US20020086176A1 - Dry adhesive - Google Patents
Dry adhesive Download PDFInfo
- Publication number
- US20020086176A1 US20020086176A1 US09/472,393 US47239399A US2002086176A1 US 20020086176 A1 US20020086176 A1 US 20020086176A1 US 47239399 A US47239399 A US 47239399A US 2002086176 A1 US2002086176 A1 US 2002086176A1
- Authority
- US
- United States
- Prior art keywords
- layer
- pvc
- acrylic adhesive
- adhesive
- dry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 13
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 13
- 239000004014 plasticizer Substances 0.000 claims abstract description 23
- 239000002131 composite material Substances 0.000 claims abstract description 18
- 239000004567 concrete Substances 0.000 claims abstract description 6
- 239000004744 fabric Substances 0.000 claims abstract description 4
- 229920006397 acrylic thermoplastic Polymers 0.000 claims abstract description 3
- 239000004816 latex Substances 0.000 claims abstract description 3
- 229920000126 latex Polymers 0.000 claims abstract description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 52
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 52
- 239000003522 acrylic cement Substances 0.000 claims description 20
- 239000006260 foam Substances 0.000 claims description 19
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 15
- -1 n-octyl Chemical group 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 239000000919 ceramic Substances 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000009408 flooring Methods 0.000 claims description 6
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 6
- 229920001519 homopolymer Polymers 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 2
- 150000005690 diesters Chemical class 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 2
- 239000000463 material Substances 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- 238000005304 joining Methods 0.000 abstract description 3
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- 239000010410 layer Substances 0.000 description 14
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 0 [1*]C(C(=O)O[2*])(C([H])([H])C)C([H])([H])C([3*])(C)C(=O)O Chemical compound [1*]C(C(=O)O[2*])(C([H])([H])C)C([H])([H])C([3*])(C)C(=O)O 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- XNGIFLGASWRNHJ-UHFFFAOYSA-N o-dicarboxybenzene Natural products OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004156 Azodicarbonamide Substances 0.000 description 2
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical group OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 2
- 235000019399 azodicarbonamide Nutrition 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- WHHSHXMIKFVAEK-UHFFFAOYSA-N 2-o-benzyl 1-o-octyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 WHHSHXMIKFVAEK-UHFFFAOYSA-N 0.000 description 1
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 description 1
- SIXWIUJQBBANGK-UHFFFAOYSA-N 4-(4-fluorophenyl)-1h-pyrazol-5-amine Chemical compound N1N=CC(C=2C=CC(F)=CC=2)=C1N SIXWIUJQBBANGK-UHFFFAOYSA-N 0.000 description 1
- 239000004821 Contact adhesive Substances 0.000 description 1
- ZVFDTKUVRCTHQE-UHFFFAOYSA-N Diisodecyl phthalate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC(C)C ZVFDTKUVRCTHQE-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 101100412856 Mus musculus Rhod gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 229920001944 Plastisol Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920006266 Vinyl film Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- ARCGXLSVLAOJQL-UHFFFAOYSA-N anhydrous trimellitic acid Natural products OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- LGBAGUMSAPUZPU-UHFFFAOYSA-N bis(9-methyldecyl) benzene-1,2-dicarboxylate Chemical compound CC(C)CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC(C)C LGBAGUMSAPUZPU-UHFFFAOYSA-N 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- QSMOHLASMMAGIB-UHFFFAOYSA-N butyl prop-2-enoate;prop-2-enenitrile Chemical compound C=CC#N.CCCCOC(=O)C=C QSMOHLASMMAGIB-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000013023 gasketing Methods 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000008029 phthalate plasticizer Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004999 plastisol Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellityc acid Natural products OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001909 styrene-acrylic polymer Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- ORGHESHFQPYLAO-UHFFFAOYSA-N vinyl radical Chemical class C=[CH] ORGHESHFQPYLAO-UHFFFAOYSA-N 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G27/00—Floor fabrics; Fastenings therefor
- A47G27/04—Carpet fasteners; Carpet-expanding devices ; Laying carpeting; Tools therefor
- A47G27/0437—Laying carpeting, e.g. wall-to-wall carpeting
- A47G27/0468—Underlays; Undercarpets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/12—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/18—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
- B32B9/04—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B9/046—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N7/00—Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
- D06N7/0063—Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf
- D06N7/0071—Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by their backing, e.g. pre-coat, back coating, secondary backing, cushion backing
- D06N7/0073—Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by their backing, e.g. pre-coat, back coating, secondary backing, cushion backing the back coating or pre-coat being applied as an aqueous dispersion or latex
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/0215—Flooring or floor layers composed of a number of similar elements specially adapted for being adhesively fixed to an underlayer; Fastening means therefor; Fixing by means of plastics materials hardening after application
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2266/00—Composition of foam
- B32B2266/02—Organic
- B32B2266/0214—Materials belonging to B32B27/00
- B32B2266/0221—Vinyl resin
- B32B2266/0235—Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2309/00—Parameters for the laminating or treatment process; Apparatus details
- B32B2309/04—Time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2471/00—Floor coverings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2400/00—Presence of inorganic and organic materials
- C09J2400/10—Presence of inorganic materials
- C09J2400/12—Ceramic
- C09J2400/123—Ceramic in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2400/00—Presence of inorganic and organic materials
- C09J2400/10—Presence of inorganic materials
- C09J2400/16—Metal
- C09J2400/163—Metal in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2400/00—Presence of inorganic and organic materials
- C09J2400/20—Presence of organic materials
- C09J2400/26—Presence of textile or fabric
- C09J2400/263—Presence of textile or fabric in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2400/00—Presence of inorganic and organic materials
- C09J2400/20—Presence of organic materials
- C09J2400/30—Presence of wood
- C09J2400/303—Presence of wood in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2427/00—Presence of halogenated polymer
- C09J2427/006—Presence of halogenated polymer in the substrate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2433/00—Presence of (meth)acrylic polymer
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2203/00—Macromolecular materials of the coating layers
- D06N2203/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06N2203/041—Polyacrylic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2203/00—Macromolecular materials of the coating layers
- D06N2203/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06N2203/045—Vinyl (co)polymers
- D06N2203/048—Polyvinylchloride (co)polymers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2205/00—Condition, form or state of the materials
- D06N2205/04—Foam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T156/00—Adhesive bonding and miscellaneous chemical manufacture
- Y10T156/10—Methods of surface bonding and/or assembly therefor
- Y10T156/1002—Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
- Y10T156/1007—Running or continuous length work
- Y10T156/1016—Transverse corrugating
- Y10T156/1021—Treating material of corrugated lamina or dry adhesive thereon to render tacky
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31913—Monoolefin polymer
- Y10T428/3192—Next to vinyl or vinylidene chloride polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
- Y10T428/31928—Ester, halide or nitrile of addition polymer
Definitions
- This invention relates to a dry adhesive for floor coverings and a process therefor. More specifically, the dry adhesive is an acrylic.
- PVC Polyvinyl chloride
- the acrylic is applied to the floor by conventional means and methods using half of the amount needed for pressure sensitive adhesives.
- the thin coating dries within one hour and the floor can be walked on before and during the laying out of the tiles. Since it takes contact and some time, the tiles can be moved and adjusted. This method functions well in conjunction with some contact adhesives to temporarily keep the tiles in place as the bond is formed. Roll goods are easily installed with this technique.
- FIG. 1 is a cross-sectional view of a floor tile adhered to a floor according to this invention.
- FIG. 2 is a cross-sectional view of ceramic tile and foam adhered according to this invention.
- FIG. 1 shows composite 10 comprising tufted fibrous yarn or carpet 12 imbedded into PVC film 14 .
- Flooring is shown as substrate 16 .
- the dry acrylic adhesive is shown as layer 18 .
- the fibrous material and yarns employed as yarn or carpet 12 may comprise synthetic, natural or a combination of synthetic and natural fibers, such as but not limited to, polyamides like nylon, olefins like polypropylene, wool and wool blends, acrylic, acrylic-nylon blends and polyester yarns and combinations and blends thereof.
- Carpet 12 requires a backing layer 14 into which the tufts of yarn are imbedded.
- the formulation is basically composed of a phthalate plasticizer such as DOP, a PVC resin of unspecified molecular weight and as much inert inexpensive fillers, generally, and not limited to, calcium carbonate as the application will tolerate.
- FIG. 2 shows composite 20 illustrating another embodiment of this invention.
- Flooring is shown as substrate 16 .
- the dry acrylic adhesive is shown as layer 18 .
- Layer 22 is a PVC foam formulation using the polyvinyl chlorides described herein.
- Layer 24 is a second layer of dry acrylic adhesive and layer 26 is ceramic tile. As discussed herein, adhesive layer 24 is applied to ceramic tile layer 26 and dried before adhering it to PVC foam layer 22 .
- Our composite comprises in order: a substrate, a dry acrylic adhesive adhered to the substrate; and a plasticized, polyvinyl chloride layer adhered to the dry acrylic adhesive.
- the dry acrylic adhesive is at least one polymer or copolymer of methyl methacrylate, ethyl acrylate, acrylic acid or acrylic esters.
- the dry acrylic adhesive is at lest one polymer, copolymer or terepolymer of ethyl acrylate, butyl acrylate, styrenated acrylics or acrylonitrile.
- the dry adhesive also is an acrylic acid acrylic ester copolymer having the formula
- R 1 is H or CH 3
- R 2 is CH 3 , CH 2 CH3, (CH 2 )3CH 3 , n-octyl or 2-ethylhexyl
- R 3 is H, CH3 or COOH
- the substrate is carpet backing, cloth, concrete, wood or flooring.
- the vinyl chloride resin to be used for the thermoplastic elastomer composition of the present invention may be a usual vinyl chloride resin, and it is usual to employ a vinyl chloride resin having an average degree of polymerization of from 700 to 6,000.
- the PVC's of this invention also encompass products made of flexible plasticized PVC, usually formulated as a dispersion of high molecular weight PVC resin in a special blend of plasticizers.
- PVC resins and plasticizers are chosen from a vast selection of each to best conform to the needs of the end use. Huge macro molecules of highly ordered PVC pack and interlock to form a rigid polymer. Properly chosen plasticizers will form a stable orientation by virtue of the complex geometry of both the PVC and the plasticizer.
- the flexible PVC resins are homopolymers having huge macro molecules of repeated units of vinyl chloride
- n is an integer ranging from about 1,000 to about 2,500.
- the PVC resins of this invention have a K value of at least 75 and preferably ranges from 75 to 100.
- Molecular weight as used throughout this specification means weight average molecular weight. “K value” is a universal measure of molecular weight. K values above 75 are considered high; K values below 65 are considered low.
- plasticizer there is no particular restriction. Any plasticizer may be employed so long as it is useful for the production of a plasticized vinyl chloride resin product.
- it may be a plasticizer of a phthalic acid ester type, a trimellitic acid ester type, a pyromellitic acid ester type, an aliphatic dibasic acid ester type, a glycol ester type, a fatty acid ester type, a phosphoric acid ester type or a citric acid ester type.
- plasticizer may be an epoxy type plasticizer or polyester type plasticizer.
- the amount of the plasticizer is from 25 to 200 parts by weight relative to 100 parts by weight of the vinyl chloride resin. If the amount is less than 25 parts by weight, the processability tends to be poor and the product tends to be too hard, thus failing to present the characteristics as an elastomer. On the other hand, if it exceeds 200 parts by weight, the physical properties tend to deteriorate to a practically useless level.
- adipate structures are dibasic aliphatic acids plasticizer construction having the formula:
- the “R” in the case is a linear or branched alkyl group having 6 to 11 carbon atoms.
- the structure of this molecule permits closer proximity of the polar sites of the plasticizer to the polar sites of the corresponding PVC resin.
- esters of dibasic aliphatic acids include dioctyl adipate, diisodecyl adipate, dioctyl azelate and dioctyl sebacate. Annealing stabilizes this orientation.
- phthalic diesters include esters of phthalic acid with one or two C 4 to C 12 alcohols, for example dioctyl phthalate, diisooctyl phthalate, diisononyl phthalate, diisodecyl phthalate, diisoundecyl phthalate, butyl benzyl phthalate and octyl benzyl phthalate.
- the molecular weight of the plasticizers range from 300 to 500 in most cases.
- Molecular weight as used herein means weight average molecular weight.
- tile backing formulations were as follows:
- the formula for the foam cushioning is as follows: Oxy Chemical 67SF foam resin 100 Parts Azodicarbonamide nitrogen releasing 3 parts blowing agent 18% Zinc octoate blowing agent promoter 1 Part Di Octyl Phthalate (DOP) 80 Parts Calcium Carbonate 20 Parts
- This formula will produce a closed cell vinyl foam with a density of 18-20 pounds per cubic foot.
- This foam can be produced by any method common to the trade such as but not limited to casting wet plastisol on a stainless steel or Teflon coated fiberglass belt then heating the cast film to 375 to 390° F.
- PVC resins are available for this application and all of these would be laminateable with this process.
- Other blowing agents such as the sulfonylhydrazides and the urea based blowing agents have been used, but the preferred agent for this application was azodicarbonamide.
- the preferred plasticizers are diester phthalates in the range of 50 to 120 parts per 100 parts of PVC.
- Place mats, shelf liners, mouse pads are examples where difficult to bond surfaces and unlike surfaces can easily be bonded with this technology.
- Our preferred adhesive for this system is RHOPLEX MV-23 applied at the rate of 400 square feet per gallon.
- Another preferred example is the easy lamination of a foam vinyl backing to carpeting wherein the carpeting is precoated with any preferred backing system chosen for economic considerations, fire retardant considerations, or fiber lock considerations.
- the precoat is coated with 1 to 3 ounces per square yarn of RHODPLEX MV23 or E330 acrylic.
- the preformed foam is laminated to the precoated carpet by simply rolling the carpet and the foam together. The bond forms in the roll as both surfaces are in intimate contact with one another.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Textile Engineering (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Laminated Bodies (AREA)
- Floor Finish (AREA)
Abstract
This composite uses the bonding of PVC to a variety of materials, from cloth to concrete, by the simple laying of the PVC surface to the other surface without the use of conventional wet, tacky, intermediate layer or layers of conventional adhesives. A simple preapplication of a chemical intermediate to the second surface in latex form and dried to a nontacky state is done. This is followed in any length of time thereafter with the simple contact of both surfaces, one to the other. A mild to aggressive tack bond, or a hard permanent joining of both surfaces is achieved. This bond is formed by the polar attraction of certain acrylics to the plasticizers in the PVC.
Description
- This invention relates to a dry adhesive for floor coverings and a process therefor. More specifically, the dry adhesive is an acrylic.
- Polyvinyl chloride (PVC) cast solid and foamed films in varying thicknesses are used for many applications; particularly in the floor covering field. Most notably, these are found in the walk off mat industry, the fatigue mat industry, and the carpet backing industry. Being a true thermoplastic material PVC is characterized by memory and slow recovery to deformation as opposed to true cross-linked polymers like natural rubber and certain polyurethanes. The processing ease, chemical and environmental tolerances, versatility of properties and relative favorable economics make PVC a material of choice wherever possible.
- In the normal joining of PVC foams and films to other substrates, the need often arises to post apply, or to delay application of one surface to the other. An example of this would be the installation of PVC backed carpet or carpet tiles over concrete or wood floors, wherein the floor preparation is often done ahead of time. The result is a tacky floor that is out of service. If the floor were to be tack free, then the floor could not only be waled on if needed, but also walked on during application of the PVC backed product. Floor tiles with a PVC back are normally installed by applying a pressure sensitive adhesive to various types of flooring, followed by a waiting period for the adhesive to dry followed by a cumbersome laying out of the tiles. If the adhesive is aggressive, moving and adjusting of the tiles is an obvious problem.
- We have discovered that bonding PVC to a variety of materials, from cloth to concrete, is achievable by the simple laying of the PVC surface to the other surface without the use of conventional wet, tacky, intermediate layer or layers of conventional adhesives. A simple pre-application of a chemical intermediate to the second surface in latex form and dried to a nontacky state is done. This is followed in any length of time thereafter with the simple contact of both surfaces, one to the other. A mild to aggressive tack bond, or a hard permanent joining of both surfaces is achieved. This bond is formed by the polar attraction of certain acrylics to the plasticizers in the PVC. This surface to surface migration of the plasticizer can be made to happen rapidly; within hours.
- The ability to make changes during installation; the ease with which materials and personnel can move about; are but a few of the advantages of this system. With our invention, the acrylic is applied to the floor by conventional means and methods using half of the amount needed for pressure sensitive adhesives. The thin coating dries within one hour and the floor can be walked on before and during the laying out of the tiles. Since it takes contact and some time, the tiles can be moved and adjusted. This method functions well in conjunction with some contact adhesives to temporarily keep the tiles in place as the bond is formed. Roll goods are easily installed with this technique.
- FIG. 1 is a cross-sectional view of a floor tile adhered to a floor according to this invention.
- FIG. 2 is a cross-sectional view of ceramic tile and foam adhered according to this invention.
- FIG. 1 shows composite10 comprising tufted fibrous yarn or
carpet 12 imbedded intoPVC film 14. Flooring is shown assubstrate 16. The dry acrylic adhesive is shown aslayer 18. - The fibrous material and yarns employed as yarn or
carpet 12 may comprise synthetic, natural or a combination of synthetic and natural fibers, such as but not limited to, polyamides like nylon, olefins like polypropylene, wool and wool blends, acrylic, acrylic-nylon blends and polyester yarns and combinations and blends thereof. -
Carpet 12 requires abacking layer 14 into which the tufts of yarn are imbedded. In the case of PVC backed mats, the formulation is basically composed of a phthalate plasticizer such as DOP, a PVC resin of unspecified molecular weight and as much inert inexpensive fillers, generally, and not limited to, calcium carbonate as the application will tolerate. - FIG. 2 shows composite20 illustrating another embodiment of this invention. Flooring is shown as
substrate 16. The dry acrylic adhesive is shown aslayer 18.Layer 22 is a PVC foam formulation using the polyvinyl chlorides described herein.Layer 24 is a second layer of dry acrylic adhesive andlayer 26 is ceramic tile. As discussed herein,adhesive layer 24 is applied toceramic tile layer 26 and dried before adhering it toPVC foam layer 22. - Our composite comprises in order: a substrate, a dry acrylic adhesive adhered to the substrate; and a plasticized, polyvinyl chloride layer adhered to the dry acrylic adhesive. The dry acrylic adhesive is at least one polymer or copolymer of methyl methacrylate, ethyl acrylate, acrylic acid or acrylic esters. Preferably, the dry acrylic adhesive is at lest one polymer, copolymer or terepolymer of ethyl acrylate, butyl acrylate, styrenated acrylics or acrylonitrile. In a broader sense, the dry adhesive also is an acrylic acid acrylic ester copolymer having the formula
- wherein:
- R1 is H or CH3
- R2 is CH3, CH2CH3, (CH2)3CH3, n-octyl or 2-ethylhexyl
- R3 is H, CH3 or COOH
- o is equal to 4 to 12, and
- P is equal to 1.
- Typically, the substrate is carpet backing, cloth, concrete, wood or flooring.
- The vinyl chloride resin to be used for the thermoplastic elastomer composition of the present invention, may be a usual vinyl chloride resin, and it is usual to employ a vinyl chloride resin having an average degree of polymerization of from 700 to 6,000.
- The PVC's of this invention also encompass products made of flexible plasticized PVC, usually formulated as a dispersion of high molecular weight PVC resin in a special blend of plasticizers. Both PVC resins and plasticizers are chosen from a vast selection of each to best conform to the needs of the end use. Huge macro molecules of highly ordered PVC pack and interlock to form a rigid polymer. Properly chosen plasticizers will form a stable orientation by virtue of the complex geometry of both the PVC and the plasticizer.
- The flexible PVC resins are homopolymers having huge macro molecules of repeated units of vinyl chloride
- (—H2CCHCl—)n
- wherein n is an integer ranging from about 1,000 to about 2,500. The PVC resins of this invention have a K value of at least 75 and preferably ranges from 75 to 100. Molecular weight as used throughout this specification means weight average molecular weight. “K value” is a universal measure of molecular weight. K values above 75 are considered high; K values below 65 are considered low.
- As to the plasticizer, there is no particular restriction. Any plasticizer may be employed so long as it is useful for the production of a plasticized vinyl chloride resin product. For example, it may be a plasticizer of a phthalic acid ester type, a trimellitic acid ester type, a pyromellitic acid ester type, an aliphatic dibasic acid ester type, a glycol ester type, a fatty acid ester type, a phosphoric acid ester type or a citric acid ester type. Further it may be an epoxy type plasticizer or polyester type plasticizer.
- The amount of the plasticizer is from 25 to 200 parts by weight relative to 100 parts by weight of the vinyl chloride resin. If the amount is less than 25 parts by weight, the processability tends to be poor and the product tends to be too hard, thus failing to present the characteristics as an elastomer. On the other hand, if it exceeds 200 parts by weight, the physical properties tend to deteriorate to a practically useless level.
- Regarding the flexible PVC, however, we prefer to replace all or part of the plasticizer by a less aromatic molecule, such as an adipate structure, enhances the resiliency of the PVC. Coupling these with a high molecular weight PVC, further enhances resiliency.
-
- The “R” in the case is a linear or branched alkyl group having 6 to 11 carbon atoms. The structure of this molecule permits closer proximity of the polar sites of the plasticizer to the polar sites of the corresponding PVC resin. Examples of esters of dibasic aliphatic acids include dioctyl adipate, diisodecyl adipate, dioctyl azelate and dioctyl sebacate. Annealing stabilizes this orientation.
- Examples of phthalic diesters include esters of phthalic acid with one or two C4 to C12 alcohols, for example dioctyl phthalate, diisooctyl phthalate, diisononyl phthalate, diisodecyl phthalate, diisoundecyl phthalate, butyl benzyl phthalate and octyl benzyl phthalate.
- The molecular weight of the plasticizers range from 300 to 500 in most cases. Molecular weight as used herein means weight average molecular weight.
- We have found that virtually any surface coated with certain acrylic latexes that dry to a tack free finish results in a condition that will accept the migration of a small amount of plasticizer from a VINYL film, foam or VINYL coated product. Either a strong permanent bond; or a weak temporary bond; or a pressure sensitive type bond is formed. This bond is formed by the mere contact of one surface with the other. This bond is formed rapidly; within hours; or slowly depending upon the acrylic formulation as well as the absence or presence of heat.
- We have found that coatings based upon ethyl acrylate, butyl acrylates and styrene acrylics develop a bond within two to three hours. We have found that coatings based upon vinyl acetate and butyl acrylate either cross linked or partially cross linked do not tend to promote plasticizer migration sufficiently to result in enough dipole attraction between both surfaces for, what would appear to be, an electrostatic bond formation. We have found that ethyl acrylate, butyl acrylate acrylonitrile terepolymers also perform in like manner.
- While we have not investigated all available acrylic latexes, solutions or emulsions, we have seen enough to establish that all acrylic homopolymers, most copolymers, and most crosslinked variations of these will cause phthalate, adipate, phosphate ester vinyl plasticizers to migrate from the PVC to the acrylic to a greater or lesser degree.
- The following examples further illustrate the invention.
- We have adhered carpet tiles to wood or concrete by coating these substrates with Rhom & Haas RHOPLEX 261; MV 23; and E330 or GLIDDEN's exterior acrylic paint. We then dried these coatings at room temperature for two hours and layered tiles over the substrate overnight. A firm bond resulted.
- The tile backing formulations were as follows:
- Occidental Homopolymer Resin
Oxy 654 (K Value 70) 60 Parts Colorite Blending PVC Copol. #521 40 Parts Calcium Oxide Desicant 2 Parts Calcium Carbonate Filler 200 Parts Dioctyl Phthalate 100 Parts Color 2 Parts - In this example, we could use a homopolymer or a copolymer PVC resin from a K value of 62 up to 80. The adhesion would develop without the incorporation of a blending resin. The filler level can be from zero to 250 parts; and the DOP level may range from 25 parts to 150 parts.
- We have adhered ceramic tiles to PVC foam in the following manner. The roller applied a thin film of RHOPLEX MV-23 to the back of ceramic tile squares at the rate of 100 square feet/gallon and allowed these to dry overnight. We applied the RHOPLEX to the floor and allowed the RHOPLEX to dry for two hours. We then laid down a ⅛ inch layer of chemically blown PVC foam to the floor and immediately started to install the tile squares over the foam layer. The next morning, we had a cushion ceramic tile floor ready for grouting with a flexible urethane mastic type grout.
- The formula for the foam cushioning is as follows:
Oxy Chemical 67SF foam resin 100 Parts Azodicarbonamide nitrogen releasing 3 parts blowing agent 18% Zinc octoate blowing agent promoter 1 Part Di Octyl Phthalate (DOP) 80 Parts Calcium Carbonate 20 Parts - This formula will produce a closed cell vinyl foam with a density of 18-20 pounds per cubic foot. This foam can be produced by any method common to the trade such as but not limited to casting wet plastisol on a stainless steel or Teflon coated fiberglass belt then heating the cast film to 375 to 390° F. A large number of PVC resins are available for this application and all of these would be laminateable with this process. Other blowing agents such as the sulfonylhydrazides and the urea based blowing agents have been used, but the preferred agent for this application was azodicarbonamide. The preferred plasticizers are diester phthalates in the range of 50 to 120 parts per 100 parts of PVC.
- The lamination of PVC foams or solid films to other materials can easily be accomplished by simply layering the two together overnight by stacking many of these plied products one over the other on a table, a pallet or simply on the floor. A foam backed walk off mat is easily done this way. This is not easily done with walk off mat production methods in use at this time.
- There are many applications for sport surfaces that could benefit from such a process. The easy assembly of light weight materials random applied on site and free of definite problematic seams has great advantages over current methods.
- Place mats, shelf liners, mouse pads are examples where difficult to bond surfaces and unlike surfaces can easily be bonded with this technology.
- Our preferred adhesive for this system is RHOPLEX MV-23 applied at the rate of 400 square feet per gallon.
- Another preferred example is the easy lamination of a foam vinyl backing to carpeting wherein the carpeting is precoated with any preferred backing system chosen for economic considerations, fire retardant considerations, or fiber lock considerations. The precoat is coated with 1 to 3 ounces per square yarn of RHODPLEX MV23 or E330 acrylic. The preformed foam is laminated to the precoated carpet by simply rolling the carpet and the foam together. The bond forms in the roll as both surfaces are in intimate contact with one another.
- While not ignoring other applications, I have used the areas of launderable walk off mats and fatigue mats to illustrate the broad applications of this invention. Many more areas of use are known where the superior overall properties of PVC enhanced by elastic nature of rubber is of value. A few of these are sport surfaces, aerobic mats, special industrial gasketing, carpet underlays, foamed back commercial carpet, foamed back carpet tiles and foamed back resilient flooring.
- Although the now preferred embodiments of the invention have been set forth, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as set forth in the following claims.
Claims (17)
1. A composite comprising in order:
a substrate;
a dry acrylic adhesive adhered to the substrate; and
a plasticized, polyvinyl chloride layer adhered to the dry acrylic adhesive.
2. A composite according to claim 1 , wherein the dry acrylic adhesive is at least one polymer or copolymer of methyl methacrylate, ethyl acrylate, acrylic acid or acrylic esters.
3. A composite according to claim 1 , wherein the dry acrylic adhesive is at least one polymer, copolymer or terepolymer of ethyl acrylate, butyl acrylate, stryrenated acrylics or acrylonitrile.
5. A composite according to claim 1 , wherein the substrate is carpet backing, cloth, concrete, wood or flooring.
6. A composite according to claim 1 , wherein the polyvinyl layer is a floor covering layer.
7. A composite according to claim 1 , wherein the dry acrylic adhesive is an acrylic latex.
8. A composite according to claim 1 , wherein the polyvinyl chloride is represented by the formula (—H2CCHCl—)n wherein n is an integer ranging from about 1000 to about 2500.
9. A composite according to claim 1 , wherein the plasticized, polyvinyl chloride layer includes at least one phthalic diester plasticizer.
10. A composite according to claim 1 , wherein the plasticized, polyvinyl chloride layer includes at least one adipate plasticizer.
11. A composite according to claim 1 , wherein the plasticized., polyvinyl chloride layer is a blend of PVC homopolymers and PVC copolymers.
12. A composite comprising in order:
a substrate;
a dry acrylic adhesive adhered to the substrate;
a plasticized, polyvinyl chloride layer adhered to the dry acrylic adhesive;
a second layer of dry acrylic adhesive adhered to the PVC layer; and
a ceramic tile adhered to the second layer of dry acrylic adhesive.
13. A composite according to claim 12 wherein the PVC layer is a PVC foam.
14. A process for bonding a plasticized, polyvinyl chloride layer to a substrate comprising the steps of:
applying an acrylic adhesive to a substrate;
drying the adhesive;
laying the polyvinyl chloride layer over the dried adhesive; and
allowing the resulting composite to stand for a period of time.
15. A process according to claim 14 wherein the adhesive is dried for a period of time ranging up to 2 hours before laying the polyvinyl chloride layer thereon.
16. A process according to claim 14 including the additional steps of:
applying a second layer of acrylic adhesive to a ceramic tile;
drying the second layer of acrylic adhesive on the ceramic tile; and
layering the dried second layer of acrylic adhesive on the PVC layer.
17. A process according to claim 16 wherein the PVC layer is a PVC foam.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/472,393 US6432551B1 (en) | 1999-12-23 | 1999-12-23 | Dry adhesive |
EP00989684A EP1290286A1 (en) | 1999-12-23 | 2000-10-24 | Dry adhesive |
PCT/US2000/041476 WO2001046534A1 (en) | 1999-12-23 | 2000-10-24 | Dry adhesive |
AU26164/01A AU2616401A (en) | 1999-12-23 | 2000-10-24 | Dry adhesive |
US10/178,717 US20020182404A1 (en) | 1999-12-23 | 2002-06-24 | Dry adhesive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/472,393 US6432551B1 (en) | 1999-12-23 | 1999-12-23 | Dry adhesive |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/178,717 Continuation US20020182404A1 (en) | 1999-12-23 | 2002-06-24 | Dry adhesive |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020086176A1 true US20020086176A1 (en) | 2002-07-04 |
US6432551B1 US6432551B1 (en) | 2002-08-13 |
Family
ID=23875345
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/472,393 Expired - Fee Related US6432551B1 (en) | 1999-12-23 | 1999-12-23 | Dry adhesive |
US10/178,717 Abandoned US20020182404A1 (en) | 1999-12-23 | 2002-06-24 | Dry adhesive |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/178,717 Abandoned US20020182404A1 (en) | 1999-12-23 | 2002-06-24 | Dry adhesive |
Country Status (4)
Country | Link |
---|---|
US (2) | US6432551B1 (en) |
EP (1) | EP1290286A1 (en) |
AU (1) | AU2616401A (en) |
WO (1) | WO2001046534A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147663A1 (en) * | 2001-04-10 | 2004-07-29 | Ford Silvers | Water based adhesive |
US20040253410A1 (en) * | 2003-04-25 | 2004-12-16 | Higgins Kenneth B. | Surface covering |
JP2013542817A (en) * | 2010-11-19 | 2013-11-28 | インターフェイス オースト ピーティワイ リミテッド | Alkaline hydrolysis resistant adhesive |
US20180127987A1 (en) * | 2016-11-08 | 2018-05-10 | Mannington Mills, Inc. | Adhesive-Backed Flooring Panel, System, And Method |
CN110616052A (en) * | 2018-06-19 | 2019-12-27 | 无锡市祁达胶粘带有限公司 | Formula and preparation method of special adhesive for carpet |
US11619053B2 (en) * | 2017-02-28 | 2023-04-04 | Champion Link International Corporation | Panel suitable for assembling a waterproof floor or wall covering, method of producing a panel |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607829B1 (en) * | 1997-11-13 | 2003-08-19 | Massachusetts Institute Of Technology | Tellurium-containing nanocrystalline materials |
US7777303B2 (en) * | 2002-03-19 | 2010-08-17 | The Regents Of The University Of California | Semiconductor-nanocrystal/conjugated polymer thin films |
US6922965B2 (en) * | 2003-07-25 | 2005-08-02 | Ilinois Tool Works Inc. | Bonded interlocking flooring |
US20070020430A1 (en) * | 2005-06-14 | 2007-01-25 | Lees Donald W | Production of backing component for carpet products |
WO2008060831A1 (en) | 2006-11-13 | 2008-05-22 | Textiles Coated Incorporated | Ptfe conveyor belt |
CN100497870C (en) * | 2007-04-20 | 2009-06-10 | 吴潭波 | Wood hard polychloroethylene synthetic floor |
CN102876258A (en) * | 2012-10-18 | 2013-01-16 | 义乌市新彩虹工艺地毯有限公司 | Preparation method of microcapsule elastic glue for carpet |
BE1026702B1 (en) * | 2018-10-12 | 2020-05-14 | Ivc Bvba | Subfloor |
CN109356360A (en) * | 2018-11-20 | 2019-02-19 | 陈竹 | Anti-slip mute pad directly self-adhesive to the back of floor, tile, stone or carpet, its preparation method and coating and foaming equipment |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2873450A (en) | 1956-10-08 | 1959-02-17 | Us Rubber Co | Work glove |
US3765972A (en) * | 1969-07-14 | 1973-10-16 | Monsanto Co | Process for adhering preformed resinous coverings to architectural surfaces |
BE790828R (en) * | 1971-11-10 | 1973-04-30 | Uniroyal Inc | CARPET WITH A CHLORIDE RESIN SUPPORT |
US4002702A (en) * | 1973-10-04 | 1977-01-11 | Stauffer Chemical Company | Novel method for manufacturing plastisol resins |
CA1178732A (en) * | 1981-06-09 | 1984-11-27 | Eiji Aoishi | Polyvinyl chloride resinous composition and product thereof |
JP2515155B2 (en) | 1988-07-15 | 1996-07-10 | 電気化学工業株式会社 | Thermoplastic elastomer composition |
US5676785A (en) | 1990-04-16 | 1997-10-14 | X-Cal Corporation | Pressure-sensitive, adhesive-backed substrates and method for producing same |
US5591806A (en) | 1991-05-20 | 1997-01-07 | Dominion Chemical Company | High solids ethylene acrylic acid aqueous dispersions and methods of producing same |
US5352158A (en) | 1992-11-02 | 1994-10-04 | Brodeur Jr Edouard A | Court surface |
US5824448A (en) | 1995-12-04 | 1998-10-20 | Bayer Corporation | Negative working diazo color proofing sheet with adhesive layer having reduced tackiness |
US5712031A (en) | 1996-03-06 | 1998-01-27 | The Dow Chemical Company | Plastic adhesive labels for glass substrates |
WO1998009807A1 (en) * | 1996-09-03 | 1998-03-12 | Shaw Industries, Inc. | Vinyl-backed carpet structure |
-
1999
- 1999-12-23 US US09/472,393 patent/US6432551B1/en not_active Expired - Fee Related
-
2000
- 2000-10-24 AU AU26164/01A patent/AU2616401A/en not_active Abandoned
- 2000-10-24 WO PCT/US2000/041476 patent/WO2001046534A1/en not_active Application Discontinuation
- 2000-10-24 EP EP00989684A patent/EP1290286A1/en not_active Withdrawn
-
2002
- 2002-06-24 US US10/178,717 patent/US20020182404A1/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147663A1 (en) * | 2001-04-10 | 2004-07-29 | Ford Silvers | Water based adhesive |
US7427644B2 (en) | 2001-04-10 | 2008-09-23 | Interlock Industries, Inc. | Water based adhesive |
US20090065121A1 (en) * | 2001-04-10 | 2009-03-12 | Ford Silvers | Water based adhesive |
US7713365B2 (en) | 2001-04-10 | 2010-05-11 | Interlock Industries, Inc. | Water based aerosol adhesive |
US20040253410A1 (en) * | 2003-04-25 | 2004-12-16 | Higgins Kenneth B. | Surface covering |
JP2013542817A (en) * | 2010-11-19 | 2013-11-28 | インターフェイス オースト ピーティワイ リミテッド | Alkaline hydrolysis resistant adhesive |
US20180127987A1 (en) * | 2016-11-08 | 2018-05-10 | Mannington Mills, Inc. | Adhesive-Backed Flooring Panel, System, And Method |
US10704268B2 (en) * | 2016-11-08 | 2020-07-07 | Mannington Mills, Inc. | Adhesive-backed flooring panel, system, and method |
US11619053B2 (en) * | 2017-02-28 | 2023-04-04 | Champion Link International Corporation | Panel suitable for assembling a waterproof floor or wall covering, method of producing a panel |
CN110616052A (en) * | 2018-06-19 | 2019-12-27 | 无锡市祁达胶粘带有限公司 | Formula and preparation method of special adhesive for carpet |
Also Published As
Publication number | Publication date |
---|---|
US20020182404A1 (en) | 2002-12-05 |
EP1290286A4 (en) | 2003-03-12 |
AU2616401A (en) | 2001-07-03 |
EP1290286A1 (en) | 2003-03-12 |
WO2001046534A1 (en) | 2001-06-28 |
US6432551B1 (en) | 2002-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6432551B1 (en) | Dry adhesive | |
US5578363A (en) | Floor covering underlayment | |
US5501895A (en) | Floor covering underlayment | |
US5658430A (en) | Carpet over carpet installation adhesive | |
US6599599B1 (en) | Underlayment composite and associated flooring installation system | |
CN102224308B (en) | Ground Decorative set and paving method thereof | |
JP2020076289A (en) | Self-adhesive roofing sheet | |
US5965650A (en) | Floor coverings | |
JPH06217861A (en) | Textile pile carpet structure | |
US20050016100A1 (en) | Floor covering for covering removable floor plates, floor structure with floor covering and method for producing the floor covering | |
US20160145877A1 (en) | Underlayment articles, compositions, and method of manufacture thereof | |
GB2351903A (en) | A resilient covering having a flexible magnetic layer | |
US6012261A (en) | Method of installing wall-to-wall carpet | |
WO1998009807A1 (en) | Vinyl-backed carpet structure | |
CA1163083A (en) | Method of bonding floorcoverings | |
JP2003321928A (en) | Expanded sheet for floor execution, composite sheet for floor execution, execution method of floor structure using the same, and floor structure using the same | |
JPH0454234Y2 (en) | ||
CA2133522A1 (en) | Floor covering underlayment | |
EP2995661B1 (en) | Dual purpose coating | |
JP3075348U (en) | Laying material and non-slip sheet for laying material construction | |
JP2662752B2 (en) | Laying tiles | |
JP4095787B2 (en) | Floor tile construction method | |
US20220220749A1 (en) | Sealed acoustic-insulation laminate system | |
JP3949524B2 (en) | Roofing material | |
JPS5915156A (en) | Carpet-base assembly and construction thereof to floor surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PANDA PRODUCTS, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRODEUR, ED;COKE, PETER;REEL/FRAME:012091/0336 Effective date: 20000118 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060813 |