US20020086346A1 - Fixative system, method and composition for biological testing - Google Patents
Fixative system, method and composition for biological testing Download PDFInfo
- Publication number
- US20020086346A1 US20020086346A1 US10/040,878 US4087802A US2002086346A1 US 20020086346 A1 US20020086346 A1 US 20020086346A1 US 4087802 A US4087802 A US 4087802A US 2002086346 A1 US2002086346 A1 US 2002086346A1
- Authority
- US
- United States
- Prior art keywords
- composition
- specimen
- fixative
- test specimen
- biological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 239000000203 mixture Substances 0.000 title claims abstract description 82
- 239000000834 fixative Substances 0.000 title claims abstract description 64
- 238000012360 testing method Methods 0.000 title claims description 45
- 239000000126 substance Substances 0.000 claims abstract description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 238000012216 screening Methods 0.000 claims description 22
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 19
- 239000007788 liquid Substances 0.000 claims description 19
- SOROIESOUPGGFO-UHFFFAOYSA-N diazolidinylurea Chemical compound OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O SOROIESOUPGGFO-UHFFFAOYSA-N 0.000 claims description 16
- 229960001083 diazolidinylurea Drugs 0.000 claims description 16
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 15
- 238000002360 preparation method Methods 0.000 claims description 15
- 239000002904 solvent Substances 0.000 claims description 14
- -1 diazolidinyl Chemical group 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 239000002202 Polyethylene glycol Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 10
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 10
- 229920001223 polyethylene glycol Polymers 0.000 claims description 10
- 238000007901 in situ hybridization Methods 0.000 claims description 9
- 206010028980 Neoplasm Diseases 0.000 claims description 8
- 238000009595 pap smear Methods 0.000 claims description 8
- 229920005862 polyol Polymers 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 7
- 230000001112 coagulating effect Effects 0.000 claims description 7
- 150000003077 polyols Chemical class 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 5
- 238000011156 evaluation Methods 0.000 claims description 5
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 5
- 230000001575 pathological effect Effects 0.000 claims description 5
- 201000011510 cancer Diseases 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 230000002380 cytological effect Effects 0.000 claims description 3
- 208000006454 hepatitis Diseases 0.000 claims description 3
- 231100000283 hepatitis Toxicity 0.000 claims description 3
- 239000003125 aqueous solvent Substances 0.000 claims description 2
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 201000010099 disease Diseases 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 239000013643 reference control Substances 0.000 claims description 2
- 239000003431 cross linking reagent Substances 0.000 claims 2
- 238000002509 fluorescent in situ hybridization Methods 0.000 claims 1
- 238000012760 immunocytochemical staining Methods 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 abstract 1
- 238000011105 stabilization Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 27
- 238000010186 staining Methods 0.000 description 18
- 238000004321 preservation Methods 0.000 description 17
- 238000001514 detection method Methods 0.000 description 16
- 239000003795 chemical substances by application Substances 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 14
- 241000701806 Human papillomavirus Species 0.000 description 13
- 239000002609 medium Substances 0.000 description 12
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 10
- 238000003745 diagnosis Methods 0.000 description 10
- 235000019441 ethanol Nutrition 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 230000001413 cellular effect Effects 0.000 description 8
- 206010008342 Cervix carcinoma Diseases 0.000 description 7
- 201000010881 cervical cancer Diseases 0.000 description 7
- 230000001086 cytosolic effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000003365 immunocytochemistry Methods 0.000 description 7
- 206010008263 Cervical dysplasia Diseases 0.000 description 6
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 230000007170 pathology Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 208000007879 Atypical Squamous Cells of the Cervix Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 210000003679 cervix uteri Anatomy 0.000 description 4
- VUSHQLWDOJFSGF-UHFFFAOYSA-L disodium 3-carboxy-3,5-dihydroxy-5-oxopentanoate chloride Chemical compound [Na+].[Na+].Cl.[O-]C(=O)CC(O)(C(=O)O)CC([O-])=O VUSHQLWDOJFSGF-UHFFFAOYSA-L 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 241001490312 Lithops pseudotruncatella Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 230000009089 cytolysis Effects 0.000 description 3
- 230000000120 cytopathologic effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000009826 neoplastic cell growth Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 102000013415 peroxidase activity proteins Human genes 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 238000003752 polymerase chain reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000003656 tris buffered saline Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000032124 Squamous Intraepithelial Lesions Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 239000012122 aqueous mounting media Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 208000019065 cervical carcinoma Diseases 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 238000012303 cytoplasmic staining Methods 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 210000000981 epithelium Anatomy 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 2
- 238000007850 in situ PCR Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 238000012758 nuclear staining Methods 0.000 description 2
- 239000002751 oligonucleotide probe Substances 0.000 description 2
- 238000012634 optical imaging Methods 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000005000 reproductive tract Anatomy 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 238000011121 vaginal smear Methods 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical group [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229960001763 zinc sulfate Drugs 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- MPVDXIMFBOLMNW-ISLYRVAYSA-N 7-hydroxy-8-[(E)-phenyldiazenyl]naphthalene-1,3-disulfonic acid Chemical compound OC1=CC=C2C=C(S(O)(=O)=O)C=C(S(O)(=O)=O)C2=C1\N=N\C1=CC=CC=C1 MPVDXIMFBOLMNW-ISLYRVAYSA-N 0.000 description 1
- PLXMOAALOJOTIY-FPTXNFDTSA-N Aesculin Natural products OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)[C@H]1Oc2cc3C=CC(=O)Oc3cc2O PLXMOAALOJOTIY-FPTXNFDTSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 1
- 208000035404 Autolysis Diseases 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 208000009458 Carcinoma in Situ Diseases 0.000 description 1
- 206010057248 Cell death Diseases 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 206010058314 Dysplasia Diseases 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000042032 Petrocephalus catostoma Species 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- WLKAMFOFXYCYDK-UHFFFAOYSA-N [5-amino-4-[[3-[(2-amino-4-azaniumyl-5-methylphenyl)diazenyl]-4-methylphenyl]diazenyl]-2-methylphenyl]azanium;dichloride Chemical compound [Cl-].[Cl-].CC1=CC=C(N=NC=2C(=CC([NH3+])=C(C)C=2)N)C=C1N=NC1=CC(C)=C([NH3+])C=C1N WLKAMFOFXYCYDK-UHFFFAOYSA-N 0.000 description 1
- DGOBMKYRQHEFGQ-UHFFFAOYSA-L acid green 5 Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 DGOBMKYRQHEFGQ-UHFFFAOYSA-L 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 229960000458 allantoin Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 230000036952 cancer formation Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- OIDPCXKPHYRNKH-UHFFFAOYSA-J chrome alum Chemical compound [K]OS(=O)(=O)O[Cr]1OS(=O)(=O)O1 OIDPCXKPHYRNKH-UHFFFAOYSA-J 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- SEACYXSIPDVVMV-UHFFFAOYSA-L eosin Y Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C([O-])=C(Br)C=C21 SEACYXSIPDVVMV-UHFFFAOYSA-L 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 229940094991 herring sperm dna Drugs 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 201000004933 in situ carcinoma Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229940051132 light green sf yellowish Drugs 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000028043 self proteolysis Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 208000022159 squamous carcinoma in situ Diseases 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/30—Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
- G01N2001/305—Fixative compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/10—Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/10—Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
- Y10T436/108331—Preservative, buffer, anticoagulant or diluent
Definitions
- the present invention relates generally to biological specimen fixatives and more particularly to a fixative for preserving a specimen for serial or archival diagnostic examinations.
- Carcinoma in situ is a malignant change in the cervical epithelium leaving the basement membrane unviolated, i.e., it is non-invasive. Endometrial carcinoma can also be detected cytologically, as can malignancies of the fallopian tubes, ovaries, vagina and vulva.
- Diagnostic cytology has been used extensively as a detection system for alterations in cellular morphology, such as alterations which may occur when a normal cell develops into a cancerous cell.
- One of the main applications of diagnostic cytology is in the early detection of cervical cancer.
- the cervical smear and staining technique was developed by George N. Papanicolaou for detection of early neoplastic changes in the uterine cervix.
- the modem Papanicolaou (“Pap”) screening technique is the most successful test developed for reducing the incidence of cancer of the uterine cervix.
- a sample slide preparation such as collected for conventional cervical carcinoma cytologic screening, to perform ancillary studies to detect alterations in DNA or protein associated with carcinogenesis.
- a method which simultaneously permits rapid tissue fixation, excellent morphologic detail, antigen preservation without masking or denaturation, and/or which results in less RNA and DNA degradation would, therefore, be highly desirable in the diagnosis of gynecological pathologies.
- the specimen to be tested must also be immobilized so that it will not be damaged or released during transport for processing or during the rigorous assay procedures associated with immunocytochemical and molecular procedures.
- fixation forms the foundation for the evaluation of biological specimens on slides and for the preparation of tissue sections.
- fixation preferably should prevent or arrest autolysis and putrefaction, preserve antigenic sites, preserve morphology, stabilize DNA, RNA and soluble and structural proteins, fortify the tissues against the deleterious effects of subsequent processing and facilitates staining, or a combination of some or all of these features.
- Biological specimens are analyzed for many purposes using a variety of different assays, including diagnostic cytology, immunocytochemistry and molecular pathology. Current methods of fixation rely on chemical agents, the most widely used being formaldehyde and alcohol.
- Examples of efforts in this field include conventional aqueous bi-sulfite-based fixatives (with acetic buffer), PVP-based fixatives (with propylene glycol and methanol) as well as those outlined in U.S. Pat. Nos. 3,546,334 (Lerner); 4,578,282; 4,857,300 (Maksem); 5,104,640 (Stokes); 5,256,571 (Hurley); and 5,432,056 (Hartman et al), all of which are hereby expressly incorporated by reference.
- One particularly effective formulation is disclosed in U.S. Pat. No. 5,196,182 (Ryan).
- An example of a commercially available product is that offered by Surgipath Medical Industries, Inc.
- SURGIPATH Cytology Fixative contains ethanol, polyethylene glycol and distilled water.
- the polyethylene glycol generally provides a waxy coating to stop evaporation, which requires removal before slide staining.
- Other common exfoliative cytology fixatives include additives such as glacial acetic acid (e.g. at 3%).
- background literature of potential interest as to the present invention includes: Allen, “A Guide to Cytopreparation,” Am. Soc. for Cytotechnology; Baker, J. R. (1959), “Principles of biological microtechnique: a study of fixation and dyeing,” New York, Barnes & Noble, Inc.; Ben-ezra, J., et al. (1991), “Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction,” J. Histochem. Cytochem. 39:351; Bourne, L. D.
- the present invention overcomes the shortcomings of the prior art by providing an improved composition and system for the preservation of biological test specimens.
- the specimens are preserved in a fixative medium that offers one or more advantages such as rapid cell or tissue penetration, minimal specimen shrinkage, protein preservation, antigen preservation, morphology preservation, stain permeability, lysis of pathogens or the like.
- the medium permits effective adhesion to specimen mounting surfaces such as glass slide surfaces.
- a system, method and composition for the preservation of biological test specimens which includes the use of an effective amount of a chemical fixative dispersed in a liquid medium (e.g., a non-crosslinking fixative).
- the chemical fixative includes a urea containing reaction product (e.g., a heterocyclic urea) of a reaction involving an aldehyde (e.g., formaldhyde with allantoin), and more preferably, includes up to about 5% of the same in a medium that is substantially free of water.
- the system of the present invention contemplates the use of the composition of the present invention for preservation of cell samples, tissue samples, or both, for cyto-pathological examination.
- contemplated as within the scope of the present invention are, for example, methods for specimen preparation using the composition of the present invention, methods for cyto-pathological, immunocyto-chemical and molecular evaluation of specimens prepared using the composition of the present invention, as well as the equipment and supplies necessary to carry out the specimen preparation, evaluation, or both.
- the system of the present invention is employed in connection with gynecological testing.
- the method of the present invention is particularly useful for stabilizing biological specimens which have been or will be applied to slides for transport and later processing or which will undergo rigorous procedures, such as immunocytochemistry, in situ hybridization and amplification procedures, including RT-PCR, in situ PCR and RT-in situ PCR.
- the non-crosslinking fixative composition enhances cellular stability, permitting the cells to be stored for longer periods of time without deterioration of morphology, thus increasing accuracy of staining and ease of cytopathologic assessment.
- a biological specimen when preserved by the method of the invention can be evaluated using conventional cytologic techniques, even when the specimen is held before staining for at least 45 days. Additionally, a specimen preserved by the method of the invention can be processed for immunocytochemistry and molecular analysis without significant loss or deterioration of the specimen. More particularly, the method of the present invention permits use of a single smear preparation or other type of slide preparation to screen for a number of common pathologies. The time required to process a biological specimen for mounting in paraffin is on the order of several hours as compared with the minutes required to prepare the biological specimen on a slide or other substrate using the stabilizing composition of the invention.
- the present invention is not limited to gynecological tests, or for the detection (using conventional methods) of specific diseases such as cancer. It may be adapted and suitably employed in connection with any of a variety of procedures for the preservation or testing of cells, tissues, bodily fluids or other biological specimens. Also, without limitation, specimens prepared in accordance with the present invention are archived and suitably re-used for other tests using conventional test methods, e.g., cytology tests for HPV, HIV, hepatitis (e.g., hepatitis-C) or other disorders.
- the term “effective amount” refers to an amount sufficient to yield a combination of two or more characteristics of a fixative for a test specimen selected from the group consisting of rapid specimen penetration, minimal specimen shrinkage, protein presentation, antigen preservation, morphology preservation, stain permeability, pathogen-lysis and mixtures thereof.
- the effective amount is sufficient to yield a combination of all of the immediately preceding disclosed characteristics.
- the effective amount is sufficient to permise effective adhesion to specimen mounting surfaces such as glass slide surfaces.
- the composition of the present invention includes, in one preferred embodiment, a first fixative dispersed in a liquid medium.
- the fixative is a chemical fixative.
- the fixatives react chemically (e.g., covalently) with cells and proteins.
- it is a chemical fixative known widely in the art as a non-coagulating fixative.
- the preferred fixative when contacted with a biological specimen generally will exhibit only insubstantial denaturation (if any) of plasma protein substances in the biological material.
- a coagulating fixative may be employed in combination with or a non-coagulating fixative in accordance with certain aspects of the present invention, provided the resulting properties of the overall composition are not materially affected for purposes of handling or later pathological testing. In some instances, a coagulating fixative absent appreciable amounts of non-coagulating fixative may be employed advantageously.
- the first fixative is a non-crosslinking chemical fixative, more preferably contains urea, and still more particularly is a diazolidinyl urea (DU), imidazolidinyl urea (IDU), or a mixture thereof.
- DU diazolidinyl urea
- IDU imidazolidinyl urea
- the fixative is employed in an effective amount as discussed above.
- the fixative is employed in an amount greater than zero and up to at least its saturation limit (of course, supersaturated amounts that yield the desired characteristics would still fall within the scope of the present invention).
- DU is employed in a generally non-aqueous solvent (e.g., alcohol, as will be discussed in greater detail)
- the amount of DU preferably ranges up to about 5% and still more preferably, it is about 3% of the composition.
- the first fixative is dispersed (e.g. dissolved) or otherwise suspended in a liquid medium to form a liquid composition.
- the liquid medium selected preferably is such that the overall liquid composition exhibit a viscosity that permits it to be applied to a substrate along with a biological specimen so that the liquid composition forms a thin film that fixes the biological specimen and maintains it static.
- the liquid composition may be applied using any suitable method, such as by brush, swab, dropper, pouring, immersion, roller, sponge, dropper, or the like, in a highly preferred embodiment, it is sprayed, such as with a pump spray bottle, or another suitable spraying device (e.g., by aerosol can, compressed gas delivery, etc.).
- the viscosity of the liquid composition is on the order of that of water at room temperature.
- the liquid medium is substantially optically transparent. However, it may include one or more dies, stains or colorants as desired.
- the preferred liquid composition is a solution of the fixative in a solvent.
- the solvent preferably is substantially free of liquids or other agents that, upon drying, have a tendency to exhibit spotting visible to the naked eye, or of such a magnitude that interference would result in the course of optical examination of the specimen (e.g., by the naked eye, optical microscope, electron microscope, or other optical imaging technique).
- the liquid composition is substantially free of material amounts of them.
- the liquid medium is an organic solvent that itself functions as a fixative.
- the medium preferably has a relatively low boiling point, and thus will tend to evaporate relatively quickly in typical clinical conditions for the preparation of biological test specimens.
- suitable class of solvents include alcohols such as, without limitation, ethyl alcohol, methyl alcohol, isopropyl alcohol, or mixtures thereof. Other alcohols may likewise be used.
- certain other solvents, such as ketones (e.g. acetone) may likewise be employed.
- the liquid medium includes a second agent for coating the specimen and protecting it.
- the second agent is a relatively large molecule organic compound (preferably carrying a charge), and more preferably is a polyol (even more preferably an alkylene polyol).
- the second agent preferably functions to help spread cells (for a cell specimen) and protect them from the adverse effects of the atmosphere.
- the second agent has a generally glue-like consistency, helps to form a film, and generally will not interfere with the efficacy of any staining step.
- the second agent is a polyol, such as (for example, without limitation) glycol, e.g., an alkylene glycol, such as polyethylene glycol, having a molecular weight of about 1000 to about 20,000, and more preferably it is about 1450.
- the second agent when employed, is present in an amount of up to about 5%, and more preferably ranges up to about 1% of the overall composition.
- the second agent includes a poloxamer (e.g., poly(oxyethylene)-poly(oxypropylene)copolymers), other alkylene polyols (e.g., polypropylene glycol) or other agents such as polyvinylpyrollidone.
- the relative proportions by weight of first fixative to solvent/fixative to second agent is about 0.01 to about 5 parts first fixative: about 60 to about 95 parts solvent/fixative: 0 to about 3 parts second agent. In a still more preferred embodiment, the relative proportions by weight of fixative to solvent to second agent is about 1 to about 3 parts: about 65 to about 75 parts solvent/fixative: 0 to about 1 part second agent.
- Suitable mordants are salts with a metal ion having an oxidation state of two or more.
- Illustrative are zinc, strontium, calcium, barium and chromium salts.
- One preferred salt is zinc sulfate.
- Suitable buffers include alkali metal phosphate salts such as sodium phosphate and potassium phosphate.
- Suitable osmotically active substances include, for instance, alkali metal salts such as sodium chloride.
- alkali metal salts such as sodium chloride.
- sugars such as polysaccharides, sucrose, glucose and the like may be employed.
- Suitable nuclear detail improvers or size increasers include, without limitation, acetic acid and lithium salts such as lithium chloride.
- Zinc salts such as zinc sulfate not only improve nuclear definition but also improves staining.
- Illustrative of substances for increasing the rate of penetration of the fixing agent are dimethylsulfoxide and ethanol.
- the resulting pH of the composition (in its liquid state) of the present invention ranges from about ⁇ 6 to about 9.5 and more preferably about 7 to about 8.5, and still more preferably about 8.
- a composition that is contacted with a biological test specimen on a solid support surface. After contacting the test specimen the composition secures the test specimen to the solid support surface, preferably by adhesive forces.
- the composition to the naked eye will be generally optically transparent and substantially free of crystals.
- the treated specimens will generally be free of substantial amounts of background noise occasioned by the presence of mucus.
- Specimens treated in accordance with the present invention render useful specimens for rapid and substantially contemporaneous examination.
- such specimens exhibit long term stability (e.g., greater than about 12 weeks) or extended processing times (even under extreme ambient conditions (e.g., ranging from about ⁇ 80 degrees C.
- specimens exhibit stable morphologies, cytoplasmic detail and insubstantial lysis. Likewise, staining and adhesive qualities are preserved over time. In turn, the integrity of specimens can be improved, thereby reducing the risk of specimen loss, lysis, hydration and other cellular artifacts that have a tendency to result in a greater potential for accurate and efficient diagnosis.
- Test specimens in accordance with the composition, system and method of the present invention may be prepared for examination in any suitable manner using manual, semi-automated and automated techniques.
- instruments used for semiautomated and automated techniques include those offered under the designation THIN PREP (by Cytyc Corp.).
- THIN PREP by Cytyc Corp.
- cervical specimens are collected with conventional sampling devices and are placed directly into vials containing a predetermined amount (e.g., about 20 mL) of the stabilizing composition of the invention rather than being prepared as smears.
- the vials are held at ambient temperature until processed according to manufacturers published procedures. Papanicolaou staining and cytologic screening is then performed.
- the biological test specimen is obtained by swabbing, scraping, cutting or otherwise gathering the biological material from a test subject.
- a suitable amount of cells are obtained according to standard protocols.
- the cells are placed on a solid support or substrate, such as a glass slide, where they are fixed, and may be stained or otherwise treated preparatory to subsequent pathological examination. Any of a number of subsequent pathological examinations might be employed with samples fixed in accordance with the composition, method and system of the present invention.
- the procedures employed are within the knowledge of those skilled in the art, and may be found for instance in guidelines published by the NCCLS, such as GP23-A and GP15-A, hereby incorporated by reference.
- the present preferred composition is used in connection with the preservation of Pap smear specimens (preferably for screening for squamous cell carcinoma, e.g., by screening for low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesion or carcinoma-in situ, which employs a step of staining the specimen with a suitable stain.
- a suitable stain for example, without limitation, a Papanicolau stain is employed.
- the Papanicolaou stain employs a standard nuclear stain: hematoxylin and two cytoplasmic counterstains: OG-6 and EA.
- OG-6 stands for orange-G-6 and consists of Orange G stain plus phosphotungstic acid in 95% ethanol
- EA is a mixture of Light Green SF Yellowish and Eosin Y
- various preparations of EA may include other reagents, e.g., Bismarck brown, phosphotungstic acid, lithium carbonate, and acetic acid).
- the Papanicolaou stain technique is a polychrome method designed to exhibit differences in cellular morphology, maturity, and metabolic activity. Of special importance, since the cells in a cytologic smear tend to overlap, is that this stain produces transparent cytoplasm, which allows the examiner to see through layers of cells, debris, and mucus. Different modifications of the classic Papanicolaou stain produce variations in intensity of nuclear and cytoplasmic staining. The choice of which modification to use is largely a matter of personal preference.
- the Modified Papanicolaou Staining Procedure (“A Guide to Cytopreparation,” Am. Soc. for Cytotechnology) is the currently recommended method for staining gynecologic cytology preparations, especially cervico-vaginal smears, because it provides: (1) well-stained (blue) chromatin and definition of nuclear detail; (2) differential counterstaining (e.g., staining the cytoplasm of different cell types different colors, reflecting the maturity and activity of the cells); and (3) cytoplasmic transparency.
- Obtaining a specimen for the gynecologic Pap smear test is done by a health care provider as part of a pelvic examination.
- a health care provider as part of a pelvic examination.
- Each of these methods is well known in the art. See, e.g., Bourne, L. D.
- composition of the present invention is provided as part of a kit that may include one of more additional materials or instruments selected from stain, dye, immunostain, slide, coated glass slide (e.g., albumin, water-soluble glue, chrome alum, or poly-L-lysine, activated glass slide (e.g. treated with a silane such as aminoalkylsilane) scalpel, swabbing, pipette, reference control, storage rack, storage container, transport container, data forms, labelers or coverslips.
- additional materials or instruments selected from stain, dye, immunostain, slide, coated glass slide (e.g., albumin, water-soluble glue, chrome alum, or poly-L-lysine, activated glass slide (e.g. treated with a silane such as aminoalkylsilane) scalpel, swabbing, pipette, reference control, storage rack, storage container, transport container, data forms, labelers or coverslips.
- the compostion of the present invention is provided with one or more semi-automated or automated instruments, such as instruments for staining, coverslipping, slide or substrate preparation or the like.
- the composition, method and system of the present invention is employed with an optical microscope, an electron microscope, or some other optical imaging instrument; some or all of these may further include a computerized workstation with readout and printout devices associated with them.
- the present invention may be advantageously employed in connection with many cytological, immunochemical and molecular diagnostic applications.
- Examples of particularly preferred instruments include, without limitation, AUTO PAP (by NeoPath) and PAPNET (by Neuromedical Systems), which are automated slide scanning systems.
- Other complementary systems that may be employed include those having the designation AcCELL and TracCELL (by AccuMed), and SCREEN (by AutoCyte)
- the composition of the present invention may be prepared in any suitable manner.
- the first fixative includes DU
- about 3 parts by weight (15 g) of the DU is first dissolved in 30 parts water (which may be at room temperature)(150 ml).
- the DU/water solution is then diluted to to about 70 parts by weight alcohol (350 ml).
- alcohol 350 ml
- the solvent is isopropyl alcohol
- about 99% isopropyl alcohol is added, along with about 0.05 parts of polyethylene glycol (0.25 g).
- the resulting formulation exhibits a pH in the range of about 7.8 to about 8.2.
- it has a concentrated osmolarity calculated to about 250 to about 500 (e.g. about 290). It is filtered through a 0.8 um bottle-top filter and then a 0.2 um bottle-top filter and placed into a suitable delivery device, such as a 35 ml fill spray bottle.
- an immunocytochemistry procedure is performed, where slides smeared with cervical samples are sprayed (e.g. 2-3 pumps) with the composition of the present invention, and allowed to dry.
- the slides are gently rinsed with PBS (phosphate buffered saline) and incubated with about 0.3% hydrogen peroxide in PBS for about 30 minutes to help block endogenous peroxidase activity.
- Excess peroxide is drained from the slide and the slides are washed three times over 5 minutes with PBS.
- Excess PBS is drained from the slide.
- the slides are then incubated with either 5% bovine serum albumin (BSA) in PBS or 10% normal goat or rabbit serum for about 30 minutes at about 37 degrees C. in a humidified chamber, and then rinsed three times in PBS (2 minutes each). The excess is drained.
- BSA bovine serum albumin
- the primary antibody is applied (biotin labeled anti-HPV Type 16) directly on the slide in the appropriate dilution to cover the specimen, e.g., about 400 uls, and allowed to incubate about 1 hour at room temperature or about 30 minutes in a humidified chamber. Excess antibody is drained off and the slides are then washed three times in PBS (2 minutes each).
- a suitable conjugated enzyme e.g., HRP (horseradish peroxidase) Streptavidin conjugate is added and incubated for 30 minutes at room temperature. The sample is washed three times in PBS and the excess is drained.
- HRP horseradish peroxidase
- the smear is then counterstained (e.g., in Meyer's hematoxylin for about 2-10 minutes), and the slide is submerged in about 30 mM ammonium hydroxide for about 15 seconds followed by a brief water rinse. Slides are coverslipped with an aqueous mounting media and successfully examined microscopically.
- in situ hybridization is performed.
- slides smeared with cervical samples are sprayed with the compositon of the present invention (2 to 3 pumps).
- About 400 ul of a hybridization cocktail is applied to the slide (2 ⁇ SSC, 10% dextran sulfate, 2 ⁇ Denhard's Solution, 50% formamide, 200 ug(micrograms)/ml denatured herring sperm DNA).
- the slide is coverslipped and incubated at about 37 degrees C. in a humidified chamber.
- Biotinylated probe (HPV 16 consensus probe) is added to the hybridization cocktail (about 0.5 to about 2 ng/ul) and about 100 ul of the cocktail is added to the slide. The slide is coverslipped and allowed to denature at about 95 degrees C. for about 2 minutes in a humidified chamber. The slides are transferred to a 37 degree humidified chamber and incubated for about 1-2 hours (or optionally overnight at about 4 degrees C.)
- the coverslip is removed and the sample is washed in a buffer, e.g., 2 ⁇ SSC (sodium chloride-sodium citrate) buffer pre-warmed to about 60 degrees C. for about 5 minutes.
- a buffer e.g., 2 ⁇ SSC (sodium chloride-sodium citrate) buffer pre-warmed to about 60 degrees C. for about 5 minutes.
- the slide is then washed in a buffer such as 2 ⁇ SSC buffer at room temperature for about 5 minutes and the excess buffer is shaken off.
- the slide is blocked with blocking solution (e.g., 0.5% BSA in TBS (tris-buffered saline)) for 10 minutes and the excess drained.
- blocking solution e.g. 0.5% BSA in TBS (tris-buffered saline)
- the sample is then incubated with a conjugated enzyme (e.g., HRP-Streptavidin conjugate) for about 20 minutes at room temperature in a humidified chamber. it is then washed three times in about 0.02-0.05% v/v Tween-20 in TBS over about 5 minutes.
- a conjugated enzyme e.g., HRP-Streptavidin conjugate
- the peroxidase substrate e.g.,DAB (diaminobenzadine)
- DAB diaminobenzadine
- the smear is counterstained in Meyer's Hematoxylin for about 2-10 minutes and the slide is submerged in about 30 mM ammonium hydroxide for about 15 seconds followed by a brief water rinse.
- the slides are coverslipped with an aqueous mounting medium and successfully examined microscopically.
- a sample of cells is obtained from the cervix to screen for cervical cancer, its precursors, and other abnormalities of the reproductive tract.
- the specimen includes samples of the squamous and columnar epithelium, encompassing in particular the transformation zone where the majority of cervical neoplasias appear.
- the cellular material that is collected is applied to a glass slide, and quickly but evenly spread the cellular material in a thin layer on the glass slide. Large clumps of material are thinned out as much as possible, while avoiding excessive manipulation which can damage cells. To avoid developing air-drying artifacts, therefore, the material is transferred from the sampling instrument to the slide within a few seconds and immediately fixed using the composition of the present invention.
- the fixed specimen is dried, and prepared for transporting or storing.
- the specimen is fixed to the slide by either immersing in the fixative or coating the slide with a surface fixative, which typically includes polyethylene glycol (PEG).
- a surface fixative typically includes polyethylene glycol (PEG).
- Spray-fixed or liquid-coated slides are allowed to dry completely before packaging for transportation or staining specimens prepared are successfully examined.
- Approximately 50 sets of slides are taken from 50 randomly selected patients for a split-specimen study. Each slide includes an endocervical and ectocervical smear specimen. One slide is sprayed with the composition of the invention and the other was sprayed with a conventional aqueous alcohol buffer solution fixative for slide preparations (i.e., SURGIPATH), for comparison.
- a conventional aqueous alcohol buffer solution fixative for slide preparations i.e., SURGIPATH
- the health care provider sprays the slides, and documents, numbers and labels each slide as A or B, indicating whether the slide is sprayed with the composition of the present invention (A) or the conventional fixative (B).
- Each slide set is numbered and matched to the patient case history, pathology report and scoring report forms.
- the specimens are processed as obtained using the modified Papanicolaou staining procedure.
- the sets of slides are stained in tandem and read by a panel of pathologists who score and evaluate each slide (both ectocervical and endocervical smears) for a number of parameters, including a readable diagnosis and ASCUS (atypical squamous cells of undetermined significance) determination, cell morphology, nuclear and cytoplasmic staining detail, staining intensity and preservation quality.
- Table I provides the qualitative results, where the “same, better or worse” descriptions refer to the relative observable differences between A and B (e.g., a score of “better” means that the composition of the present invention fared better than the conventional fixative).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
A system, composition and method for the stabilization of biological specimens, which employs a chemical fixative.
Description
- The present invention relates generally to biological specimen fixatives and more particularly to a fixative for preserving a specimen for serial or archival diagnostic examinations.
- Exfoliative cytology is the study of cells, either naturally shed or collected, from a tissue surface. The importance of cytology as a diagnostic tool lies in the knowledge that any changes in these superficial cells can be a reflection of changes in the immediate underlying tissue. For example, the role of cytology in the field of gynecology has three important applications: (1) the detection of malignant lesions, (2) the assessment of hormone function, and (3) the identification of vaginal infections. The detection of malignant changes as early as possible in its genesis bears a direct relationship to the prognosis.
- Thus, for instance, the examination of asymptomatic women for the early detection of carcinoma of the cervix is of prime importance. Carcinoma in situ is a malignant change in the cervical epithelium leaving the basement membrane unviolated, i.e., it is non-invasive. Endometrial carcinoma can also be detected cytologically, as can malignancies of the fallopian tubes, ovaries, vagina and vulva.
- Diagnostic cytology has been used extensively as a detection system for alterations in cellular morphology, such as alterations which may occur when a normal cell develops into a cancerous cell. One of the main applications of diagnostic cytology is in the early detection of cervical cancer. The cervical smear and staining technique was developed by George N. Papanicolaou for detection of early neoplastic changes in the uterine cervix. In its current form, it is a necessary routine and major screening procedure for women of all ages. As such, the test has become a convenient focus for the medical profession to regularly review the health status of American women. The modem Papanicolaou (“Pap”) screening technique, is the most successful test developed for reducing the incidence of cancer of the uterine cervix.
- The success rate of this screening technique is influenced by such factors as the clinical sensitivity of the screening method, that is, the false negative rate attributed by errors during sampling, screening and evaluation. In practice, although a remarkable reduction in cervical cancer has in fact occurred, this cancer has never been completely eradicated in any population ever reported, no matter how thoroughly screened. Koss, L. G. (1989), The Papanicolaou Test for Cervical Cancer Detection: A Triumph and a Tragedy, JAMA 261:737-743; see also DeMay, “Problems in Pap Smear Interpretation”, Arch. Pathol. Lab. Med. 121:229-23 (1997).
- The quality of the Papanicolaou screening in the United States has received significant attention in both the public and professional sectors over the past few years. This attention has resulted in increased interest and effort from professional societies, regulatory agencies, and industry to address concerns and propose mechanisms to improve and insure the effectiveness, reliability and accuracy of the Pap screening technique. In this regard, recognition of etiologic factors in the development of cervical cancer, for example human papillomavirus (HPV) infections, may improve the sensitivity of screening programs. Morphologic assessment of such infections has potential drawbacks (“Buffered formalin is the superior fixative for the detection of HPV DNA by in situ hybridization analysis.”Am. J. Pathol. 134:837; Tanaka, H., et al. (1993), “Patients with various types of human papillomavirus” Cytopath. 4:273-283), with it being recognized that a sensitive method of detection would be of particular value. Chua and Hjerpe,“Polymerace Chain Reaction of Human Papillomavirus in Archival Cervical Cytology Smears,” AQCH 17(4):221-228(1995)
- Currently, the primary purpose of obtaining a specimen of cells from the cervix is for use in cytopathology to detect cervical cancer, its precursors, and other abnormalities of the reproductive tract. It would be desirable to use a sample slide preparation, such as collected for conventional cervical carcinoma cytologic screening, to perform ancillary studies to detect alterations in DNA or protein associated with carcinogenesis. A method which simultaneously permits rapid tissue fixation, excellent morphologic detail, antigen preservation without masking or denaturation, and/or which results in less RNA and DNA degradation would, therefore, be highly desirable in the diagnosis of gynecological pathologies. As those of skill in the art recognize, the specimen to be tested must also be immobilized so that it will not be damaged or released during transport for processing or during the rigorous assay procedures associated with immunocytochemical and molecular procedures.
- These procedures commonly are performed on embedded or frozen tissue biopsies. Fixative type and fixation time are known to influence not only the preservation of tissue morphology (Baker, “Principles of Biological Microtechnique: A Study of Fixation and Dyeing,” 1959)and the preservation of protein antigens for immunocytochemistry (Williams, J. H., et al. (1997),“Tissue preparation for immunocytochemistry.”J. Clin. Pathol. 50:422), but also the preservation of nucleic acids for in situ hybridization (“Patients with various types of human papillomavirus” Cytopath. 4:273-283; Weiss, L. M., and Chen, Y. Y. (1991), “Effects of different fixatives on detection of nucleic acids from paraffin-embedded tissues by in situ hybridization using oligonucleotide probes.”; “The Revised Bethesda System for Reporting Cervical/Vaginal Diagnosis: Report of the 1991 Bethesda Workshop.” JAMA 267:1092; Nuovo, G. J., and Richart, R. M. (1989), “Buffered formalin is the superior fixative for the detection of HPV DNA by in situ hybridization analysis.” Am. J. Pathol. 134:837; and in situ amplification (Ben-ezra, et al., Effect of Fixation on the Amplification of Nucleic Acids from Paraffin-Embedded Material by the Polymerase Chain Reaction,” J. Histochem. Cytochem. 39:351 (1991)).
- The process of fixation forms the foundation for the evaluation of biological specimens on slides and for the preparation of tissue sections. For most applications, fixation preferably should prevent or arrest autolysis and putrefaction, preserve antigenic sites, preserve morphology, stabilize DNA, RNA and soluble and structural proteins, fortify the tissues against the deleterious effects of subsequent processing and facilitates staining, or a combination of some or all of these features. Biological specimens are analyzed for many purposes using a variety of different assays, including diagnostic cytology, immunocytochemistry and molecular pathology. Current methods of fixation rely on chemical agents, the most widely used being formaldehyde and alcohol.
- Examples of efforts in this field include conventional aqueous bi-sulfite-based fixatives (with acetic buffer), PVP-based fixatives (with propylene glycol and methanol) as well as those outlined in U.S. Pat. Nos. 3,546,334 (Lerner); 4,578,282; 4,857,300 (Maksem); 5,104,640 (Stokes); 5,256,571 (Hurley); and 5,432,056 (Hartman et al), all of which are hereby expressly incorporated by reference. One particularly effective formulation is disclosed in U.S. Pat. No. 5,196,182 (Ryan). An example of a commercially available product is that offered by Surgipath Medical Industries, Inc. (Richmond, Ill.) under the name SURGIPATH Cytology Fixative. The latter contains ethanol, polyethylene glycol and distilled water. The polyethylene glycol generally provides a waxy coating to stop evaporation, which requires removal before slide staining. Other common exfoliative cytology fixatives include additives such as glacial acetic acid (e.g. at 3%).
- In recent years, the U.S. Food and Drug Administration has approved new devices for gynecological screening, as discussed in “Finding the Proper Fit for Pap Smear Devices”, by William Check, PhD, CAP TODAY (December 1998), pp. 18 et seq, hereby incorporated by reference. With the advancement in such testing there has been a more acute recognition of the long felt need for improved specimen preparation techniques.
- In accordance with the above discussion, background literature of potential interest as to the present invention includes: Allen, “A Guide to Cytopreparation,” Am. Soc. for Cytotechnology; Baker, J. R. (1959), “Principles of biological microtechnique: a study of fixation and dyeing,” New York, Barnes & Noble, Inc.; Ben-ezra, J., et al. (1991), “Effect of fixation on the amplification of nucleic acids from paraffin-embedded material by the polymerase chain reaction,”J. Histochem. Cytochem. 39:351; Bourne, L. D. (1990), Theory and Practice of Histological Techniques, “Gynaecological Cytology,” Church Hill Livingstone, Edinburgh; Briggs, R. M. (1979), “Dysplasia and Early Neoplasia of the Uterine Cervix: A Review,” Obstet. Gynecol. Surv. 34:70-99; Chua, K. I., and Hjerpe, A. (1995).
- “Polymerace chain reaction of human papillomavirus in Archival Cervical cytology smears,” AQCH 17(4):221-228; Davey, D. D., et al. (1994), “Atypical Squamous Cells of Undetermined Significance: Interlaboratory Comparisons and Quality Assurance Monitors,”Diag. Cytopathol. 11:390-396; DeMay, R. M. (1997). “Problems in Pap Smear Interpretation,” Arch. Pathol. Lab Med. 121:229-238; Hopwood, David (1990), “Fixation and Fixatives in Theory and Practice of Histological Techniques,” Churchill Hill Livingstone, Edinburgh; Kinney, W. K., et al. (1998) “Where's the High Grade Cervical Neoplasia? The Importance of Minimally Abnormal Papanicolaou Diagnosis.” Obstet. Gynecol. 91:973-976; Koss, L. G. (1989), The Papanicolaou Test for Cervical Cancer Detection: A Triumph and a Tragedy, JAMA 261:737-743; Nasiell, K., et al. (1986), “Behavior of Mild Cervical Dysplasias During Long-Term Follow-up.” Obstet. Gynecol. 67:665-669; National Cancer Inst. Workshop (1992), “The Revised Bethesda System for Reporting Cervical/Vaginal Diagnosis: Report of the 1991 Bethesda Workshop.”JAMA 267:1092; Nuovo, G. J., and Richart, R. M. (1989), “Buffered formalin is the superior fixative for the detection of HPV DNA by in situ hybridization analysis.” Am. J Pathol. 134:837; Tanaka, H., et al. (1993), “Patients with various types of human papillomavirus” Cytopath. 4:273-283; Weiss, L. M., and Chen, Y. Y. (1991), “Effects of different fixatives on detection of nucleic acids from paraffin-embedded tissues by in situ hybridization using oligonucleotide probes.” J. Histochem. Cytochem. 39:1237; and Williams, J. H., et al. (1997), “Tissue preparation for immunocytochemistry.” J. Clin. Pathol. 50:422. All of the above-cited publications are hereby expressly incorporated by reference.
- The present invention overcomes the shortcomings of the prior art by providing an improved composition and system for the preservation of biological test specimens. The specimens are preserved in a fixative medium that offers one or more advantages such as rapid cell or tissue penetration, minimal specimen shrinkage, protein preservation, antigen preservation, morphology preservation, stain permeability, lysis of pathogens or the like. Moreover, the medium permits effective adhesion to specimen mounting surfaces such as glass slide surfaces. Use of the composition and system of the present invention thus affords a generally long term record of the specimen, making it attractive for archiving and multiple testing, without the need for obtaining further samples from the test subject.
- In accordance with the present invention, there is provided a system, method and composition for the preservation of biological test specimens which includes the use of an effective amount of a chemical fixative dispersed in a liquid medium (e.g., a non-crosslinking fixative). In a particularly preferred embodiment, the chemical fixative includes a urea containing reaction product (e.g., a heterocyclic urea) of a reaction involving an aldehyde (e.g., formaldhyde with allantoin), and more preferably, includes up to about 5% of the same in a medium that is substantially free of water. The system of the present invention contemplates the use of the composition of the present invention for preservation of cell samples, tissue samples, or both, for cyto-pathological examination. Thus, contemplated as within the scope of the present invention are, for example, methods for specimen preparation using the composition of the present invention, methods for cyto-pathological, immunocyto-chemical and molecular evaluation of specimens prepared using the composition of the present invention, as well as the equipment and supplies necessary to carry out the specimen preparation, evaluation, or both. In a highly preferred embodiment, the system of the present invention is employed in connection with gynecological testing.
- The method of the present invention is particularly useful for stabilizing biological specimens which have been or will be applied to slides for transport and later processing or which will undergo rigorous procedures, such as immunocytochemistry, in situ hybridization and amplification procedures, including RT-PCR, in situ PCR and RT-in situ PCR. The non-crosslinking fixative composition enhances cellular stability, permitting the cells to be stored for longer periods of time without deterioration of morphology, thus increasing accuracy of staining and ease of cytopathologic assessment.
- A biological specimen when preserved by the method of the invention can be evaluated using conventional cytologic techniques, even when the specimen is held before staining for at least 45 days. Additionally, a specimen preserved by the method of the invention can be processed for immunocytochemistry and molecular analysis without significant loss or deterioration of the specimen. More particularly, the method of the present invention permits use of a single smear preparation or other type of slide preparation to screen for a number of common pathologies. The time required to process a biological specimen for mounting in paraffin is on the order of several hours as compared with the minutes required to prepare the biological specimen on a slide or other substrate using the stabilizing composition of the invention.
- Unless otherwise specified, all percentages herein are by weight. By “optically transparent” as used herein means generally transparent to the naked eye and susbstantially free of opacity. In the context of a biological specimen, one fixed in an optically transparent medium thus allows the visual detail of the specimen to be seen, without substantial interference from opaque fixative artifacts.
- Though advantageously employed in such testing, the present invention is not limited to gynecological tests, or for the detection (using conventional methods) of specific diseases such as cancer. It may be adapted and suitably employed in connection with any of a variety of procedures for the preservation or testing of cells, tissues, bodily fluids or other biological specimens. Also, without limitation, specimens prepared in accordance with the present invention are archived and suitably re-used for other tests using conventional test methods, e.g., cytology tests for HPV, HIV, hepatitis (e.g., hepatitis-C) or other disorders. See, e.g., “Use of the Same Archival Papanicolaou Smears for Detection of Human Papillomavirus by Cytology and Polymerase Chain Reaction”, by McDonald et al, Diagnostic Molecular Pathology 8(1): 20-25, 1999, hereby incorporated by reference. Thus, the present detailed description is not intended as limiting the scope of the methods, compositions and systems of the present invention.
- As used herein, the term “effective amount” refers to an amount sufficient to yield a combination of two or more characteristics of a fixative for a test specimen selected from the group consisting of rapid specimen penetration, minimal specimen shrinkage, protein presentation, antigen preservation, morphology preservation, stain permeability, pathogen-lysis and mixtures thereof. In a highly preferred embodiment, the effective amount is sufficient to yield a combination of all of the immediately preceding disclosed characteristics. Moreover, the effective amount is sufficient to permise effective adhesion to specimen mounting surfaces such as glass slide surfaces. When employing effective amounts of the present composition and its constituent ingredients, use of the composition and system of the present invention thus affords a generally long term record of the specimen, making it attractive for archiving and multiple and archival testing for diagnosis. While specific concentration ranges are provided in the following discussion, by way of illustration, they are not intended as limiting. Moreover, compositions of the present invention may be used in their diluted or concentrate forms.
- The composition of the present invention includes, in one preferred embodiment, a first fixative dispersed in a liquid medium. More preferably, the fixative is a chemical fixative. Specifically, the fixatives react chemically (e.g., covalently) with cells and proteins. Still more preferably, it is a chemical fixative known widely in the art as a non-coagulating fixative. Thus, the preferred fixative when contacted with a biological specimen generally will exhibit only insubstantial denaturation (if any) of plasma protein substances in the biological material. It should be realized that in some instances a coagulating fixative may be employed in combination with or a non-coagulating fixative in accordance with certain aspects of the present invention, provided the resulting properties of the overall composition are not materially affected for purposes of handling or later pathological testing. In some instances, a coagulating fixative absent appreciable amounts of non-coagulating fixative may be employed advantageously.
- In a highly preferred embodiment, the first fixative is a non-crosslinking chemical fixative, more preferably contains urea, and still more particularly is a diazolidinyl urea (DU), imidazolidinyl urea (IDU), or a mixture thereof. Such fixative is employed in an effective amount as discussed above. By way of illustration, without limitation, the fixative is employed in an amount greater than zero and up to at least its saturation limit (of course, supersaturated amounts that yield the desired characteristics would still fall within the scope of the present invention). Thus, if DU is employed in a generally non-aqueous solvent (e.g., alcohol, as will be discussed in greater detail), the amount of DU preferably ranges up to about 5% and still more preferably, it is about 3% of the composition.
- As indicated, the first fixative is dispersed (e.g. dissolved) or otherwise suspended in a liquid medium to form a liquid composition. The liquid medium selected preferably is such that the overall liquid composition exhibit a viscosity that permits it to be applied to a substrate along with a biological specimen so that the liquid composition forms a thin film that fixes the biological specimen and maintains it static. Though the liquid composition may be applied using any suitable method, such as by brush, swab, dropper, pouring, immersion, roller, sponge, dropper, or the like, in a highly preferred embodiment, it is sprayed, such as with a pump spray bottle, or another suitable spraying device (e.g., by aerosol can, compressed gas delivery, etc.). In one preferred embodiment, the viscosity of the liquid composition is on the order of that of water at room temperature. Preferably the liquid medium is substantially optically transparent. However, it may include one or more dies, stains or colorants as desired. The preferred liquid composition is a solution of the fixative in a solvent.
- The solvent preferably is substantially free of liquids or other agents that, upon drying, have a tendency to exhibit spotting visible to the naked eye, or of such a magnitude that interference would result in the course of optical examination of the specimen (e.g., by the naked eye, optical microscope, electron microscope, or other optical imaging technique). Thus, while the presence of water and other constituents is tolerable in small amounts, the liquid composition is substantially free of material amounts of them.
- Preferably the liquid medium is an organic solvent that itself functions as a fixative. The medium preferably has a relatively low boiling point, and thus will tend to evaporate relatively quickly in typical clinical conditions for the preparation of biological test specimens. Examples of one suitable class of solvents include alcohols such as, without limitation, ethyl alcohol, methyl alcohol, isopropyl alcohol, or mixtures thereof. Other alcohols may likewise be used. Moreover, certain other solvents, such as ketones (e.g. acetone) may likewise be employed.
- Optionally, the liquid medium includes a second agent for coating the specimen and protecting it. In one preferred embodiment, the second agent is a relatively large molecule organic compound (preferably carrying a charge), and more preferably is a polyol (even more preferably an alkylene polyol). The second agent preferably functions to help spread cells (for a cell specimen) and protect them from the adverse effects of the atmosphere. At the same time, the second agent has a generally glue-like consistency, helps to form a film, and generally will not interfere with the efficacy of any staining step. Still more preferably, the second agent is a polyol, such as (for example, without limitation) glycol, e.g., an alkylene glycol, such as polyethylene glycol, having a molecular weight of about 1000 to about 20,000, and more preferably it is about 1450. The second agent, when employed, is present in an amount of up to about 5%, and more preferably ranges up to about 1% of the overall composition. In another embodiment, the second agent includes a poloxamer (e.g., poly(oxyethylene)-poly(oxypropylene)copolymers), other alkylene polyols (e.g., polypropylene glycol) or other agents such as polyvinylpyrollidone.
- In one preferred embodiment, the relative proportions by weight of first fixative to solvent/fixative to second agent is about 0.01 to about 5 parts first fixative: about 60 to about 95 parts solvent/fixative: 0 to about 3 parts second agent. In a still more preferred embodiment, the relative proportions by weight of fixative to solvent to second agent is about 1 to about 3 parts: about 65 to about 75 parts solvent/fixative: 0 to about 1 part second agent.
- The skilled artisan will appreciate that other additives or agents may be incorporated as desired in the composition of the present invention and still fall within the scope of the present invention. By way of illustration, without limitation, known mordants, buffers, penetration increasers, osmotically active substances, nuclear detail improvers, and nuclear size increasers, such as addressed in U.S. Pat. No. 5,196,182, hereby expressly incorporated by reference.
- Without limitation, examples of suitable mordants are salts with a metal ion having an oxidation state of two or more. Illustrative are zinc, strontium, calcium, barium and chromium salts. One preferred salt is zinc sulfate.
- Suitable buffers include alkali metal phosphate salts such as sodium phosphate and potassium phosphate.
- Suitable osmotically active substances include, for instance, alkali metal salts such as sodium chloride. In addition, sugars such as polysaccharides, sucrose, glucose and the like may be employed.
- Examples of suitable nuclear detail improvers or size increasers include, without limitation, acetic acid and lithium salts such as lithium chloride. Zinc salts such as zinc sulfate not only improve nuclear definition but also improves staining.
- Illustrative of substances for increasing the rate of penetration of the fixing agent are dimethylsulfoxide and ethanol.
- The resulting pH of the composition (in its liquid state) of the present invention ranges from about −6 to about 9.5 and more preferably about 7 to about 8.5, and still more preferably about 8.
- In another aspect of the present invention, there is provided a composition that is contacted with a biological test specimen on a solid support surface. After contacting the test specimen the composition secures the test specimen to the solid support surface, preferably by adhesive forces. The composition, however, to the naked eye will be generally optically transparent and substantially free of crystals. Moreover, the treated specimens will generally be free of substantial amounts of background noise occasioned by the presence of mucus. Specimens treated in accordance with the present invention render useful specimens for rapid and substantially contemporaneous examination. Moreover, such specimens exhibit long term stability (e.g., greater than about 12 weeks) or extended processing times (even under extreme ambient conditions (e.g., ranging from about −80 degrees C. to greater than about 37 degrees C.; high or low humidity; or high wind stress conditions)). Resulting specimens exhibit stable morphologies, cytoplasmic detail and insubstantial lysis. Likewise, staining and adhesive qualities are preserved over time. In turn, the integrity of specimens can be improved, thereby reducing the risk of specimen loss, lysis, hydration and other cellular artifacts that have a tendency to result in a greater potential for accurate and efficient diagnosis.
- Test specimens in accordance with the composition, system and method of the present invention may be prepared for examination in any suitable manner using manual, semi-automated and automated techniques. Examples of instruments used for semiautomated and automated techniques include those offered under the designation THIN PREP (by Cytyc Corp.). For instance, in the Cytyc ThinPrep system, cervical specimens are collected with conventional sampling devices and are placed directly into vials containing a predetermined amount (e.g., about 20 mL) of the stabilizing composition of the invention rather than being prepared as smears. The vials are held at ambient temperature until processed according to manufacturers published procedures. Papanicolaou staining and cytologic screening is then performed.
- For a manual technique, the skilled artisan will appreciate that the biological test specimen is obtained by swabbing, scraping, cutting or otherwise gathering the biological material from a test subject. For example, with a pap smear, a suitable amount of cells are obtained according to standard protocols. The cells are placed on a solid support or substrate, such as a glass slide, where they are fixed, and may be stained or otherwise treated preparatory to subsequent pathological examination. Any of a number of subsequent pathological examinations might be employed with samples fixed in accordance with the composition, method and system of the present invention. Independent of using the composition of the present invention, the procedures employed generally are within the knowledge of those skilled in the art, and may be found for instance in guidelines published by the NCCLS, such as GP23-A and GP15-A, hereby incorporated by reference.
- In one preferred embodiment, the present preferred composition is used in connection with the preservation of Pap smear specimens (preferably for screening for squamous cell carcinoma, e.g., by screening for low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesion or carcinoma-in situ, which employs a step of staining the specimen with a suitable stain. By way of example, without limitation, a Papanicolau stain is employed.
- The Papanicolaou stain employs a standard nuclear stain: hematoxylin and two cytoplasmic counterstains: OG-6 and EA. (OG-6 stands for orange-G-6 and consists of Orange G stain plus phosphotungstic acid in 95% ethanol; EA is a mixture of Light Green SF Yellowish and Eosin Y; various preparations of EA may include other reagents, e.g., Bismarck brown, phosphotungstic acid, lithium carbonate, and acetic acid).
- The Papanicolaou stain technique is a polychrome method designed to exhibit differences in cellular morphology, maturity, and metabolic activity. Of special importance, since the cells in a cytologic smear tend to overlap, is that this stain produces transparent cytoplasm, which allows the examiner to see through layers of cells, debris, and mucus. Different modifications of the classic Papanicolaou stain produce variations in intensity of nuclear and cytoplasmic staining. The choice of which modification to use is largely a matter of personal preference.
- The Modified Papanicolaou Staining Procedure (“A Guide to Cytopreparation,” Am. Soc. for Cytotechnology) is the currently recommended method for staining gynecologic cytology preparations, especially cervico-vaginal smears, because it provides: (1) well-stained (blue) chromatin and definition of nuclear detail; (2) differential counterstaining (e.g., staining the cytoplasm of different cell types different colors, reflecting the maturity and activity of the cells); and (3) cytoplasmic transparency.
- Obtaining a specimen for the gynecologic Pap smear test is done by a health care provider as part of a pelvic examination. Generally, there are five methods of collection of gynecologic material for cytological examination: (1) cervical scrape or smear, (2) aspirate from the posterior fornix, (3) vaginal smear, (4) endocervical canal smear, and (5) endometrial aspirate. Each of these methods is well known in the art. See, e.g., Bourne, L. D. (1990),Theory and Practice of Histological Techniques, “Gynaecological Cytology,” Church Hill Livingstone, Edinburgh; Allen, A Guide to Cytopreparation, Am. Soc. for Cytotechnology, hereby incorporated by reference. Cells are collected, transferred onto a glass slide and immediately fixed, and sent to the laboratory for staining and examination under a microscope. A cytotechnologist examines the smear microscopically for the presence of abnormal cells.
- In another aspect of the present invention, it is contemplated that the composition of the present invention is provided as part of a kit that may include one of more additional materials or instruments selected from stain, dye, immunostain, slide, coated glass slide (e.g., albumin, water-soluble glue, chrome alum, or poly-L-lysine, activated glass slide (e.g. treated with a silane such as aminoalkylsilane) scalpel, swabbing, pipette, reference control, storage rack, storage container, transport container, data forms, labelers or coverslips.
- Likewise, it is contemplated that the compostion of the present invention is provided with one or more semi-automated or automated instruments, such as instruments for staining, coverslipping, slide or substrate preparation or the like. In yet another embodiment, it is contemplated that the composition, method and system of the present invention is employed with an optical microscope, an electron microscope, or some other optical imaging instrument; some or all of these may further include a computerized workstation with readout and printout devices associated with them. In other instances, it may be possible to employ flow cytometry or cell culture analysis to specimens treated in accordance with the present invention. Thus, the present invention may be advantageously employed in connection with many cytological, immunochemical and molecular diagnostic applications. Examples of particularly preferred instruments include, without limitation, AUTO PAP (by NeoPath) and PAPNET (by Neuromedical Systems), which are automated slide scanning systems. Other complementary systems that may be employed include those having the designation AcCELL and TracCELL (by AccuMed), and SCREEN (by AutoCyte)
- The composition of the present invention may be prepared in any suitable manner. In one highly preferred embodiment, where the first fixative includes DU, about 3 parts by weight (15 g) of the DU is first dissolved in 30 parts water (which may be at room temperature)(150 ml). The DU/water solution is then diluted to to about 70 parts by weight alcohol (350 ml). For example, where the solvent is isopropyl alcohol, about 99% isopropyl alcohol is added, along with about 0.05 parts of polyethylene glycol (0.25 g). The resulting formulation exhibits a pH in the range of about 7.8 to about 8.2. Optionally it has a concentrated osmolarity calculated to about 250 to about 500 (e.g. about 290). It is filtered through a 0.8 um bottle-top filter and then a 0.2 um bottle-top filter and placed into a suitable delivery device, such as a 35 ml fill spray bottle.
- By way of illustration, and without intending to be limited thereby, the following illustrates various protocol that may be suitably employed in the present invention.
- In a first illustration, an immunocytochemistry procedure is performed, where slides smeared with cervical samples are sprayed (e.g. 2-3 pumps) with the composition of the present invention, and allowed to dry. The slides are gently rinsed with PBS (phosphate buffered saline) and incubated with about 0.3% hydrogen peroxide in PBS for about 30 minutes to help block endogenous peroxidase activity. Excess peroxide is drained from the slide and the slides are washed three times over 5 minutes with PBS. Excess PBS is drained from the slide. The slides are then incubated with either 5% bovine serum albumin (BSA) in PBS or 10% normal goat or rabbit serum for about 30 minutes at about 37 degrees C. in a humidified chamber, and then rinsed three times in PBS (2 minutes each). The excess is drained.
- The primary antibody is applied (biotin labeled anti-HPV Type 16) directly on the slide in the appropriate dilution to cover the specimen, e.g., about 400 uls, and allowed to incubate about 1 hour at room temperature or about 30 minutes in a humidified chamber. Excess antibody is drained off and the slides are then washed three times in PBS (2 minutes each).
- A suitable conjugated enzyme, e.g., HRP (horseradish peroxidase) Streptavidin conjugate is added and incubated for 30 minutes at room temperature. The sample is washed three times in PBS and the excess is drained.
- About 400 ul (microliters) of the peroxidase substrate (e.g., DAB) is added and allowed to incubate for about 5 minutes. After incubation and development, the excess is drained and the sample is washed three times in PBS then three times in distilled water. The excess wash is drained.
- The smear is then counterstained (e.g., in Meyer's hematoxylin for about 2-10 minutes), and the slide is submerged in about 30 mM ammonium hydroxide for about 15 seconds followed by a brief water rinse. Slides are coverslipped with an aqueous mounting media and successfully examined microscopically.
- In another illustration, in situ hybridization is performed. In this illustration, slides smeared with cervical samples are sprayed with the compositon of the present invention (2 to 3 pumps). About 400 ul of a hybridization cocktail is applied to the slide (2×SSC, 10% dextran sulfate, 2×Denhard's Solution, 50% formamide, 200 ug(micrograms)/ml denatured herring sperm DNA). The slide is coverslipped and incubated at about 37 degrees C. in a humidified chamber.
- Excess cocktail is drained from the slide and it is blotted dry.
- Biotinylated probe (HPV 16 consensus probe) is added to the hybridization cocktail (about 0.5 to about 2 ng/ul) and about 100 ul of the cocktail is added to the slide. The slide is coverslipped and allowed to denature at about 95 degrees C. for about 2 minutes in a humidified chamber. The slides are transferred to a 37 degree humidified chamber and incubated for about 1-2 hours (or optionally overnight at about 4 degrees C.)
- The coverslip is removed and the sample is washed in a buffer, e.g., 2×SSC (sodium chloride-sodium citrate) buffer pre-warmed to about 60 degrees C. for about 5 minutes. The slide is then washed in a buffer such as 2×SSC buffer at room temperature for about 5 minutes and the excess buffer is shaken off.
- The slide is blocked with blocking solution (e.g., 0.5% BSA in TBS (tris-buffered saline)) for 10 minutes and the excess drained.
- The sample is then incubated with a conjugated enzyme (e.g., HRP-Streptavidin conjugate) for about 20 minutes at room temperature in a humidified chamber. it is then washed three times in about 0.02-0.05% v/v Tween-20 in TBS over about 5 minutes.
- About 400 ul of the peroxidase substrate (e.g.,DAB (diaminobenzadine)) is added and allowed to incubate for about 5 minutes. After incubation and development, the excess is drained and the sample is rinsed three times in PBS and then three times in distilled water. The excess wash is drained.
- The smear is counterstained in Meyer's Hematoxylin for about 2-10 minutes and the slide is submerged in about 30 mM ammonium hydroxide for about 15 seconds followed by a brief water rinse.
- The slides are coverslipped with an aqueous mounting medium and successfully examined microscopically.
- Liquid-based collection procedures are employed as an alternative to the slide smear technique, and yields like results. With these methods, sampling instruments are rinsed in a fixing solution in accordance with the present invention, which is then sent to the laboratory.
- A sample of cells is obtained from the cervix to screen for cervical cancer, its precursors, and other abnormalities of the reproductive tract. The specimen includes samples of the squamous and columnar epithelium, encompassing in particular the transformation zone where the majority of cervical neoplasias appear. The cellular material that is collected is applied to a glass slide, and quickly but evenly spread the cellular material in a thin layer on the glass slide. Large clumps of material are thinned out as much as possible, while avoiding excessive manipulation which can damage cells. To avoid developing air-drying artifacts, therefore, the material is transferred from the sampling instrument to the slide within a few seconds and immediately fixed using the composition of the present invention. The fixed specimen is dried, and prepared for transporting or storing. The specimen is fixed to the slide by either immersing in the fixative or coating the slide with a surface fixative, which typically includes polyethylene glycol (PEG). Spray-fixed or liquid-coated slides are allowed to dry completely before packaging for transportation or staining specimens prepared are successfully examined.
- Approximately 50 sets of slides (two prepared Pap Smear slides per patient, per set) are taken from 50 randomly selected patients for a split-specimen study. Each slide includes an endocervical and ectocervical smear specimen. One slide is sprayed with the composition of the invention and the other was sprayed with a conventional aqueous alcohol buffer solution fixative for slide preparations (i.e., SURGIPATH), for comparison. For each of the patient slide sets, at the time of collection, the health care provider sprays the slides, and documents, numbers and labels each slide as A or B, indicating whether the slide is sprayed with the composition of the present invention (A) or the conventional fixative (B). Each slide set is numbered and matched to the patient case history, pathology report and scoring report forms.
- The specimens are processed as obtained using the modified Papanicolaou staining procedure. The sets of slides are stained in tandem and read by a panel of pathologists who score and evaluate each slide (both ectocervical and endocervical smears) for a number of parameters, including a readable diagnosis and ASCUS (atypical squamous cells of undetermined significance) determination, cell morphology, nuclear and cytoplasmic staining detail, staining intensity and preservation quality. Table I provides the qualitative results, where the “same, better or worse” descriptions refer to the relative observable differences between A and B (e.g., a score of “better” means that the composition of the present invention fared better than the conventional fixative).
TABLE I Characteristic Observed Better Same Worse Squamous Cell Preservation 6 42 2 cellular morphology nuclear detail cytoplasmic detail Squamous Cell Stain Quality 7 39 3* nuclear and cytoplasmic Overall Endocervical Cell Preservation 5 44 * (columnar and metaplastic) cellular morphology nuclear cytoplasmic Endocervical Cell Stain Quality 7 42 * nuclear and cytoplasmic Overall Slide Quality 7 39 4 background organisms** Diagnosis 3 46 1 similar diagnosis ease of diagnosis ASCUS determination - While the invention has been disclosed in this patent application by reference to the details of preferred embodiments of the invention, it is to be understood that the disclosure is intended in an illustrative rather than in a limiting sense, as it is contemplated that modifications will readily occur to those skilled in the art, within the spirit of the invention and the scope of the appended claims.
Claims (47)
1. A method for preserving a biological test specimen, comprising the steps of:
a) contacting a biological test specimen with an effective amount of a fixative composition, said fixative composition including a generally non-coagulating chemical fixative dispersed in a solvent that is substantially free of water;
b) evaporating said solvent to yield a generally optically transparent fixative for preserving said biological test specimen.
2. A method according to claim 1 wherein said generally non-coagulating chemical fixative includes an effective amount of diazolidinyl urea.
3. A method according to claim 2 wherein said diazolidinyl urea is present in an amount up to about 5% of said composition.
4. A method according to claim 3 wherein said diazolidinyl urea is present in an amount of about 3% of said composition.
5. A method according to claim 1 wherein said composition further comprises a polyol.
6. A method according to claim 5 wherein said composition further comprises a glycol.
7. A method according to claim 6 wherein said composition further comprises polyethylene glycol.
8. A method according to claim 1 wherein said composition includes diazolidinyl urea in an amount up to about 5%, a glycol in an amount up to about 5%, and an alcohol.
9. A method according to claim 1 further comprising providing said gynecological test specimen from a pap smear test.
10. A method according to claim 1 further comprising conducting a pathological examination of said gynecological test specimen after it has been fixed with said composition.
11. A method according to claim 1 wherein said composition upon drying on a carrier is substantially free of crystallines to the naked eye.
12. A method for preserving a gynecological test specimen, comprising the steps of:
a) contacting a gynecological test specimen with a composition including:
1) diazolidinyl urea; and
2) an alcohol solvent,
b) drying said solvent to yield a generally optically transparent fixative for preserving said gynecological test specimen.
13. A method according to claim 12 wherein said diazolidinyl urea is present in an amount up to about 5% of said composition.
14. A method according to claim 13 wherein said diazolidinyl urea is present in an amount of about 3% of said composition.
15. A method according to claim 12 wherein said composition further comprises a polyol.
16. A method according to claim 15 wherein said composition further comprises a glycol.
17. A method according to claim 16 wherein said composition further comprises polyethylene glycol.
18. A method according to claim 12 wherein said composition includes diazolidinyl urea in an amount up to about 5%, a glycol in an amount up to about 5%, and an alcohol solvent.
19. A method according to claim 12 further comprising providing said gynecological test specimen from a pap smear test.
20. A method according to claim 12 further comprising conducting at least one pathological examination of said gynecological test specimen after it has been fixed with said composition.
21. A method according to claim 12 wherein said composition upon drying on a substrate is substantially free of crystallines to the naked eye.
22. A system for preserving a gynecological specimen for cytology testing, said system comprising:
a) a composition for preserving a gynecological test specimen, said composition comprising a chemical fixative dispersed in a liquid medium;
b) a substrate for said gynecological test specimen, onto which said composition is placed in contact with said gynecological test specimen;
c) an instrument for pathologically examining said gynecological test specimen.
23. A system according to claim 22 further comprising a kit including at least one item selected from stain, dye, immunostain, slide, coated glass slide, activated glass slide, scalpel, spatula, brush, swabbing, pipette, reference control, storage rack, storage container, data forms, labelers or coverslips.
24. A system according to claim 22 wherein said instrument is semi-automated.
25. A system according to claim 22 wherein said system is automated.
26. A system according to claim 22 further comprising an automated slide preparation instrument.
27. A method according to claim 1 or 12, further comprising screening for HIV using said test specimen.
28. A method according to claim 1 or 12, further comprising screening for HPV using said test specimen.
29. A method according to claim 1 or 12, further comprising screening for hepatitis using said test specimen.
30. A method according to claim 1 or 12, further comprising screening for cancer and for at least one disorder selected from HIV, HPV or hepatitis.
31. A method for fixing biological specimens for cytological, immunocytochemical or molecular evaluation, comprising exposing said biological specimens to a fixative composition comprising a non-crosslinking agent.
32. The method of claim 31 , wherein said specimen is affixed to a slide either before or after exposure to said fixative composition.
33. The method of claim 31 , wherein said specimen is a gynecological specimen.
34. A method for treating a biological specimen with reagents, said method comprising:
a) mounting said biological specimen onto a microscope slide,
b) fixing said specimen with a fixative composition comprising a non-crosslinking agent in a non-aqueous solvent to form an optically transparent medium including visible features of said biological specimen, and
c) screening said specimen for the presence of a disease.
35. The method of claim 34 , wherein said screening includes immunocytochemical staining.
36. The method of claim 34 , wherein screening includes in situ hybridization.
37. The method of claim 34 , wherein screening includes in situ amplification.
38. The method of claim 34 , wherein screening includes fluorescent in situ hybridization.
39. The method of claim 34 , wherein said fixing of said biological specimen takes place before mounting onto said slide.
40. A biological fixative composition, consisting essentially of:
(a) a heterocyclic;
(b) polyol; and
(c) alcohol.
41. The composition of claim 40 , wherein said urea is diazolidinyl.
42. The composition of claim 40 wherein said polyol is a glycol.
43. The composition of claim 42 wherein said glycol is polyethylene glycol.
44. The composition of claim 40 wherein said alcohol is isopropyl alcohol.
45. A biological fixative composition, comprising:
(a) diazolidinyl urea;
(b) glycol; and
(c) alcohol.
46. The composition of claim 45 wherein said glycol is polyethylene glycol.
47. The composition of claim 45 wherein said alcohol is isopropyl alcohol.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/040,878 US20020086346A1 (en) | 2000-02-08 | 2002-01-07 | Fixative system, method and composition for biological testing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/500,248 US6337189B1 (en) | 2000-02-08 | 2000-02-08 | Fixative system, method and composition for biological testing |
US10/040,878 US20020086346A1 (en) | 2000-02-08 | 2002-01-07 | Fixative system, method and composition for biological testing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/500,248 Division US6337189B1 (en) | 2000-02-08 | 2000-02-08 | Fixative system, method and composition for biological testing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020086346A1 true US20020086346A1 (en) | 2002-07-04 |
Family
ID=23988627
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/500,248 Expired - Fee Related US6337189B1 (en) | 2000-02-08 | 2000-02-08 | Fixative system, method and composition for biological testing |
US10/040,878 Abandoned US20020086346A1 (en) | 2000-02-08 | 2002-01-07 | Fixative system, method and composition for biological testing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/500,248 Expired - Fee Related US6337189B1 (en) | 2000-02-08 | 2000-02-08 | Fixative system, method and composition for biological testing |
Country Status (3)
Country | Link |
---|---|
US (2) | US6337189B1 (en) |
AU (1) | AU2001226354A1 (en) |
WO (1) | WO2001059164A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030211452A1 (en) * | 2002-05-10 | 2003-11-13 | Vladimir Vincek | Preservation of RNA and morphology in cells and tissues |
US20040004075A1 (en) * | 1997-08-20 | 2004-01-08 | The University Of Miami, Harold Essenfeld | High quality, continuous throughput, tissue processing |
US20050090017A1 (en) * | 2003-10-24 | 2005-04-28 | Morales Azorides R. | Simplified tissue processing |
US20100167271A1 (en) * | 2008-12-30 | 2010-07-01 | Streck, Inc. | Method for screening blood using a preservative that may be in a substantially solid state form |
US20100184069A1 (en) * | 2009-01-21 | 2010-07-22 | Streck, Inc. | Preservation of fetal nucleic acids in maternal plasma |
US20100209930A1 (en) * | 2009-02-18 | 2010-08-19 | Streck, Inc. | Preservation of cell-free nucleic acids |
US20110111410A1 (en) * | 2009-11-09 | 2011-05-12 | Streck, Inc. | Stabilization of rna in intact cells within a blood sample |
WO2013019640A1 (en) * | 2011-07-29 | 2013-02-07 | The Regents Of The University Of California | Lensfree holographic microscopy using wetting films |
US20130095473A1 (en) * | 2010-06-14 | 2013-04-18 | Qiagen Gmbh | Method for determination of target cells or tissue for extraction of biomolecules from fixed biological samples |
US20140154736A1 (en) * | 2012-11-30 | 2014-06-05 | General Electric Company | Methods for sample storage and device thereof |
US9040255B2 (en) | 2010-09-23 | 2015-05-26 | Biocept, Inc. | Use of diazolidinyl urea for anti-clumping of biological samples |
US9956281B2 (en) | 2011-05-04 | 2018-05-01 | Streck, Inc. | Inactivated virus compositions and methods of preparing such compositions |
US10091984B2 (en) | 2013-07-24 | 2018-10-09 | Streck, Inc. | Compositions and methods for stabilizing circulating tumor cells |
US10966421B2 (en) | 2002-10-16 | 2021-04-06 | Streck, Inc. | Method and device for collecting and preserving cells for analysis |
US11168351B2 (en) | 2015-03-05 | 2021-11-09 | Streck, Inc. | Stabilization of nucleic acids in urine |
US11299764B2 (en) | 2015-11-20 | 2022-04-12 | Streck, Inc. | Single spin process for blood plasma separation and plasma composition including preservative |
IT202100011903A1 (en) * | 2021-05-10 | 2022-11-10 | Diapath S P A | Procedure for the treatment of biological, cytological, histological and autopsy samples. |
US11506655B2 (en) | 2016-07-29 | 2022-11-22 | Streck, Inc. | Suspension composition for hematology analysis control |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040115692A1 (en) * | 2000-04-03 | 2004-06-17 | Cytyc Corporation | Methods, compositions and apparatuses for detecting a target in a preservative solution |
US6794152B2 (en) * | 2000-12-22 | 2004-09-21 | Streck Laboratories Inc. | Flow cytometry reagent and system |
US7422903B2 (en) * | 2002-12-11 | 2008-09-09 | Instrumentation Laboratory Company | Multi-analyte reference solutions |
US20040137551A1 (en) * | 2003-01-13 | 2004-07-15 | Markovic Nenad S. | Cervical acid phosphatase - papanicolaou (CAP-PAP) test kit, method and accesories, processes for producing and using the same |
US20050287513A1 (en) * | 2003-10-30 | 2005-12-29 | Davis Ashley S | Method for preserving intracellular molecular detail |
EP1605244A1 (en) * | 2004-06-09 | 2005-12-14 | Boon, Mathilde Elisabeth | Fixative composition |
AU2005316930B2 (en) * | 2004-12-17 | 2009-06-18 | Ventana Medical Systems, Inc. | Methods and compositions for a microemulsion-based tissue treatment |
WO2007084429A2 (en) * | 2006-01-13 | 2007-07-26 | Ventana Medical Systems, Inc. | Biological sample processing composition and method |
DE602007009441D1 (en) * | 2006-03-13 | 2010-11-11 | Siemens Healthcare Diagnostics | Reduction of platelet interference in plasma test samples |
JP2009536958A (en) * | 2006-05-11 | 2009-10-22 | ベクトン・ディキンソン・アンド・カンパニー | Protein extraction from cells |
EP1965190A1 (en) * | 2007-02-27 | 2008-09-03 | Qiagen GmbH | Fixation of a biological sample |
EP2027922A1 (en) * | 2007-08-02 | 2009-02-25 | Qiagen GmbH | Method and device for securing/stabilising a sample |
US9207240B2 (en) * | 2007-11-14 | 2015-12-08 | Arbor Vita Corporation | Method of efficient extraction of protein from cells |
GB2489920A (en) * | 2011-04-06 | 2012-10-17 | Peters Aremu | Apparatus and method for automatically preparing pre-analysis cytological specimens |
WO2012176065A2 (en) * | 2011-06-24 | 2012-12-27 | Biotechnology Developers, S.A. | Method compositions and device for preparing cytological specimens |
CN102876081B (en) * | 2012-09-24 | 2014-05-14 | 广州鸿琪光学仪器科技有限公司 | Hematoxylin staining solution and papanicolaou staining kit containing same |
US10006084B2 (en) | 2015-04-30 | 2018-06-26 | Sakura Finetek U.S.A., Inc. | Methods to reduce evaporation during elevated temperature |
US10107727B2 (en) | 2015-12-30 | 2018-10-23 | Sakura Finetek U.S.A., Inc. | Tissue processing reagent |
US9835527B2 (en) | 2015-12-30 | 2017-12-05 | Sakura Finetek U.S.A., Inc. | Tissue processing reagent |
US11674870B2 (en) * | 2019-08-19 | 2023-06-13 | Diagnostic Biosystems | Sample protection method |
EP4145105A1 (en) | 2021-09-06 | 2023-03-08 | Anacyte Laboratories GmbH | Cell asservation solution |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3546334A (en) | 1965-05-21 | 1970-12-08 | Lerner Lab Inc | Composition for fixing and protecting a smear of body cells and method of applying same |
US4578282A (en) | 1982-02-04 | 1986-03-25 | Harrison James S | Composition for diagnostic reagents |
US4857300A (en) | 1987-07-27 | 1989-08-15 | Cytocorp, Inc. | Cytological and histological fixative formulation and methods for using same |
US5104640A (en) | 1989-03-17 | 1992-04-14 | Wescor, Inc. | Fixative composition for fixing blood smears to slides |
US5250438A (en) | 1990-05-09 | 1993-10-05 | Streck Laboratories, Inc. | Method for differential determination of white blood cells using diazolidinyl urea to stabilize white blood cells |
US5256571A (en) | 1991-05-01 | 1993-10-26 | Cytyc Corporation | Cell preservative solution |
US5460797A (en) | 1991-05-08 | 1995-10-24 | Streck Laboratories, Inc. | Method for fixing tissues and cells for analysis using oxazolidine compounds |
US5260048A (en) | 1991-05-08 | 1993-11-09 | Streck Laboratories, Inc. | Tissue fixative solution and method |
US5196182A (en) | 1991-05-08 | 1993-03-23 | Streck Laboratories, Inc. | Tissue fixative |
US5849517A (en) | 1991-05-08 | 1998-12-15 | Streck Laboratories, Inc. | Method and composition for preserving antigens and nucleic acids and process for utilizing cytological material produced by same |
US5459073A (en) | 1991-05-08 | 1995-10-17 | Streck Laboratories, Inc. | Method and composition for preserving antigens and process for utilizing cytological material produced by same |
US5346811A (en) * | 1991-07-22 | 1994-09-13 | Cerveceria Polar | Method and products for human papillomavirus detection |
US5432056A (en) | 1993-11-15 | 1995-07-11 | Ventana Medical Systems, Inc. | Bisulfite-based tissue fixative |
-
2000
- 2000-02-08 US US09/500,248 patent/US6337189B1/en not_active Expired - Fee Related
-
2001
- 2001-01-08 WO PCT/US2001/000539 patent/WO2001059164A1/en active Application Filing
- 2001-01-08 AU AU2001226354A patent/AU2001226354A1/en not_active Abandoned
-
2002
- 2002-01-07 US US10/040,878 patent/US20020086346A1/en not_active Abandoned
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040004075A1 (en) * | 1997-08-20 | 2004-01-08 | The University Of Miami, Harold Essenfeld | High quality, continuous throughput, tissue processing |
US8221996B2 (en) | 1997-08-20 | 2012-07-17 | The University Of Miami | High quality, continuous throughput, tissue processing |
US20080153127A1 (en) * | 1997-08-20 | 2008-06-26 | University Of Miami | High quality, continuous throughput, tissue processing |
US7547538B2 (en) | 1997-08-20 | 2009-06-16 | The University Of Miami | High quality, continuous throughput, tissue processing |
US20030211452A1 (en) * | 2002-05-10 | 2003-11-13 | Vladimir Vincek | Preservation of RNA and morphology in cells and tissues |
US7138226B2 (en) | 2002-05-10 | 2006-11-21 | The University Of Miami | Preservation of RNA and morphology in cells and tissues |
US10966421B2 (en) | 2002-10-16 | 2021-04-06 | Streck, Inc. | Method and device for collecting and preserving cells for analysis |
US11647743B2 (en) | 2002-10-16 | 2023-05-16 | Streck Llc | Method and device for collecting and preserving cells for analysis |
US20090136992A1 (en) * | 2003-10-24 | 2009-05-28 | The University Of Miami | Simplified tissue processing |
US8288168B2 (en) | 2003-10-24 | 2012-10-16 | The University Of Miami | Simplified tissue processing |
US7470401B2 (en) | 2003-10-24 | 2008-12-30 | The University Of Miami | Simplified tissue processing |
US20050090017A1 (en) * | 2003-10-24 | 2005-04-28 | Morales Azorides R. | Simplified tissue processing |
WO2010078194A1 (en) | 2008-12-30 | 2010-07-08 | Streck, Inc. | Method for screening blood using a preservative that may be in a substantially solid state form |
US20100167271A1 (en) * | 2008-12-30 | 2010-07-01 | Streck, Inc. | Method for screening blood using a preservative that may be in a substantially solid state form |
US20100184069A1 (en) * | 2009-01-21 | 2010-07-22 | Streck, Inc. | Preservation of fetal nucleic acids in maternal plasma |
US11634747B2 (en) | 2009-01-21 | 2023-04-25 | Streck Llc | Preservation of fetal nucleic acids in maternal plasma |
US10294513B2 (en) | 2009-02-18 | 2019-05-21 | Streck, Inc. | Preservation of cell-free nucleic acids |
US9926590B2 (en) | 2009-02-18 | 2018-03-27 | Streck, Inc. | Devices and compositions for preservation of cell-free nucleic acids |
US11761025B2 (en) | 2009-02-18 | 2023-09-19 | Streck Llc | Preservation of cell-free nucleic acids |
US20100209930A1 (en) * | 2009-02-18 | 2010-08-19 | Streck, Inc. | Preservation of cell-free nucleic acids |
US10689686B2 (en) | 2009-02-18 | 2020-06-23 | Streck, Inc. | Preservation of cell-free nucleic acids |
US9657227B2 (en) | 2009-02-18 | 2017-05-23 | Streck, Inc. | Preservation of cell-free RNA in blood samples |
US8304187B2 (en) | 2009-02-18 | 2012-11-06 | Streck, Inc. | Preservation of cell-free RNA in blood samples |
US10144955B2 (en) | 2009-02-18 | 2018-12-04 | Streck, Inc. | Methods for preservation of cell-free nucleic acids |
US20180216165A1 (en) | 2009-02-18 | 2018-08-02 | Streck, Inc. | Preservation of cell-free nucleic acids |
US20110111410A1 (en) * | 2009-11-09 | 2011-05-12 | Streck, Inc. | Stabilization of rna in intact cells within a blood sample |
US20130095473A1 (en) * | 2010-06-14 | 2013-04-18 | Qiagen Gmbh | Method for determination of target cells or tissue for extraction of biomolecules from fixed biological samples |
US9040255B2 (en) | 2010-09-23 | 2015-05-26 | Biocept, Inc. | Use of diazolidinyl urea for anti-clumping of biological samples |
US9956281B2 (en) | 2011-05-04 | 2018-05-01 | Streck, Inc. | Inactivated virus compositions and methods of preparing such compositions |
WO2013019640A1 (en) * | 2011-07-29 | 2013-02-07 | The Regents Of The University Of California | Lensfree holographic microscopy using wetting films |
US9063041B2 (en) * | 2012-11-30 | 2015-06-23 | General Electric Company | Device and method for drying biological sample on substrate |
US20140154736A1 (en) * | 2012-11-30 | 2014-06-05 | General Electric Company | Methods for sample storage and device thereof |
US12114654B2 (en) | 2013-07-24 | 2024-10-15 | Streck Llc | Compositions and methods for stabilizing circulating tumor cells |
US10674721B2 (en) | 2013-07-24 | 2020-06-09 | Streck, Inc. | Compositions and methods for stabilizing circulating tumor cells |
US11547111B2 (en) | 2013-07-24 | 2023-01-10 | Streck, Inc. | Compositions and methods for stabilizing circulating tumor cells |
US10091984B2 (en) | 2013-07-24 | 2018-10-09 | Streck, Inc. | Compositions and methods for stabilizing circulating tumor cells |
US11168351B2 (en) | 2015-03-05 | 2021-11-09 | Streck, Inc. | Stabilization of nucleic acids in urine |
US11299764B2 (en) | 2015-11-20 | 2022-04-12 | Streck, Inc. | Single spin process for blood plasma separation and plasma composition including preservative |
US11506655B2 (en) | 2016-07-29 | 2022-11-22 | Streck, Inc. | Suspension composition for hematology analysis control |
IT202100011903A1 (en) * | 2021-05-10 | 2022-11-10 | Diapath S P A | Procedure for the treatment of biological, cytological, histological and autopsy samples. |
Also Published As
Publication number | Publication date |
---|---|
US6337189B1 (en) | 2002-01-08 |
AU2001226354A1 (en) | 2001-08-20 |
WO2001059164A1 (en) | 2001-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6337189B1 (en) | Fixative system, method and composition for biological testing | |
AU2002215488B8 (en) | Universal collection medium | |
US20030091992A1 (en) | Universal collection medium | |
EP1507148A1 (en) | Method for detecting carcinomas in a solubilized cervical body sample | |
Jörundsson et al. | Rapid staining techniques in cytopathology: a review and comparison of modified protocols for hematoxylin and eosin, Papanicolaou and Romanowsky stains | |
US20060216771A1 (en) | Method for detecting carcinomas in a solubilized cervical body sample | |
WO2004013632A1 (en) | Method for solution based diagnosis | |
AU2002215488A1 (en) | Universal collection medium | |
EP0262966A2 (en) | Sampling device | |
US7927819B2 (en) | Method for stabilization of proteins in solution | |
AU2001281391B2 (en) | Rapid papanicolaou staining method for cervico-vaginal specimens | |
AU2001281391A1 (en) | Rapid papanicolaou staining method for cervico-vaginal specimens | |
WO2006047252A1 (en) | Enhanced cell preseravtive solution and methods for using same | |
Tao | Direct intrauterine sampling: the IUMC Endometrial Sampler | |
US8163565B2 (en) | Light curing fixative | |
Komatsu et al. | Application of liquid-based preparation to fine needle aspiration cytology in breast cancer | |
Eskelund | Determination of genetic sex by examination of epithelial cells in urine | |
WO2005035736A1 (en) | Method of mucus removal and, used therein, cell treatment fluid and storage fluid | |
Derksen | Cytological analysis of Drosophila polytene chromosomes | |
Fisher et al. | Acquisition and management of cytologic specimens | |
JP4879447B6 (en) | General purpose storage solution | |
CN118883213B (en) | A pathological sample slide for long-term preservation and its preparation method and application | |
Devi et al. | A 3 years study of vaginal hormonal cytology at tertiary hospital. | |
McKinnon | Immunogold-silver staining of immune deposits in renal biopsies | |
JP2004500897A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |