US20020102410A1 - Interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications - Google Patents
Interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications Download PDFInfo
- Publication number
- US20020102410A1 US20020102410A1 US09/772,620 US77262001A US2002102410A1 US 20020102410 A1 US20020102410 A1 US 20020102410A1 US 77262001 A US77262001 A US 77262001A US 2002102410 A1 US2002102410 A1 US 2002102410A1
- Authority
- US
- United States
- Prior art keywords
- fuser
- polysiloxane
- shaped product
- fusing
- toner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 polytetra fluoroethylene Polymers 0.000 title claims abstract description 44
- 229920001343 polytetrafluoroethylene Polymers 0.000 title claims abstract description 16
- 239000004810 polytetrafluoroethylene Substances 0.000 title claims abstract description 15
- 229920000642 polymer Polymers 0.000 title claims abstract description 10
- 229920002379 silicone rubber Polymers 0.000 title description 10
- 229940058401 polytetrafluoroethylene Drugs 0.000 title 1
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 claims abstract description 16
- 229920001971 elastomer Polymers 0.000 claims abstract description 13
- 239000000806 elastomer Substances 0.000 claims abstract description 13
- 239000002344 surface layer Substances 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 6
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 21
- 239000003795 chemical substances by application Substances 0.000 description 17
- 229920001973 fluoroelastomer Polymers 0.000 description 12
- 239000000945 filler Substances 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 229920002545 silicone oil Polymers 0.000 description 4
- 229920005992 thermoplastic resin Polymers 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001169 thermoplastic Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 229930185605 Bisphenol Natural products 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 206010061592 cardiac fibrillation Diseases 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005796 dehydrofluorination reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002600 fibrillogenic effect Effects 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- 229920004466 Fluon® PCTFE Polymers 0.000 description 1
- 239000001825 Polyoxyethene (8) stearate Substances 0.000 description 1
- 101100483855 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UPC2 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical class [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000013005 condensation curing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000004815 dispersion polymer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000000725 trifluoropropyl group Chemical group [H]C([H])(*)C([H])([H])C(F)(F)F 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/20—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
- G03G15/2003—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
- G03G15/2014—Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
- G03G15/2053—Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
- G03G15/2057—Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating relating to the chemical composition of the heat element and layers thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
Definitions
- the invention relates to an interpenetrating polymer network for use as release layer coatings for fuser and transport belts used in electrostatographic printing apparati.
- a light image of an original to be copied is recorded in the form of an electrostatic latent image upon a photosensitive member and the latent image is subsequently rendered visible by the application of electroscopic thermoplastic resin and pigment particles which are commonly referred to as toner.
- the visible toner image is then in a loose powdered form and can be easily disturbed or destroyed.
- the toner image is usually fixed or fused upon a support which may be the photosensitive member itself or other support sheet such as plain paper.
- thermoplastic resin particles are fused to the substrate by heating to a temperature of between about 90° C. to about 200° C. or higher depending upon the softening range of the particular resin used in the toner. It is undesirable, however, to increase the temperature of the substrate substantially higher than about 250° C. because of the tendency of the substrate to discolor at such elevated temperatures, particularly when the substrate is paper.
- both the toner image and the support are passed through a nip formed between the roll pair or plate or belt members.
- the concurrent transfer of heat and the application of pressure in the nip affects the fusing of the toner image onto the support. It is important in the fusing process that no offset of the toner particles from the support to the fuser member take place during normal operations. Toner particles that offset onto the fuser member may subsequently transfer to other parts of the machine or onto the support in subsequent copying cycles, thus increasing the background or interfering with the material being copied there.
- the referred to “hot offset” occurs when the temperature of the toner is increased to a point where the toner particles liquefy and a splitting of the molten toner takes place during the fusing operation with a portion remaining on the fuser member.
- the hot offset temperature or degradation of the hot offset temperature is a measure of the release property of the fuser roll, and accordingly it is desired to provide a fusing surface which has a low surface energy to provide the necessary release.
- release agents to the fuser roll during the fusing operation.
- these materials are applied as thin films of, for example, silicone oils to prevent toner offset.
- a more recent development in fusing systems involves the use of fluoroelastomer as fuser members which have a surface with a metal containing filler, which interact with polymeric release agents having functional groups, which interact with the metal containing filler in the fluoroelastomer surface.
- fluoroelastomer as fuser members which have a surface with a metal containing filler, which interact with polymeric release agents having functional groups, which interact with the metal containing filler in the fluoroelastomer surface.
- Such fusing systems, fusing members and release agents are described in U.S. Pat. No. 4,264,181 to Lentz et al. U.S. Pat. No. 4,257,699 to Lentz and U.S. Pat. No. 4,272,179 to Seanor.
- the fluoroelastomers used are (1) copolymers of vinylidenefluoride, hexafluoropropylene, and (2) terpolymer or vinylidenefluororide, hexafluoropropylene and tetrafluoroethylene.
- Commercially available materials include: VitonTM E430, Viton GF and other Viton designations as trademarks of E.I. Dupont deNemours, Inc. as well as the FluorolTM materials of 3M Company.
- the preferred curing system for these materials is a nucleophilic system with a bisphenol crosslinking agent to generate a covalently crosslinked network polymer formed by the application of heat following base dehydrofluorination of the copolymer.
- fuser member is an aluminum base member with a poly(vinyldenefluoride-hexafluoropropylene) copolymer cured with a bisphenol curing agent having lead oxide filler dispersed therein and utilizing a mercapto functional polyorganosiloxane oil as a release agent.
- the polymeric release agents have functional groups (also designated as chemically reactive functional groups) which interact with the metal containing filler dispersed in the elastomer or resinous material of the fuser member surface to form a thermally stable film which releases thermoplastic resin toner and which prevents the thermoplastic resin toner from contacting the elastomer material itself.
- the metal oxide, metal salt, metal alloy or other suitable metal compound filler dispersed in the elastomer or resin upon the fuser member surface interacts with the functional groups of the polymeric release agent.
- the metal containing filler materials do not cause degradation or have any adverse effect upon the polymer release agent having functional groups. Because of this reaction between the elastomer having a metal containing filler and the polymeric release agent having functional groups, excellent release and the production of high quality copies are obtained even at high rates of speed of electrostatographic reproducing machines.
- fluoroelastomers While these fluoroelastomers have excellent mechanical and physical properties in that they have a long wearing life thereby maintaining toughness and strength over time in a fusing environment, they have to be used with expensive functional release agents and must contain expensive interactive metal-containing fillers.
- U.S. Pat. No. 5,141,788 to Badesha et al. describes a fuser member comprising a supporting substrate having an outer layer of a cured fluoroelastomer having a thin surface layer of a polyorganosiloxane having been grafted to the surface of the cured fluoroelastomer in the presence of a dehydrofluorinating agent for the fluoroelastomer and having the active functionality from a hydrogen, hydroxy, alkoxy, amino, epoxy, vinyl acrylic, or mercapto group.
- U.S. Pat. No. 5,166,031 to Badesha et al. is directed to a fuser member comprising a supporting substrate having an outer layer of a volume grafted elastomer which is a substantially uniform integral interpenetrating network of a hybrid composition of a fluoroelastomer and a polyorganosiloxane which is formed by dehydrofluorination of the fluoroelastomer by a nucleophilic dehydrofluorinating agent followed by addition polymerization by the addition of an alkene or alkyne functionally terminated polyorganosiloxane and a polymerization initiator.
- Polytetrafluoroethylene is a well known material which has superior low surface energy and release properties and is used primarily as a coating for cooking surfaces, such as frypans, baking pans and the like.
- this material is not elastomeric in nature and is in fact a relatively brittle, difficult-to-process and solvent insoluble thermoplastic which renders it unsuitable per se for use in fabricating fuser release surfaces.
- the present invention provides a fuser system member comprising a supporting substrate and an outer surface layer, said outer surface layer comprising an interpenetrating polymer network comprising polytetrafluoroethylene (PTFE) and a cured polysiloxane elastomer.
- PTFE polytetrafluoroethylene
- the invention also provides a process for manufacturing a fuser system member comprising (a) forming an intimate blend of a major amount of an unsintered and unfibrillated particulate polytetrafluoroethylene dispersion resin, a hydrocarbon liquid, a curable polysiloxane and a curing system for said polysiloxane; (b) forming said blend into an extrudable shape; (c) biaxially extruding said blend through a die into a shaped product having a randomly fibrillated structure; (d) evaporating said hydrocarbon liquid; (e) subjecting said shaped product to curing conditions to cure said polysiloxane; and (f) applying said shaped product to a supporting substrate to form a fuser member having an outer surface comprising said shaped product.
- the fuser system surfaces prepared in accordance with the invention combine the fusing advantages of fluoropolymer and silicone elastomer fusing surfaces.
- the fusing surfaces possess the conformability and release characteristics that are required of fusing substrates while simultaneously possessing the strength and durability of the PTFE.
- the silicone component of the formulation contributes to the conformance and flex of the material while the PTFE provides film strength and non-swell characteristics.
- the composite IPN surface also provides a more limited swell in common fusing fluids, which is an advantage over materials composed of silicone only.
- the polysiloxane component which may be used as a component of the IPN composition of this invention is one or a mixture of curable polysiloxanes selected from dialkylsiloxanes wherein the alkyl groups are independently selected and contain from 1 to about 20 carbon atoms, alkylarylsiloxanes wherein the alkyl groups contain from 1 to about 20 carbon atoms and the aryl group contains from 6 to about 20 carbon atoms, diarylsiloxanes wherein the aryl groups are independently selected and contain from 6 to about 20 carbon atoms, substituted alkyl groups such as chloropropyl, trifluoropropyl, mecaptopropyl, carboxypropyl, aminopropyl and cyanopropyl, substituted alkenyl groups such as vinyl, propenyl, chlorovinyl and bromopropenyl and mixtures thereof.
- curable polysiloxanes selected from dialkylsiloxanes wherein the alkyl groups are independently selected
- copolymeric silxane materials examples include Dow Corning SilasticTM 590 series, 9280 series, 9390 series, 3100 series, MOX4 series, Q-7 series, SylgardTM series, 730 series, GP series, NPC series, LCS series, LT series and TR series; General Electric SE series, including SE-33, FSE, 2300, 2500, 2600 and 2700 and Wacker silicones ElastosilTM LR, ElectroguardTM series, c-series, SWS series, S-series, T-series and V-series.
- Preferred polysiloxanes are those containing free radical reactive functional groups containing at least one unsaturated carbon to carbon double bond groups such as vinyl or alkenyl groups.
- Crosslinking agents include any of the known free radical initiator compounds such as peroxides, for example, hydrogen peroxide, alkyl or aryl peroxide and the like; persulfates, azo compounds, for example AIBN, and like compounds as well as mixtures thereof, which initiator compounds are present in amounts of from about 0. 1 to about 10 wt % of the curable polysiloxane.
- peroxides for example, hydrogen peroxide, alkyl or aryl peroxide and the like
- persulfates for example AIBN, and like compounds as well as mixtures thereof, which initiator compounds are present in amounts of from about 0. 1 to about 10 wt % of the curable polysiloxane.
- the polysiloxane may be a condensation curable polysiloxane based on a polydiorganosiloxane having terminal hydrolyzable groups, e.g., hydroxy or alkoxy and a catalyst which promotes condensation curing, such as the materials disclosed in U.S. Pat. No. 3,888,815, the complete disclosure of which patent is incorporated herein by reference.
- the polysiloxane may be a hydrolylicatly condensable silane having the formula Y—Si—(OX) 3 where each X is independently selected from the group consisting of hydrogen, alkyl radicals, hydroxyalkyl radicals, and hydroxyalkoxyalkyl radicals, and Y is an alkyl radical, OX where X is as previously defined, or an amino or substituted amino radical.
- X is independently selected from the group consisting of hydrogen, alkyl radicals, hydroxyalkyl radicals, and hydroxyalkoxyalkyl radicals
- Y is an alkyl radical, OX where X is as previously defined, or an amino or substituted amino radical.
- Curable blends of two polysiloxanes such as a polysiloxane containing free radical reactive functional groups and a second polysiloxane may also be used, such as disclosed in U.S. Pat. No. 6,035,780, the complete disclosure of which is incorporated herein by reference.
- the polytetrafluoroethylen (PTFE) component of the composition may comprise unsintered and unfibrillated resin in the form of a dispersion such as available from Dupont under the trade designation TEFLON® 6 and 6C and from Imperial Chemical industries under the names FLUON® CD1, CD123 or CD-525.
- the composition contains the PTFE as the major polymeric component, i.e., it contains at least 50 wt % of PTFE based on the polymer content.
- the polysiloxane constitutes from about 1 to 30 wt % of the polymer content of the composition.
- the composition may also contain from about 1520 volume percent of one or more filler materials which impart additional desired physical properties to the fuser surface, such as thermal conductivity, increased durometer harness and electrical conductivity.
- suitable fillers include carbon black, antimony oxide, antimony doped tin oxide, iron oxide, aluminum oxide, silica and like materials.
- the substrate for the fuser member of the fuser system assembly may be a roll, belt, flat surface or other suitable shapes used in the fixing of thermoplastic toner images to a suitable substrate.
- the substrate may take the form of a fuser member, as pressure member or a release agent donor member, and may be composed of metal or a flexible belt material derived from a thermoplastic, thermoset or elastomeric resin such as polyamide or polyimide resins and cured polysiloxane or diolefin elastomers.
- a film of the IPN composition may be laminated to or wrapped around the substrate using suitable adhesives which will form a firm bond between the IPN film and the metal or resinous substrate.
- Suitable adhesives include silicone elastomers, fluoroelastomers, epoxy resins, acrylic resins and the like.
- the IPN composition may be extruded or molded into the shape of a cylindrical collar which is adapted to fit snugly around the cylindrical base, with or without the use of an intermediate adhesive.
- the thickness of the IPN outer surface of film of the fuser member may range from about --5-- to --60---micrometer, more preferably from about --15-- to -25--micrometers.
- the outer surface of the fuser member is prepared by first forming an intimate mixture of a PTFE polymer dispersion and a minor amount of the curable polysiloxane polymer.
- a suitable organic liquid such as a C 4 -C 20 alkane or kerosene are included in the mixture to facilitate blending and act as a lubricant.
- a crosslinking agent and crosslinking catalyst is also added to the mixtures.
- the blend is compacted into a preform shape adapted to the configuration necessary for the process of biaxial fibrillation as described in U.S. Pat. No. 3,315,020.
- paste extrusion of the preformed blend is carried out in the known manner of biaxial fibrillation as described in U.S. Pat. No. 3,315,020.
- the hydrocarbon liquid contained in the blend is evaporated, and simultaneously therewith or later the catalyst for the siloxane crosslinking reaction is activated thereby generating a cured silicone elastomer and polytetrafluoroethylene semi-interpenetrating polymer network in the form of the biaxially fibrillated extrudate.
- the resulting extrudate is preferably calendared by known methods to produce a film having a thickness in the range of about --50-- to about -125-micrometers.
- Films of molded cylindrical shapes may then be applied to and adhered to supporting substrates to form the fuser system members of the present invention.
- the curing step described above may be carried out after application of the outer surface release layer to the substrate.
- Films and other shapes made in accordance with this invention may be generally prepared by the process disclosed in U.S. Pat. No. 4,945,125, the complete disclosure of which patent is incorporated herein by reference.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
- Fixing For Electrophotography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Description
- 1. Field of the Invention
- The invention relates to an interpenetrating polymer network for use as release layer coatings for fuser and transport belts used in electrostatographic printing apparati.
- 2. Description of Related Art
- In a typical electrostatographic reproducing apparatus, a light image of an original to be copied is recorded in the form of an electrostatic latent image upon a photosensitive member and the latent image is subsequently rendered visible by the application of electroscopic thermoplastic resin and pigment particles which are commonly referred to as toner. The visible toner image is then in a loose powdered form and can be easily disturbed or destroyed. The toner image is usually fixed or fused upon a support which may be the photosensitive member itself or other support sheet such as plain paper.
- The use of thermal energy for fixing toner images onto a support member is well known. To fuse electroscopic toner material onto a support surface permanently by heat, it is usually necessary to elevate the temperature of the toner material to a point at which the constituents of the toner material coalesce and become tacky. This heating causes the toner to flow to some extent into the fibers or pores of the support member. Thereafter, as the toner material cools, solidification of the toner causes the toner to be firmly bonded to the support.
- Typically, the thermoplastic resin particles are fused to the substrate by heating to a temperature of between about 90° C. to about 200° C. or higher depending upon the softening range of the particular resin used in the toner. It is undesirable, however, to increase the temperature of the substrate substantially higher than about 250° C. because of the tendency of the substrate to discolor at such elevated temperatures, particularly when the substrate is paper.
- Several approaches to thermal fusing of electroscopic toner images have been described. These methods include providing the application of heat and pressure substantially concurrently by various means, such as a roll pair maintained in pressure contact, a belt member in pressure contact with a roll, and the like. Heat may be applied by heating one or both of the rolls, plate members or belt members. The fusing of the toner particles takes place when the proper combination of heat, pressure and contact time are provided. The balancing of these parameters to bring about the fusing of the toner particles is well known in the art, and can be adjusted to suit particular machines or process conditions.
- During operation of a fusing system in which heat is applied to cause thermal fusing of the toner particles onto a support, both the toner image and the support are passed through a nip formed between the roll pair or plate or belt members. The concurrent transfer of heat and the application of pressure in the nip affects the fusing of the toner image onto the support. It is important in the fusing process that no offset of the toner particles from the support to the fuser member take place during normal operations. Toner particles that offset onto the fuser member may subsequently transfer to other parts of the machine or onto the support in subsequent copying cycles, thus increasing the background or interfering with the material being copied there. The referred to “hot offset” occurs when the temperature of the toner is increased to a point where the toner particles liquefy and a splitting of the molten toner takes place during the fusing operation with a portion remaining on the fuser member. The hot offset temperature or degradation of the hot offset temperature is a measure of the release property of the fuser roll, and accordingly it is desired to provide a fusing surface which has a low surface energy to provide the necessary release. To ensure and maintain good release properties of the fuser roll, it has become customary to apply release agents to the fuser roll during the fusing operation. Typically, these materials are applied as thin films of, for example, silicone oils to prevent toner offset.
- One of the earliest and most successful fusing systems involved the use of silicone elastomer fusing surfaces, such as a roll with a silicone oil release agent which could be delivered to the fuser roll by a silicone elastomer donor roll. The silicone elastomers and silicone oil release agents used in such systems are described in numerous patents and fairly collectively illustrated in U.S. Pat. No. 4,777,087 to Heeks et al.
- While highly successful in providing a fusing surface with a very low surface energy to provide excellent release properties to ensure that the toner is completely released from the fuser roll during the fusing operation, these systems suffer from a significant deterioration in physical properties over time in a fusing environment. In particular, the silicone oil release agent tends to penetrate the surface of the silicone elastomer fuser members resulting in swelling of the body of the elastomer causing major mechanical failure including debonding of the elastomer from the substrate, softening and reduced toughness of the elastomer causing it to chunk out and crumble, contaminating the machine and providing non-uniform delivery of release agent. Furthermore, as described in U.S. Pat. No. 4,777,087, additional deterioration of physical properties of silicone elastomers results from the oxidative crosslinking, particularly of a fuser roll at elevated temperatures.
- A more recent development in fusing systems involves the use of fluoroelastomer as fuser members which have a surface with a metal containing filler, which interact with polymeric release agents having functional groups, which interact with the metal containing filler in the fluoroelastomer surface. Such fusing systems, fusing members and release agents, are described in U.S. Pat. No. 4,264,181 to Lentz et al. U.S. Pat. No. 4,257,699 to Lentz and U.S. Pat. No. 4,272,179 to Seanor. Typically, the fluoroelastomers used are (1) copolymers of vinylidenefluoride, hexafluoropropylene, and (2) terpolymer or vinylidenefluororide, hexafluoropropylene and tetrafluoroethylene. Commercially available materials include: Viton™ E430, Viton GF and other Viton designations as trademarks of E.I. Dupont deNemours, Inc. as well as the Fluorol™ materials of 3M Company. The preferred curing system for these materials is a nucleophilic system with a bisphenol crosslinking agent to generate a covalently crosslinked network polymer formed by the application of heat following base dehydrofluorination of the copolymer. Exemplary of such fuser member is an aluminum base member with a poly(vinyldenefluoride-hexafluoropropylene) copolymer cured with a bisphenol curing agent having lead oxide filler dispersed therein and utilizing a mercapto functional polyorganosiloxane oil as a release agent. In those fusing processes, the polymeric release agents have functional groups (also designated as chemically reactive functional groups) which interact with the metal containing filler dispersed in the elastomer or resinous material of the fuser member surface to form a thermally stable film which releases thermoplastic resin toner and which prevents the thermoplastic resin toner from contacting the elastomer material itself. The metal oxide, metal salt, metal alloy or other suitable metal compound filler dispersed in the elastomer or resin upon the fuser member surface interacts with the functional groups of the polymeric release agent. Preferably, the metal containing filler materials do not cause degradation or have any adverse effect upon the polymer release agent having functional groups. Because of this reaction between the elastomer having a metal containing filler and the polymeric release agent having functional groups, excellent release and the production of high quality copies are obtained even at high rates of speed of electrostatographic reproducing machines.
- While these fluoroelastomers have excellent mechanical and physical properties in that they have a long wearing life thereby maintaining toughness and strength over time in a fusing environment, they have to be used with expensive functional release agents and must contain expensive interactive metal-containing fillers.
- More recently, advances have been made in attempts to incorporate the property benefits of both the fluoroelastomers and the silicone elastomers into fusing system surfaces. For example, U.S. Pat. No. 6,035,780 discloses compatibilized blends of fluoroelastomer and polysiloxane elastomer which can be fabricated into films and surfaces having good release and low surface energy properties.
- U.S. Pat. No. 5,141,788 to Badesha et al. describes a fuser member comprising a supporting substrate having an outer layer of a cured fluoroelastomer having a thin surface layer of a polyorganosiloxane having been grafted to the surface of the cured fluoroelastomer in the presence of a dehydrofluorinating agent for the fluoroelastomer and having the active functionality from a hydrogen, hydroxy, alkoxy, amino, epoxy, vinyl acrylic, or mercapto group.
- U.S. Pat. No. 5,166,031 to Badesha et al. is directed to a fuser member comprising a supporting substrate having an outer layer of a volume grafted elastomer which is a substantially uniform integral interpenetrating network of a hybrid composition of a fluoroelastomer and a polyorganosiloxane which is formed by dehydrofluorination of the fluoroelastomer by a nucleophilic dehydrofluorinating agent followed by addition polymerization by the addition of an alkene or alkyne functionally terminated polyorganosiloxane and a polymerization initiator.
- Polytetrafluoroethylene is a well known material which has superior low surface energy and release properties and is used primarily as a coating for cooking surfaces, such as frypans, baking pans and the like. However, this material is not elastomeric in nature and is in fact a relatively brittle, difficult-to-process and solvent insoluble thermoplastic which renders it unsuitable per se for use in fabricating fuser release surfaces.
- The present invention provides a fuser system member comprising a supporting substrate and an outer surface layer, said outer surface layer comprising an interpenetrating polymer network comprising polytetrafluoroethylene (PTFE) and a cured polysiloxane elastomer.
- The invention also provides a process for manufacturing a fuser system member comprising (a) forming an intimate blend of a major amount of an unsintered and unfibrillated particulate polytetrafluoroethylene dispersion resin, a hydrocarbon liquid, a curable polysiloxane and a curing system for said polysiloxane; (b) forming said blend into an extrudable shape; (c) biaxially extruding said blend through a die into a shaped product having a randomly fibrillated structure; (d) evaporating said hydrocarbon liquid; (e) subjecting said shaped product to curing conditions to cure said polysiloxane; and (f) applying said shaped product to a supporting substrate to form a fuser member having an outer surface comprising said shaped product.
- The fuser system surfaces prepared in accordance with the invention combine the fusing advantages of fluoropolymer and silicone elastomer fusing surfaces. The fusing surfaces possess the conformability and release characteristics that are required of fusing substrates while simultaneously possessing the strength and durability of the PTFE. The silicone component of the formulation contributes to the conformance and flex of the material while the PTFE provides film strength and non-swell characteristics. The composite IPN surface also provides a more limited swell in common fusing fluids, which is an advantage over materials composed of silicone only.
- The polysiloxane component which may be used as a component of the IPN composition of this invention is one or a mixture of curable polysiloxanes selected from dialkylsiloxanes wherein the alkyl groups are independently selected and contain from 1 to about 20 carbon atoms, alkylarylsiloxanes wherein the alkyl groups contain from 1 to about 20 carbon atoms and the aryl group contains from 6 to about 20 carbon atoms, diarylsiloxanes wherein the aryl groups are independently selected and contain from 6 to about 20 carbon atoms, substituted alkyl groups such as chloropropyl, trifluoropropyl, mecaptopropyl, carboxypropyl, aminopropyl and cyanopropyl, substituted alkenyl groups such as vinyl, propenyl, chlorovinyl and bromopropenyl and mixtures thereof. Examples of commercially available copolymeric silxane materials include Dow Corning Silastic™ 590 series, 9280 series, 9390 series, 3100 series, MOX4 series, Q-7 series, Sylgard™ series, 730 series, GP series, NPC series, LCS series, LT series and TR series; General Electric SE series, including SE-33, FSE, 2300, 2500, 2600 and 2700 and Wacker silicones Elastosil™ LR, Electroguard™ series, c-series, SWS series, S-series, T-series and V-series.
- Preferred polysiloxanes are those containing free radical reactive functional groups containing at least one unsaturated carbon to carbon double bond groups such as vinyl or alkenyl groups.
- Crosslinking agents include any of the known free radical initiator compounds such as peroxides, for example, hydrogen peroxide, alkyl or aryl peroxide and the like; persulfates, azo compounds, for example AIBN, and like compounds as well as mixtures thereof, which initiator compounds are present in amounts of from about 0. 1 to about 10 wt % of the curable polysiloxane.
- Alternatively, the polysiloxane may be a condensation curable polysiloxane based on a polydiorganosiloxane having terminal hydrolyzable groups, e.g., hydroxy or alkoxy and a catalyst which promotes condensation curing, such as the materials disclosed in U.S. Pat. No. 3,888,815, the complete disclosure of which patent is incorporated herein by reference.
- In another embodiment, the polysiloxane may be a hydrolylicatly condensable silane having the formula Y—Si—(OX)3 where each X is independently selected from the group consisting of hydrogen, alkyl radicals, hydroxyalkyl radicals, and hydroxyalkoxyalkyl radicals, and Y is an alkyl radical, OX where X is as previously defined, or an amino or substituted amino radical. These materials used to form an IPN network are more completely disclosed in U.S. Pat. No. 4,250,074, the complete disclosure of which is incorporated herein by reference.
- Curable blends of two polysiloxanes such as a polysiloxane containing free radical reactive functional groups and a second polysiloxane may also be used, such as disclosed in U.S. Pat. No. 6,035,780, the complete disclosure of which is incorporated herein by reference.
- The polytetrafluoroethylen (PTFE) component of the composition may comprise unsintered and unfibrillated resin in the form of a dispersion such as available from Dupont under the trade designation TEFLON® 6 and 6C and from Imperial Chemical industries under the names FLUON® CD1, CD123 or CD-525.
- Preferably, the composition contains the PTFE as the major polymeric component, i.e., it contains at least 50 wt % of PTFE based on the polymer content. Preferably the polysiloxane constitutes from about 1 to 30 wt % of the polymer content of the composition.
- The composition may also contain from about 1520 volume percent of one or more filler materials which impart additional desired physical properties to the fuser surface, such as thermal conductivity, increased durometer harness and electrical conductivity. Suitable fillers include carbon black, antimony oxide, antimony doped tin oxide, iron oxide, aluminum oxide, silica and like materials.
- The substrate for the fuser member of the fuser system assembly may be a roll, belt, flat surface or other suitable shapes used in the fixing of thermoplastic toner images to a suitable substrate. The substrate may take the form of a fuser member, as pressure member or a release agent donor member, and may be composed of metal or a flexible belt material derived from a thermoplastic, thermoset or elastomeric resin such as polyamide or polyimide resins and cured polysiloxane or diolefin elastomers. A film of the IPN composition may be laminated to or wrapped around the substrate using suitable adhesives which will form a firm bond between the IPN film and the metal or resinous substrate. Suitable adhesives include silicone elastomers, fluoroelastomers, epoxy resins, acrylic resins and the like. Alternatively, where the substrate is in the form of a roll, the IPN composition may be extruded or molded into the shape of a cylindrical collar which is adapted to fit snugly around the cylindrical base, with or without the use of an intermediate adhesive.
- The thickness of the IPN outer surface of film of the fuser member may range from about --5-- to --60---micrometer, more preferably from about --15-- to -25--micrometers.
- The outer surface of the fuser member is prepared by first forming an intimate mixture of a PTFE polymer dispersion and a minor amount of the curable polysiloxane polymer. Preferably minor amounts of a suitable organic liquid such as a C4-C20 alkane or kerosene are included in the mixture to facilitate blending and act as a lubricant. A crosslinking agent and crosslinking catalyst is also added to the mixtures.
- In the second step of the process of this invention, the blend is compacted into a preform shape adapted to the configuration necessary for the process of biaxial fibrillation as described in U.S. Pat. No. 3,315,020.
- Is the third step of the process of this invention, paste extrusion of the preformed blend is carried out in the known manner of biaxial fibrillation as described in U.S. Pat. No. 3,315,020.
- In the fourth step of the process of this invention, the hydrocarbon liquid contained in the blend is evaporated, and simultaneously therewith or later the catalyst for the siloxane crosslinking reaction is activated thereby generating a cured silicone elastomer and polytetrafluoroethylene semi-interpenetrating polymer network in the form of the biaxially fibrillated extrudate.
- Where films are prepared, the resulting extrudate is preferably calendared by known methods to produce a film having a thickness in the range of about --50-- to about -125-micrometers.
- Films of molded cylindrical shapes may then be applied to and adhered to supporting substrates to form the fuser system members of the present invention. The curing step described above may be carried out after application of the outer surface release layer to the substrate.
- Films and other shapes made in accordance with this invention may be generally prepared by the process disclosed in U.S. Pat. No. 4,945,125, the complete disclosure of which patent is incorporated herein by reference.
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/772,620 US6447918B1 (en) | 2001-01-30 | 2001-01-30 | Interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications |
JP2002016818A JP2002333791A (en) | 2001-01-30 | 2002-01-25 | Fixing device member and producing method thereof |
DE2002608090 DE60208090T2 (en) | 2001-01-30 | 2002-01-29 | Polytetrafluoroethylene and silicone elastomer interpenetrating polymer network for use in electrophotographic melters |
EP20020002200 EP1227373B1 (en) | 2001-01-30 | 2002-01-29 | An interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/772,620 US6447918B1 (en) | 2001-01-30 | 2001-01-30 | Interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020102410A1 true US20020102410A1 (en) | 2002-08-01 |
US6447918B1 US6447918B1 (en) | 2002-09-10 |
Family
ID=25095672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/772,620 Expired - Lifetime US6447918B1 (en) | 2001-01-30 | 2001-01-30 | Interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications |
Country Status (4)
Country | Link |
---|---|
US (1) | US6447918B1 (en) |
EP (1) | EP1227373B1 (en) |
JP (1) | JP2002333791A (en) |
DE (1) | DE60208090T2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040121102A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Fluoroelastomer roller for a fusing station |
US20040121253A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Fusing-station roller |
US20040120739A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Roller for a fusing station |
US20040121255A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Roller for use in a fusing station |
US20040175526A1 (en) * | 2003-03-04 | 2004-09-09 | 3M Innovatve Properties Company | Method of bonding a fluoroelastomer layer to a silicone rubber layer, laminate for use in said method and article produced therewith |
US20050244196A1 (en) * | 2004-04-28 | 2005-11-03 | Konica Minolta Business Technologies, Inc. | Transfer belt and image-forming apparatus having the same |
US11174418B2 (en) * | 2016-06-27 | 2021-11-16 | William Marsh Rice University | Fluorine and hydrogen-based adhesive compositions and methods of making the same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6611670B2 (en) * | 2001-12-04 | 2003-08-26 | Nexpress Solutions Llc | External heater member and methods for fusing toner images |
US7056578B2 (en) * | 2002-11-13 | 2006-06-06 | Eastman Kodak Company | Layer comprising nonfibrillatable and autoadhesive plastic particles, and method of preparation |
JP4241103B2 (en) * | 2003-03-10 | 2009-03-18 | 東海ゴム工業株式会社 | Manufacturing method of conductive roll |
US20050100712A1 (en) * | 2003-11-12 | 2005-05-12 | Simmons Blake A. | Polymerization welding and application to microfluidics |
US20060079600A1 (en) * | 2004-10-13 | 2006-04-13 | Gopalratnam Usha S | Anti-stick coating for surfaces |
US7127205B2 (en) * | 2004-11-15 | 2006-10-24 | Xerox Corporation | Fluoroelastomer members and curing methods using biphenyl and monofunctional amino hydrocarbon |
US20240270940A1 (en) | 2021-11-12 | 2024-08-15 | Sabanci Universitesi | Polyoxazoline based thermal latent curing agents for thermoset resins |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3315020A (en) | 1962-03-21 | 1967-04-18 | Gore & Ass | Process for preparing biaxially fibrillated sheets |
US3998502A (en) | 1972-10-26 | 1976-12-21 | Skf Industrial Trading And Development Company, B.V. | Fluid bearing system |
US3888815A (en) | 1973-08-20 | 1975-06-10 | Gen Electric | Self-bonding two-package room temperature vulcanizable silicone rubber compositions |
US4032699A (en) | 1975-09-15 | 1977-06-28 | Minnesota Mining And Manufacturing Company | Fluid resistant terpolymer compositions |
US4250074A (en) | 1979-09-06 | 1981-02-10 | Ameron, Inc. | Interpenetrating polymer network comprising epoxy polymer and polysiloxane |
JPS5911464B2 (en) | 1978-11-10 | 1984-03-15 | 日産自動車株式会社 | car body structure |
US4272179A (en) | 1979-04-04 | 1981-06-09 | Xerox Corporation | Metal-filled elastomer fuser member |
US4257699A (en) | 1979-04-04 | 1981-03-24 | Xerox Corporation | Metal filled, multi-layered elastomer fuser member |
US4264181A (en) | 1979-04-04 | 1981-04-28 | Xerox Corporation | Metal-filled nucleophilic addition cured elastomer fuser member |
JPH0816193B2 (en) | 1985-06-03 | 1996-02-21 | ゼロツクス コ−ポレ−シヨン | Thermally stabilized silicone elastomer |
CA1283492C (en) | 1985-11-13 | 1991-04-23 | Tyrone D. Mitchell | Interpenetrating polymeric networks comprising polytetrafluoroethylene and polysiloxane |
US4945125A (en) | 1987-01-05 | 1990-07-31 | Tetratec Corporation | Process of producing a fibrillated semi-interpenetrating polymer network of polytetrafluoroethylene and silicone elastomer and shaped products thereof |
US5166031A (en) | 1990-12-21 | 1992-11-24 | Xerox Corporation | Material package for fabrication of fusing components |
US5141788A (en) | 1990-12-21 | 1992-08-25 | Xerox Corporation | Fuser member |
JP3567281B2 (en) | 1993-04-08 | 2004-09-22 | ジャパンゴアテックス株式会社 | Fixing elastic roll and manufacturing method thereof |
JPH06332334A (en) | 1993-05-18 | 1994-12-02 | Japan Gore Tex Inc | Elastic roll for fixing |
JP2905048B2 (en) * | 1993-07-05 | 1999-06-14 | 信越化学工業株式会社 | Fixing roll |
GB9325567D0 (en) | 1993-12-14 | 1994-02-16 | Gore W L & Ass Uk | Fibrillated ptfe surface |
US5729813A (en) | 1995-03-27 | 1998-03-17 | Xerox Corporation | Thin, thermally conductive fluoroelastomer coated fuser member |
US5700568A (en) | 1996-03-28 | 1997-12-23 | Xerox Corporation | Fluoroelastomer members |
US5695878A (en) | 1996-03-28 | 1997-12-09 | Xerox Corporation | Fluoroelastomer members |
US6035780A (en) | 1998-04-13 | 2000-03-14 | Xerox Corporation | Compatibilized blend of fluoroelastomer and polysiloxane useful for printing machine component |
EP1168102A3 (en) * | 2000-06-30 | 2010-09-29 | Eastman Kodak Company | Thermally conducting fluoroplastic random copolymer fuser member composition |
-
2001
- 2001-01-30 US US09/772,620 patent/US6447918B1/en not_active Expired - Lifetime
-
2002
- 2002-01-25 JP JP2002016818A patent/JP2002333791A/en active Pending
- 2002-01-29 DE DE2002608090 patent/DE60208090T2/en not_active Expired - Lifetime
- 2002-01-29 EP EP20020002200 patent/EP1227373B1/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6989182B2 (en) | 2002-12-20 | 2006-01-24 | Eastman Kodak Company | Fluoroelastomer roller for a fusing station |
US20040121253A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Fusing-station roller |
US20040120739A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Roller for a fusing station |
US20040121255A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Roller for use in a fusing station |
US20040121102A1 (en) * | 2002-12-20 | 2004-06-24 | Nexpress Solutions Llc | Fluoroelastomer roller for a fusing station |
US7001653B2 (en) * | 2002-12-20 | 2006-02-21 | Eastman Kodak Company | Fusing-station roller |
US7008678B2 (en) | 2002-12-20 | 2006-03-07 | Eastman Kodak Company | Roller for a fusing station |
US7014899B2 (en) | 2002-12-20 | 2006-03-21 | Eastman Kodak Company | Roller for use in a fusing station |
US20040175526A1 (en) * | 2003-03-04 | 2004-09-09 | 3M Innovatve Properties Company | Method of bonding a fluoroelastomer layer to a silicone rubber layer, laminate for use in said method and article produced therewith |
US7070842B2 (en) * | 2003-03-04 | 2006-07-04 | 3M Innovative Properties Company | Method of bonding a fluoroelastomer layer to a silicone rubber layer, laminate for use in said method and article produced therewith |
US20050244196A1 (en) * | 2004-04-28 | 2005-11-03 | Konica Minolta Business Technologies, Inc. | Transfer belt and image-forming apparatus having the same |
US7215913B2 (en) * | 2004-04-28 | 2007-05-08 | Konica Minolta Business Technologies, Inc. | Transfer belt and image-forming apparatus having the same |
US11174418B2 (en) * | 2016-06-27 | 2021-11-16 | William Marsh Rice University | Fluorine and hydrogen-based adhesive compositions and methods of making the same |
Also Published As
Publication number | Publication date |
---|---|
EP1227373B1 (en) | 2005-12-21 |
US6447918B1 (en) | 2002-09-10 |
EP1227373A1 (en) | 2002-07-31 |
JP2002333791A (en) | 2002-11-22 |
DE60208090T2 (en) | 2006-07-06 |
DE60208090D1 (en) | 2006-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5141788A (en) | Fuser member | |
US6680095B2 (en) | Crosslinking of fluoropolymers with polyfunctional siloxanes for release enhancement | |
CA2132472C (en) | Low surface energy material | |
US6566027B2 (en) | Tertiary amine functionalized fuser fluids | |
CA2051568C (en) | Novel material package for fabrication of fusing components | |
US5366772A (en) | Fuser member | |
US9056958B2 (en) | Fuser member | |
US6002910A (en) | Heated fuser member with elastomer and anisotropic filler coating | |
EP0903645B1 (en) | Fuser member with polymer and zinc compound layer | |
US6007657A (en) | Method for increasing thermal conductivity of fuser member having elastomer and anisotropic filler coating | |
US6447918B1 (en) | Interpenetrating polymer network of polytetra fluoroethylene and silicone elastomer for use in electrophotographic fusing applications | |
JPH09507307A (en) | Welding system using T-type amino functional silicone release agent | |
EP1093032A1 (en) | Fuser member with epoxy silane cured fluoroelastomer layer, imaging process and image forming apparatus | |
US6395444B1 (en) | Fuser members having increased thermal conductivity and methods of making fuser members | |
US6743561B2 (en) | Functional fusing agent | |
US6045961A (en) | Thermally stable silicone fluids | |
US7208259B2 (en) | Amino-functional fusing agent | |
MXPA04002523A (en) | Blended fluorosilicone release agent for polymeric fuser members. | |
EP1296198B1 (en) | Fuser system with donor roller having a controlled swell release agent surface layer | |
US6180176B1 (en) | Elastomer surfaces of adhesive and coating blends and methods thereof | |
US6676996B2 (en) | Process for forming fluoroelastomer composite material containing polydialkylsiloxane particles | |
US20020136903A1 (en) | Theta solvents with functional siloxane adhesives improve adhesion to silicone rubber substrates | |
US8367175B2 (en) | Coating compositions for fusers and methods of use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERVASI, DAVID J.;RIEHLE, GEORGE A.;HEEKS, GEORGE J.;AND OTHERS;REEL/FRAME:011530/0301 Effective date: 20010119 |
|
AS | Assignment |
Owner name: BANK ONE, NA, AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:013111/0001 Effective date: 20020621 Owner name: BANK ONE, NA, AS ADMINISTRATIVE AGENT,ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:013111/0001 Effective date: 20020621 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT, TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476 Effective date: 20030625 Owner name: JPMORGAN CHASE BANK, AS COLLATERAL AGENT,TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:XEROX CORPORATION;REEL/FRAME:015134/0476 Effective date: 20030625 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: XEROX CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO BANK ONE, N.A.;REEL/FRAME:061388/0388 Effective date: 20220822 Owner name: XEROX CORPORATION, CONNECTICUT Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A. AS SUCCESSOR-IN-INTEREST ADMINISTRATIVE AGENT AND COLLATERAL AGENT TO JPMORGAN CHASE BANK;REEL/FRAME:066728/0193 Effective date: 20220822 |