US20020084376A1 - Core and shaft assembly for a printer - Google Patents
Core and shaft assembly for a printer Download PDFInfo
- Publication number
- US20020084376A1 US20020084376A1 US09/751,064 US75106400A US2002084376A1 US 20020084376 A1 US20020084376 A1 US 20020084376A1 US 75106400 A US75106400 A US 75106400A US 2002084376 A1 US2002084376 A1 US 2002084376A1
- Authority
- US
- United States
- Prior art keywords
- core
- shaft
- spring
- accordance
- pin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 82
- 238000007639 printing Methods 0.000 description 6
- 230000002028 premature Effects 0.000 description 5
- 238000011109 contamination Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000007651 thermal printing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H75/00—Storing webs, tapes, or filamentary material, e.g. on reels
- B65H75/02—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
- B65H75/04—Kinds or types
- B65H75/08—Kinds or types of circular or polygonal cross-section
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2601/00—Problem to be solved or advantage achieved
- B65H2601/20—Avoiding or preventing undesirable effects
- B65H2601/26—Damages to handling machine
Definitions
- This invention relates to printers and, more particularly, to a core that has a web material wound around it and a shaft for supporting web materials that will rotate when web materials designed to use with the machine are used, but will not rotate if web materials not designed for use by the machine are used, or if the web material is loaded in a position in which the web of material will not work properly in the machinery.
- Another example is a series of labels that are carried by a continuous web of a release liner which are successfully advanced over a platen which is wound around the outer surface of a core.
- the core containing the continuous web is mounted onto a shaft past a printing station, and the continuous web is then connected to a take up roller on a second shaft.
- a thermal printer ribbon has a back coating comprising a material that typically has a low coefficient of friction. Premature failure of the printhead occurs when the back coating does not have a coefficient of friction that is compatible with the thermal printhead, and when the backcoating repeatedly contacts the printhead in the course of the thermal printing process. Also, the web material could break due to incompatibility of the ribbon with the temperature of the printhead. If the printhead is too hot for the ink ribbon that was incorrectly used, the web of ink ribbon would break when in contact with the heat of the thermal printhead. Breakage of the ribbon due to incompatibility of the ribbon with the temperature of the printhead leads to machine inoperability.
- a disadvantage of the prior art is that incorrect cores of web material can be placed on the shaft of the machine, and the machine will continue operating.
- This invention overcomes the problems of the prior art by providing a core and shaft assembly that enables a user to place a core of web material onto the shaft in a position for feeding the web material.
- this invention provides a web material core with axially positioned areas that mate with a shaft that has upwardly protruding pins thereby preventing the shaft from rotating when a core with web material wound around it that will not work in the machine is placed on the shaft.
- the core is generally tubular in shape onto which a web of material can be wound or supported and has at least one axially extending slot.
- the slot extends from the end of the core and ends in the central portion of the core.
- the slot in the core is cut from the inner surface to the outer surface.
- the shaft subassembly comprises an inner shaft having notches and an outer shaft having spring-loaded pins. The spring-loaded pins mate with the notches on the inner shaft when a core, which is not designed for use by the given machine, is mounted onto the shaft. In that case, the web material will no longer be advanced because the pins prevent the shaft from rotating.
- a core that has web material wound around it that is not compatible with the machine will not have slots positioned to mate with the pins present in the outer shaft on the machine.
- the pins located in the outer shaft on the machine will be forced downward into the notches, positioned below the pins on the inner shaft.
- the shaft will only rotate to the point at which the notch end is reached. At this point, the shaft assembly will cease rotating, thereby causing the core with the web material wound around it to stop rotating.
- the spring-loaded pins located in the outer shaft have two planar sides with a curved topside allowing a core to be slideingly mounted onto the shaft while the planar sides position the core on the shaft and prevent the core from rotating.
- a spring retainer portion on the pin positions the pin within the outer shaft.
- An alternative embodiment is to provide a core with web material wound around it that has axially extending grooves whereby the grooves extend an unequal distance from each end of the core toward the central portion. There is an indent at the central portion position at the end of the groove, allowing the spring-loaded pins located on the outer shaft to engage. When the core is slideably mounted onto the shaft, the spring-loaded pins are forced upward into the groove of the core and will ultimately lock the core into the operating position when the spring-loaded pins reach the indent at the end of the groove on the core.
- FIG. 1 is a sectional view of the core and shaft assembly showing the inner shaft, the outer shaft and a core with axially extending slots positioned for correct operation.
- FIG. 2 is a plan view of the core showing the axially extending slots.
- FIG. 3 is a sectional view of the core and shaft taken on the plane indicated by the line 3 - 3 in FIG. 1.
- FIG. 4 is a sectional view of the core on the shaft in a position in which the web of material will not work in the machine.
- FIG. 5 is a perspective of the spring-loaded pin.
- FIG. 6 is a sectional view of the core showing axially extending grooves.
- FIG. 7 is a sectional view of the core showing one axially extending groove.
- FIG. 1 a web material core 120 properly mounted on shaft assembly 110 .
- a web of material such as thermal ink ribbon, carrier web for labels, or ink ribbon is wound around web material core 120 .
- Shaft assembly 110 includes inner shaft 117 and outer shaft 112 held in place by end plate 122 .
- Web material core 120 is slideably mounted onto outer shaft 112 .
- Outer shaft 112 has an outer surface adapted to receive web material core 120 and a hollow interior adapted to slideably rotate over inner shaft 117 .
- Outer shaft 112 has a plurality of spring-loaded pins 115 , 116 extending through the outer surface of outer shaft 112 to the inner surface of inner shaft 117 .
- Spring-loaded pins 115 , 116 correspond directly to notches 118 , 119 in inner shaft 117 .
- Inner shaft 117 is an elongated member having ends 113 , 114 and a central portion 121 lying therebetween.
- Notch 118 and notch 119 are positioned circumferentially on inner shaft 117 .
- Notches 118 , 119 extend from notch beginning 310 to notch end 311 whereby notches 118 , 119 do not extend entirely around the circumference of inner shaft 117 .
- Spring-loaded pins 115 , 116 located on outer shaft 112 also correspond to slots 218 , 219 in web material core 120 .
- Spring-loaded pins 115 , 116 have an upward tension forcing spring-loaded pins 115 , 116 upward through outer shaft 112 .
- spring-loaded pins 115 , 116 are positioned within slots 218 , 219 to connect web material core 120 with outer shaft 112 to allow rotation of web material core 120 .
- web material core 120 is generally a tubular member having first web material core end 213 and second web material core end 214 .
- Web material core 120 has an outer surface onto which a web of material is adapted to be wound.
- Web material core 120 has a hollow interior adapted to receive a shaft.
- Web material core 120 has a plurality of axially extending slots 218 , 219 .
- Slot 218 extends from first web material core end 213 to slot end 215 which is a position that is not equal to the distance of slot 219 from second web material core end 214 to slot end 216 . As shown in FIG.
- spring-loaded pins 115 , 116 in outer shaft 112 correspond to notches 118 , 119 in inner shaft 117 as well as with slots 218 , 219 in web material core 120 , respectively.
- “Slots” are areas cut from the inner surface to the outer surface. Slot 218 is positioned to allow spring-loaded pin 115 to extend freely through. Slot 219 is positioned to allow spring-loaded pin 116 to extend freely through.
- FIG. 3 the cross section view of notch 118 depicts a notch beginning 310 and notch end 311 in inner shaft 117 .
- Spring-loaded pin 115 is forced upward into the opening created by slot 218 when web material core 120 is mounted on outer shaft 112 .
- pin 115 will remain in slot 218 and core 120 on shaft 112 rotates.
- a web material core which having web material which will not work in the machine can include, but is not limited to, any one of the following: a ribbon core with web material wound around it that is positioned on the shaft assembly in the wrong direction, a ribbon core with web material wound around it that is not made to fit with the designated shaft assembly, a ribbon core with web material wound around it which is not the proper size.
- pin tops 125 , 126 of spring-loaded pins 115 , 116 have four sides. The four sides are shaped to permit the web material core 120 to be slideably mounted onto outer shaft 112 from end 114 to end 113 , but provide resistance to movement of web material core 120 in the circumferential direction.
- Spring-loaded pin 115 is shown in FIG. 5 by example. Face 510 of spring-loaded pin 115 positioned parallel to the axis of rotation of outer shaft 112 is planar. This prevents web material core 120 from rotating around outer shaft 112 in either direction.
- Curves 513 , 523 form a dome on spring-loaded pin 115 to allow web material core 120 to slide over pins 115 , 116 .
- Curves 513 on spring-loaded pins 115 , 116 allow web material core 120 to be slideably mounted onto outer shaft 112 in the direction of first end 113 .
- Curve 523 on spring-loaded pin 115 allows web material core 120 to be slideably removed in the direction of second end 114 .
- bottom side of pin 514 is directly opposed to a midpoint of curved topsides 513 and 515 , and is attached to a midpoint of spring retainer portions 135 , 136 .
- Pin top 125 in FIG. 5 is shown to be separated from spring-loaded pin 115 by spring retainer portion 135 . It is to be understood that the same features described for spring-loaded pin 115 are in spring-loaded pin 116 . As shown in FIGS. 1 and 5, spring retainer portion 135 allows pin top 125 to protrude through the opening in outer shaft 112 . When a correctly designated web material core 120 is slideably mounted onto outer shaft 112 , pin top 125 mates in web material core 120 slot 218 due to the upward tension from spring 145 . First side 518 of spring retainer portion 135 retains pin top 125 in outer shaft 112 at a height adequate for pin top 125 to mate with slot 218 .
- a second opposing side 528 on spring retainer portion 135 is attached to pin first end 516 .
- Spring retainer portion 135 extends beyond the edges of bottom side 514 of pin top 125 .
- Pins 115 , 116 are upwardly tensioned by spring 145 , 146 .
- Pins 115 , 116 are positioned within spring 145 , 146 .
- Spring-loaded pins 115 , 116 are positioned within chambers 128 , 129 .
- Chambers 128 , 129 are located in the outer surface of outer shaft 112 .
- Chambers 128 , 129 can be a notch of sufficient dimensions to house spring-loaded pins 115 , 116 .
- the spring-biased pins 115 , 116 in chambers 128 , 129 can be fabricated of a material such as plastic or metal that can be placed into a pre-drilled area on outer shaft 112 .
- Chambers 128 , 129 have a depth sufficient to hold pin tops 125 , 126 and springs 145 , 146 when compressed due to contact of web material core 120 with pin tops 125 , 126 .
- Chambers 128 , 129 comprise two sections. There is an upper part of chambers 138 , 139 , and there is a lower part of chambers 148 , 149 .
- the upper part of chambers 138 , 139 has a sufficient opening for pin top portions 125 , 126 to protrude through.
- the lower part of the chambers 148 , 149 only allows the pins 155 , 156 to protrude through.
- the springs 145 , 146 rest on the bottom of the inside part of lower part of the chambers 148 , 149 . Because the spring is contained between the upper part of chambers 138 , 139 and the lower part of chambers 148 , 149 , the spring-loaded pins 115 , 116 are forced upward. Because the pin tops 125 , 126 are forced upward, the pins 115 , 116 will not mate with notches 118 , 119 , respectively, thereby allowing outer shaft 112 to rotate.
- core 620 with axially extending grooves 618 , 619 whereby grooves 618 , 619 extend an unequal distance from each end of the core toward central portion 617 .
- spring-loaded pins 115 , 116 are forced upward into groove 618 619 of core 620 and will ultimately lock core 620 into the operating position when spring-loaded pins 115 , 116 reach indents 611 , 612 at the end of grooves 618 , 619 on core 620 .
- FIG. 7 Another embodiment of the core is shown in FIG. 7.
- This is core 710 that has one axially extending groove 718 extending from one end 713 of core 710 toward central portion 717 .
- spring-loaded pin 115 is forced upward into groove 718 of core 710 and will ultimately lock core 710 into the operating position when the spring-loaded pin 115 reaches indent 711 at the end of groove 718 on core 710 .
Landscapes
- Unwinding Webs (AREA)
Abstract
This invention provides a core and shaft assembly that enables a user to place a core of web material onto the shaft in a position for feeding the web material. This invention provides a web material core with axially positioned areas that mate with a shaft that has upwardly protruding pins thereby preventing the shaft from rotating when a core with web material wound around it that will not work in the machine is placed on the shaft. The core onto which a web of material can be wound or supported has at least one axially extending slot. The slot extends from the end of the core and ends in the central portion of the core. The shaft subassembly comprises an inner shaft having notches and an outer shaft having spring-loaded pins. The spring-loaded pins mate with the notches on the inner shaft when a core, not designed for use by the given machine, is mounted onto the shaft. The shaft assembly will cease rotating thereby causing the core with the web material wound around it to stop rotating also. Another embodiment provides a core with web material wound around it that has axially extending grooves whereby the grooves extend an unequal distance from each end of the core toward the central portion. There is an indent at the end of the groove allowing the spring-loaded pins located on the outer shaft to engage. The upwardly protruding pins will mate with the indent and allow the core to rotate.
Description
- This invention relates to printers and, more particularly, to a core that has a web material wound around it and a shaft for supporting web materials that will rotate when web materials designed to use with the machine are used, but will not rotate if web materials not designed for use by the machine are used, or if the web material is loaded in a position in which the web of material will not work properly in the machinery.
- It is well-known to wind a web around the outer surface of a core and then mount the core onto a shaft for performing numerous operations, such as label printing. Typically, i.e., ink ribbons, labels, thermal transfer ribbons, etc. on continuous web substrate or the like are mounted onto the cores. The shafts will rotate in a direction to either remove or add web onto the core. An example of the foregoing is in a label printer wherein the inked ribbon is wound on a core and then is mounted onto a first shaft, past a printing station and connected to a driven take-up roller on a second shaft. Another example is a series of labels that are carried by a continuous web of a release liner which are successfully advanced over a platen which is wound around the outer surface of a core. The core containing the continuous web is mounted onto a shaft past a printing station, and the continuous web is then connected to a take up roller on a second shaft.
- There have been various prior art cores that are adapted to be removeably received on shafts. For instance, U.S. Pat. No. 5,947,618 issued to Keller et al. (hereinafter referred to as “Keller-1”) discloses an improved core designed to be frictionally engaged onto the spindle to releasably hold the core in position on the spindle. The core has three abutment faces on the interior surface, and one of the abutment faces is cooperable with an abutment on the shaft to hold the core in proper position. However, in Keller-1, the core and spindle disclosed do not prevent the shaft from rotating if the incorrect web material is used. When the incorrect web material is used, the shaft does not stop rotating, thereby preventing the machine from functioning properly.
- Another core and shaft assembly is disclosed in U.S. Pat. No. 5,833,377 issued to Keller et al. (hereinafter referred to as “Keller-2”) in which an improved core and an improved shaft are disclosed which are frictionally engaged by means of a spring finger. The core has an abutment face for limiting movement of the core onto the shaft as well as a ramp to releasably hold the core in position on the shaft. The Keller-2 patent discloses the interrelationship of the core and the shaft, but does not anticipate that the shaft will be inoperable with a core with web material mounted incorrectly in the machine. Again, there is no cessation of machine operation if a core with ink ribbon wound around it is mounted in the incorrect direction, or if a core with an incompatible ribbon wound therearound for printing with that printer is mounted onto a shaft.
- When a core with web material not designed for use with a particular machine is placed on a shaft, significant disadvantages to the user may be evident which have not been solved by the prior art, such as excessive wear on the printhead leading to premature failure of the printhead, ribbon breakage due to incompatibility of the installed web material with the printhead, and contamination of the web material leading to poor print quality. In the case of a thermal printer, cores of web material that comprise material that will not work properly in the machine can cause excessive wear of the printhead. In thermal printing, the print head contacts the backcoating of the thermal transfer ribbon. Heat is transferred through the backcoating to melt the ink adhered to the opposite side of the ribbon. This causes the ink to be transferred onto the substrate in contact with the ribbon. A thermal printer ribbon has a back coating comprising a material that typically has a low coefficient of friction. Premature failure of the printhead occurs when the back coating does not have a coefficient of friction that is compatible with the thermal printhead, and when the backcoating repeatedly contacts the printhead in the course of the thermal printing process. Also, the web material could break due to incompatibility of the ribbon with the temperature of the printhead. If the printhead is too hot for the ink ribbon that was incorrectly used, the web of ink ribbon would break when in contact with the heat of the thermal printhead. Breakage of the ribbon due to incompatibility of the ribbon with the temperature of the printhead leads to machine inoperability. In addition, when an inferior quality ink ribbon is used, a problem, such as contamination of the ribbon related to the varied manufacturing processes, could lead to premature wear of the print head and ultimate machine failure. Particles from contamination can be deposited on the printhead. When the printhead contacts a ribbon with foreign particles on the ribbon, the printhead will be scratched when it contacts the ribbon. When the printhead is scratched, inferior print quality as well as premature printhead failure will occur. In the case of print quality, this could be substantial loss of revenue. There are specific printer applications, such as postal printing applications, which require higher levels of print quality and would result in loss of revenue when characters are not readable, i.e., a poorly printed postal indicia may have no value.
- In the case of a label printer, a series of labels is carried by a web and is successfully advanced over a platen where each label is printed by a printhead. After each label is printed, the carrier web is advanced around a delaminator where the printed label is peeled from the carrier web for application to an article. The web material with labels is wound around the core. When a core of web material with label stock having a greater or lesser thickness than the machine requires is used, jams occur in the continuous web feed path. Also, tension on the machine parts is experienced which contributes to machine failure. When cores of continuous webs of labels not specifically designed for use in the particular printer are placed on the shafts of the label printers for the label printing operation, the label stock can jam in the continuous web feed path. Machine jams can result from any of the following: premature release of labels from the carrier web, labels too thick to proceed along the tenuous paper path, or similar paper path failures.
- A disadvantage of the prior art is that incorrect cores of web material can be placed on the shaft of the machine, and the machine will continue operating.
- This invention overcomes the problems of the prior art by providing a core and shaft assembly that enables a user to place a core of web material onto the shaft in a position for feeding the web material. To accomplish the foregoing, this invention provides a web material core with axially positioned areas that mate with a shaft that has upwardly protruding pins thereby preventing the shaft from rotating when a core with web material wound around it that will not work in the machine is placed on the shaft.
- In accordance with one embodiment of the invention is the combination of a core and a shaft. The core is generally tubular in shape onto which a web of material can be wound or supported and has at least one axially extending slot. The slot extends from the end of the core and ends in the central portion of the core. Also, the slot in the core is cut from the inner surface to the outer surface. The shaft subassembly comprises an inner shaft having notches and an outer shaft having spring-loaded pins. The spring-loaded pins mate with the notches on the inner shaft when a core, which is not designed for use by the given machine, is mounted onto the shaft. In that case, the web material will no longer be advanced because the pins prevent the shaft from rotating. A core that has web material wound around it that is not compatible with the machine will not have slots positioned to mate with the pins present in the outer shaft on the machine. As the core with web material wound around it that is not compatible with the machine is placed onto the shaft, the pins located in the outer shaft on the machine will be forced downward into the notches, positioned below the pins on the inner shaft. When the pins are forced downward into the notches on the inner shaft, the shaft will only rotate to the point at which the notch end is reached. At this point, the shaft assembly will cease rotating, thereby causing the core with the web material wound around it to stop rotating.
- The spring-loaded pins located in the outer shaft have two planar sides with a curved topside allowing a core to be slideingly mounted onto the shaft while the planar sides position the core on the shaft and prevent the core from rotating. A spring retainer portion on the pin positions the pin within the outer shaft.
- An alternative embodiment is to provide a core with web material wound around it that has axially extending grooves whereby the grooves extend an unequal distance from each end of the core toward the central portion. There is an indent at the central portion position at the end of the groove, allowing the spring-loaded pins located on the outer shaft to engage. When the core is slideably mounted onto the shaft, the spring-loaded pins are forced upward into the groove of the core and will ultimately lock the core into the operating position when the spring-loaded pins reach the indent at the end of the groove on the core.
- FIG. 1 is a sectional view of the core and shaft assembly showing the inner shaft, the outer shaft and a core with axially extending slots positioned for correct operation.
- FIG. 2 is a plan view of the core showing the axially extending slots.
- FIG. 3 is a sectional view of the core and shaft taken on the plane indicated by the line3-3 in FIG. 1.
- FIG. 4 is a sectional view of the core on the shaft in a position in which the web of material will not work in the machine.
- FIG. 5 is a perspective of the spring-loaded pin.
- FIG. 6 is a sectional view of the core showing axially extending grooves.
- FIG. 7 is a sectional view of the core showing one axially extending groove.
- In describing the preferred embodiment of the instant invention, reference is made to the drawing wherein there is seen in FIG. 1 a
web material core 120 properly mounted onshaft assembly 110. A web of material such as thermal ink ribbon, carrier web for labels, or ink ribbon is wound aroundweb material core 120.Shaft assembly 110 includesinner shaft 117 andouter shaft 112 held in place byend plate 122.Web material core 120 is slideably mounted ontoouter shaft 112.Outer shaft 112 has an outer surface adapted to receiveweb material core 120 and a hollow interior adapted to slideably rotate overinner shaft 117.Outer shaft 112 has a plurality of spring-loadedpins outer shaft 112 to the inner surface ofinner shaft 117. Spring-loadedpins notches inner shaft 117.Inner shaft 117 is an elongated member having ends 113, 114 and acentral portion 121 lying therebetween. There are a plurality ofnotches inner shaft 117.Notch 118 and notch 119 are positioned circumferentially oninner shaft 117.Notches end 311 wherebynotches inner shaft 117. The distance ofnotch 118 fromfirst end 113 to notch 118 is not equal to the distance ofnotch 119 location which is fromsecond end 114 to notch 119. Spring-loadedpins outer shaft 112 also correspond toslots web material core 120. Spring-loadedpins pins outer shaft 112. In this example, spring-loadedpins slots web material core 120 withouter shaft 112 to allow rotation ofweb material core 120. - As shown in FIGS. 1 and 2,
web material core 120 is generally a tubular member having first webmaterial core end 213 and second webmaterial core end 214.Web material core 120 has an outer surface onto which a web of material is adapted to be wound.Web material core 120 has a hollow interior adapted to receive a shaft.Web material core 120 has a plurality of axially extendingslots Slot 218 extends from first webmaterial core end 213 to slotend 215 which is a position that is not equal to the distance ofslot 219 from second webmaterial core end 214 to slotend 216. As shown in FIG. 1, spring-loadedpins outer shaft 112 correspond tonotches inner shaft 117 as well as withslots web material core 120, respectively. “Slots” are areas cut from the inner surface to the outer surface.Slot 218 is positioned to allow spring-loadedpin 115 to extend freely through.Slot 219 is positioned to allow spring-loadedpin 116 to extend freely through. Whenweb material core 120 is rotateably mounted ontoshaft assembly 110, spring-loadedpins slots outer shaft 112 withweb material core 120. - As shown in FIG. 3, the cross section view of
notch 118 depicts a notch beginning 310 and notchend 311 ininner shaft 117. Spring-loadedpin 115 is forced upward into the opening created byslot 218 whenweb material core 120 is mounted onouter shaft 112. Asouter shaft 112 begins to rotate, pin 115 will remain inslot 218 andcore 120 onshaft 112 rotates. - However, when
web material core 120 is mounted onouter shaft 112 in a position in which the web of material will not work in the machine, i.e., the web material core is positioned on the shaft backward, as shown in FIG. 4, spring-loadedpin 116 is depressed intonotch 119. Therefore, asouter shaft 112 rotates, spring-loadedpin 116 moves circumferentially withinnotch 119 to notchend 311. When spring-loadedpin 116, which is depressed by the inner surface ofcore 120, reachesnotch end 311,outer shaft 112 will cease rotation. Whenouter shaft 112 ceases rotation, the web material will no longer advance. Likewise, when a core with web material not specified or adequate for the machine is mounted onouter shaft 112, spring-loadedpins notches - As shown in FIGS. 1 and 5, pin tops125, 126 of spring-loaded
pins web material core 120 to be slideably mounted ontoouter shaft 112 fromend 114 to end 113, but provide resistance to movement ofweb material core 120 in the circumferential direction. Spring-loadedpin 115 is shown in FIG. 5 by example. Face 510 of spring-loadedpin 115 positioned parallel to the axis of rotation ofouter shaft 112 is planar. This preventsweb material core 120 from rotating aroundouter shaft 112 in either direction.Curves pin 115 to allowweb material core 120 to slide overpins Curves 513 on spring-loadedpins web material core 120 to be slideably mounted ontoouter shaft 112 in the direction offirst end 113.Curve 523 on spring-loadedpin 115 allowsweb material core 120 to be slideably removed in the direction ofsecond end 114. Lastly, bottom side ofpin 514 is directly opposed to a midpoint ofcurved topsides 513 and 515, and is attached to a midpoint ofspring retainer portions -
Pin top 125 in FIG. 5, is shown to be separated from spring-loadedpin 115 byspring retainer portion 135. It is to be understood that the same features described for spring-loadedpin 115 are in spring-loadedpin 116. As shown in FIGS. 1 and 5,spring retainer portion 135 allowspin top 125 to protrude through the opening inouter shaft 112. When a correctly designatedweb material core 120 is slideably mounted ontoouter shaft 112, pin top 125 mates inweb material core 120slot 218 due to the upward tension fromspring 145.First side 518 ofspring retainer portion 135 retainspin top 125 inouter shaft 112 at a height adequate forpin top 125 to mate withslot 218. A second opposingside 528 onspring retainer portion 135 is attached to pinfirst end 516.Spring retainer portion 135 extends beyond the edges ofbottom side 514 ofpin top 125.Pins spring Pins spring - Spring-loaded
pins chambers Chambers outer shaft 112.Chambers pins pins chambers outer shaft 112.Chambers web material core 120 with pin tops 125, 126.Chambers chambers chambers chambers top portions chambers pins springs chambers chambers chambers pins pins notches outer shaft 112 to rotate. - When
web material core 120 is placed onouter shaft 112, in the incorrect direction, pin tops 125, 126 are forced downward.Spring retainers pins notches pins notches pins reach notch end 311. At this point,outer shaft 112 will not be able to rotate; the web material will cease to advance, thereby halting machine operation. - As seen in FIG. 6, there is shown
core 620 with axially extendinggrooves grooves central portion 617. There areindents central portion 617 position of the end ofgrooves pins core 620 is slideably mounted ontoshaft 112, spring-loadedpins groove 618 619 ofcore 620 and will ultimately lockcore 620 into the operating position when spring-loadedpins reach indents grooves core 620. - Another embodiment of the core is shown in FIG. 7. This is core710 that has one axially extending
groove 718 extending from oneend 713 ofcore 710 towardcentral portion 717. There isindent 711 atcentral portion 717 position of the end ofgroove 718 allowing spring-loadedpins core 710 is slideably mounted ontoouter shaft 112, spring-loadedpin 115 is forced upward intogroove 718 ofcore 710 and will ultimately lockcore 710 into the operating position when the spring-loadedpin 115 reaches indent 711 at the end ofgroove 718 oncore 710. - It should be understood by those skilled in the art that various modifications may be made in the present invention without departing from the spirit and scope thereof, as described in the specification and defined in the appended claims.
Claims (18)
1. A core and shaft assembly for use in a system supporting a web of material, said assembly comprising:
(a) a shaft subassembly, having a plurality of pins located on the outer surface of said shaft subassembly; and,
(b) a core subassembly, wherein said core subassembly is generally tubular in shape and has a first end, a second end; and a central portion; and, wherein said core subassembly has:
(i) an outer surface upon which said web of material can be wound or supported;
(ii) a hollow interior adapted to receive said shaft subassembly; and,
(iii) a plurality of areas adapted to receive the pins located on the inner surface of said core between said first end and said second end, wherein each one of said plurality of areas can be mated with a corresponding pin on said shaft subassembly so that said core subassembly can be properly positioned relative to said shaft subassembly allowing said shaft subassembly to rotate within said core subassembly and when said areas are not mated with said pins, said subassembly will not rotate.
2. The core and shaft assembly in accordance with claim 1 , wherein said areas on said core assembly are cut from the inner surface to the outer surface.
3. The core and shaft assembly in accordance with claim 1 , wherein said areas are positioned equally from said first end and said second end.
4. The core and shaft assembly in accordance with claim 1 , wherein each one of said areas on said core assembly are axially extending areas positioned unequally about said core.
5. The core and shaft assembly in accordance with claim 4 , wherein said core areas comprise a first area and a second area, said first area having a beginning at core said first end and an end at core said central portion, said second area having a beginning at core said second end and an end at core said central portion.
6. The core and shaft assembly in accordance with claim 5 , wherein said areas on said core assembly are axially extending grooves, said grooves extending from said core end and having an indent at a groove end in the central portion.
7. The core and shaft assembly in accordance with claim 2 , wherein said areas on said core assembly comprise a first axially extending slot and a second axially extending slot, said first axially extending slot extending from said first core end to said central portion on said core, and, a second axially extending slot extending from said second core end to said central portion on said core.
8. The core and shaft assembly in accordance with claim 1 , wherein said shaft assembly comprises an elongated inner shaft and a tubular outer shaft.
9. The core and shaft assembly in accordance with claim 8 , wherein said inner shaft has an outer surface lying between a first end and a second end and a central portion relative thereto.
10. The core and shaft assembly in accordance with claim 8 , wherein said inner shaft has a plurality of notches located on said outer surface extending circumferentially relative to said outer surface of said inner shaft from a notch beginning to a notch end.
11. The core and shaft assembly in accordance with claim 8 , wherein said pins on said outer shaft are spring-loaded and correspond directly to a notch in said inner shaft.
12. The core and shaft assembly in accordance with claim 8 , wherein said tubular outer shaft has an outer surface adapted to receive a core subassembly and a hollow interior adapted to mount on and slideably rotate over said inner shaft.
13. The core and shaft assembly in accordance with claim 8 , wherein said outer shaft has a plurality of spring-loaded pins extending therethrough and correspond directly to a notch in said inner shaft.
14. The core and shaft assembly in accordance with claim 11 , wherein said pins have tension, said tension is directed outwardly relative to said shaft subassembly.
15. The core and shaft assembly in accordance with claim 1 , wherein each one of said spring-loaded pins comprises a top portion, a spring retainer portion, a pin portion, and a spring:
(a) said top portion further comprising at least four sides; said four sides further comprising:
(i) a first planar side;
(ii) a second planar side opposed to said first planar side;
(iii) a curved top side, lying between said first planar side and said second planar side; and
(iv) a bottom side attached to said shaft, whereon a midpoint of said bottom side is directly opposed to a midpoint of said curved top side;
(b) said spring retainer portion comprising two planar sides; said two planar sides further comprising:
(i) a first side extending beyond the edges of said bottom side, supporting said pin top portion of said spring-loaded pin,
(ii) a second side opposed to said first side and connected to said pin portion whereby said spring retainer portion supports upper portion of spring.
(c) said pin portion comprising two ends, said two ends further comprising:
(i) a first end, said first end connected to said spring retainer portion; and,
(ii) a second end, said second end extends a distance from inside surface of said outer shaft to inside surface of said notch on said inner shaft, and
(d) said spring extending from said second side of said spring retainer to a position above said second end on said pin.
16. The core and shaft assembly in accordance with claim 8 , wherein each one of said spring-loaded pins comprises a top portion, a spring retainer portion, and a pin portion:
(a) said top portion further comprising at least four sides; said four sides further comprising:
(i) a first planar side;
(ii) a second planar side opposed to said first planar side;
(iii) a curved top side, lying between said first planar side and said second planar side; and,
(iv) a bottom side attached to said shaft, whereon a midpoint of said bottom side is directly opposed to a midpoint of said curved top side;
(b) said spring retainer portion comprising two planar sides; said two planar sides further comprising:
(i) a first side extending beyond the edges of said bottom side, supporting said pin top portion of said spring-loaded pin,
(ii) a second side opposed to said first side and connected to said pin portion whereby said spring retainer portion supports upper portion of spring.
(c) said pin portion comprising two ends, said two ends further comprising:
(i) a first end, said first end connected to said spring retainer portion; and,
(ii) a second end, said second end extends a distance from inside surface of said outer shaft to inside surface of said notch on said inner shaft,
(d) said spring extending from said second side of said spring retainer to a position above said second end on said pin.
17. The core and shaft assembly in accordance with claim 15 , wherein said spring-loaded pins are located within a chamber in said outer shaft, said chamber comprising:
(a) an upper chamber, said upper chamber having an aperture for said top portion of said spring-loaded pin to protrude and mate with said area on said core, and,
(b) a lower chamber, said lower chamber having an aperture for said pin to protrude and mate with said notch on said inner shaft.
18. The core and shaft assembly in accordance with claim 10 wherein said notches are positioned in a plurality of locations around said inner shaft.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/751,064 US6446902B1 (en) | 2000-12-28 | 2000-12-28 | Core and shaft assembly for a printer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/751,064 US6446902B1 (en) | 2000-12-28 | 2000-12-28 | Core and shaft assembly for a printer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020084376A1 true US20020084376A1 (en) | 2002-07-04 |
US6446902B1 US6446902B1 (en) | 2002-09-10 |
Family
ID=25020312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/751,064 Expired - Fee Related US6446902B1 (en) | 2000-12-28 | 2000-12-28 | Core and shaft assembly for a printer |
Country Status (1)
Country | Link |
---|---|
US (1) | US6446902B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103896092A (en) * | 2012-12-25 | 2014-07-02 | 汉达精密电子(昆山)有限公司 | Coil stock fixing structure |
CN105437789A (en) * | 2015-12-14 | 2016-03-30 | 广州市宝比万像科技有限公司 | Roller and printer |
CN107351529A (en) * | 2017-06-23 | 2017-11-17 | 安徽新华印刷股份有限公司 | A kind of fixing device suitable for paper web surface printing |
CN108438984A (en) * | 2018-04-10 | 2018-08-24 | 许敏华 | A kind of cloth-winding mechanism convenient for assembly |
CN119306042A (en) * | 2024-12-17 | 2025-01-14 | 常州盛悦金属新材料有限公司 | A roll-changing auxiliary structure for photovoltaic welding tape winding |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110937472A (en) * | 2020-02-11 | 2020-03-31 | 徐州龙润医药包装有限公司 | Fixing device convenient for replacing roller for trademark printing machine |
CN112224946A (en) * | 2020-10-15 | 2021-01-15 | 单县祥瑞纺织有限公司 | Packing apparatus is used in grey cloth production |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59186857A (en) * | 1983-04-08 | 1984-10-23 | Fuji Xerox Co Ltd | Device for holding rolled paper |
US6076764A (en) * | 1998-10-30 | 2000-06-20 | F.T. Acquisitions, L.P. | Combination paper roll core and paper tube plug |
-
2000
- 2000-12-28 US US09/751,064 patent/US6446902B1/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103896092A (en) * | 2012-12-25 | 2014-07-02 | 汉达精密电子(昆山)有限公司 | Coil stock fixing structure |
CN105437789A (en) * | 2015-12-14 | 2016-03-30 | 广州市宝比万像科技有限公司 | Roller and printer |
CN107351529A (en) * | 2017-06-23 | 2017-11-17 | 安徽新华印刷股份有限公司 | A kind of fixing device suitable for paper web surface printing |
CN108438984A (en) * | 2018-04-10 | 2018-08-24 | 许敏华 | A kind of cloth-winding mechanism convenient for assembly |
CN119306042A (en) * | 2024-12-17 | 2025-01-14 | 常州盛悦金属新材料有限公司 | A roll-changing auxiliary structure for photovoltaic welding tape winding |
Also Published As
Publication number | Publication date |
---|---|
US6446902B1 (en) | 2002-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1504916B1 (en) | Tape cassette | |
US6109801A (en) | Ribbon core and spindle | |
US5672020A (en) | High resolution combination donor/direct thermal printer | |
JP3882360B2 (en) | Tape cassette | |
US6446902B1 (en) | Core and shaft assembly for a printer | |
EP0580399B1 (en) | Ink jet printer | |
CN101024352A (en) | Ink ribbon cassette for thermal transfer printer | |
US6042039A (en) | Tape reel device with brake mechanism applying constant back tension | |
US6580446B2 (en) | Thermal transfer printer, thermal transfer recording method and thermal transfer recording web roll | |
US5974963A (en) | Supporting device for rolled recording sheet | |
US5639340A (en) | Portable hand-held labelling and marking device and printing mechanism therefor | |
US7086628B2 (en) | Ink ribbon core | |
JP2001232880A (en) | Ribbon cassette | |
KR100441811B1 (en) | Tension Creation Device | |
JPH10181130A (en) | Portable printer | |
JPH0417447Y2 (en) | ||
MX2007000488A (en) | Applicator roll for a labeling apparatus. | |
JPH10309852A (en) | Ribbon cassette | |
JPS61146572A (en) | Platen roller | |
JPH1120285A (en) | Friction roller | |
JPH1148460A (en) | Stamp type thermal transfer printer | |
JPH0526433U (en) | Ribbon cassette | |
JP2001054973A (en) | Thermal transfer printer | |
JPS63276575A (en) | Film feeder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PITNEY BOWES INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SALVO, PASQUALE J.;REEL/FRAME:011450/0069 Effective date: 20001228 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100910 |