obtained from an optically active serine or a salt thereof according to the above production method to an optically active N-protected-S-phenylcysteine, two methods are conceivable, one comprising treatment with an amino-protecting agent, followed by thiophenylation and the other comprising treatment with an amino-protecting agent following thiophenylation. However, studies made by the present inventors revealed that the method comprising treatment with an amino-protecting agent followed by thiophenylation is preferred from the viewpoint of yield and operability. The method comprising treatment with an amino-protecting agent following thiophenylation cannot give satisfactory yields since the optically active β-chloroalanine is unstable particularly under thiophenylation conditions.
- The method of the present invention for producing the optically active N-protected-β-chloroalanines of the general formula (2) given above or salts thereof comprises producing an optically active β-chloroalanine or a salt thereof by treating an optically active serine or a salt of an optically active serine with an acid with a chlorinating agent and then treating that product with an amino-protecting agent. In this production method, the reaction for obtaining the optically active β-chloroalanine or a salt thereof can be carried out in the same manner as mentioned above.
- In the above general formula (2), R1 represents an amino-protecting group. As the amino-protecting group, there may be mentioned those described in Theodora W. Green: Protective Groups in Organic Synthesis, 2nd edition, John Wiley & Sons, published 1990, such as benzyloxycarbonyl, ethoxycarbonyl, methoxycarbonyl, tert-butoxycarbonyl, acetyl, tosyl, benzoyl, phthaloyl and the like. The range of choice also includes such protective groups as (3S)-tetrahydrofuranyloxycarbonyl, 3-hydroxy-2-methylbenzoyl whose hydroxyl group may optionally be protected, and the like. However, benzyloxycarbonyl is preferred among others.
- In the above general formula (2), R0 generally represents a hydrogen atom but may also represent such an amino-protecting group as phthaloyl together with R1.
- The above amino-protecting agent corresponds to the above amino-protecting group and includes conventional amino-protecting agents without any particular restriction. Thus, mention maybe made of, for example, benzyl chloroformate, ethyl chloroformate, methyl chloroformate, di-tert-butyl dicarbonate, benzoyl chloride, acetyl chloride, p-toluenesulfonyl chloride, phthalic anhydride, and N-carboethoxyphthalimide. The range of choice further includes (3S)-tetrahydrofuranyl chloroformate, 3-hydroxy-2-methylbenzoyl chloride whose hydroxyl group may optionally be protected, and the like. Among them, benzyl chloroformate is preferred.
- While the treatment with the above amino-protecting agent may be carried out using an optically active β-chloroalanine isolated, it is preferred that the amino group protection be effected by treating, with the above amino-protecting agent, an aqueous medium containing an optically active β-chloroalanine as obtained in the manner mentioned above. In either case, abase is used and the base to be used is, for example, sodium hydroxide or potassium carbonate. The above treatment with an amino-protecting agent may be carried out in any medium comprising water and/or an organic solvent.
- The solvent to be used in that case is not particularly restricted but may be, for example, 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, tert-butyl methyl ether, dibutyl ether, diethyl ether or a like other ether solvent; acetonitrile, methylene chloride, ethyl acetate, acetone, toluene or a like other aprotic solvent.
- Taking carbobenzyloxylation as an example, the method for the above amino group protection is now specifically described. To an aqueous medium containing an optically active 1-chloroalanine, for instance, there is added benzyl chloroformate in an amount of 1 to 2 molar equivalents, preferably about 1.0 molar equivalent, relative to the substrate, at a temperature at which the solvent will not freeze, up to 30° C., more preferably at a temperature not higher than 5° C., while maintaining the pH at 8 to 13, preferably 9 to 12, more preferably 9 to 10, by adding a base, such as sodium hydroxide or potassium carbonate, and the resulting mixture is stirred at a temperature at which the solvent will not freeze, up to 30° C., more preferably at a temperature not higher than 5° C., preferably for 1 to 30 hours. If necessary, the reaction mixture may be washed with an organic solvent immiscible with water or with an aqueous medium, for example toluene, for the purpose of removing the unreacted portion of benzyl chloroformate and the byproduct benzyl alcohol.
- The optically active N-protected-β-chloroalanine produced in the above manner can be isolated, for example by a conventional extraction procedure followed by column chromatography.
- The method of the present invention for producing optically active N-protected-S-phenylcysteines of the above general formula (3) or salts thereof comprises treating an optically active serine or a salt of an optically active serine with an acid with a chlorinating agent, then treating the thus-obtained optically active β-chloroalanine with an amino-protecting agent, and further reacting the resulting optically active N-protected-β-chloroalanine or a salt thereof with thiophenol under a basic condition. In the above general formula (3), R0 and R1 are the same as the R0 and R1 specifically mentioned above. In this production method, the reactions for the production of the optically active N-protected-β-chloroalanine or a salt thereof can be carried out in the same manner as mentioned above.
- The thiophenylation of the above optically active N-protected-β-chloroalanine can be carried out using an optically active N-protected-β-chloroalanine isolated in the manner mentioned above. It is also possible to adjust the pH of the reaction mixture after amino-protecting agent treatment, add thiophenol directly thereto and effecting the reaction in that reaction mixture.
- The above step of reacting the optically active N-protected-β-chloroalanine with thiophenol can be conducted in water and/or an organic solvent under a basic condition. The organic solvent is not particularly restricted but includes, for example, ether solvents such as 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, tert-butyl methyl ether, dibutyl ether and diethyl ether; and other aprotic solvents such as acetonitrile, methylene chloride, ethyl acetate, acetone and toluene, among others.
- The above thiophenol is used generally in an amount of 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents, more preferably about 1.5 molar equivalents, relative to the optically active N-protected-β-chloroalanine.
- For effecting the above thiophenylation under a basic condition, an inorganic base or the like is preferably added as a base. The inorganic base is not particularly restricted but may be, for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate or sodium hydroxide. An alkaline pH buffering agent may also be used.
- The amount of the above base to be used may vary depending on the species thereof. In the case of sodium hydroxide or sodium carbonate, for instance, it is used in an amount of 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents, relative to the optically active N-protected-β-chloroalanine. The pH of the reaction mixture is preferably about 9 to 11. Under strongly alkaline conditions, the yield tends to decrease due to side reactions. After completion of the reaction, the product can be isolated, for example by acidifying the reaction mixture with hydrochloric acid, sulfuric acid or the like, extracting the mixture with an organic solvent such as ethyl acetate, concentrating the extract and subjecting the concentrate to column chromatography, for instance.
- The above thiophenylation can be effected, for example by adding a base such as sodium hydroxide and sodium carbonate to a solution composed of an optically active N-protected-β-chloroalanine and an amount of water to give a starting material concentration of 5 to 30% (w/v), preferably at 0° to 30° C., to thereby preferably adjust the pH to 9 to 11, and further adding thiophenol in an amount of 1 to 5 molar equivalents, preferably 1 to 3 molar equivalents, relative to the optically active N-protected-β-chloroalanine, followed by stirring preferably at 30° to 90° C., more preferably40° to 70° C. The order of addition of the reagents is not always restricted to the one mentioned above. For example, the thiophenylation can also be effected by adding a base to an aqueous solution containing thiophenol and an optically active N-protected-β-chloroalanine or by adding thiophenol and a base simultaneously to an aqueous solution of an optically active N-protected-β-chloroalanine.
- In the production method of the present invention, by conducting, without isolating the intermediates, the three steps, namely the step of treating an optically active serine or a salt of an optically active serine with an acid with a chlorinating agent, the step of treating the resulting optically active β-chloroalanine with an amino-protecting agent and the step of reacting the resulting optically active N-protected-β-chloroalanine with thiophenol under a basic condition, it is possible to obtained the corresponding optically active N-protected-S-phenylcysteine derivative in a simple and efficient manner. It is also possible to conduct, without isolating the intermediate, the two steps, namely the step of treating an optically active β-chloroalanine with an amino-protecting agent and the step of reacting the resulting optically active N-protected-β-chloroalanine with thiophenol under a basic condition.
- The optically active N-protected-S-phenylcysteine obtained from the corresponding optically active serine or a salt thereof by the production method of the present invention has an optical purity as high as 98% e.e. at the step prior to purification by crystallization, for instance. Thus, according to the present invention, an optically active N-protected-S-phenylcysteine having the same configuration as that of the substrate can be produced from the optically active serine or a salt thereof while substantially maintaining the optical purity thereof without accompanying substantial racemization.
- The optically active N-protected-S-phenylcysteine, in particular N-carbobenzyloxy-S-phenyl-L-cysteine, is a compound very useful as an intermediate of HIV protease inhibitors (WO 9532185), for instance.
- The following examples illustrate the present invention in further detail. They are, however, by no means limitative of the scope of the present invention.
- Production of β-chloro-L-alanine hydrochloride
- L-Serine (5.0 g, 0.0476 mol) was added to 50 ml of 1,4-dioxane, and hydrogen chloride gas was introduced into the resulting solution with stirring at room temperature. On that occasion, the hydrogen chloride in the solution amounted to 14.5 g (0.3977 mol). To the solution was added slowly 12.5 g (0.1051 mol) of thionyl chloride, and the reactor inside temperature was then adjusted to 50° C. After about 6 hours of stirring, this solution was concentrated to about half the original volume. The concentrate was cooled to 0° to 10° C., and 50 ml of water was added gradually so as to maintain this temperature. HPLC analysis of this solution revealed the formation of 6.9 g (0.0431 mol) of β-chloro-L-alanine hydrochloride (yield: 91 mole %).
- Production of β-chloro-L-alanine hydrochloride
- L-Serine (5.0 g, 0.0476 mol) was added to 50 ml of 1,4-dioxane, and hydrogen chloride gas was introduced into the resulting solution with stirring at room temperature. On that occasion, the hydrogen chloride in the solution amounted to 11.2 g (0.3072 mol). To the solution was added slowly 6.2 g (0.0521 mol) of thionyl chloride, and the reactor inside temperature was then adjusted to 45° C. After about 20 hours of stirring, this solution was concentrated to about half the original volume. The concentrate (slurry) was filtered, the cake was washed with 10 ml of 1,4-dioxane and the wet crystals were dried under reduced pressure (40° C., not higher than 10 mm Hg) to give dry crystals. HPLC analysis of the crystals obtained revealed that the yield of β-chloro-L-alanine hydrochloride as pure substance was 7.2 g (0.0450 mol).
- The IR,1H-NMR and 13C-NMR data of the β-chloro-L-alanine hydrochloride obtained were in complete agreement with those of the β-chloro-L-alanine hydrochloride purchased from Aldrich Chemical Co.
- Production of β-chloro-L-alanine
- Milk white crystals (purity 95.2% by weight, containing 3.6 g (0.0225 mol) of β-chloro-L-alanine hydrochloride) obtained in the same manner as in Example 2 were added to 14 ml of water to give a slurry. This slurry was completely dissolved by slowly adding about 2 g of concentrated hydrochloric acid. To the solution was added 0.1 g of 50% activated carbon, and the mixture was stirred at room temperature for about 10 minutes. The activated carbon was filtered off under reduced pressure and washed with 1 ml of water. The filtrate and washings obtained were cooled to 0° to 10° C., and the pH was adjusted to 5.5 by gradually adding a saturated aqueous solution of lithium hydroxide while maintaining that temperature, to give a slurry. Acetone (42 ml) was gradually added to this slurry to thereby cause sufficient precipitation of crystals, the resulting mixture was cooled to −10° to 0° C. and maintained at that temperature for about 1 hour. The precipitate crystals were filtered off, the cake was washed with 14 ml of acetone, and the wet crystals obtained were dried under reduced pressure (40° C., not higher than 10 mm Hg) to give 2.65 g of β-chloro-L-alanine as white crystals. HPLC analysis of these crystals revealed a purity of 99.9% by weight and a yield of pure β-chloro-L-alanine of 2.65 g (0.0214 mol).
- The β-chloro-L-alanine obtained had an optical purity of not less than 99.9% e. e. as determined by HPLC analysis under the conditions shown below.
- <Analytical conditions>
- Column: Tosoh TSK-Gel Enantio L1 (4.6 mm×250 mm)
- Mobile phase: 0.5 M CUSO4 aq./acetonitrile=80/20
- Column temperature: 40° C.
- Detection wavelength: 254 nm
- Flow rate: 1.0 ml/min
- Retention time: β-chloro-L-alanine 9.3 min β-chloro-D-alanine 7.8 min
- Production of β-chloro-L-alanine
- L-Serine (30.0 g, 0.2855 mol) was added to 600 ml of 1,4-dioxane, and hydrogen chloride gas was introduced into the resulting solution with stirring at room temperature. On that occasion, the hydrogen chloride in the solution amounted to 133.1 g (3.6508 mol). To the solution was added slowly 40.8 g (0.3426 mol) of thionyl chloride, and the reactor inside temperature was then adjusted to 40° C. After about 20 hours of stirring, the liquid (slurry) was concentrated to about half the original volume. The concentrate (slurry) was cooled to 0° to 10° C., and 200 ml of water was added gradually so as to maintain that temperature, to thereby cause dissolution of the precipitate. The resulting solution was further concentrated until the weight became about 200 g, 3.0 g of 50% activated carbon was then added, and the mixture was stirred at room temperature for about 10 minutes. The activated carbon was filtered off under reduced pressure and washed with 10 ml of water. The filtrate and washings obtained were combined and further concentrated to a weight of about 120 g. This concentrate was cooled to 0° to 10° C., and the pH was adjusted to 5.5 by gradually adding a saturated aqueous solution of lithium hydroxide while maintaining that temperature, to give a slurry. To this slurry was gradually added 600 ml of acetone for effecting sufficient precipitation of crystals, and the slurry was then cooled to −10° to 0° C. and maintained at this temperature for about 1 hour. The precipitate crystals were filtered off under reduced pressure and the cake was washed with 100 ml of acetone. The wet crystals thus obtained were dried under reduced pressure (40° C., not higher than 10 mm Hg) to give 32.6 g of β-chloro-L-alanine as dry crystals. HPLC analysis of the crystals revealed a purity of 99.8% by weight and a yield of pure β-chloro-L-alanine of 32.5 g (0.2625 mol).
- Production of β-chloro-D-alanine hydrochloride
- D-Serine (5.0 g, 0.0476 mol) was added to 50 ml of 1, 4-dioxane, and hydrogen chloride gas was introduced into the resulting solution with stirring at room temperature. On that occasion, the hydrogen chloride in the solution amounted to 11.5 g (0.3154 mol). To the solution was added slowly 6.2 g (0.0521 mol) of thionyl chloride, and the reactor inside temperature was then adjusted to 45° C. After about 20 hours of stirring, this solution was concentrated to about half the original volume. The concentrate (slurry) was filtered, the cake was washed with 10 ml of 1,4-dioxane and the wet crystals were dried under reduced pressure (40° C., not higher than 10 mm Hg) to give dry crystals. HPLC analysis of the crystals obtained revealed that the yield of β-chloro-D-alanine hydrochloride as pure substance was 7.0 g (0.0438 mol). The thus-obtained β-chloro-D-alanine hydrochloride had an optical purity of not less than 99.9% e.e. as determined by the same method as mentioned in Example 3.
- Production of β-chloro-L-alanine hydrochloride
- L-Serine (5.0 g, 0.0476 mol) was added to 50 ml of each of the reaction solvents specified in Table 1, and hydrogen chloride gas was introduced into the resulting solution with stirring at room temperature until saturation with hydrogen chloride. To the solution was added slowly 12.5 g (0.1051 mol) of thionyl chloride, and the reaction was effected under the conditions shown in Table 1. The reaction mixture (slurry) was concentrated to about half the original volume. The concentrate was cooled to 0° to 10° C. and 50 ml of water was added slowly so as to maintain this temperature. This solution was analyzed by HPLC and the yield as β-chloro-L-alanine hydrochloride was determined. The results thus obtained are shown in Table 1.
TABLE 1 Reaction Reaction Solvent temperature Reaction time Yield 1,2-Dimethoxyethane 50° C. 10 hrs 97% Tetrahydrofuran 40° C. 30 hrs 92% Triethylene glycol 50° C. 10 hrs 93% dimethylether - Production of (αS, βR)-α-amino-β-hydroxybutyric acid hydrochloride
- L-Threonine (10.14 g, 0.0851 mol) was added to 100 ml of 1, 4-dioxane, and hydrogen chloride gas was introduced into the resulting solution with stirring at room temperature. On that occasion, the hydrogen chloride in the solution amounted to 15.5 g (0.4251 mol). To the solution was added slowly 12.2 g (0.1022 mol) of thionyl chloride, and the reactor inside temperature was then adjusted to 50° C. After about 10 hours of stirring, this solution was concentrated to about half the original volume. The concentrate (slurry) was filtered, the cake was washed with 20 ml of 1,4-dioxane and the wet crystals were dried under reduced pressure (40° C., not higher than 10 mm Hg) to give dry crystals. HPLC analysis of the crystals obtained revealed that the yield of (αS, βR) -α-amino-β-hydroxybutyric acid hydrochloride as pure substance was 12.2 g (0.0701 mol). [α]D 20+16.1° (c=1.0, water) (lit., [α]D 20+17.8° (c=1.0, water) [CHIRALITY 9, 656-660 (1997)].
- Production of (αS, βR)-α-amino-β-hydroxybutyric acid
- Milk white crystals [purity 94.9% by weight, containing 5.0 g (0.0287 mol) of (αS, βR)-α-amino-β-hydroxybutyric acid hydrochloride] obtained in the same manner as in Example 7 were added to 19 ml of water to give a slurry. This slurry was completely dissolved by slowly adding about 2.8 g of concentrated hydrochloric acid. To the solution was added 0.1 g of 50% activated carbon, and the mixture was stirred at room temperature for about 10 minutes. The activated carbon was filtered off under reduced pressure and washed with 1 ml of water. The filtrate and washings obtained were combined and cooled to 0° to 10° C., and the pH was adjusted to 5.5 by gradually adding a saturated aqueous solution of lithium hydroxide while maintaining that temperature, to give a slurry. Acetone (58 ml) was gradually added to this slurry to thereby cause sufficient precipitation of crystals, the resulting mixture was cooled to −10° to 0° C. and maintained at that temperature for about 1 hour. The precipitate crystals were filtered off, the cake was washed with 19 ml of acetone, and the wet crystals obtained were dried under reduced pressure (40° C., not higher than 10 mm Hg) to give 3.75 g of (αS, βR)-α-amino-β-chlorobutyric acid as white crystals. HPLC analysis of these crystals revealed a purity of 99.8% by weight and a yield of pure (αS, βR)-α-amino-β-chlorobutyric acid of 3.74 g (0.02272 mol) . mp 176° C. (decomp.) (lit., mp 176° C. (decomp.) [Yakugaku Kenkyu, 33, 428-437 (1961)].
- The IR,1H-NMR and 13C-NMR data of the (αS, βR)-α-amino-β-chlorobutyric acid thus obtained as crystals were in complete agreement with those of the crystalline (αS, βR)-α-amino-β-chlorobutyric acid separately synthesized by the method mentioned below.
- Alternative synthesis of (αS, βR)-α-amino-β-chlorobutyric acid
- Using thionyl chloride and methanol, threonine was derivatized into threonine methyl ester hydrochloride, which was then treated with thionyl chloride to give α-amino-β-chlorobutyric acid methyl ester hydrochloride. This was then converted to α-amino-8-chloropropionic acid hydrochloride by hydrolyzing with hydrochloric acid. The α-amino-β-chloropropionic acid hydrochloride was crystallized and isolated by the same technique as mentioned in Example 8.
- Production of β-chloro-L-alanine hydrochloride
- L-Serine hydrochloride (6.7 g, 0.0473 mol) was added to 50 ml of 1,4-dioxane. To the solution was added slowly 6.8 g (0.0572 mol) of thionyl chloride at room temperature, and the reactor inside temperature was then adjusted to 60° C. After about 3 hours of stirring, this solution was concentrated to about half the original volume. The concentrate was cooled to 0° to 10° C., and 50 ml of water was added gradually so as to maintain this temperature. HPLC analysis of this solution revealed the formation of 4.6 g (0.0287 mol) of β-chloro-L-alanine hydrochloride (yield 61 mole %)
- L-Serine (20.0 g, 0.1903 mol) was added to 49.8 g (0.4187 mol) of thionyl chloride, and the mixture was warmed to 60° C. and stirred for 6 hours. This solution was hydrolyzed and then analyzed by HPLC. No β-chloro-L-alanine peak was observed but peaks due to unreacted L-serine and various impurities were observed.
- L-Serine (15.0 g, 0.1427 mol) was added to 150 ml of toluene, and hydrogen chloride gas was blown into the resulting solution at room temperature until saturation. To this solution was added 37.4 g (0.3140 mol) of thionyl chloride, and the mixture was then warmed to 80° C. and stirred for 20 hours, This solution was hydrolyzed and then analyzed by HPLC. Peaks of various impurities were observed and the peak of β-chloro -L-alanine corresponded only to a trace amount. (The above reaction mixture contained a tar-like substance and had a deep black color.)
- L-Serine (15.0 g, 0.1427 mol) was added to 150 ml of methylene chloride, and hydrogen chloride gas was blown into the resulting solution at room temperature until saturation. To this solution was added 37.4 g (0.3140 mol) of thionyl chloride, and the mixture was then warmed to 40° C. and stirred for 16 hours, This solution was hydrolyzed and then analyzed by HPLC. Peaks of various impurities were observed and the peak of β-chloro-L-alanine corresponded only to a trace amount. (The above reaction mixture contained a tar-like substance and had a deep black color.)
- Production of N-carbobenzyloxy-β-chloro-L-alanine
- L-Serine hydrochloride (0.4 g, 2.84 mmol) and 0.029 g (0.28 mmol) of triethylamine were suspended in 4 ml of diethylene glycol dimethyl ether. Thereto was added dropwise 0.67 g (5.68 mmol) of thionyl chloride at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., 8 ml of water was added while maintaining the reaction mixture inside at 15° C. or below, and the whole mixture was stirred at room temperature for 30 minutes. Further, 1.6 g of potassium carbonate was added to make the pH about 10 and, thereafter, 0.956 g (5.68 mmol) of benzyl chloroformate was added dropwise. After overnight standing at room temperature, the reaction mixture was washed with ethyl acetate, the aqueous layer obtained was cooled with ice and acidified with 50% sulfuric acid and then extracted with ethyl acetate. The solvent was distilled off and the residue was purified by column chromatography to give 0.3 g (1.16 mmol, 41%) of N-carbobenzyloxy-β-chloro-L-alanine.
- The N-carbobenzyloxy-β-chloro-L-cysteine obtained gave the following1H-NMR and IR data.
-
- Production of N-carbobenzyloxy-β-chloro-L-alanine
- L-Serine hydrochloride (0.4 g, 2.84 mmol) and 0.029 g (0.28 mmol) of triethylamine were suspended in 4 ml of 1,2-dimethoxyethane. Thereto was added dropwise 0.67 g (5.68 mmol) of thionyl chloride at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., 8 ml of water was added while maintaining the reaction mixture inside at 15° C. or below, and the whole mixture was stirred at room temperature for 30 minutes. Further, 1.6 g of potassium carbonate was added to make the pH about 10 and, thereafter, 0.956 g (5.68 mmol) of benzyl chloroformate was added dropwise. After overnight standing at room temperature, the reaction mixture was cooled with ice and acidified with 50% sulfuric acid. The solution obtained was analyzed by HPLC, which revealed the formation of N-carbobenzyloxy-β-chloro-L-alanine in a yield of 42% (1.18 mmol). The analytical conditions were as shown below. Analytical conditions (N-carbobenzyloxy-β-chloro-L-alanine/N-carbobenzyloxy-L-serine)
- Column: YMC-Pack ODS-A A-303 (250 mm×4.6 mm)
- Mobile phase: Phosphate buffer (pH=3.0):acetonitrile=60:40
- Flow rate: 1.0 ml/min
- Sample injection size: 20 μl
- Sample solvent: acetonitrile
- Retention time:
- 6.2 min (N-carbobenzyloxy-β-chloro-L-alanine)
- 3.9 min (N-carbobenzyloxy-L-serine)
- Production of N-carbobenzyloxy-β-chloro-L-alanine
- L-Serine hydrochloride (0.1 g, 0.71mmol) and7.2 mg (0.07 mmol) of triethylamine were suspended in a solvent composed of 1 ml of acetonitrile and 0.1 ml of diethylene glycol dimethyl ether. Thereto was added dropwise 0.167 g (1.42 mmol) of thionyl chloride at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., 2 ml of water was added while maintaining the reaction mixture inside at 15° C. or below, and the whole mixture was stirred at room temperature for 30 minutes. Further, 0.4 g of potassium carbonate was added to make the pH about 10 and, thereafter, 0.239 g (1.52 mmol) of benzyl chloroformate was added dropwise. After overnight standing at room temperature, the reaction mixture was cooled with ice and acidified with 50% sulfuric acid. The solution obtained was analyzed by HPLC by the same procedure as mentioned in Example 11, which revealed the formation of N-carbobenzyloxy-β-chloro-L-alanine in a yield of 34% (0.24 mmol).
- Production of N-carbobenzyloxy-S-phenyl-L-cysteine
- N-Carbobenzyloxy-β-chloro-L-alanine (0.108 g, 0.42 mmol) was dissolved in 0.5 ml of water and, then, 0.097 g (0.92 mmol) of sodium carbonate was added. Thereafter, 0.054 g (0.50 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., the reaction mixture was cooled with ice and acidified with 1 N hydrochloric acid, and then extracted with ethyl acetate. The solvent was distilled off and the residue was purified by column chromatography to give 0.112 g (0.34 mmol, 81%) of N-carbobenzyloxy-S-phenyl-L-cysteine. The compound obtained had an optical purity of not less than 98% e.e. The optical purity was determined by HPLC. The analytical conditions are shown below.
- Optical purity determination conditions (N-carbobenzyloxy-S-phenyl-L-cysteine/N-carbobenzyloxy-S-phenyl-D-cysteine)
- Column: DAICEL CHIRALPAK AS (250 mm×4.6 mm)
- Mobile phase: (hexane/tert-butyl methyl ether/trifluoroacetic acid=800/200/2):ethanol=85:15
- Flow rate: 1.2 ml/min
- Sample injection size: 10 μl
- Temperature: 35° C.
- Sample solvent: (hexane/tert-butyl methyl ether/trifluoroacetic acid=800/200/2):ethanol=80:20
- Retention time
- 4.5 min (N-carbobenzyloxy-S-phenyl-L-cysteine)
- 5.6 min (N-carbobenzyloxy-S-phenyl-D-cysteine)
- The results of1H-NMR and IR analysis of the N-carbobenzyloxy-S-phenyl-L-cysteine obtained were as follows:
-
- IR (neat): 3036, 1686, 1532, 1281, 1059, 737 (cm−1)
- Production of N-carbobenzyloxy-S-phenyl-L-cysteine
- N-Carbobenzyloxy-β-chloro-L-alanine (0.091 g, 0.35 mmol) was dissolved in 0.45ml of water and, then, 0.065 g (0.77 mmol) of sodium hydrogen carbonate was added. Thereafter, 0.046 g (0.42 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., the reaction mixture was cooled with ice and acidified with 1 N hydrochloric acid, and then extracted with ethyl acetate. The solvent was distilled off and the residue was purified by column chromatography to give 0.097 g (0.29 mmol, 84%) of N-carbobenzyloxy-S-phenyl-L-cysteine. The product obtained had an optical purity of not less than 98% e.e. as determined by HPLC analysis following the same procedure as in Example 13.
- Production of N-carbobenzyloxy-S-phenyl-L-cysteine
- N-Carbobenzyloxy-β-chloro-L-alanine (0.137 g, 0.53 mmol) was dissolved in 0.68 ml of water and, then, 0.58 ml of 2 N aqueous sodium hydroxide was added. Thereafter, 0.069 g (0.63 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C, the reaction mixture was cooled with ice and acidified with 1 N hydrochloric acid, and then extracted with ethyl acetate. The solvent was distilled off and the residue was purified by column chromatography to give 0.107 g (0.32 mmol, 61%) of N-carbobenzyloxy-S-phenyl-L-cysteine. The product obtained had an optical purity of not less than 98% e.e. as determined by HPLC analysis in the same manner as in Example 13.
- Production of N-carbobenzyloxy-S-phenyl-L-cysteine
- L-Serine hydrochloride (10.0 g, 70.6 mmol) and 0.073 g (7.1 mmol) of triethylamine were dissolved in 100 ml of diethylene glycol dimethyl ether, and 16.8 g (141.2 mmol) of thionyl chloride was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C, 200 ml of water was added while maintaining the reaction system at 15° C. or below, and the resulting mixture was stirred at room temperature for 30 minutes. Further, 50 g of potassium carbonate was added to make the pH about 10 and, then, 17.9 g (141.2 mmol) of benzyl chloroformate was added dropwise. After overnight standing at room temperature, 10 g of potassium carbonate was again added to make the pH about 10 and, then, 10.7 g (97.1 mmol) of thiophenol was added dropwise at room temperature in a nitrogen gas atmosphere. After 2 hours of stirring at 60° C., the reaction mixture was cooled with ice and acidified with 50% sulfuric acid, and extracted with ethyl acetate. The solvent was distilled off and the residue was purified by column chromatography to give 8.7 g (26.2 mmol, 37%) of N-carbobenzyloxy-S-phenyl-L-cysteine. The product obtained had an optical purity of not less than 98% e.e. as determined by HPLC analysis in the same manner as in Example 13.
- Production of N-carbobenzyloxy-S-phenyl-L-cysteine
- β-Chloro-L-alanine hydrochloride (15.7 g, 98.1 mmol) was added to 160 ml of water and dissolution was effected. The reactor inside was cooled to 0° to 5° C. and the pH was adjusted to 10 by dropwise addition of about 36 g of a 30% (by weight) aqueous solution of sodium hydroxide with vigorous stirring. While maintaining the inside temperature at 0° to 5° C., 20.5 g (120.0 mmol) of benzyl chloroformate was added dropwise over 1 hour with vigorous stirring and then stirring was continued for 4 hours, during which the pH of the reaction mixture was maintained at 9.5 to 10.5 by dropwise addition of about 16 g of a 30% (by weight) aqueous solution of sodium hydroxide. The reaction mixture obtained was assayed for N-carbobenzyloxy-β-chloro-L-alanine by HPLC and the yield thereof was found to be 25.1 g (97.5 mmol).
- To the reaction mixture obtained was added dropwise 22.0 g (200.0 mmol) of thiophenol with vigorous stirring. During the dropping, the pH of the reaction mixture was maintained at 9.7 to 10.3by dropwise addition of about 26 g of a 30% (by weight) aqueous solution of sodium hydroxide. In a nitrogen atmosphere, the inside temperature was raised to 50° C. and the reaction was allowed to proceed for 3.5 hours, during which the pH of the reaction mixture was maintained at 9.7 to 10.3 by dropwise addition of about 1 g of a 30% (by weight) aqueous solution of sodium hydroxide. To the reaction mixture obtained was gradually added dropwise about 20 g of concentrated hydrochloric acid over 3 hours with vigorous stirring to thereby adjust the slurry pH to 3. The resulting precipitate crystals of N-carbobenzyloxy-S-phenyl-L-cysteine were filtered off under reduced pressure and sufficiently deprived of the liquid reaction medium by washing with two 100-ml portions of water, to give wet crystals of N-carbobenzyloxy-S-phenyl-L-cysteine [29.8 g (89.9 mmol) as pure N-carbobenzyloxy-S-phenyl-L-cysteine]. The optical purity of the N-carbobenzyloxy-S-phenyl-L-cysteine obtained was 99.9% e.e.
- Production of S-phenyl-L-cysteine
- A 20% (by weight) aqueous solution of sodium carbonate (2.23 g, 0.0042 mol) was added to 0.97 g (0.0088 mol) of thiophenol, and the mixture was stirred at room temperature for 0.5 hour. To this solution was added a solution composed of 1.08 g (0.0088 mol) of 8-chloro-L-alanine and water, and the reaction was allowed to proceed for 5 hours, during which the pH of the reaction mixture was maintained at 8 to 10 while adding 5.14 g (0.0097 mol) of a 20% (by weight) aqueous solution of sodium carbonate. To the reaction mixture obtained were added 30 ml of toluene, 20 ml of water and about 3 g of concentrated hydrochloric acid in a nitrogen atmosphere to thereby adjust the pH to 0.5. The aqueous layer after separation from the organic layer was washed with two 30-ml portions of toluene to remove the remaining portion of thiophenol, to give 34.3 g of an aqueous solution of S-phenyl-L-cysteine.
- HPLC analysis of the aqueous solution obtained revealed that the yield as pure S-phenyl-L-cysteine was 0.45 g (0.0023 mol, 26.0% yield). A marked extent of decomposition of β-chloro-L-alanine was observed.
- The present invention, constituted as above, makes it possible to produce β-halogeno-α-aminocarboxylic acids, which are useful as starting materials for the production of medicinals, as well as optically active N-protected-S-phenylcysteines, which are useful as intermediates of medicinals, and intermediates thereof, in a simple, efficient and industrially advantageous manner and on a commercial scale.
Claims (44)
1. A method of producing a β-halogeno-α-aminocarboxylic acid or a salt thereof which comprises halogenating the hydroxyl group of a β-hydroxy-α-aminocarboxylic acid, in which the basicity of the amino group in α-position is not masked by the presence of a substituent on said amino group, or a salt thereof with an acid by treating the same with a halogenating agent.
2. The method of producing according to claim 1 ,
wherein the halogenating agent is a thionyl halide.
3. The method of producing according to claim 2 ,
wherein the thionyl halide is thionyl chloride.
4. The method of producing according to claim 1 , 2 or 3,
wherein the halogenating agent is used in an amount of 1 to 10 moles per mole of the β-hydroxy-α-aminocarboxylic acid
5. The method of producing according to any of claims 1 to 4,
wherein the treatment with the halogenating agent is carried out using a solvent containing an ether type solvent.
6. The method of producing according to claim 5 , wherein the ether type solvent is miscible with water.
7. The method of producing according to claim 6 , wherein the water-miscible ether type solvent comprises at least one species from the group consisting of 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and polyethylene glycol dimethyl ether.
8. The method of producing according to any of claims 1 to 7 ,
wherein the treatment with the halogenating agent is carried out in the presence of a hydrogen halide.
9. The method of producing according to claim 8 ,
wherein the hydrogen halide is used in an amount exceeding 2.0 molar equivalents relative to the β-hydroxy-α-aminocarboxylic acid.
10. The method of producing according to claim 8 or 9, wherein the treatment with the halogenating agent is carried out in a state completely saturated or almost saturated with the hydrogen halide gas.
11. The method of producing according to claim 8 , 9 or 10,
wherein the hydrogen halide is hydrogen chloride.
12. The method of producing according to any of claims 1 to 11 ,
wherein the treatment-with the chlorinating agent is carried out in the presence of an amine or a salt thereof.
13. The method of producing according to claim 12 , wherein the amine is a tertiary amine.
14. The method of producing according to any of claims 1 to 13 ,
wherein the coexisting acid after treatment with the halogenating agent is converted to a salt form by means of a basic lithium compound, and dissolved in a medium composed of a water-miscible organic solvent and water while the β-halogeno-α-aminocarboxylic acid is caused to precipitate out in its free form.
15. The method of producing according to claim 14 ,
wherein the water-miscible ether type solvent comprises at least one species selected from the group consisting of 1,2-dimethoxyethane, 1,4-dioxane, tetrahydrofuran, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, acetonitrile, methanol, ethanol, n-propanol, isopropanol, tert-butanol and acetone.
16. The method of producing according to claim 15 ,
wherein the water-miscible organic solvent is acetone.
17. The method of producing according to claim 14 , 15 or 16,
wherein the volume ratio of the water-miscible organic solvent to water is not less than 1.
18. The method of producing according to any of claims 14 to 17 ,
wherein the final cooling temperature in the step of precipitation is not higher than 10° C.
19. The method of producing according to any of claims 14 to 18 ,
wherein the low-boiling components occurring in the reaction mixture are reduced or removed beforehand after treatment with the halogenating agent but before precipitation of the desired product.
20. The method of producing according to any of claims 1 to 13 ,
wherein, after treatment with the halogenating agent, the β-halogeno-α-aminocarboxylic acid in hydrohalogenic acid salt form that has precipitated from the reaction mixture as such or after concentration thereof is recovered.
21. The method of producing according to any of claims 1 to 13 ,
wherein, after treatment with the halogenating agent, the reaction solvent is replaced with water to give an aqueous solution containing the β-halogeno-α-aminocarboxylic acid.
22. The method of producing according to any of claims 1 to 21 ,
wherein the β-hydroxy-α-aminocarboxylic acid is serine, threonine, allothreonine or β-phenylserine.
23. The method of producing according to claim 22 ,
wherein the β-hydroxy-α-aminocarboxylic acid is serine.
24. The method of producing according to any of claims 1 to 23 ,
wherein the β-hydroxy-α-aminocarboxylic acid is optically active.
25. The method of producing according to claim 23 or 24, wherein the β-hydroxy-α-aminocarboxylic acid is L-serine.
26. A method of purifying and isolating a β-halogeno-α-aminocarboxylic acid
which comprises causing a β-halogeno-α-aminocarboxylic acid, in which the basicity of the amino group in α-position is not masked by the presence of a substituent on said amino group, to crystallize out using water as a good solvent and a water-miscible organic solvent as a poor solvent.
27. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to claim 26 ,
wherein the water-miscible organic solvent is acetone.
28. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to claim 27 ,
wherein acetone is used as a poor solvent for causing the β-halogeno-α-aminocarboxylic acid to crystallize and precipitate out in its free form from an aqueous solution resulting from treatment of an aqueous solution containing the β-halogeno-α-aminocarboxylic acid and hydrohalogenic acid with a basic lithium compound for converting said hydrohalogenic acid to the salt thereof.
29. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to claim 26 , 27 or 28,
wherein the volume ratio of the water-miscible organic solvent to water in the step of crystallization is not less than 1.
30. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to any of claims 26 to 29 ,
wherein the final cooling temperature in the step of crystallization is not higher than 10° C.
31. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to any of claims 26 to 30 ,
wherein the β-halogeno-α-aminocarboxylic acid is β-chloroalanine, β-chloro-α-aminobutyric acid or β-chloro-α-phenyl-α-aminopropionic acid.
32. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to claim 31 ,
wherein the β-halogeno-α-aminocarboxylic acid is β-chloroalanine.
33. The method of purifying and isolating β-halogeno-α-aminocarboxylic acid according to any of claims 26 to 32 ,
wherein the β-halogeno-α-aminocarboxylic acid is optically active.
34. The method of purifying and isolating a β-halogeno-α-aminocarboxylic acid according to claim 32 or 33,
wherein the β-halogeno-α-aminocarboxylic acid is β-chloro-L-alanine.
35. A method of producing an optically active N-protected-β-chloroalanine of the general formula (2) or a salt thereof:
wherein R1 represents an amino-protecting group and R0 represents a hydrogen atom or, taken together with R1, an amino-protecting group,
which comprises preparing an optically active β-chloroalanine of the following formula (1) or a salt thereof:
from an optically active serine or a salt thereof with an acid by the method of producing according to claim 1
and then treating the same with an amino-protecting agent.
36. The method of producing according to claim 35 ,
wherein the optically active β-chloroalanine is obtainable by the method of producing according to any of claims 2 to 25 .
37. The method of producing according to claim 35 or 36,
wherein the amino-protecting agent is benzyl chloroformate
and the optically active N-protected-β-chloroalanine is represented by the general formula (2) in which R0 is a hydrogen atom and R1 is a carbobenzyloxy group.
38. A method of producing an optically active N-protected-S-phenylcysteine of the general formula (3) or a salt thereof:
wherein R1 represents an amino-protecting group and R0 represents a hydrogen atom or, taken together with R1, an amino-protecting group,
which comprises preparing an optically active N-protected-β-chloroalanine or a salt thereof by the method of producing according to claim 35 ,
and then reacting the same with thiophenol under a basic condition.
39. The method of producing according to claim 38 ,
wherein the optically active N-protected-β-chloroalanine is obtainable by the method of producing according to claim 36 .
40. The method of producing according to claim 38 or 39,
wherein the amino-protecting agent is benzyl chloroformate
and the optically active N-protected-S-phenylcysteine is represented by the general formula (3) in which R0 is a hydrogen atom and R1 is a carbobenzyloxy group.
41. The method of producing according to any of claims 38 to 40 ,
wherein the treatment of optically active serine or a salt of optically active serine with an acid with the chlorinating agent, the treatment with the amino-protecting agent and the thiophenylation are carried out without isolating the respective intermediates.
42. A method of producing an optically active N-protected-S-phenylcysteine of the general formula (3) or a salt thereof,
wherein R1 represents an amino-protecting group and R0 represents a hydrogen atom or, taken together with R1, an amino-protecting group,
which comprises treating an optically active β-chloroalanine or a salt thereof with an amino-protecting agent
and then reacting the thus-prepared optically active N-protected-β-chloroalanine of the general formula (2) or a salt thereof with thiophenol under a basic condition,
wherein R1 represents an amino-protecting group and R0 represents a hydrogen atom or, taken together with R1, an amino-protecting group.
43. The method of producing according to claim 42 ,
wherein the amino-protecting agent is benzyl chloroformate
and the optically active N-protected-β-chloroalanine and optically active N-protected-S-phenylcysteine are represented by the general formula (2) and the general formula (3), respectively, in which R0 is a hydrogen atom and R1 is a carbobenzyloxy group.
44. The method of producing according to claim 42 or 43,
wherein the treatment with amino-protecting agent and the thiophenylation are carried out without isolating the respective intermediates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/026,726 US20020103399A1 (en) | 1997-12-27 | 2001-12-27 | Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP36781497 | 1997-12-27 | ||
JP9/367814 | 1997-12-27 | ||
JP10/186314 | 1998-07-01 | ||
JP18631498 | 1998-07-01 | ||
JP10/264397 | 1998-09-18 | ||
JP26439798 | 1998-09-18 | ||
US09/582,461 US6372941B1 (en) | 1997-12-27 | 1998-12-28 | Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
US10/026,726 US20020103399A1 (en) | 1997-12-27 | 2001-12-27 | Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/005983 Division WO1999033785A1 (en) | 1997-12-27 | 1998-12-28 | PROCESSES FOR PRODUCING β-HALOGENO-α-AMINO-CARBOXYLIC ACIDS AND PHENYLCYSTEINE DERIVATIVES AND INTERMEDIATES THEREOF |
US09/582,461 Division US6372941B1 (en) | 1997-12-27 | 1998-12-28 | Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020103399A1 true US20020103399A1 (en) | 2002-08-01 |
Family
ID=27325723
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,461 Expired - Fee Related US6372941B1 (en) | 1997-12-27 | 1998-12-28 | Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
US10/026,732 Abandoned US20020082450A1 (en) | 1997-12-27 | 2001-12-27 | Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
US10/026,726 Abandoned US20020103399A1 (en) | 1997-12-27 | 2001-12-27 | Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/582,461 Expired - Fee Related US6372941B1 (en) | 1997-12-27 | 1998-12-28 | Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
US10/026,732 Abandoned US20020082450A1 (en) | 1997-12-27 | 2001-12-27 | Processes for producing B-halogeno-a-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof |
Country Status (8)
Country | Link |
---|---|
US (3) | US6372941B1 (en) |
EP (1) | EP1046634B1 (en) |
JP (1) | JP4149668B2 (en) |
KR (1) | KR20010033648A (en) |
CN (1) | CN1283178A (en) |
DE (1) | DE69818105T2 (en) |
ES (1) | ES2207019T3 (en) |
WO (1) | WO1999033785A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147800A1 (en) * | 2007-05-25 | 2008-12-04 | Elan Pharmaceuticals, Inc. | Pyrazolopyrrolidines as inhibitors of gamma secretase |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407281B1 (en) * | 1998-01-13 | 2002-06-18 | Kaneka Corporation | Process for producing optically active cysteine derivatives |
CN1091439C (en) * | 2000-08-02 | 2002-09-25 | 南通市丰田助剂厂 | Method for producing N-benzyloxycarbony I S-phenyl L-cysteine |
GB0215375D0 (en) * | 2002-07-03 | 2002-08-14 | Univ Cambridge Tech | Organic-inorganic hybrid transistors |
JP2007246481A (en) * | 2006-03-17 | 2007-09-27 | Japan Science & Technology Agency | Method for synthesizing position- and stereoselective stable isotope-labeled serine, cystine and alanine |
EP3950673A1 (en) | 2014-04-30 | 2022-02-09 | Inspirna, Inc. | Inhibitors of creatine transport and uses thereof |
CN106146327B (en) * | 2015-04-03 | 2019-03-19 | 浙江海正药业股份有限公司 | A kind of synthetic method of D-Cycloserine intermediate |
CN105294528A (en) * | 2015-11-26 | 2016-02-03 | 成都百事兴科技实业有限公司 | Preparation method for L-selenocysteine |
RU2633542C2 (en) * | 2015-12-11 | 2017-10-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Пензенский государственный университет архитектуры и строительства" | Method for production of biologically active substance beta-chlorine -l-alanine |
CN109603472B (en) * | 2018-11-29 | 2021-03-23 | 河北彩客化学股份有限公司 | Adsorbent and method for treating waste gas containing sulfur dioxide |
CN112557574B (en) * | 2020-12-31 | 2023-05-09 | 成都普康生物科技有限公司 | Method for measuring content of CBZ-AEEA |
CN113603623A (en) * | 2021-08-13 | 2021-11-05 | 暨南大学 | Synthetic method and device of selenomethionine |
CN115872882B (en) * | 2021-09-27 | 2024-05-10 | 中国科学院大连化学物理研究所 | A kind of synthetic method of 3-chloro-alanine |
KR20250012580A (en) | 2022-05-13 | 2025-01-24 | 추가이 세이야쿠 가부시키가이샤 | A method for producing a salt of an amino acid or a salt of a peptide compound or a solvate of one of said salts, comprising a lithium salt precipitation step |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7605557A (en) * | 1975-06-12 | 1976-12-14 | Merck & Co Inc | PROCEDURE FOR THE FLUORDEHYDROXYLATION OF ALCOHOLS. |
IT1175926B (en) * | 1984-01-13 | 1987-08-12 | Debi Derivati Biologici | METHOD OF PREPARATION OF ALPHA-L-ASPARTYL-L-PHENYLALANINE |
JPS60258158A (en) * | 1984-06-05 | 1985-12-20 | Showa Denko Kk | Preparation of cysteine derivative |
JPS60258161A (en) * | 1984-06-05 | 1985-12-20 | Showa Denko Kk | Preparation of cysteine derivative |
US4985522A (en) * | 1987-06-30 | 1991-01-15 | The University Of Southern Mississippi | Polymers containing pendant urea groups |
US5756319A (en) * | 1995-07-18 | 1998-05-26 | Mitsui Toatsu Chemicals, Inc. | Production process of S-phenyl-L-cysteine |
-
1998
- 1998-12-28 DE DE69818105T patent/DE69818105T2/en not_active Expired - Fee Related
- 1998-12-28 US US09/582,461 patent/US6372941B1/en not_active Expired - Fee Related
- 1998-12-28 CN CN98812693A patent/CN1283178A/en active Pending
- 1998-12-28 JP JP2000526471A patent/JP4149668B2/en not_active Expired - Fee Related
- 1998-12-28 ES ES98961624T patent/ES2207019T3/en not_active Expired - Lifetime
- 1998-12-28 EP EP98961624A patent/EP1046634B1/en not_active Expired - Lifetime
- 1998-12-28 WO PCT/JP1998/005983 patent/WO1999033785A1/en not_active Application Discontinuation
- 1998-12-28 KR KR1020007007168A patent/KR20010033648A/en not_active Withdrawn
-
2001
- 2001-12-27 US US10/026,732 patent/US20020082450A1/en not_active Abandoned
- 2001-12-27 US US10/026,726 patent/US20020103399A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008147800A1 (en) * | 2007-05-25 | 2008-12-04 | Elan Pharmaceuticals, Inc. | Pyrazolopyrrolidines as inhibitors of gamma secretase |
US20090099235A1 (en) * | 2007-05-25 | 2009-04-16 | Darren Dressen | Pyrazolopyrrolidines as Inhibitors of Gamma Secretase |
Also Published As
Publication number | Publication date |
---|---|
EP1046634A1 (en) | 2000-10-25 |
ES2207019T3 (en) | 2004-05-16 |
CN1283178A (en) | 2001-02-07 |
EP1046634B1 (en) | 2003-09-10 |
US6372941B1 (en) | 2002-04-16 |
US20020082450A1 (en) | 2002-06-27 |
DE69818105T2 (en) | 2004-06-17 |
KR20010033648A (en) | 2001-04-25 |
EP1046634A4 (en) | 2001-10-17 |
JP4149668B2 (en) | 2008-09-10 |
WO1999033785A1 (en) | 1999-07-08 |
DE69818105D1 (en) | 2003-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6372941B1 (en) | Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof | |
EP0930292B1 (en) | Process for preparing beta-amino-alpha-hydroxy acid derivatives | |
US20060135784A1 (en) | Process for producing 3-amino-2-hydroxypropionic acid derivatives | |
US20060247458A1 (en) | Process for the production of optically active compounds having substituents at the 2-position | |
US6720449B2 (en) | Process for preparing optically active amino acid derivatives | |
US20020013499A1 (en) | Process for producing alpha-aminoketones | |
US7473803B2 (en) | Process for production of optically active 2-halogeno-carboxylic acids | |
US4879411A (en) | Method for racemization of optically active serine | |
US7094926B2 (en) | Process for producing optically active carboxylic acid substituted in 2-position | |
US9718765B1 (en) | Process for preparation of optically pure N-substituted-3-methoxypropionic acid derivatives | |
EP0288795B1 (en) | Method of preparation of optically active alpha-amino-acids | |
EP1078919B1 (en) | Synthesis of alpha-amino-alpha',alpha'-dihaloketones and process for the preparation of beta)-amino acid derivatives by the use of the same | |
JP3888402B2 (en) | Process for producing optically active N-carbobenzoxy-tert-leucine | |
JP4721339B2 (en) | Method for producing N-alkoxycarbonylamino acid | |
US5581009A (en) | Process for crystallization of L-phenylalanine monomethyl sulfate using added salt | |
JP4035856B2 (en) | Method for producing high optical purity optically active amino acid ester | |
EP1069109B1 (en) | Process for production of optically active N-protected-N-methyl-phenylalanine derivative | |
JP2000297069A (en) | Production of amino acid ester | |
JPH11100364A (en) | Production of high-purity n-protected s-phenylcysteine | |
JP2000186069A (en) | Isolation of n-protected-s-phenylcysteine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |