US20020103584A1 - High reliability pressure sensor - Google Patents
High reliability pressure sensor Download PDFInfo
- Publication number
- US20020103584A1 US20020103584A1 US09/749,305 US74930500A US2002103584A1 US 20020103584 A1 US20020103584 A1 US 20020103584A1 US 74930500 A US74930500 A US 74930500A US 2002103584 A1 US2002103584 A1 US 2002103584A1
- Authority
- US
- United States
- Prior art keywords
- pressure sensor
- pressure
- signal
- sensor assembly
- assembly according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002405 diagnostic procedure Methods 0.000 claims abstract description 25
- 230000003750 conditioning effect Effects 0.000 claims description 28
- 238000001514 detection method Methods 0.000 claims description 4
- 230000007257 malfunction Effects 0.000 abstract description 4
- 239000012530 fluid Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000012546 transfer Methods 0.000 description 6
- 230000001143 conditioned effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L15/00—Devices or apparatus for measuring two or more fluid pressure values simultaneously
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/321—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
- B60T8/3255—Systems in which the braking action is dependent on brake pedal data
- B60T8/3275—Systems with a braking assistant function, i.e. automatic full braking initiation in dependence of brake pedal velocity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/36—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
- B60T8/3615—Electromagnetic valves specially adapted for anti-lock brake and traction control systems
- B60T8/3675—Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
- B60T8/368—Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L27/00—Testing or calibrating of apparatus for measuring fluid pressure
- G01L27/007—Malfunction diagnosis, i.e. diagnosing a sensor defect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S303/00—Fluid-pressure and analogous brake systems
- Y10S303/01—Pressure comparison
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S303/00—Fluid-pressure and analogous brake systems
- Y10S303/02—Brake control by pressure comparison
- Y10S303/03—Electrical pressure sensor
Definitions
- This invention relates in general to pressure sensors used in hydraulic control systems and in particular to a high reliability pressure sensor utilized in a vehicle brake system with Hydraulic Brake Assist.
- HBA Hydraulic Brake Assist
- HBA provides maximum braking capability during an emergency braking situation.
- the brake pressure is sensed to determine if an emergency situation has occurred.
- the magnitude of the brake pedal stroke and speed of brake pedal movement can be monitored for an emergency braking situation.
- an emergency is identified by a certain pedal-application speed occurring along with a minimum level of brake-pedal force.
- a quick, deep stab at the brake pedal actives HBA while a quick shallow stab, as to cancel cruise control, or a slow but deep pedal application, as when slowing for a curve, will not active HBA.
- HBA Upon detection of an emergency braking situation, HBA increases brake application pressure to a maximum value and continues to hold the maximum pressure until the vehicle stops or the brake pedal is released, as illustrated in FIG. 1.
- vehicle braking force is plotted as a function of time.
- the lower curve, which is labeled 4 is for a brake system without HBA
- the upper curve, which is labeled 6 is for a brake system that includes HBA.
- HBA assures that the brakes remain applied with maximum force.
- FIG. 2 a typical brake control system 10 which has HBA included in an Anti-lock Brake System (ABS).
- ABS Anti-lock Brake System
- the brake control system 10 is intended to be exemplary and it will be appreciated that there are other brake control systems having different architecture than shown.
- a brake pedal 12 is mechanically coupled (not shown) to a brake light switch 13 and a dual reservoir master cylinder 14 .
- the master cylinder 14 is connected to a hydraulic control unit 16 by a pair of hydraulic lines 18 and 20 .
- the hydraulic control unit 16 includes a plurality of solenoid valves to control the brake pressure applied to the individual wheel brakes.
- the control unit 16 also typically includes a source of pressurized hydraulic fluid, such as a pump driven by an electric motor.
- the control unit 16 is connected via hydraulic lines 22 , 24 , 26 and 27 to individual wheel brakes (not shown) for the front wheels 28 and 30 and the rear wheels 32 and 33 .
- the brake circuit is diagonally split with one master cylinder reservoir controlling the brakes associated with the left front wheel 30 and right rear wheel 33 and the other master cylinder reservoir controlling the brakes associated with the right front wheel 28 and the left rear wheel 32 .
- the brake control system 10 also includes a pair of front wheel speed sensors 34 that generate signals that are proportional to the speed of the front wheels 28 and 30 and a pair of rear wheel speed sensors 36 that generate signals that are proportional to the speed of the rear wheels 32 and 33 .
- the wheel speed sensors 34 and 36 and the stop light switch 13 are electrically connected to an Electronic Control Unit (ECU) 38 .
- the control unit 38 includes a microprocessor (not shown), that, under the control of an algorithm, selectively actuates the solenoid valves and pump in the control unit 16 to correct excessive wheel slippage.
- the brake control system 10 further includes a pressure sensor 40 that monitors the hydraulic pressure in one of the master cylinder reservoirs. An pressure signal is supplied to the ECU 38 . The microprocessor monitors the pressure signal and responsive thereto, upon detecting an emergency brake application, to actuate HBA.
- a typical prior art pressure sensor assembly is illustrated generally at 44 in FIG. 3.
- the pressure sensor assembly includes a sensor element 46 that is electrically coupled to an Application Specific Integrated Circuit (ASIC) 47 . Hydraulic pressure is applied to the sensor element 46 .
- Both the sensor element 46 and the ASIC 47 are typically mounted in a common housing, that is shown schematically by the dashed line labeled 48 in FIG. 3.
- the sensor element 46 may include a plurality of strain gauges mounted upon one side of a thin diaphragm.
- the diaphragm is usually a disc formed from stainless steel.
- the strain gauges are typically arranged as a conventional half or full bridge circuit, such as, for example, a conventional thin film Wheatstone Bridge.
- the hydraulic brake fluid in the brake system is in contact with the side of the diaphragm opposite from the strain gauges.
- the hydraulic brake fluid is pressurized and causes the diaphragm to deflect from its rest position.
- the strain gauges are stretched or compressed, causing a change in the internal resistance of the gauges.
- the changed resistances result in a voltage appearing across the bridge circuit that is proportional to the magnitude of the pressure.
- the voltage is conditioned by the ASIC 47 .
- the ASIC 47 generates an analog or digital pressure signal that is applied to an input port of an ECU microprocessor 49 .
- the microprocessor 49 is included in the vehicle brake control system 10 .
- This invention relates to a high reliability pressure sensor utilized in a vehicle brake system with Hydraulic Brake Assist.
- HBA systems include a pressure sensor to detect an emergency stop condition. However, if the pressure sensor should malfunction or fail, it is possible that a false emergency stop signal may be generated that would trigger the HBA. It is known to improve HBA system reliability by including a second complete pressure sensor to provide a redundant pressure signal to the ECU microprocessor. The ECU microprocessor compares the two signals and, if the signals are different, it is assumed that one of the pressure sensors is malfunctioning and the HBA is disabled.
- the inclusion of two complete pressure sensors is both bulky and expensive. Two pressure sensors also require two ports in the hydraulic control unit which increases the potential for hydraulic fluid leakage. Accordingly, it would be desirable to improve the reliability of the measurement of the brake pressure in a HBA system without requiring two separate pressure sensors.
- the present invention contemplates a pressure sensor assembly for a hydraulic control unit that includes a pressure sensor housing adapted to be mounted upon a hydraulic control unit and a pressure sensor diaphragm carried by the housing.
- First and second pressure sensing elements are mounted upon the pressure sensor diaphragm.
- a first signal conditioning circuit is connected to the first pressure sensing element and a second signal conditioning circuit is connected to the second pressure sensing element The said first and second signal conditioning circuits are operable to generate first and second pressure signals at output ports.
- An active electronic device is connected to the output ports of the first and second signal conditioning circuits and is operative to compare the first and second pressure signals.
- the active electronic device includes a microprocessor; however, other devices, such as, for example, a comparator circuit also can be used.
- the electronic device Upon detecting a difference between the pressure signals the electronic device generates an error signal.
- the error signal can be generated when the difference between the pressure signals is non-zero or when the difference exceeds a predetermined threshold.
- the pressure sensor assembly is included in a hydraulic brake assist system and the electronic device is further operable to disable the hydraulic brake assist system upon generating the error signal.
- the first and second signal conditioning circuits can be separate electronic components or can be included in a single electronic component.
- the two pressure sensing elements can be connected to a single signal conditioning circuit.
- the signal conditioning circuit is operable to generate a digital pressure signal which includes pressure data from both of the pressure sensing elements.
- the digital pressure signal is time multiplexed.
- the pressure sensor assembly can include a temperature sensor with the digital signal generated by the signal conditioning circuit including temperature data.
- the pressure sensor assembly includes a single pressure sensing element connected to a signal conditioning circuit.
- the signal conditioning circuit being operative to generate a pressure signal.
- the signal conditioning circuit also includes at least one diagnostic test and is operable to generate an error signal upon detecting a predetermined fault condition.
- the associated active electronic device also can include at least one diagnostic test and be operative to generate an error signal upon detection of a predetermined fault condition.
- the active electronic device can be adapted to receive operating data from at least one vehicle component and to include the vehicle parameter data in the diagnostic test.
- FIG. 1 is a plot of braking force vs. time that illustrates the operation of Hydraulic Brake Assist.
- FIG. 2 is a schematic diagram of a brake control system in accordance with the prior art that includes Hydraulic Brake Assist.
- FIG. 3 is a schematic diagram of a pressure sensor that is included in the brake control system shown in FIG. 2.
- FIG. 4 is a schematic diagram of a pressure sensor for the brake control system shown in FIG. 2 that is in accordance with the present invention.
- FIG. 5 is a sectional view of the pressure sensor shown in FIG. 4.
- FIG. 6 is a schematic diagram of an alternate embodiment of the pressure sensor shown in FIG. 2.
- FIG. 7 is a schematic diagram of another alternate embodiment of the pressure sensor shown in FIG. 2.
- FIG. 8 is a schematic diagram of another alternate embodiment of the pressure sensor shown in FIG. 2.
- FIG. 9 is a flow chart for an algorithm for the operation of the pressure sensor illustrated in FIG. 8.
- FIG. 4 a schematic diagram for an improved pressure sensor that increases HBA system reliability by providing redundancy in a single pressure sensor assembly.
- the present invention contemplates placing two separate conventional sensor elements 52 and 54 upon a single thin diaphragm 56 within a single pressure sensor housing 58 .
- the pressure sensor structure shown in FIG. 5 is meant to be exemplary.
- the pressure sensor also can be configured differently than shown in FIG. 5, such as, for example, pressure sensor elements can be glued to a surface of a cavity that is then filled with a transfer fluid (not shown). A thin diaphragm would separate the transfer fluid from the brake fluid.
- any change in brake fluid pressure would be transmitted through the diaphragm to the transfer fluid. Changes in transfer fluid pressure would be detected by the pressure sensor elements. However, two sets of pressure sensor elements would be included in the cavity. As also shown in FIG. 5, the pressure sensing housing 58 is mounted upon a Hydraulic Control Unit (HCU) 16 ; however, it will be appreciated that the pressure sensor also can be integrally mounted within the HCU 16 not shown). Each of the sensor elements 52 and 54 generates a bridge voltage that is applied to an input port of an associated sensor ASIC 60 and 62 mounted upon a Printed Circuit Board (PCB) 64 .
- PCB Printed Circuit Board
- the first ASIC 60 conditions the bridge voltage generated by the associated sensor element 52 to obtain a first analog pressure output signal while the second ASIC 62 conditions the bridge voltage generated by the associated sensor element 62 to obtain a second analog pressure output signal.
- the first conditioned output pressure signal is supplied through an electrical connector 66 and over a first analog signal line 68 to a corresponding pressure input port 70 of an ECU microprocessor 72 .
- the second conditioned output pressure signal is supplied through the electrical connector 66 and over a second analog signal line 74 to a corresponding pressure input port 76 of the ECU microprocessor 72 .
- the ASIC's 60 and 62 can generate digital pressure output signals, in which case a digital signal line would connect the each of the ASIC's to the microprocessor 72 .
- the connector 66 includes contacts for power supply and ground connections (not shown).
- the ECU microprocessor 72 compares the two output pressure signals, and, if the signals are different, determines that the sensor assembly 50 has malfunctioned. Upon determination that the sensor assembly 50 has malfunctioned, the microprocessor 72 disables the HBA and generates a warning signal for the vehicle operator. In the preferred embodiment, the warning signal consists of illuminating a light on the vehicle dashboard (not shown).
- the invention contemplates using one of two modes of operation for the microprocessor test comparison. In the first mode, the microprocessor 72 determines that a malfunction has occurred if the two pressure signals are not identical, that is, the difference between the two pressure signals is non-zero.
- the microprocessor 72 can determine that a malfunction has occurred if the difference between the two pressure signals is greater than a pre-determined threshold. As long as the difference between the pressure signals is within the allowable range, the microprocessor 72 accepts the pressure signal data as correct and generates a digital estimated pressure signal.
- the microprocessor 72 is continually monitoring the two pressure signals while the vehicle is being operated.
- the pressure sensor 50 shown in FIGS. 4 and 5 provides physical redundancy by including two sensor elements, 52 and 54 , two ASIC's, 60 and 62 , and two analog signal transmission lines, 68 and 74 .
- the invention also contemplates an alternate structure for providing increased HBA system reliability with a single pressure sensor assembly for a HBA, as shown generally at 78 in FIG. 6.
- a single pressure sensor assembly for a HBA as shown generally at 78 in FIG. 6.
- the alternate structure 78 includes two pressure sensing elements 52 and 54 mounted upon a single pressure sensor diaphragm. Each of the sensor elements 52 and 54 generates a bridge voltage that is applied to a corresponding input port of a single chip 79 mounted upon the Printed Circuit Board (PCB) 64 (not shown).
- the chip 79 is formed to include two separate ASIC portions, that are labeled ASCI # 1 and ASCI # 2 in FIG. 6.
- Each of the ASIC portions conditions the bridge voltage of one of the sensor elements 52 and 54 to obtain two analog pressure output signals.
- the two conditioned output pressure signals are supplied through an electrical connector 66 over two analog lines 68 and 74 to two corresponding pressure input ports 70 and 76 of the ECU microprocessor 72 .
- the microprocessor 72 compares the two analog pressure signals to determine if the pressure sensor is functioning properly.
- the invention also contemplates a second alternate structure for providing increased HBA system reliability with a single pressure sensor assembly for a HBA, as shown generally at 80 in FIG. 7.
- the alternate system 80 includes two pressure sensing elements 52 and 54 mounted upon a single pressure sensor diaphragm.
- the bridge voltages generated by the two sensing elements 52 and 54 are applied to input ports of a single signal conditioning ASIC 82 .
- the ASIC 82 digitizes and conditions the bridge voltages.
- the digitized pressure signals are combined into a time-multiplexed signal and transmitted over a single transmission line 84 to a single pressure input port 85 of an ECU microprocessor 86 .
- the microprocessor 86 compares the pressure signals and if the difference between the signals is greater than a predetermined threshold, the microprocessor 86 generates an error signal and disables the HBA. Upon the HBA being disabled, a HBA failure indicator is illuminated to warn the vehicle operator.
- the pressure signals are transmitted every 3 milliseconds; however, other transmission time periods may be used.
- the invention contemplates that the brake fluid temperature is also sensed and transmitted to the microprocessor 86 ; however, the temperature sensing is optional.
- the use of a time-multiplexed signal allows a two-wire connection between the sensor and the microprocessor 86 with current switching similar to an active wheel sensor.
- the pressure sensor 80 is compatible with a 100K baud universal asynchronous receiver/transmitter line.
- the ASCI 82 can be programmed to periodically send manufacturer's calibration data and serial number to the ECU. This is contemplated as being done less frequently than the pressure and temperature data transmittal, such as, for example at one second intervals.
- the invention further contemplates a third alternate structure for providing increased HBA system reliability in a single pressure sensor assembly for a HBA, as shown generally at 90 in FIG. 8.
- the pressure sensor 90 has a single pressure sensor element 92 and a single sensor signal conditioning ASIC 94 .
- the ASIC 94 generates an analog pressure signal that is applied to a single pressure input port 96 of an ECU microprocessor 98 .
- the ASIC 94 is programmed to apply diagnostic tests itself and to the bridge voltage generated by the sensor 90 . Upon detecting an improper operating condition, the sensor ASIC 94 will generate an error signal to cause the ECU microprocessor 98 to disable the HBA.
- the ECU microprocessor 98 continuously applies diagnostic tests to the pressure signal received from the sensor ASIC 94 . Upon detecting a signal which is outside of an allowable operating range, the microprocessor 98 generates an error signal and disables the HBA. Upon disabling the HBA, the microprocessor 98 also illuminates a warning light to inform the vehicle operator of the problem.
- a regulated voltage supply supplies power to the pressure sensor and the bridge circuit output voltage is within the range that is greater than zero but less than the supply voltage.
- one of the diagnostic tests can include continuously monitoring the bridge output voltage to determine if the bridge output voltage is outside of the expected voltage range. For example, a determination that the bridge voltage is zero is an indication of a possible short circuit in the bridge while a voltage that is equal to the supply voltage is an indication of a possible open circuit in the bridge circuit.
- the ASIC 94 Upon encountering one of these conditions, the ASIC 94 would generate an error signal.
- the microprocessor 98 would be responsive to the error signal to disable the HBA.
- the invention also contemplates that the diagnostic tests could determine in-range failures, that is failures that could occur with the bridge output voltage remaining within the allowable bridge output voltage range. Thus, if the diagnostics detect an output voltage reading indicating an increased pressure that has an unusually long duration, the diagnostic tests determine that the sensor assembly 90 has failed and the HBA is disabled. Accordingly, the ASIC 94 would generate an error signal.
- the present invention also contemplates that diagnostic tests can be included in the ECU microprocessor 98 . It is further contemplated that the microprocessor 98 can set different fault flags to aid a technician in determining the specific cause of the fault. The tests also can correlate with external conditions, such as, for example, whether or not the vehicle brakes are applied. Thus, an increased pressure reading that occurs without the vehicle brakes being applied is an indication that the sensor 90 has probably failed.
- FIG. 9 A flow chart for a testing algorithm that includes N diagnostic tests is illustrated in FIG. 9. It is contemplated that the algorithm would be included as a subroutine in the ABS control algorithm. The algorithm is called periodically by the main control algorithm and entered through block 100 . An index I is initialized as one in functional block 102 . In functional block 104 , diagnostic test (I) is performed. For example, the current output voltage of the sensor bridge circuit is measured. The results of diagnostic test (I) are compared to the test criteria in decision block 104 . For example, is the bridge output voltage equal to zero?
- test criteria is not met, that is, there is a FALSE finding
- the subroutine transfers to functional block 106 where a disable flag is set and then exits back to the main control algorithm through block 107 .
- the test criteria is met in decision block 105 , that is, there is a TRUE finding
- the subroutine transfers to functional block 108 where the value of I is indexed by one. The new value of I is compared to the total number of diagnostic tests, N, in decision block 109 . If I is less than or equal to N, all N tests have not been performed and the subroutine returns to functional block 103 to apply the next diagnostic test, such as, for example, is the bridge output voltage equal to the regulated supply voltage.
- test criteria can include parameters determined from other vehicle components, such as, for example, are the vehicle brakes applied?
- an alternate embodiment of the algorithm shown in FIG. 9 would include sampling the other vehicle parameters (not shown).
- the invention also can be practiced with the ASIC's mounted externally from the pressure sensor.
- the ASIC's could be included in the ECU.
- the preferred embodiment has been illustrated and described as utilizing an ECU microprocessor to compare pressure sensor data, it will be appreciated that other electrical components can be utilized to compare the signals.
- the invention also can be practiced with an active electronic device, such as, for example, a comparator circuit, substituted for the microprocessor.
- the active electronic device or the microprocessor also could be included within the pressure sensor housing in lieu of being included in the ECU.
- TC Traction Control
- VSC Vehicle Stability Control
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Measuring Fluid Pressure (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Application No. 60/230,841, filed Sep. 7, 2000.
- This invention relates in general to pressure sensors used in hydraulic control systems and in particular to a high reliability pressure sensor utilized in a vehicle brake system with Hydraulic Brake Assist.
- Recently, Hydraulic Brake Assist (HBA) has been included on new vehicles. HBA provides maximum braking capability during an emergency braking situation. During a braking cycle, the brake pressure is sensed to determine if an emergency situation has occurred. Alternately, the magnitude of the brake pedal stroke and speed of brake pedal movement can be monitored for an emergency braking situation. Typically, an emergency is identified by a certain pedal-application speed occurring along with a minimum level of brake-pedal force. Thus, a quick, deep stab at the brake pedal actives HBA while a quick shallow stab, as to cancel cruise control, or a slow but deep pedal application, as when slowing for a curve, will not active HBA.
- Upon detection of an emergency braking situation, HBA increases brake application pressure to a maximum value and continues to hold the maximum pressure until the vehicle stops or the brake pedal is released, as illustrated in FIG. 1. In FIG. 1, vehicle braking force is plotted as a function of time. The lower curve, which is labeled4, is for a brake system without HBA, while the upper curve, which is labeled 6, is for a brake system that includes HBA. Typically, during an emergency braking situation, the vehicle operator partially lifts his foot from the brake pedal following his initial quick, deep stab. Thus, HBA assures that the brakes remain applied with maximum force.
- There are a number of know methods for integrating HBA with a vehicle brake system. One method is completely mechanical and involves modification of the vacuum brake booster to provide HBA. Another method is to include the HBA function in an Anti-lock Brake System (ABS). An ABS is often included in many vehicles to prevent wheel lock up during stops upon low mu road surfaces. Such systems detect excessive slippage of one or more controlled wheels and selectively reduce and reapply the pressure applied to the controlled wheel brakes to reduce the slippage and thereby avoid a potential locking-up of the wheel.
- Referring again to the drawings, there is illustrated in FIG. 2, a typical
brake control system 10 which has HBA included in an Anti-lock Brake System (ABS). Thebrake control system 10 is intended to be exemplary and it will be appreciated that there are other brake control systems having different architecture than shown. In FIG. 2, abrake pedal 12 is mechanically coupled (not shown) to abrake light switch 13 and a dualreservoir master cylinder 14. Themaster cylinder 14 is connected to ahydraulic control unit 16 by a pair ofhydraulic lines hydraulic control unit 16 includes a plurality of solenoid valves to control the brake pressure applied to the individual wheel brakes. Thecontrol unit 16 also typically includes a source of pressurized hydraulic fluid, such as a pump driven by an electric motor. Thecontrol unit 16 is connected viahydraulic lines front wheels rear wheels left front wheel 30 and rightrear wheel 33 and the other master cylinder reservoir controlling the brakes associated with the rightfront wheel 28 and the leftrear wheel 32. - The
brake control system 10 also includes a pair of frontwheel speed sensors 34 that generate signals that are proportional to the speed of thefront wheels wheel speed sensors 36 that generate signals that are proportional to the speed of therear wheels wheel speed sensors stop light switch 13 are electrically connected to an Electronic Control Unit (ECU) 38. Thecontrol unit 38 includes a microprocessor (not shown), that, under the control of an algorithm, selectively actuates the solenoid valves and pump in thecontrol unit 16 to correct excessive wheel slippage. - The
brake control system 10 further includes apressure sensor 40 that monitors the hydraulic pressure in one of the master cylinder reservoirs. An pressure signal is supplied to theECU 38. The microprocessor monitors the pressure signal and responsive thereto, upon detecting an emergency brake application, to actuate HBA. - A typical prior art pressure sensor assembly is illustrated generally at44 in FIG. 3. The pressure sensor assembly includes a
sensor element 46 that is electrically coupled to an Application Specific Integrated Circuit (ASIC) 47. Hydraulic pressure is applied to thesensor element 46. Both thesensor element 46 and the ASIC 47 are typically mounted in a common housing, that is shown schematically by the dashed line labeled 48 in FIG. 3. Thesensor element 46 may include a plurality of strain gauges mounted upon one side of a thin diaphragm. The diaphragm is usually a disc formed from stainless steel. The strain gauges are typically arranged as a conventional half or full bridge circuit, such as, for example, a conventional thin film Wheatstone Bridge. The hydraulic brake fluid in the brake system is in contact with the side of the diaphragm opposite from the strain gauges. When the vehicle brakes are applied, the hydraulic brake fluid is pressurized and causes the diaphragm to deflect from its rest position. As the diaphragm is deflected by the applied pressure, the strain gauges are stretched or compressed, causing a change in the internal resistance of the gauges. The changed resistances result in a voltage appearing across the bridge circuit that is proportional to the magnitude of the pressure. The voltage is conditioned by theASIC 47. The ASIC 47 generates an analog or digital pressure signal that is applied to an input port of anECU microprocessor 49. Themicroprocessor 49 is included in the vehiclebrake control system 10. - This invention relates to a high reliability pressure sensor utilized in a vehicle brake system with Hydraulic Brake Assist.
- As explained above, current HBA systems include a pressure sensor to detect an emergency stop condition. However, if the pressure sensor should malfunction or fail, it is possible that a false emergency stop signal may be generated that would trigger the HBA. It is known to improve HBA system reliability by including a second complete pressure sensor to provide a redundant pressure signal to the ECU microprocessor. The ECU microprocessor compares the two signals and, if the signals are different, it is assumed that one of the pressure sensors is malfunctioning and the HBA is disabled. However, the inclusion of two complete pressure sensors is both bulky and expensive. Two pressure sensors also require two ports in the hydraulic control unit which increases the potential for hydraulic fluid leakage. Accordingly, it would be desirable to improve the reliability of the measurement of the brake pressure in a HBA system without requiring two separate pressure sensors.
- The present invention contemplates a pressure sensor assembly for a hydraulic control unit that includes a pressure sensor housing adapted to be mounted upon a hydraulic control unit and a pressure sensor diaphragm carried by the housing. First and second pressure sensing elements are mounted upon the pressure sensor diaphragm. A first signal conditioning circuit is connected to the first pressure sensing element and a second signal conditioning circuit is connected to the second pressure sensing element The said first and second signal conditioning circuits are operable to generate first and second pressure signals at output ports. An active electronic device is connected to the output ports of the first and second signal conditioning circuits and is operative to compare the first and second pressure signals. In the preferred embodiment, the active electronic device includes a microprocessor; however, other devices, such as, for example, a comparator circuit also can be used. Upon detecting a difference between the pressure signals the electronic device generates an error signal. The error signal can be generated when the difference between the pressure signals is non-zero or when the difference exceeds a predetermined threshold. In the preferred embodiment, the pressure sensor assembly is included in a hydraulic brake assist system and the electronic device is further operable to disable the hydraulic brake assist system upon generating the error signal. The first and second signal conditioning circuits can be separate electronic components or can be included in a single electronic component.
- Alternately, the two pressure sensing elements can be connected to a single signal conditioning circuit. The signal conditioning circuit is operable to generate a digital pressure signal which includes pressure data from both of the pressure sensing elements. In the preferred embodiment, the digital pressure signal is time multiplexed. Additionally, the pressure sensor assembly can include a temperature sensor with the digital signal generated by the signal conditioning circuit including temperature data.
- It is further contemplated that the pressure sensor assembly includes a single pressure sensing element connected to a signal conditioning circuit. The signal conditioning circuit being operative to generate a pressure signal. The signal conditioning circuit also includes at least one diagnostic test and is operable to generate an error signal upon detecting a predetermined fault condition. Furthermore, the associated active electronic device also can include at least one diagnostic test and be operative to generate an error signal upon detection of a predetermined fault condition. Additionally, the active electronic device can be adapted to receive operating data from at least one vehicle component and to include the vehicle parameter data in the diagnostic test.
- Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
- FIG. 1 is a plot of braking force vs. time that illustrates the operation of Hydraulic Brake Assist.
- FIG. 2 is a schematic diagram of a brake control system in accordance with the prior art that includes Hydraulic Brake Assist.
- FIG. 3 is a schematic diagram of a pressure sensor that is included in the brake control system shown in FIG. 2.
- FIG. 4 is a schematic diagram of a pressure sensor for the brake control system shown in FIG. 2 that is in accordance with the present invention.
- FIG. 5 is a sectional view of the pressure sensor shown in FIG. 4.
- FIG. 6 is a schematic diagram of an alternate embodiment of the pressure sensor shown in FIG. 2.
- FIG. 7 is a schematic diagram of another alternate embodiment of the pressure sensor shown in FIG. 2.
- FIG. 8 is a schematic diagram of another alternate embodiment of the pressure sensor shown in FIG. 2.
- FIG. 9 is a flow chart for an algorithm for the operation of the pressure sensor illustrated in FIG. 8.
- Referring once more to the drawings, there is shown at50 in FIG. 4, a schematic diagram for an improved pressure sensor that increases HBA system reliability by providing redundancy in a single pressure sensor assembly. As best seen in FIG. 5, the present invention contemplates placing two separate
conventional sensor elements thin diaphragm 56 within a singlepressure sensor housing 58. It will be appreciated that the pressure sensor structure shown in FIG. 5 is meant to be exemplary. The pressure sensor also can be configured differently than shown in FIG. 5, such as, for example, pressure sensor elements can be glued to a surface of a cavity that is then filled with a transfer fluid (not shown). A thin diaphragm would separate the transfer fluid from the brake fluid. Any change in brake fluid pressure would be transmitted through the diaphragm to the transfer fluid. Changes in transfer fluid pressure would be detected by the pressure sensor elements. However, two sets of pressure sensor elements would be included in the cavity. As also shown in FIG. 5, thepressure sensing housing 58 is mounted upon a Hydraulic Control Unit (HCU) 16; however, it will be appreciated that the pressure sensor also can be integrally mounted within theHCU 16 not shown). Each of thesensor elements sensor ASIC 60 and 62 mounted upon a Printed Circuit Board (PCB) 64. - As shown in FIG. 4, the first ASIC60 conditions the bridge voltage generated by the associated
sensor element 52 to obtain a first analog pressure output signal while thesecond ASIC 62 conditions the bridge voltage generated by the associatedsensor element 62 to obtain a second analog pressure output signal. The first conditioned output pressure signal is supplied through anelectrical connector 66 and over a firstanalog signal line 68 to a correspondingpressure input port 70 of anECU microprocessor 72. Similarly, the second conditioned output pressure signal is supplied through theelectrical connector 66 and over a secondanalog signal line 74 to a corresponding pressure input port 76 of theECU microprocessor 72. Alternately, the ASIC's 60 and 62 can generate digital pressure output signals, in which case a digital signal line would connect the each of the ASIC's to themicroprocessor 72. Additionally, in the preferred embodiment, theconnector 66 includes contacts for power supply and ground connections (not shown). - The
ECU microprocessor 72 compares the two output pressure signals, and, if the signals are different, determines that thesensor assembly 50 has malfunctioned. Upon determination that thesensor assembly 50 has malfunctioned, themicroprocessor 72 disables the HBA and generates a warning signal for the vehicle operator. In the preferred embodiment, the warning signal consists of illuminating a light on the vehicle dashboard (not shown). The invention contemplates using one of two modes of operation for the microprocessor test comparison. In the first mode, themicroprocessor 72 determines that a malfunction has occurred if the two pressure signals are not identical, that is, the difference between the two pressure signals is non-zero. Alternately, themicroprocessor 72 can determine that a malfunction has occurred if the difference between the two pressure signals is greater than a pre-determined threshold. As long as the difference between the pressure signals is within the allowable range, themicroprocessor 72 accepts the pressure signal data as correct and generates a digital estimated pressure signal. - In the preferred embodiment, the
microprocessor 72 is continually monitoring the two pressure signals while the vehicle is being operated. Thus, thepressure sensor 50 shown in FIGS. 4 and 5 provides physical redundancy by including two sensor elements, 52 and 54, two ASIC's, 60 and 62, and two analog signal transmission lines, 68 and 74. - The invention also contemplates an alternate structure for providing increased HBA system reliability with a single pressure sensor assembly for a HBA, as shown generally at78 in FIG. 6. Components in FIG. 6 that are similar to components shown in FIG. 4 have the same numerical designators. Similar to the
previous pressure sensor 50, thealternate structure 78 includes twopressure sensing elements sensor elements single chip 79 mounted upon the Printed Circuit Board (PCB) 64 (not shown). Thechip 79 is formed to include two separate ASIC portions, that are labeledASCI # 1 andASCI # 2 in FIG. 6. Each of the ASIC portions conditions the bridge voltage of one of thesensor elements electrical connector 66 over twoanalog lines pressure input ports 70 and 76 of theECU microprocessor 72. By combining the two ASIC's into a single chip, the number of components is reduced while the redundancy of thesensor elements 42 and 54 andtransmission lines microprocessor 72 compares the two analog pressure signals to determine if the pressure sensor is functioning properly. - The invention also contemplates a second alternate structure for providing increased HBA system reliability with a single pressure sensor assembly for a HBA, as shown generally at80 in FIG. 7. Components in FIG. 7 that are similar to components shown in FIG. 4 have the same numerical designators. Similar to the previously described
system 50, thealternate system 80 includes twopressure sensing elements sensing elements single transmission line 84 to a singlepressure input port 85 of anECU microprocessor 86. - The
microprocessor 86 compares the pressure signals and if the difference between the signals is greater than a predetermined threshold, themicroprocessor 86 generates an error signal and disables the HBA. Upon the HBA being disabled, a HBA failure indicator is illuminated to warn the vehicle operator. In the preferred embodiment, the pressure signals are transmitted every 3 milliseconds; however, other transmission time periods may be used. Additionally, the invention contemplates that the brake fluid temperature is also sensed and transmitted to themicroprocessor 86; however, the temperature sensing is optional. The use of a time-multiplexed signal allows a two-wire connection between the sensor and themicroprocessor 86 with current switching similar to an active wheel sensor. In the preferred embodiment, thepressure sensor 80 is compatible with a 100K baud universal asynchronous receiver/transmitter line. Furthermore, as an option, the ASCI 82 can be programmed to periodically send manufacturer's calibration data and serial number to the ECU. This is contemplated as being done less frequently than the pressure and temperature data transmittal, such as, for example at one second intervals. - The invention further contemplates a third alternate structure for providing increased HBA system reliability in a single pressure sensor assembly for a HBA, as shown generally at90 in FIG. 8. The
pressure sensor 90 has a single pressure sensor element 92 and a single sensorsignal conditioning ASIC 94. TheASIC 94 generates an analog pressure signal that is applied to a singlepressure input port 96 of anECU microprocessor 98. TheASIC 94 is programmed to apply diagnostic tests itself and to the bridge voltage generated by thesensor 90. Upon detecting an improper operating condition, thesensor ASIC 94 will generate an error signal to cause theECU microprocessor 98 to disable the HBA. Additionally, theECU microprocessor 98 continuously applies diagnostic tests to the pressure signal received from thesensor ASIC 94. Upon detecting a signal which is outside of an allowable operating range, themicroprocessor 98 generates an error signal and disables the HBA. Upon disabling the HBA, themicroprocessor 98 also illuminates a warning light to inform the vehicle operator of the problem. - A typical diagnostic tests will be described next. In the preferred embodiment, a regulated voltage supply supplies power to the pressure sensor and the bridge circuit output voltage is within the range that is greater than zero but less than the supply voltage. Thus, one of the diagnostic tests can include continuously monitoring the bridge output voltage to determine if the bridge output voltage is outside of the expected voltage range. For example, a determination that the bridge voltage is zero is an indication of a possible short circuit in the bridge while a voltage that is equal to the supply voltage is an indication of a possible open circuit in the bridge circuit. Upon encountering one of these conditions, the
ASIC 94 would generate an error signal. Themicroprocessor 98 would be responsive to the error signal to disable the HBA. - The invention also contemplates that the diagnostic tests could determine in-range failures, that is failures that could occur with the bridge output voltage remaining within the allowable bridge output voltage range. Thus, if the diagnostics detect an output voltage reading indicating an increased pressure that has an unusually long duration, the diagnostic tests determine that the
sensor assembly 90 has failed and the HBA is disabled. Accordingly, theASIC 94 would generate an error signal. - The present invention also contemplates that diagnostic tests can be included in the
ECU microprocessor 98. It is further contemplated that themicroprocessor 98 can set different fault flags to aid a technician in determining the specific cause of the fault. The tests also can correlate with external conditions, such as, for example, whether or not the vehicle brakes are applied. Thus, an increased pressure reading that occurs without the vehicle brakes being applied is an indication that thesensor 90 has probably failed. - It will be appreciated that the above described diagnostic tests are intended to be exemplary and that the invention also can be practiced with other specific diagnostic tests. The replacement of two complete pressure sensors with one allows a corresponding reduction of the overall size of the hydraulic control unit. Furthermore, with the continuing miniaturization and reduction of costs for the associated ASCI's, it is expected that the present invention will also result in reduced costs manufacturing costs for the HBA system. The inventors believe that sufficient tests can be developed to assure that the level of reliability required for
single sensor 90 to be utilized in a HBA can be achieved. - A flow chart for a testing algorithm that includes N diagnostic tests is illustrated in FIG. 9. It is contemplated that the algorithm would be included as a subroutine in the ABS control algorithm. The algorithm is called periodically by the main control algorithm and entered through
block 100. An index I is initialized as one infunctional block 102. In functional block 104, diagnostic test (I) is performed. For example, the current output voltage of the sensor bridge circuit is measured. The results of diagnostic test (I) are compared to the test criteria in decision block 104. For example, is the bridge output voltage equal to zero? If the test criteria is not met, that is, there is a FALSE finding, the subroutine transfers tofunctional block 106 where a disable flag is set and then exits back to the main control algorithm throughblock 107. If the test criteria is met indecision block 105, that is, there is a TRUE finding, the subroutine transfers tofunctional block 108 where the value of I is indexed by one. The new value of I is compared to the total number of diagnostic tests, N, indecision block 109. If I is less than or equal to N, all N tests have not been performed and the subroutine returns tofunctional block 103 to apply the next diagnostic test, such as, for example, is the bridge output voltage equal to the regulated supply voltage. If I is greater than N indecision block 109, all tests have been run and the subroutine exits back to the main control algorithm throughblock 107. As described above, the test criteria can include parameters determined from other vehicle components, such as, for example, are the vehicle brakes applied? Thus, an alternate embodiment of the algorithm shown in FIG. 9 would include sampling the other vehicle parameters (not shown). - While the preferred embodiment of the invention has been illustrated and described with a pressure sensor that included ASIC's, it will be appreciated that the invention also can be practiced with the ASIC's mounted externally from the pressure sensor. For example, the ASIC's could be included in the ECU. Similarly, while the preferred embodiment has been illustrated and described as utilizing an ECU microprocessor to compare pressure sensor data, it will be appreciated that other electrical components can be utilized to compare the signals. For example, the invention also can be practiced with an active electronic device, such as, for example, a comparator circuit, substituted for the microprocessor. Furthermore, the active electronic device or the microprocessor also could be included within the pressure sensor housing in lieu of being included in the ECU. Additionally, while the preferred embodiment of the invention has been illustrated and described as being included in an ABS, it will be appreciated that the invention also can be practice with Traction Control (TC) and/or Vehicle Stability Control (VSC) systems.
- In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
Claims (24)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/749,305 US6434456B1 (en) | 2000-09-07 | 2000-12-27 | High reliability pressure sensor |
PCT/US2001/028186 WO2002020998A2 (en) | 2000-09-07 | 2001-09-07 | High reliability pressure sensor |
US10/363,835 US6843537B2 (en) | 2000-09-07 | 2001-09-07 | High reliability pressure sensor |
AU2001288942A AU2001288942A1 (en) | 2000-09-07 | 2001-09-07 | High reliability pressure sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23084100P | 2000-09-07 | 2000-09-07 | |
US09/749,305 US6434456B1 (en) | 2000-09-07 | 2000-12-27 | High reliability pressure sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10363835 Continuation | 2001-09-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020103584A1 true US20020103584A1 (en) | 2002-08-01 |
US6434456B1 US6434456B1 (en) | 2002-08-13 |
Family
ID=26924611
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/749,305 Expired - Lifetime US6434456B1 (en) | 2000-09-07 | 2000-12-27 | High reliability pressure sensor |
US10/363,835 Expired - Lifetime US6843537B2 (en) | 2000-09-07 | 2001-09-07 | High reliability pressure sensor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/363,835 Expired - Lifetime US6843537B2 (en) | 2000-09-07 | 2001-09-07 | High reliability pressure sensor |
Country Status (3)
Country | Link |
---|---|
US (2) | US6434456B1 (en) |
AU (1) | AU2001288942A1 (en) |
WO (1) | WO2002020998A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140090477A1 (en) * | 2009-04-09 | 2014-04-03 | Kulite Semiconductor Products, Inc. | Internally switched multiple range transducers |
US9927318B2 (en) * | 2014-05-19 | 2018-03-27 | Honeywell International Inc | Systems and methods that allow for simultaneous sensor and signal conditioning circuit performance testing |
US20200198611A1 (en) * | 2018-12-21 | 2020-06-25 | Volkswagen Aktiengesellschaft | Brake system for a transportation vehicle and transportation vehicle with a brake system |
CN112880800A (en) * | 2021-03-25 | 2021-06-01 | 梅特勒-托利多(常州)精密仪器有限公司 | Digital weighing sensor with redundant design |
US11149582B2 (en) * | 2019-10-16 | 2021-10-19 | Pratt & Whitney Canada Corp. | Health monitoring for multi-channel pressure transducers |
CN114441093A (en) * | 2021-12-31 | 2022-05-06 | 浙江天信仪表科技有限公司 | Fault diagnosis method, device and equipment for pressure transmitter of water supply equipment |
US11325574B2 (en) * | 2016-09-22 | 2022-05-10 | Robert Bosch Gmbh | Brake system control device for a vehicle |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6434456B1 (en) * | 2000-09-07 | 2002-08-13 | Kelsey-Hayes Company | High reliability pressure sensor |
DE10061153A1 (en) * | 2000-12-08 | 2002-06-27 | Lucas Varity Gmbh | Sensor arrangement for a vacuum brake booster and a vacuum brake booster equipped with it |
DE10061152A1 (en) * | 2000-12-08 | 2002-06-27 | Lucas Varity Gmbh | Sensor arrangement for a vacuum brake booster and a vacuum brake booster equipped with it |
DE10065759A1 (en) * | 2000-12-30 | 2002-07-04 | Bosch Gmbh Robert | System for monitoring motor vehicle braking system pressure sensor that can be used both with braking systems having a booster pump and those without |
JP2004533968A (en) * | 2001-07-12 | 2004-11-11 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | Apparatus and method for detecting brake pressure |
DE10156673A1 (en) * | 2001-11-17 | 2003-05-28 | Wabco Gmbh & Co Ohg | Method for operating an electrically controlled pressure brake system |
FR2833350B1 (en) * | 2001-12-07 | 2004-03-19 | Regie Autonome Transports | SYSTEM FOR THE AUTOMATIC DETERMINATION OF EMERGENCY BRAKING CHARACTERISTICS OF A PUBLIC TRANSPORT VEHICLE, ESPECIALLY RAIL |
DE10210925A1 (en) * | 2002-03-13 | 2003-10-02 | Bosch Gmbh Robert | Procedure for checking the functionality of a pressure sensor |
US6850833B1 (en) | 2003-11-03 | 2005-02-01 | Cummins, Inc. | System for diagnosing delta pressure sensor operation |
US6959607B2 (en) * | 2003-11-10 | 2005-11-01 | Honeywell International Inc. | Differential pressure sensor impulse line monitor |
ATE470844T1 (en) * | 2004-09-24 | 2010-06-15 | Grundfos As | PRESSURE SENSOR |
JP4715183B2 (en) * | 2004-12-13 | 2011-07-06 | 株式会社アドヴィックス | Vehicle control system using brake fluid pressure |
US7338136B2 (en) | 2004-12-16 | 2008-03-04 | Honda Motor Co., Ltd. | Electronic braking device |
JP4662137B2 (en) * | 2005-06-03 | 2011-03-30 | 株式会社デンソー | Vehicle collision detection method |
US20070150136A1 (en) * | 2005-11-30 | 2007-06-28 | Doll Kenneth A | Periodic rate sensor self test |
EP1843024B1 (en) * | 2006-04-06 | 2017-07-26 | Magneti Marelli S.p.A. | Power train control method and system |
DE102006032727A1 (en) * | 2006-07-14 | 2008-01-31 | Lucas Automotive Gmbh | Method and device for checking the plausibility of measured values in the automotive environment |
DE102007014898A1 (en) * | 2007-03-26 | 2008-10-02 | Vega Grieshaber Kg | Measuring cell arrangement, in particular pressure measuring cell arrangement |
US8320751B2 (en) * | 2007-12-20 | 2012-11-27 | S.C. Johnson & Son, Inc. | Volatile material diffuser and method of preventing undesirable mixing of volatile materials |
US8670894B2 (en) * | 2009-04-28 | 2014-03-11 | GM Global Technology Operations LLC | Control system and method for sensor signal out of range detection |
US8215288B2 (en) * | 2009-04-29 | 2012-07-10 | GM Global Technology Operations LLC | Control system and method for controlling an engine in response to detecting an out of range pressure signal |
DE102009028938A1 (en) * | 2009-08-27 | 2011-03-03 | Endress + Hauser Gmbh + Co. Kg | Field device for determining or monitoring a physical or chemical variable |
DE202009017430U1 (en) * | 2009-12-23 | 2011-05-05 | Liebherr-Werk Ehingen Gmbh | sensor |
DE102011080169A1 (en) * | 2011-08-01 | 2013-02-07 | Robert Bosch Gmbh | Communication link for sensors in vehicle control systems |
CN103732462B (en) * | 2011-08-08 | 2016-09-07 | 丰田自动车株式会社 | The control device of vehicle, the control method of vehicle and vehicle |
JP5423883B2 (en) * | 2011-09-20 | 2014-02-19 | トヨタ自動車株式会社 | Sound source detection device |
CN102706505A (en) * | 2012-05-31 | 2012-10-03 | 西北工业大学 | Redundancy device for aircraft electric brake pressure sensor and method for controlling redundancy device |
CN102706271A (en) * | 2012-05-31 | 2012-10-03 | 西北工业大学 | Redundancy device for angle position sensors of control plane of steering engine and control method for device |
US9482220B2 (en) * | 2012-06-07 | 2016-11-01 | Asco Power Technologies, L.P. | Dual redundancy in fire pump controllers |
US20140257729A1 (en) * | 2013-03-07 | 2014-09-11 | Eric A. Wolf | Time synchronized redundant sensors |
DE102013206428A1 (en) * | 2013-04-11 | 2014-10-30 | Robert Bosch Gmbh | Method for operating a common rail system of a motor vehicle and means for implementing it |
FR3007134B1 (en) * | 2013-06-17 | 2018-11-16 | Auxitrol S.A. | PRESSURE MEASURING SYSTEM DISCRIMINATING FAILURE OF A PRESSURE OR DEPRESSION |
CN105980816B (en) * | 2014-01-24 | 2022-04-15 | 高准公司 | Vibration flow meters and methods and diagnostics for meter verification |
TWI541490B (en) * | 2014-06-20 | 2016-07-11 | 國立清華大學 | A high dynamic range sensing device and a sensing method thereof |
US9465683B2 (en) * | 2014-07-07 | 2016-10-11 | Infineon Technologies Ag | Apparatus and a method for providing an error signal for a control unit |
DE102014016519B3 (en) * | 2014-11-10 | 2015-09-10 | Micronas Gmbh | Method for increasing the reliability of transducers |
DE102014119400A1 (en) * | 2014-12-22 | 2016-06-23 | Endress + Hauser Gmbh + Co. Kg | Pressure transducer and method of operating such |
US10059322B2 (en) * | 2015-10-23 | 2018-08-28 | Tse Brakes, Inc. | Apparatuses, systems, and methods for detecting air brake spring failure on a vehicle |
CN107290099B (en) | 2016-04-11 | 2021-06-08 | 森萨塔科技公司 | Pressure sensor, plug for a pressure sensor and method for producing a plug |
EP3236226B1 (en) | 2016-04-20 | 2019-07-24 | Sensata Technologies, Inc. | Method of manufacturing a pressure sensor |
US10545064B2 (en) | 2017-05-04 | 2020-01-28 | Sensata Technologies, Inc. | Integrated pressure and temperature sensor |
US10323998B2 (en) | 2017-06-30 | 2019-06-18 | Sensata Technologies, Inc. | Fluid pressure sensor |
US10724907B2 (en) | 2017-07-12 | 2020-07-28 | Sensata Technologies, Inc. | Pressure sensor element with glass barrier material configured for increased capacitive response |
US10557770B2 (en) | 2017-09-14 | 2020-02-11 | Sensata Technologies, Inc. | Pressure sensor with improved strain gauge |
JP2019200067A (en) * | 2018-05-14 | 2019-11-21 | 横河電機株式会社 | Measuring system, measuring method, and pressure measuring device |
ES1217769Y (en) * | 2018-07-26 | 2018-12-13 | Cebi Electromechanical Components Spain S A | PRESSURE METER FOR FLUID CIRCUITS |
CN112067193B (en) * | 2020-09-14 | 2022-03-25 | 中国空气动力研究与发展中心超高速空气动力研究所 | Aircraft surface pressure sensor testing device and testing method |
GB2603530B (en) * | 2021-02-09 | 2023-03-15 | Rolls Royce Plc | Computer-implemented methods, apparatus, computer programs, and non-transitory computer readable storage mediums for determining a value of a parameter |
US11674084B2 (en) | 2021-02-11 | 2023-06-13 | Hrl Laboratories, Llc | Anisotropic thermally conductive polymers and methods of making and using the same |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4222277A (en) * | 1979-08-13 | 1980-09-16 | Kulite Semiconductor Products, Inc. | Media compatible pressure transducer |
DE3447396A1 (en) * | 1984-12-24 | 1986-07-03 | Robert Bosch Gmbh, 7000 Stuttgart | ELECTRIC PRESSURE |
JPH03233334A (en) * | 1990-02-08 | 1991-10-17 | Nec Corp | Semiconductor pressure sensor |
DE4133268A1 (en) | 1991-10-08 | 1993-04-15 | Bosch Gmbh Robert | DEVICE FOR CONTROLLING THE DRIVE POWER OF A VEHICLE |
DE4309850C2 (en) | 1993-03-26 | 1996-12-12 | Lucas Ind Plc | Brake booster system for regulating a brake pressure with a brake booster |
JP3069268B2 (en) * | 1995-06-08 | 2000-07-24 | ボッシュ ブレーキ システム株式会社 | Brake system |
JP3752756B2 (en) | 1996-04-08 | 2006-03-08 | 株式会社デンソー | Brake device for vehicle |
DE19636443A1 (en) | 1996-09-07 | 1998-03-12 | Bosch Gmbh Robert | Device and method for monitoring sensors in a vehicle |
US5709438A (en) | 1996-12-19 | 1998-01-20 | Robert Bosch Technology Corporation | Failed booster back-up braking system |
JP3771672B2 (en) * | 1997-05-27 | 2006-04-26 | 曙ブレーキ工業株式会社 | Brake pedal operation detection device |
DE19723615A1 (en) * | 1997-06-05 | 1998-12-10 | Trw Automotive Electron & Comp | Pressure sensor unit, especially for automotive engineering |
DE19851996A1 (en) * | 1997-11-11 | 1999-05-12 | Akebono Brake Ind | Control system for vehicle brake |
EP1068120B1 (en) * | 1998-03-31 | 2002-07-03 | Continental Teves AG & Co. oHG | Pressure sensor assembly |
DE19907338A1 (en) | 1998-10-27 | 2000-05-04 | Continental Teves Ag & Co Ohg | Brake system and method for its control |
AU2030800A (en) * | 1998-11-25 | 2000-06-13 | Kelsey-Hayes Company | Structure for mounting a cluster of pressure sensors upon an electro-hydraulic brake system control unit |
US6434456B1 (en) | 2000-09-07 | 2002-08-13 | Kelsey-Hayes Company | High reliability pressure sensor |
DE10065759A1 (en) * | 2000-12-30 | 2002-07-04 | Bosch Gmbh Robert | System for monitoring motor vehicle braking system pressure sensor that can be used both with braking systems having a booster pump and those without |
US6484816B1 (en) * | 2001-01-26 | 2002-11-26 | Martin-Decker Totco, Inc. | Method and system for controlling well bore pressure |
DE10114862B9 (en) * | 2001-03-26 | 2007-04-26 | First Sensor Technology Gmbh | Pressure sensor device |
-
2000
- 2000-12-27 US US09/749,305 patent/US6434456B1/en not_active Expired - Lifetime
-
2001
- 2001-09-07 AU AU2001288942A patent/AU2001288942A1/en not_active Abandoned
- 2001-09-07 WO PCT/US2001/028186 patent/WO2002020998A2/en active Application Filing
- 2001-09-07 US US10/363,835 patent/US6843537B2/en not_active Expired - Lifetime
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140090477A1 (en) * | 2009-04-09 | 2014-04-03 | Kulite Semiconductor Products, Inc. | Internally switched multiple range transducers |
US9291516B2 (en) * | 2009-04-09 | 2016-03-22 | Kulite Semiconductor Products, Inc. | Internally switched multiple range transducers |
US9766146B2 (en) | 2009-04-09 | 2017-09-19 | Kulite Semiconductor Products, Inc. | Internally switched multiple range transducers |
US9927318B2 (en) * | 2014-05-19 | 2018-03-27 | Honeywell International Inc | Systems and methods that allow for simultaneous sensor and signal conditioning circuit performance testing |
US11325574B2 (en) * | 2016-09-22 | 2022-05-10 | Robert Bosch Gmbh | Brake system control device for a vehicle |
US20200198611A1 (en) * | 2018-12-21 | 2020-06-25 | Volkswagen Aktiengesellschaft | Brake system for a transportation vehicle and transportation vehicle with a brake system |
US12090973B2 (en) * | 2018-12-21 | 2024-09-17 | Volkswagen Aktiengesellschaft | Brake system for a transportation vehicle and transportation vehicle with a brake system |
US11149582B2 (en) * | 2019-10-16 | 2021-10-19 | Pratt & Whitney Canada Corp. | Health monitoring for multi-channel pressure transducers |
CN112880800A (en) * | 2021-03-25 | 2021-06-01 | 梅特勒-托利多(常州)精密仪器有限公司 | Digital weighing sensor with redundant design |
CN114441093A (en) * | 2021-12-31 | 2022-05-06 | 浙江天信仪表科技有限公司 | Fault diagnosis method, device and equipment for pressure transmitter of water supply equipment |
Also Published As
Publication number | Publication date |
---|---|
AU2001288942A1 (en) | 2002-03-22 |
WO2002020998A9 (en) | 2003-04-03 |
WO2002020998A3 (en) | 2002-05-30 |
US20040015282A1 (en) | 2004-01-22 |
WO2002020998A2 (en) | 2002-03-14 |
US6434456B1 (en) | 2002-08-13 |
US6843537B2 (en) | 2005-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6434456B1 (en) | High reliability pressure sensor | |
US6634221B2 (en) | Detection and identification of pressure-sensor faults in electro-hydraulic (EHB) braking systems | |
US4484784A (en) | Dual-circuit brake apparatus | |
US4784442A (en) | Brake pedal valve with setpoint adjuster including displacement and force sensors for electrically controlled brake system | |
JP3705808B2 (en) | Electronic brake device | |
US5954407A (en) | Process and device for an open-loop control and a closed-loop control of a brake system of a vehicle | |
US9145121B2 (en) | Method for monitoring a brake system and brake system | |
EP0386953B1 (en) | Electronic braking system | |
US7884494B2 (en) | Pushbutton for actuating an electropneumatic parking brake (EPH) | |
US6705683B2 (en) | Method for monitoring the emergency braking capability of an electrohydraulic braking system | |
JPH09216556A (en) | Inspection method and device of vehicle brake device | |
GB1600703A (en) | Central control systems for vehicles | |
US8087732B2 (en) | Method and apparatus for detecting a circuit failure in a vehicle brake system | |
CN111328312B (en) | System and method for performing diagnostics on a vehicle hydraulic system in a stopped state | |
EP0249756B1 (en) | Anti-lock braking system utilizing booster supply for improved braking in specific failure modes | |
US20080197696A1 (en) | Extreme emergency braking systems for brake-by-wire brake systems | |
GB2443921A (en) | Fail-safe hydraulic braking system | |
JP3008289B2 (en) | Method of checking operation of anti-skid device for automobile | |
CN115503663A (en) | Brake device for vehicle | |
US6765391B2 (en) | Low cost asic architecture for safety critical applications monitoring an applied stimulus | |
JPH0751963Y2 (en) | Brake pedal switch failure diagnostic device | |
US12252108B2 (en) | Braking system and vehicle having the braking system | |
US12012083B2 (en) | Method for monitoring the operational reliability of a braking system in a vehicle | |
US12005881B2 (en) | Method for functional testing of a pressure generator assembly of an electronically slip-controllable external power braking system having redundant brake pressure generation, in particular for an autonomously drivable motor vehicle | |
CN113272188B (en) | Device and method for determining the rotational speed of at least one wheel of a vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KELSEY-HAYES COMPANY, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BABALA, MIKE L.;BOLITHO, MARK;BARON, THOMAS;AND OTHERS;REEL/FRAME:011638/0621;SIGNING DATES FROM 20010118 TO 20010227 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, NEW YORK Free format text: THE US GUARANTEE AND COLLATERAL AGREEMENT;ASSIGNOR:KELSEY-HAYES COMPANY;REEL/FRAME:014022/0236 Effective date: 20030228 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:KELSEY-HAYES COMPANY;TRW AUTOMOTIVE U.S. LLC;TRW VEHICLE SAFETY SYSTEMS INC.;REEL/FRAME:015991/0001 Effective date: 20050124 Owner name: JPMORGAN CHASE BANK, N.A.,NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:KELSEY-HAYES COMPANY;TRW AUTOMOTIVE U.S. LLC;TRW VEHICLE SAFETY SYSTEMS INC.;REEL/FRAME:015991/0001 Effective date: 20050124 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY AGREEMENT;ASSIGNORS:TRW VEHICLE SAFETY SYSTEMS INC.;TRW AUTOMOTIVE U.S. LLC;KELSEY-HAYES COMPANY;REEL/FRAME:029529/0534 Effective date: 20120928 |
|
AS | Assignment |
Owner name: TRW AUTOMOTIVE U.S. LLC, MICHIGAN Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:031645/0697 Effective date: 20131028 Owner name: TRW VEHICLE SAFETY SYSTEMS INC., MICHIGAN Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:031645/0697 Effective date: 20131028 Owner name: TRW INTELLECTUAL PROPERTY CORP., MICHIGAN Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:031645/0697 Effective date: 20131028 Owner name: KELSEY-HAYES COMPANY, MICHIGAN Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:031645/0697 Effective date: 20131028 |
|
FPAY | Fee payment |
Year of fee payment: 12 |