+

US20020081606A1 - Methods for detecting and identifying a gram positive bacteria in a sample - Google Patents

Methods for detecting and identifying a gram positive bacteria in a sample Download PDF

Info

Publication number
US20020081606A1
US20020081606A1 US09/860,432 US86043201A US2002081606A1 US 20020081606 A1 US20020081606 A1 US 20020081606A1 US 86043201 A US86043201 A US 86043201A US 2002081606 A1 US2002081606 A1 US 2002081606A1
Authority
US
United States
Prior art keywords
specific
seq
cip
polynucleotide
atcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/860,432
Inventor
Patrick Trieu-Cuot
Clare Poyart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Sante et de la Recherche Medicale INSERM
Institut Pasteur
Original Assignee
Institut Pasteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Pasteur filed Critical Institut Pasteur
Priority to US09/860,432 priority Critical patent/US20020081606A1/en
Assigned to INSERM, INSTITUT PASTEUR reassignment INSERM ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: POYART, CLAIRE, TRIEU-CUOT, PATRICK
Assigned to INSERM, INSTITUT PASTEUR reassignment INSERM CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNORS' EXECUTION DATES FILED ON 12-03-01. RECORDED ON REEL 012335 FRAME 0233. ASSIGNOR HEREBY CONFIRMS THE ASSIGNMENT OF ASSIGNOR'S INTEREST. Assignors: POYART, CLAIRE, TRIEU-CUOT, PATRICK
Publication of US20020081606A1 publication Critical patent/US20020081606A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention provides fragments of a sodA gene from gram positive bacteria, methods of using these fragments as probes to detect and identify microorganisms in a sample and kits containing suitable reagents to perform the methods.
  • Enterococci although not highly virulent microorganisms, have emerged worldwide in the last decade as one of the leading causes of nosocomial bacteremia, surgical wound infections, and urinary tract infections (9, 10, 13, 24). This evolution is mainly due to the appearance of multiresistant strains of enterococci that can be resistant to most antibiotics used for the treatment (ampicillin, aminoglycosides, and glycopeptides). Most human enterococcal infections ( ⁇ 90%) are caused by Enterococcus faecalis and Enterococcus faecium , however, the incidence of other species, such as Enterococcus casseliflavus and Enterococcus gallinarum , could be underestimated because of bacterial mis-identification.
  • enterococcal species In clinical laboratories, accurate identification of enterococcal species is required to carry out a proper epidemiologic surveillance and may help in the management of infected patients in case of relapse. This is usually done by testing tolerance to bile esculine and tellurite, growth in 6.5% NaCl broth, specific carbohydrate utilization (2, 6), by characterizing bacterial motility and pigment production (1), and by using commercial biochemical test systems, such as the API-20 STREP or rapid ID 32 Strep.
  • these phenotypic methods are often not reliable and the automated systems, such as the Vitek and MicroScan systems, do not properly identify enterococci other than E. faecalis and E. faecium in absence of additional tests (11).
  • FIG. 1 Phylogenetic unrooted tree showing the relationships among the sodA int fragments from various enterococcal type strains. The tree was established from an analysis of the sequences listed in Table 1 by using the neighbor-joining method. The sodA int sequences of L. lactis, L. garvieae, S. bovis, S. pyogenes type strains were included in this work. The value on each branch is the estimated confidence limit (expressed as a percentage) for the position of the branch as determined by bootstrap analysis. Only the bootstrap values superior to 95%, which were considered as significant, are indicated. The scale bar (NJ distance) represents 10% differences in nucleotide sequences.
  • Fragments from sodA genes from a number of Enterococcus species are shown in SEQ ID NOS:1-19 and 21-36, from Lactococcus garvieae is shown in SEQ ID NO:20, from a number of Streptococcus species are shown in SEQ ID NOS:37-50, from a number of Abiotrophia species are shown in SEQ ID NOS:51-53, from a number of Staphlococcus species are shown in SEQ ID NOS:54-93 and from Macrococcus caseolyticus is shown in SEQ ID NO:94.
  • Microbial specimens for use in this invention can be obtained from any source suspected of harbouring bacteria.
  • the samples are generally dispersed in a measured amount of buffer, though dispersal may be optimal if lysis is immediately possible.
  • This dispersal buffer generally provides a biologically compatible solution. Samples may be frozen or used directly after obtaining.
  • a lysing solution Prior to analysis, samples suspected of containing bacteria are preferably subjected to a lysing solution to release cellular nucleic acids. Dispersal of the sample prior to lysis is optional. Lysing buffers are known in the art. Ausebel et al (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., 2000. Generally, these buffers are between pH 7.0 and 8.0, and contain both chelating agents and surfactants. Typically, a lysing solution is a buffered detergent solution having a divalent metal chelator or a buffered chaotrophic salt solution containing a detergent (such as SDS), a reducing agent and a divalent metal chelator (EDTA).
  • a detergent such as SDS
  • a reducing agent a reducing agent
  • EDTA divalent metal chelator
  • the sample may be directly immobilized to a support or further processed to extract nucleic acids prior to immobilization.
  • Released or extracted bacterial nucleic acid (including target nucleic acid) are fixed to a solid support, such as cellulose, nylon, nitrocellulose, diazobenzyloxymethyl cellulose, and the like.
  • the immobilized nucleic acid can then be subjected to hybridization conditions.
  • samples may be collected and dispersed in a lysing solution that also functions as a hybridization solution, such as 3M guanidinium thiocyanate (GuSCN), 50 mM Tris (pH 7.6), 10 mM EDTA, 0.1% sodium dodecylsulfate (SDS), and 1% mercaptoethanol (Maniatis, T. et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1982).
  • a lysing solution that also functions as a hybridization solution, such as 3M guanidinium thiocyanate (GuSCN), 50 mM Tris (pH 7.6), 10 mM EDTA, 0.1% sodium dodecylsulfate (SDS), and 1% mercaptoethanol (Maniatis, T. et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1982).
  • the nucleic acid probes may be immobilized onto solid phase microchips according to methods known in the art and subsequently hybridization with sample nucleic acids can be identified with a microchip reader.
  • This and other solid phase microchip methods are disclosed in Ausebel et al (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., 2000.
  • Various degrees of stringency of hybridization can be employed. As the conditions for hybridization become more stringent, there must be a greater degree of complementarity between the probe and the target for duplex formation to occur.
  • the degree of stringency can be controlled by temperature, ionic strength, pH and the presence of a partially denaturing solvent such as formamide.
  • the stringency of hybridization is conveniently varied by changing the polarity of the reactant solution through manipulation of the concentration of formamide within the range of 0% to 50%.
  • amplification of either the nucleic acid probe or a sodA gene from the microorganism sample may be performed prior to the hybridization.
  • amplification techniques include Strand Displacement Amplification (i.e., SDA), the Polymerase Chain Reaction (i.e., PCR), Reverse Transcription Polymerase Chain Reaction (i.e., RT-PCR), Nucleic Acid Sequence-Based Amplification (i.e., NASBA), Self-Sustained Sequence Replication (i.e., 3SR), and the Ligase Chain Reaction (i.e., LCR).
  • SDA Strand Displacement Amplification
  • PCR Polymerase Chain Reaction
  • RT-PCR Reverse Transcription Polymerase Chain Reaction
  • NASBA Nucleic Acid Sequence-Based Amplification
  • 3SR Self-Sustained Sequence Replication
  • LCR Ligase Chain Reaction
  • the primers used to amplify the sample nucleic acids are oligonucleotides of defined sequence selected to hybridize selectively with particular portions of the sodA gene, in particular those that amplify the sodA internal fragment (sodA int ).
  • a primer or primer pair may be coupled to a detectable moiety.
  • a preferred example of such a detectable moiety is fluorescein, which is a standard label used in nucleic acid sequencing systems using laser light as a detection system.
  • Other detectable labels can also be employed, however, including other fluorophores, radio-labels, chemical couplers such as biotin which can be detected with streptavidin-linked enzymes, and epitope tags such as digoxigenin detected using antibodies.
  • the present invention concerns methods for identification of species by a method which comprises providing a sample suspected of containing a gram positive bacteria, hybridizing a specific probe for a sodA gene or fragment thereof to nucleic acids from the microorganism, and detecting the presence or absence of hybridization.
  • the present invention concerns a method for the identification of a gram positive bacterial species selected from the group consisting of Streptococci, Staphlococci, Abiotrophia, and Enterococci, wherein the method has the steps of selecting a polynucleotide of 400 to 500 bp comprised between two conserved domains of SOD gene said polynucleotide having flanking regions consisting in two oligonucleotidic sequences and being specific for the genus or the species to be detected; hybridizing the DNA of the sample with the polynucleotide; washing the hybridized sample; visualizing the reaction of hybridization with an electric or electronic or calorimetric system.
  • a polynucleotide of about 425 to 445 bp is particularly preferred.
  • kits for performing the analysis can be used to facilitate detection and identification of specific bacterial species in a clinical laboratories.
  • Such kits would include instruction cards and vials containing the various solutions necessary to conduct a nucleic acid hybridization assay. These solutions would include lysing solutions, hybridization solutions, combination lysing and hybridization solutions, and wash solutions.
  • the kits would also include labeled probes.
  • the UP9A probe could be either unlabeled or labeled depending on the assay format. Standard references for comparison of results would also be necessary to provide an easy estimate of bacterial numbers in a given solution.
  • additional components may be needed for the kit, e.g. enzyme labels require substrates.
  • PCRs were performed on a Gene Amp System 9600 instrument (Perkin Elmer Cetus, Roissy, France) in a final volume of 50 ⁇ l containing 250 ng of DNA as template, 0.5 ⁇ M of each primer, 200 ⁇ M of each dNTP, and 1 U of AmpliTaq Gold DNA polymerase (Perkin Elmer) in a 1X amplification buffer (10 mM Tris-HCI[pH 8.3), 50 mM KCl, 1.5 mM MgCl 2 ).
  • the PCR mixtures were denatured (3 min at 95° C.), then subjected to 30 cycles of amplification (60 s of annealing at 37° C., 60 s of elongation at 72° C., and 30 s of denaturation at 95° C.), and 72° C. for 7 min for the last elongation cycle.
  • a single DNA fragment corresponding to the expected 480-bp amplification product, sodA int was observed in all cases following agarose gel electrophoresis and ethidium bromide staining (data not shown).
  • PCR products were purified on a S-400 Sephadex column (Pharmacia, Uppsala, Sweden) and directly sequenced on both strands with the oligos d1 and d2 by using the ABI-PRISM(O big dye terminator sequencing kit on a Genetic ABI-PRISM® 310 Sequencer Analyzer (Perkin Elmer).
  • the cycle sequencing protocol was optimized as follows: the sequencing mixtures were subjected to 40 cycles of amplification consisting of 10 s of denaturation at 96° C., 5 s of annealing at 40° C., and 4 min of elongation at 60° C.
  • the phylogenetic tree showed in FIG. 1 revealed the presence of two major clusters within the enterococcal species which we have designated the faecium group ( E. faecium, E. durans, E. hirae , and E. mundtii ) and the avium group ( E. avium, E. malodoratus, E. pseudoavium , and E. raffinosus ).
  • the 16S rDNA sequences exhibited more than 99% of sequence identity (18) whereas the highest percentage of similarity found between two sodA int sequences was 87.9% (Table 3).
  • enterococcal isolates were identified by using conventional microbiological tests, ID 32 Strep, and the sodA int systems (Table 2). In all cases, the sodA int sequences of the isolates displayed less than 1.5% of divergence with that of the corresponding type strain. For ten strains (NEM1616, NEM1617, NEM1621, NEM1623, NEM1624, NEM1625, NEM1626, NEM 1627, NEM1628, and NEM 1630), the two methods gave the same results.
  • NEM1618, NEM1620, NEM1622, AND NEM1629 were identified at the species level with the sodA int system but not with the conventional microbiological tests and the ID 32 Strep system.
  • the remaining isolate NEM1619 was identified with the ID 32 Strep system as E. hirae but was identified with the sodA int system as E. durans (Table 2).
  • the reliability of the molecular identification of NEM1164 was based on the fact that its sodA int fragment displays 99.5% and 85% of sequence identity with those of the type strains of E. durans and E. hirae , respectively.
  • Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr.
  • bovis 84 cacattgata aacaaacaat ggaaattcac catgacaaac accataacac ttatgtaact 60 aaattaaatg cagcagtaga aggaactgat ttagaatcta aatcaatcga agaaattgtt 120 gcaaacttag acagtgttcc agaaaatatt caaacagctg ttcgaaataa tggtgga 180 cacttaaacc actcactatt ctgggaatta ttaactccaa actcagaaga aaaaggtact 240 gttgtgata aaattaaaga acaatggggc tcttagatg catttaaaga agaatttgct 300 gacaaagcag cagctcgttt cggttcaggt tgggggt
  • carnaticus 88 cacatcgata aagaaactat ggagattcat catacgaaac accataacac ttatgtaaca 60 aaattaaatg atgcagtgaa aggtacagat ttagaaagca aatctattga agatattgtt 120 aaaaacttaa actctgttcc tgatgatatc cgtactgcag ttcaaaacaa tggtggcgga 180 cattataatc attcattatt ctgggaacta ttaactccaa atgcttctga gccttcagga 240 gaagttgtag atacaattag ttctacattt ggttcattag acaaattcaa agaagaattt 300 gcagctgcag cagctggccg ttggtgg

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention provides fragments of a sodA gene from gram positive bacteria, methods of using these fragments as probes to detect and identify microorganisms in a sample and kits containing suitable reagents to perform the method.

Description

    DESCRIPTION OF THE INVENTION
  • The present invention provides fragments of a sodA gene from gram positive bacteria, methods of using these fragments as probes to detect and identify microorganisms in a sample and kits containing suitable reagents to perform the methods. [0001]
  • BACKGROUND OF THE INVENTION
  • Enterococci, although not highly virulent microorganisms, have emerged worldwide in the last decade as one of the leading causes of nosocomial bacteremia, surgical wound infections, and urinary tract infections (9, 10, 13, 24). This evolution is mainly due to the appearance of multiresistant strains of enterococci that can be resistant to most antibiotics used for the treatment (ampicillin, aminoglycosides, and glycopeptides). Most human enterococcal infections (≧90%) are caused by [0002] Enterococcus faecalis and Enterococcus faecium, however, the incidence of other species, such as Enterococcus casseliflavus and Enterococcus gallinarum, could be underestimated because of bacterial mis-identification. In clinical laboratories, accurate identification of enterococcal species is required to carry out a proper epidemiologic surveillance and may help in the management of infected patients in case of relapse. This is usually done by testing tolerance to bile esculine and tellurite, growth in 6.5% NaCl broth, specific carbohydrate utilization (2, 6), by characterizing bacterial motility and pigment production (1), and by using commercial biochemical test systems, such as the API-20 STREP or rapid ID 32 Strep. However, these phenotypic methods are often not reliable and the automated systems, such as the Vitek and MicroScan systems, do not properly identify enterococci other than E. faecalis and E. faecium in absence of additional tests (11). Consequently, several genotypic methods based on the analysis of PCR products derived from selected target DNA have been developed for species identification of enterococci (3, 14, 22). This includes the determination of the 16S rDNA sequence (18), a strategy which is now greatly facilitated by the use of universal 16S PCR primers associated with the development of simplified, partially automated, and cost effective sequencing technologies. However, the interpretation of these data may be complicated by the fact that divergent 16S rDNA sequences may exist within a single organism (23) or, alternatively, that closely related species may have identical 16S rDNA sequences (8), as recently shown in the genera Enterococcus for E. casseliflavus and E. gallinarum (18). To solve this problem, it is possible to use alternative monocopy target sequences which exhibit a higher divergence than that of the 16S rDNA. The sodA gene of the gram positive cocci which encodes the manganese-dependent superoxide dismutase fulfills these criteria and we recently reported that sequencing of the sodA PCR product with the use of a single pair of degenerate primers constitutes a valuable approach to the genotypic identification of the 29 streptococcal species (20). In this work, the same universal primers (19) were used to construct a sodA database of 19 enterococcal species including E. casseliflavus and E. gallinarum.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1: Phylogenetic unrooted tree showing the relationships among the sodA[0003] int fragments from various enterococcal type strains. The tree was established from an analysis of the sequences listed in Table 1 by using the neighbor-joining method. The sodAint sequences of L. lactis, L. garvieae, S. bovis, S. pyogenes type strains were included in this work. The value on each branch is the estimated confidence limit (expressed as a percentage) for the position of the branch as determined by bootstrap analysis. Only the bootstrap values superior to 95%, which were considered as significant, are indicated. The scale bar (NJ distance) represents 10% differences in nucleotide sequences.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Unless defined otherwise, all technical and scientific terms and any acronyms used herein have the same meanings as commonly understood by one of ordinary skill in the art in the field of the invention. Although any methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred methods, devices, and materials are described herein. [0004]
  • All patents and publications mentioned herein are incorporated herein by reference to the extent allowed by law for the purpose of describing and disclosing the proteins, enzymes, vectors, host cells, and methodologies reported therein that might be used with the present invention. However, nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. [0005]
  • Fragments from sodA genes from a number of Enterococcus species are shown in SEQ ID NOS:1-19 and 21-36, from Lactococcus garvieae is shown in SEQ ID NO:20, from a number of Streptococcus species are shown in SEQ ID NOS:37-50, from a number of Abiotrophia species are shown in SEQ ID NOS:51-53, from a number of Staphlococcus species are shown in SEQ ID NOS:54-93 and from Macrococcus caseolyticus is shown in SEQ ID NO:94. [0006]
  • Microbial specimens for use in this invention can be obtained from any source suspected of harbouring bacteria. The samples are generally dispersed in a measured amount of buffer, though dispersal may be optimal if lysis is immediately possible. This dispersal buffer generally provides a biologically compatible solution. Samples may be frozen or used directly after obtaining. [0007]
  • Prior to analysis, samples suspected of containing bacteria are preferably subjected to a lysing solution to release cellular nucleic acids. Dispersal of the sample prior to lysis is optional. Lysing buffers are known in the art. Ausebel et al (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., 2000. Generally, these buffers are between pH 7.0 and 8.0, and contain both chelating agents and surfactants. Typically, a lysing solution is a buffered detergent solution having a divalent metal chelator or a buffered chaotrophic salt solution containing a detergent (such as SDS), a reducing agent and a divalent metal chelator (EDTA). The use of enzymes such as N-acetyl-muramidase (lysozyme) or proteases (such as Protease K) will facilitate lysis and offer high quality results. [0008]
  • The sample may be directly immobilized to a support or further processed to extract nucleic acids prior to immobilization. Released or extracted bacterial nucleic acid (including target nucleic acid) are fixed to a solid support, such as cellulose, nylon, nitrocellulose, diazobenzyloxymethyl cellulose, and the like. The immobilized nucleic acid can then be subjected to hybridization conditions. [0009]
  • Alternatively, samples may be collected and dispersed in a lysing solution that also functions as a hybridization solution, such as 3M guanidinium thiocyanate (GuSCN), 50 mM Tris (pH 7.6), 10 mM EDTA, 0.1% sodium dodecylsulfate (SDS), and 1% mercaptoethanol (Maniatis, T. et al. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y., 1982). [0010]
  • Alternatively, the nucleic acid probes may be immobilized onto solid phase microchips according to methods known in the art and subsequently hybridization with sample nucleic acids can be identified with a microchip reader. This and other solid phase microchip methods are disclosed in Ausebel et al (eds), Current Protocols in Molecular Biology, John Wiley and Sons, Inc., 2000. [0011]
  • Various degrees of stringency of hybridization can be employed. As the conditions for hybridization become more stringent, there must be a greater degree of complementarity between the probe and the target for duplex formation to occur. The degree of stringency can be controlled by temperature, ionic strength, pH and the presence of a partially denaturing solvent such as formamide. For example, the stringency of hybridization is conveniently varied by changing the polarity of the reactant solution through manipulation of the concentration of formamide within the range of 0% to 50%. [0012]
  • In practicing the present invention, amplification of either the nucleic acid probe or a sodA gene from the microorganism sample may be performed prior to the hybridization. Examples of amplification techniques include Strand Displacement Amplification (i.e., SDA), the Polymerase Chain Reaction (i.e., PCR), Reverse Transcription Polymerase Chain Reaction (i.e., RT-PCR), Nucleic Acid Sequence-Based Amplification (i.e., NASBA), Self-Sustained Sequence Replication (i.e., 3SR), and the Ligase Chain Reaction (i.e., LCR). (see, e.g. Innis et al., PCR Protocols, a Guide to Methods and Applications, eds., Academic Press (1990)). [0013]
  • The primers used to amplify the sample nucleic acids are oligonucleotides of defined sequence selected to hybridize selectively with particular portions of the sodA gene, in particular those that amplify the sodA internal fragment (sodA[0014] int). A primer or primer pair may be coupled to a detectable moiety. A preferred example of such a detectable moiety is fluorescein, which is a standard label used in nucleic acid sequencing systems using laser light as a detection system. Other detectable labels can also be employed, however, including other fluorophores, radio-labels, chemical couplers such as biotin which can be detected with streptavidin-linked enzymes, and epitope tags such as digoxigenin detected using antibodies.
  • The present invention concerns methods for identification of species by a method which comprises providing a sample suspected of containing a gram positive bacteria, hybridizing a specific probe for a sodA gene or fragment thereof to nucleic acids from the microorganism, and detecting the presence or absence of hybridization. More specifically, the present invention concerns a method for the identification of a gram positive bacterial species selected from the group consisting of Streptococci, Staphlococci, Abiotrophia, and Enterococci, wherein the method has the steps of selecting a polynucleotide of 400 to 500 bp comprised between two conserved domains of SOD gene said polynucleotide having flanking regions consisting in two oligonucleotidic sequences and being specific for the genus or the species to be detected; hybridizing the DNA of the sample with the polynucleotide; washing the hybridized sample; visualizing the reaction of hybridization with an electric or electronic or calorimetric system. A polynucleotide of about 425 to 445 bp is particularly preferred. [0015]
  • The present invention also includes diagnostic kits for performing the analysis. These kits can be used to facilitate detection and identification of specific bacterial species in a clinical laboratories. Such kits would include instruction cards and vials containing the various solutions necessary to conduct a nucleic acid hybridization assay. These solutions would include lysing solutions, hybridization solutions, combination lysing and hybridization solutions, and wash solutions. The kits would also include labeled probes. The UP9A probe could be either unlabeled or labeled depending on the assay format. Standard references for comparison of results would also be necessary to provide an easy estimate of bacterial numbers in a given solution. Depending upon the label used additional components may be needed for the kit, e.g. enzyme labels require substrates. [0016]
  • Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only, and are not intended to be limiting unless otherwise specified. [0017]
  • EXAMPLES
  • The main characteristics of the bacterial strains used in this study, including the type strains, are listed in Table 1 and 2. Rapid extraction of bacterial genomic DNA was carried out by using the InstaGene™ Matrix (Bio-Rad, Hercules, Calif.) on cells collected from 2 ml of an overnight culture. The soda degenerate primers dl (5′-CCITAYICITAYGAYGCIYTIGARCC-3′) (SE Q ID NO:95) and d2 (5′-ARRTARTAIGCRTGYTCCCAIACRTC-3′) (SEQ ID NO:96) were used to amplify an internal fragment designated sodaA[0018] int representing approximately 85% of their soda genes. PCRs were performed on a Gene Amp System 9600 instrument (Perkin Elmer Cetus, Roissy, France) in a final volume of 50 μl containing 250 ng of DNA as template, 0.5 μM of each primer, 200 μM of each dNTP, and 1 U of AmpliTaq Gold DNA polymerase (Perkin Elmer) in a 1X amplification buffer (10 mM Tris-HCI[pH 8.3), 50 mM KCl, 1.5 mM MgCl2). The PCR mixtures were denatured (3 min at 95° C.), then subjected to 30 cycles of amplification (60 s of annealing at 37° C., 60 s of elongation at 72° C., and 30 s of denaturation at 95° C.), and 72° C. for 7 min for the last elongation cycle. A single DNA fragment corresponding to the expected 480-bp amplification product, sodAint, was observed in all cases following agarose gel electrophoresis and ethidium bromide staining (data not shown). PCR products were purified on a S-400 Sephadex column (Pharmacia, Uppsala, Sweden) and directly sequenced on both strands with the oligos d1 and d2 by using the ABI-PRISM(O big dye terminator sequencing kit on a Genetic ABI-PRISM® 310 Sequencer Analyzer (Perkin Elmer). The cycle sequencing protocol was optimized as follows: the sequencing mixtures were subjected to 40 cycles of amplification consisting of 10 s of denaturation at 96° C., 5 s of annealing at 40° C., and 4 min of elongation at 60° C.
  • The nucleotide sequences of the sodA[0019] int fragments from the type strains of E. avium, E. casseliflavus, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E. pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, E. sulfureus, and Lactococcus garvieae were determined (Table 1). We assumed that the PCR products sequenced were actual sodaint fragments since the corresponding deduced polypeptides all contained the amino acids characteristic of the manganese-dependent superoxide dismutase (16, 17) at the expected positions (data not shown). Multiple alignment of these sodAint DNA sequences plus those from L. garvieae (Table 1), Lactococcus lactis (19), Streptococcus bovis (20) and Streptococcus pyogenes (20) was carried out by the Clustal X program (12) and an unrooted phylogenetic tree was constructed by the neighbor-joining (NJ) method (21). The sequence of the degenerate oligonucleotides d1 and d2 and alignment gaps were not taken into consideration for calculations. The reliability of the tree nodes was evaluated by calculating the percentage of 1,000 bootstrap resamplings that support each topological element. Only the nodes having a bootstrap value greater than 95% are indicated in FIG. 1 since this critical value could be used to define the monophyly of a lade of related organisms (7). This analysis revealed that, as expected, the members of the genus Enterococcus, with the exception of E. seriolicida were clustered within a clade supported by 99.5% of the bootstrap replicates. The sodAint in sequences of E. seriolicida and of L. garvieae were almost identical (99.5% of sequence identity) and were clustered with that of L. lactis within a clade supported by 96.3% of the bootstrap confidence (Table 3 and FIG. 1). These results are consistent with the redesignation of E. seriolicida as L. garvieae (4). The phylogenetic tree representing the enterococcal sodAint sequences (FIG. 1) has the same topology as the NJ tree constructed from the analysis of their 16S rDNA sequences (18). It is worth noting that the sodAint sequences of E. casseliflavus and E. gallinarum type strains displayed 16.9% of sequence divergence, a value similar to the 19.7% of sequence divergence observed between the ddl genes encoding the D-Ala-D-Ala ligases in these species (5). These results do not support the suggestion that E. casseliflavus and E. gallinarum comprise a single species (18). By contrast, the fact that the 16S rDNA (18), the ddl (15), the vanC (3), and the sodAint (Table 3) genes of E. casseliflavus and E. flavescens type strains were almost identical (99.9, 99.5%, 96%, and 98% of sequence identity, respectively) suggest that they should be associated in a single species.
  • The phylogenetic tree showed in FIG. 1 revealed the presence of two major clusters within the enterococcal species which we have designated the faecium group ([0020] E. faecium, E. durans, E. hirae, and E. mundtii) and the avium group (E. avium, E. malodoratus, E. pseudoavium, and E. raffinosus). Within each group, the 16S rDNA sequences exhibited more than 99% of sequence identity (18) whereas the highest percentage of similarity found between two sodAint sequences was 87.9% (Table 3). These results confirm that the gene sodA constitutes a more discriminative target sequence than the 16S RNA to differentiate closely related bacterial species.
  • Fifteen enterococcal isolates were identified by using conventional microbiological tests, ID 32 Strep, and the sodA[0021] int systems (Table 2). In all cases, the sodAint sequences of the isolates displayed less than 1.5% of divergence with that of the corresponding type strain. For ten strains (NEM1616, NEM1617, NEM1621, NEM1623, NEM1624, NEM1625, NEM1626, NEM 1627, NEM1628, and NEM 1630), the two methods gave the same results. Four isolates (NEM1618, NEM1620, NEM1622, AND NEM1629) were identified at the species level with the sodAint system but not with the conventional microbiological tests and the ID 32 Strep system. The remaining isolate NEM1619 was identified with the ID 32 Strep system as E. hirae but was identified with the sodAint system as E. durans (Table 2). The reliability of the molecular identification of NEM1164 was based on the fact that its sodAint fragment displays 99.5% and 85% of sequence identity with those of the type strains of E. durans and E. hirae, respectively.
  • In conclusion, we have determined the sodA[0022] int sequences of the type strains of E. avium, E. casseliflavus/E. flavescens, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E. faecium, E. gallinarum, E. hirae, E. malodoratus, E mundtii, E. pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, and E. sulfureus and demonstrated the usefulness of this database for the species identification of enterococcal isolates. The identification method presented in this study is not accessible to routine clinical microbiology laboratories but it may become the gold-standard technique in reference and large research hospital laboratories for epidemiologic purposes and/or to identify problematic strains.
  • Other polynucleotide sequences specific for species of Staphlococci, Streptococci and Abiotrophia have also been identified by using the same method. These sequences correspond to SEQ ID NOS:54-59, SEQ ID NOS:37-58 and SEQ ID NOS:51-53, respectively. [0023]
  • Obviously, numerous modifications and variations on the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. [0024]
  • REFERENCES
  • 1. Cartwright, C. P., F. Stock, G. A. Fable, and V. J. Gill. 1995. Comparison of pigment production and motility tests with PCR for reliable identification of intrinsically vancomycin-resistant enterococci. J. Clin. Microbiol. 33:1931-1933. [0025]
  • 2. Devriese, L. A., B. Pot, K. Kersters, S. Lauwers, and F. Haesebrouck. 1996. Acidification of methyl-alpha-D-glucopyranoside: a useful test to differentiate [0026] Enterococcus casseliflavus and Enterococcus gallinarum from Enterococcus faecium species group and from Enterococcus faecalis. J. Clin. Microbiol. 34:2607-2608.
  • 3. Dutka-Malen, S., S. Evers, and P. Courvalin. 1995. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant enterococci by PCR. J. Clin. Microbiol. 33:1434. [0027]
  • 4. Eldar, A., C. Ghittino, L. Asanta, E. Bozzetta, M. Goria, M. Prearo, and H. [0028]
  • Bercovier. 1996. Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr. [0029]
  • Microbiol. 32:85-88. [0030]
  • 5. Evers, S., B. Casadewall, M. Charles, S. Dutka-Malen, M. Galimand, and P. [0031]
  • Courvalin. 1996. Evolution of structure and substrate specificity in D-alanine:D-alanine ligases and related enzymes. J. Mol. Evol. 42:706-712. [0032]
  • 6. Facklam, R. R., and M. D. Collins. 1989. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J. Clin. Microbiol. 27:731-734. [0033]
  • 7. Felsenstein, J. 1985. Confidence limits on phylogeny and approach using the boostrap. Evolution 39:783-791, [0034]
  • 8. Fox, G. E., J. D. Wisotzkey, and P. Jurtshuk, Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166-170. [0035]
  • 9. Hunt, C. P. 1998. The emergence of enterococci as a cause of nosocomial infection. [0036]
  • Br. J. Biomed. Sci. 55:149-156. [0037]
  • 10. Huycke, M. M., D. F. Sahm, and M. 3. Gilmore. 1998. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg. Infect. Dis. 4:239-249. [0038]
  • 11. Iwen, P. C., D. M. Kelly, J. Linder, and S. H. Hinrichs. 1996. Revised approach for identification and detection of ampicillin and vancomycin resistance in Enterococcus species by using MicroScan panels. J. Clin. Microbiol. 34:1779-1783. [0039]
  • 12. Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23:403-405. [0040]
  • [0041] 13. Moellering, R. C., Jr. 1998. Vancomycin-resistant enterococci. Clin. Infect. Dis. 26:1196-1199.
  • 14. Monstein, H. J., M. Quednau, A. Samuelsson, S. Ahrne, B. Isaksson, and J. Jonasson. 1998. Division of the genus Enterococcus into species groups using PCR-based molecular typing methods. Microbiology 144:1171-1179. [0042]
  • 15. Navarro, F., and P. Courvalin. 1994. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in [0043] Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob. Agents Chemother. 38:1788-1793.
  • 16. Parker, M. W., and C. C. F. Balke. 1988. Crystal structure of manganese superoxide dismutase from [0044] Bacillus stearothermophilus at 2.4 A resolution, J. Mol. Biol. 199:649-661.
  • 17. Parker, M. W., and C. C. F. Blake. 1988. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 229:377-382. [0045]
  • 18. Patel, R., K. E. Piper, M. S. Rouse, J. M. Steckelberg, J. R. Uhl, P. Kohnerg M. K. Hopkins, F. R. Cockerill, 3rd, and B. C. Kline. 1998. Determination of 16S rRNA sequences of enterococci and application to species identification of nonmotile [0046] Enterococcus gallinarum isolates. J. Clin. Microbiol. 36:3399-3407.
  • 19. Poyart, C., P. Berche, and P. Trieu-Cuot. 1995. Characterization of superoxide dismutase genes from Gram-positive bacteria by polymerase chain reaction using degenerate primers, FEMS Microbiol. Lett. 131:41-45. [0047]
  • 20. Poyart, C., G. Quesne, S. Coulon, P. Berche, and P. Trieu-Cuot. 1998. Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J. Clin. Microbiol. 36:41-47. [0048]
  • 21. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. [0049]
  • [0050] 22. Tyrrell, G. J., R. N. Bethune, B. Willey, and D. E. Low. 1997. Species identification of enterococci via intergenic ribosomal PCR. J. Clin. Microbiol. 35:1054-1060.
  • 23. Ueda, K., T. Seki, T. Kudo, T. Yoshida, and M. Kataoka. 1999. Two distinct mechanisms cause heterogeneity of 16S rRNA. J. Bacteriol. 181:78-82. [0051]
  • 24. Woodford, N. 1998. Glycopeptide-resistant enterococci: a decade of experience. J. Med. Microbiol. 47:849-862. [0052]
  • 1 96 1 438 DNA Enterococcus avium 1 tatatcgatg ttgaaacgat gcatttgcat catgacaaac accataacac ttatgtaaca 60 aatttaaatg ctgcgattga aaaatatccg gaattagaag aacagtcaat tgaagagcta 120 atgaaaaact taaatgaagt tcctgaggac attcgtacgg ctgtacgtaa taacggcggc 180 ggacatgcta accacagctt cttctggaaa attatggctc caaatgctgg tggtgaacct 240 acaggcgcga ttaaggacgc aattgatcaa gcatttggca gctttgaaaa aatgaaggaa 300 gaattcaaga ctgcagcaac tggtcgtttt ggttctggct gggcatggtt agtattgaac 360 aatggaaaat tagaaattac ttctactgca aatcaagaca gcccattaac tgatggaaaa 420 acaccgatca ttggctta 438 2 438 DNA Enterococcus casseliflavus 2 tatattgatg aagaaacgat gcatttgcat catgataaac accacaacac ttatgtaaca 60 aacttaaatg cagcgattga aaaacatcct gaattaggtg aaaaaacagt tgaagaatta 120 ttagcagact tttcttctgt acctgaagat attcaaacag cggttcgcaa caatggcggc 180 ggccatgcta accacacgtt cttctgggaa atcttaggcc caaatgctgg tggcgaacct 240 actggggcaa tcaaagaggc aattgaagaa acattcggca gctttgaaga ctttaaagaa 300 gaatttaaaa ctgctgcaac tggacgtttt ggttcaggtt gggcatggtt agtcgttaaa 360 gacggtaaac tagcagtcac ttcaacagcg aatcaagatt caccattgat ggatggtcaa 420 acacctgttt taggttta 438 3 438 DNA Enterococcus cecorum 3 acaatcgatg aagaaacaat gcatctacat catgaaaaac atcataaaac ctatttaaca 60 aatttaaatg cggctttaga aaaacatcca gagttgccag aaaaatctat tgaagactta 120 ttagctggta tcaatgaagt gcctgctgat attcgccaag ctgttattaa taatggtggt 180 ggacacgcaa accattcatt cttctggaaa attatgacgc caaacggtca aggtgcgcct 240 gtgggtgaat taaaagctgc tattgacgaa acttttggta gcttcgatga attcaaggca 300 caatttaaag ctgctgcggc tagtcgtttt ggttcaggtt gggcttggtt agttgtcgac 360 aatggtaaat tagctattat ttctactgcg aaccaagatt caccattaat ggaaggcaaa 420 acaccagttg ttgggctt 438 4 438 DNA Enterococcus columbae 4 acaatcgatg aagaaacaat gcatctacat catgaaaaac atcacaacac ttacgttact 60 aatttaaatg ctgcaattga aaaacatcca gaatttggta ccaagacagt tgaagaatta 120 gtggctgcaa ttaatgaagt gcctgaagat attcgtacgg ctgtccgtaa caatggtggt 180 ggtcatgcga accattcatt cttctggaaa attatgtctc caaatggtgg cggtgaacca 240 gttggtgaat taaaagctgc cattgaagaa gcttttggta gctttgatga atttaaggct 300 caatttaaag cagcagcagc agctcgcttt ggctctggct gggcatggtt agtagtcgat 360 aacggtaaat tagcaattat ttcaacagca aaccaagata atccattaat ggaaggtaaa 420 gtacctgtcg ttggctta 438 5 438 DNA Enterococcus dispar 5 tatatcgacg tggagacaat gcacttacac cacgataaac atcacaacac atatgtaaca 60 aatttaaacg ctgctttgga aaaatatcct gaactagcag aaaaaagtgt ggaagaatta 120 attgcctata tggatgaaat tcctgctgat attcgtactg ctgttcaaaa taatggtggt 180 ggacatgcaa accatacatt cttttgggaa attatggcac caaatgctgg tggaacgcca 240 actggagctt taaaggatgc tattgacgaa acatttggtt cttttgaaga tttcaaaagt 300 gaatttaaaa ctgctgcgac aggacgtttc ggttctggtt gggcatggtt agtggtaaat 360 aacggtaaat tatctatcat gtcaactgcg aaccaagatt caccattaat ggaaggcaaa 420 actcccatta tcggttta 438 6 438 DNA Enterococcus durans 6 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgttaca 60 aatttaaacg cagctattga aaagtatcca gaattaggcg aaaaatcagt ggaagaattg 120 ctttctgata tggacgcgat tcctactgat attaagacag cggtacaaaa caatggcggt 180 ggacatgcaa accattcatt tttctggaaa atcatggcac ctaatgcagg tggcgaacca 240 acaggcgaaa tcaaagaagc gattgatgaa gcttttggtg atttcgcaac attcaaagaa 300 gagttcaaga aagcggctgc cggacgcttt ggatcaggtt gggcatggtt agtattggaa 360 gatggtaaat tggcaatcac ttctacagca aaccaagatt ctccattgat gacaggccaa 420 acacctatct taggatta 438 7 438 DNA Enterococcus faecalis 7 tacattgacg tggaaacaat gcacttacac catgataaac accacaacac ttatgtgact 60 aacttaaacg cagcgattga aaaacatcca gaattaggcg aaaaatctgt agaagaccta 120 atttcagata tgaatgctat tcctgaagat atccgtacag ccgttcgtaa caatggtggc 180 ggtcacgcaa accaaacatt cttctgggaa attatggcac caaatgctgg tggacaacca 240 actggcgcta ttaaagaagc aatcgatgaa acatttggta gctttgatga aatgaaagct 300 gctttcaaaa cagctgcaac tggccgcttt ggttcaggtt gggcttggtt agttgtgaat 360 aacggtaaat tagaaatcac ttcaacacca aaccaagatt caccattaat ggatggccaa 420 acacctgttt taggtctt 438 8 438 DNA Enterococcus faecium 8 tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg 60 aatttaaatt cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta 120 ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc 180 ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct 240 acaggagaaa taaaagaagc gattaatgaa gcttttggtg atttttcttc ttttaaagaa 300 gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa 360 aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag 420 acaccaattc taggtttg 438 9 438 DNA Enterococcus flavescens 9 tatattgatg aagaaacgat gcatttgcat catgataaac accacaacac ttatgtaaca 60 aacttaaatg cagcgattga aaaacatcct gaattaggtg aaaaaaaagt tgaagaatta 120 ttagcagact tttcttctgt acctgaagat attcaaacag cggttcgcaa caatggcggc 180 ggccatgcta accacacgtt cttctgggaa atcttaggcc caaatgctgg tggcgaacct 240 actggggcaa tcaaagaggc aattgaagaa acattcggca gctttgaaga ctttaaagaa 300 gaatttaaaa ctgctgcaac tggacgtttt ggttcaggtt gggcatggtt agtcgttaaa 360 gacggtaaac tagcaatcac ttcaacagcg aatcaagatt caccattgat ggatggtcaa 420 acacctgttt taggttta 438 10 438 DNA Enterococcus gallinarum 10 tacattgatg aagaaacgat gcatttgcat catgacaagc atcacaatac ttacgtcaca 60 aatttgaatg cagcaattga aaaacatcct gaattaggtg aaaaatcagt tgaagaatta 120 cttgctgatt ttgattcggt tcctgaagac atcaaaacag ctgtccgtaa taacggtggt 180 ggtcatgcaa atcacagctt tttctgggaa atcttggcac caaatgctgg tggtgaacca 240 acaggagcca tcaaagaagc catcgaagaa acatttggca gctttgctga tttcaaagaa 300 gaattcaaaa cagcagcaac tggccgcttt ggttctggct gggcttggtt agtcatcaaa 360 gatggtaaat tagcgatcac ttccactgcg aaccaagatt caccattaat ggatggtcaa 420 acgccagttt taggttta 438 11 438 DNA Enterococcus hirae 11 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgtaaca 60 aatttaaatg cagcgattga aaaacatcca gaactaggtg aaaaaacaat cgaagaacta 120 ctttctgata tggatgctgt ccctacagat atcaagactg ctgtacgtaa taatggtggc 180 ggacatgcaa accattcttt cttctggaaa atcatggcac caaatgctgg tggcgaacca 240 actggtgcaa ttaaagaagc gattgatgaa gcctttggtg attttgcaac atttaaggaa 300 gaatttaaaa aagctgcagc tggccgtttt ggttcaggtt gggcttggtt agtgatggaa 360 aatggtaaat tagcgatcac ttcaacagcc aatcaagatt caccattaat ggaaggcaaa 420 acacctattt taggttta 438 12 438 DNA Enterococcus malodoratus 12 tatatcgatg ttgaaacgat gcatttgcat catgacaagc accataacac ttatgtaacc 60 aatttaaatg ctgcgattga aaaatatcca gaattagcag aacaatcagt ggaagaatta 120 gtaacgaact tgaatgaagt gccagaagat attcgtacgg ctgttcgcaa caatggcgga 180 ggtcatgcaa atcatagttt cttctggaaa atcatggcgc caaatgctgg cggaaaacca 240 acaggtgcga tcaaagatgc aattgatgaa gcattcggca gctttgaaaa aatgaaagaa 300 gaattcaaaa cagctgcaac tggccgcttt ggttctggct gggcttggct agtcttgaac 360 aatggtaaat tagaaattac ttcaacacca aatcaagata acccattaac agatggtaaa 420 acaccaatta ttggttta 438 13 438 DNA Enterococcus mundtii 13 tatattgacg aagaaacgat gcatttgcat catgacaaac atcacaatac ttatgtgaca 60 aacttaaatg cagcgatcga aaaatatcct gaactaggtg gaaaaacaat agaagaattg 120 gtttcagaca tggatgctat tccatctgac attcaaactg ctgtacgtaa taatggtggt 180 ggacatgcga accattcatt cttctggaaa atcatggcac caaatgctgg tggcgaacca 240 acaggagcaa tcaaagacgc aattaatgaa acattcggcg attttgcaac attcaaagaa 300 gaattcaaaa aagcagcagc aggacgtttc ggttctggct gggcttggtt agtacttgaa 360 gatggcaaac ttgccatcac ttctactgcc aaccaagatt caccattgat ggaaggcaag 420 aaacctgttc taggttta 438 14 438 DNA Enterococcus pseudoavium 14 tacattgatg ttgaaacgat gcacttgcat catgataaac accacaatac ttatgttact 60 aatttgaatg tagcaattga aaaatatcct gaactagcgg agcaatctgt tgaggattta 120 gttgcaaact taaatgagtt gcctgaagat attcagacgg ctgttcgtaa caatggcggt 180 ggtcatgcga accatagctt tttctggaag atcatggcac caaacgcggg tggtgcgcca 240 actggtgcga tcaaagacgc cattgacgaa gctttcggcg gctttgaaaa aatgaaagaa 300 gaattcaaac ttgctgcgac aggacgtttt ggttctggtt gggcttggtt agtttggaac 360 aatggcaagt tggaaattac gtcaactgct aatcaagaca atccattgac tgacgggaaa 420 acaccaatca ttggctta 438 15 438 DNA Enterococcus saccharolyticus 15 cacattgatg ttgaaacaat gcatttacat catgacaaac accataacac ttatgtgaca 60 aacttaaatg cagcagttga aaaatatcct gaattaggcg aaaaatctgt agaagattta 120 atttctgatt tagcagcagt tcctgaagat attcgcacag ccgtacgcaa caatggtggt 180 ggacatgcaa accatacatt cttttgggaa attatggcac caaacgctgg tggcgaacct 240 gtaggcgagc taaaagcagc gattgacgaa aaatttggta gctttgatgc attcaaagca 300 gaatttaaag cagcagcgac tagccgattt ggttctggtt gggcttggtt agctttaaat 360 aatgggttat tagaagtgac ttctacacca aatcaagatt ctccattaat ggatggtcgt 420 acaccaattg ttggttta 438 16 438 DNA Enterococcus solitarius 16 tattttgacg aagagaccat gcatttgcat catgataaac accataacac ttatgtgacg 60 aacttaaatg cagcgattga aaaacatcct gaattaggcg aaaaatcagt ggaagaccta 120 atggcagatc ttgatagtgt ccctgaagat atttttacag cagtacgtaa taacggcggt 180 ggacatgtaa atcattcttt cttctggaag attttatctc cagatggagg cggtgaacca 240 accggtgcat taaaagatgc gattgatcaa gaatttggca gttttgatgc ttttaaagat 300 gaatttaagg cagctgccac cggtcgtttt ggttctggct gggcttggtt agttttagat 360 aacggcaaat taaaaattac ttcgacgcca aaccaagatt ctccattgac agatggacaa 420 attcctatta ttggctta 438 17 438 DNA Enterococcus raffinosus 17 tatatcgatg ttgaaacgat gcacttgcat catgacaagc accacaacac ttatgtaacc 60 aacttgaatg ctgcgattga aaaatatcca gaattaggcg aacaatcaat cgaagaatta 120 gtgacgaact tgaatgaagt tcctgaagac attcgtacag cggtacgtaa taatggcggc 180 ggacatgcga accacagctt cttctggaaa atcatggcgc ctaatgctgg cggcgaacca 240 acaggtgcga tcaaagaagc aattgatcaa gctttcggca gctttgagaa aatgaaggaa 300 gaattcaaga cagcggcaac aggacgtttt ggttctggtt gggcatggtt ggtattgaac 360 aacggtaaat tagaaattac atcaaccgcg aatcaagata gcccattgac tgatggcaaa 420 acaccaatta ttggttta 438 18 438 DNA Enterococcus seriolicida 18 ttctttgatg aagaaacaat gcacttgcac catgacaaac atcaccaaac atacgtaaat 60 aatcttaatg cagcgattga aaaacaccca gaattctttg ataaaactgt tgaagaatta 120 gtggcttatt tggaccgttt gccagaagac attcgtgttg cggtacgtaa caacggtgga 180 ggacacttga accacacaat gttctgggaa tggctcgctc caaatgcagg tggtgcacca 240 acaggtgata tcgctgcagc aatcgatgaa gcttttggtt catttgacga cttcaaagct 300 gaatttaaag cagctgctac aggacgtttc ggttcaggtt gggcttggtt agttcttgat 360 tacggtaaac ttaaggttgt ttccacagca aaccaagata acccaatttc tgatggccaa 420 attccagtgc ttggtctt 438 19 438 DNA Enterococcus sulfureus 19 caaatcgatg tggaaacaat gcatttacat cacgataaac atcacaatac ttatgtgacg 60 aacttaaatg cagcggttga aaaatatcct gaattagcag aaaaatcagt ggaagactta 120 atcgcagata tggatgcaat cccaagtgat attcaaacag cagtacgtaa taatggtggt 180 ggccatgcca atcatagttt cttctgggaa atcttgacac caaatgctac tgaagaacca 240 gtaggcgaat taaaaacagc gatcgaagat acatttggat ctttagatgc attaaaagaa 300 gaatttaaaa aagcagcaac tggccgtttt ggttcaggtt gggcttggtt agtagtaaaa 360 gacggtaaat tagccgtaac gtctacagca aaccaagatt caccattaat agaaggccaa 420 actcctgttt taggttta 438 20 438 DNA Lactococcus garvieae 20 ttctttgatg aagaaacaat gcacttgcac catgacaaac atcaccaaac atacgtaaat 60 aatcttaatg cagcgattga aaaacaccca gaattctttg ataaaactgt tgaagaatta 120 gtggcttatt tggaccgttt gccagaagac attcgtgttg cagtacgtaa caacggtgga 180 ggacacttga accacacaat gttctgggaa tggctcgctc caaatgcagg tggtgcacca 240 acaggtgata tcgctgcagc aatcgatgaa gcttttggtt catttgacga cttcaaagct 300 gaatttaaag cagctgctac aggacgtttc ggttcaggtt gggcttggtt agttcttgat 360 tacggtaaac ttaaagttgt ttccacagca aaccaagata acccaatttc tgatggccaa 420 attccagtgc ttggtctt 438 21 438 DNA Enterococcus faecalis 21 tacattgacg tggaaacaat gcacttacac catgataaac accacaacac ttatgtgact 60 aacttaaacg cagcgattga aaaacatcca gaattaggcg aaaaatctgt agaagaccta 120 atttcagata tgaatgctat tcctgaagat atccgcacag ccgttcgtaa caatggtggc 180 gggcacgcaa accatacatt cttctgggaa attatggcac caaatgctgg tggacaacca 240 actggcgcta ttaaagaagc aatcgatgaa acatttggca gctttgatga aatgaaagct 300 gctttcaaaa cagctgcaac tggccgcttt ggttcaggtt gggcttggtt agttgtgaat 360 aacggtaaat tagaaatcac ttctacacca aaccaagatt caccattaat ggatggccaa 420 acacctgttt taggtctt 438 22 438 DNA Enterococcus faecalis 22 tacattgacg tggaaacaat gcacttacac catgataaac accacaacac ttatgtgact 60 aacttaaacg cagcgattga aaaacatcca gaattaggcg aaaaatctgt agaagaccta 120 atttcagata tgaatgctat tcctgaagat atccgtacag ccgttcgtaa caatggtggc 180 ggtcacgcaa accatacatt cttctgggaa attatggcac caaatgctgg tggacaacca 240 actggcgcta ttaaagaagc aatcgatgaa acatttggta gctttgatga aatgaaagct 300 gctttcaaaa cagctgcaac tggccgcttt ggttcaggtt gggcttggtt agttgtgaat 360 aacggtaaat tagaaatcac ctcaacacca aaccaagatt caccattaat ggatggccaa 420 acacctgttt taggtctt 438 23 438 DNA Enterococcus faecalis 23 tacattgacg tggaaacaat gcacttacac catgataaac accacaacac ttatgtgact 60 aacttaaacg cagcgattga aaaacatcca gaattaggcg aaaaatctgt agaagaccta 120 atttcagata tgaatgctat tcctgaagat atccgcacag ccgttcgtaa caatggtggc 180 gggcacgcaa accatacatt cttctgggaa attatggcac caaatgctgg cggacaacca 240 actggcgcta ttaaagaagc aatcgatgaa acatttggca gctttgatga aatgaaagct 300 gctttcaaaa cagctgcaac tggccgcttt ggttcaggtt gggcttggtt agttgtgaat 360 aacggtaaat tagaaatcac ttctacacca aaccaagatt caccattaat ggatggccaa 420 acacctgttt taggtctt 438 24 438 DNA Enterococcus durans 24 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgttaca 60 aatttaaacg cagctattga aaagtatcca gaattaggcg aaaaatcagt ggaagaattg 120 ctttctgata tggacgcgat tcctactgat attaagacag cggtacaaaa caatggtggt 180 ggacatgcaa accattcatt tttctggaaa atcatggcac ctaatgcagg tggcgaacca 240 acaggggaaa tcaaagaagc gattgatgaa gcttttggtg atttcgcaac atttaaagaa 300 gagttcaaga aagcggctgc cggacgcttt ggatcaggtt gggcatggtt agtattggaa 360 gatggtaaat tggcaatcac ttctacagca aaccaagatt ctccattgat gacaggccaa 420 acacctatct taggatta 438 25 438 DNA Enterococcus durans 25 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgttaca 60 aatttaaacg cagctattga aaagtatcca gaattaggcg aaaaatcagt ggaagaattg 120 ctttctgata tggacgcgat tcccactgat attaagacag cggtacaaaa caatggtggt 180 ggacatgcaa accattcatt tttctggaaa atcatggcac ctaatgcagg tggcgaacca 240 acaggcgaaa tcaaagaagc gattgatgaa gcttttggtg atttcgcaac atttaaagaa 300 gagttcaaga aagcggctgc cggacgcttt ggatcaggtt gggcatggtt agtattggaa 360 gatggtaaat tggcaatcac ttctacagca aaccaagatt ctccattgat gacaggccaa 420 acacctatct taggatta 438 26 438 DNA Enterococcus durans 26 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgttaca 60 aatttaaacg cagctattga aaagtatcca aaattaggcg aaaaatcagt ggaagaattg 120 ctttctgata tggacgcgat tcctactgat attaagacag cggtacaaaa caatggtggt 180 ggacatgcaa accattcatt tttctggaaa atcatggcac ctaatgcagg tggcgaacca 240 acaggcgaaa tcaaagaagc gattgatgaa gcttttggtg atttcgcaac atttaaagaa 300 gagttcaaga aagcggctgc cggacgcttt ggatcaggtt gggcatggtt agtattggaa 360 gatggtaaat cggcaatcac ttctacagca aaccaagatt ctccattgat gacaggccaa 420 acacctatct taggatta 438 27 438 DNA Enterococcus hirae 27 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgtaaca 60 aatttaaatg cagcgattga aaaacatcca gaactaggtg aaaaaacaat cgaagaacta 120 ctttctgata tggatgctgt ccctacagat atcaagactg ctgtacgtaa taatggtggc 180 ggacatgcaa accattcttt cttctggaaa atcatggcac caaatgctgg tggcgaacca 240 actggtgcaa ttaaagaagc gattgatgaa gcctttggtg attttgcaac atttaaggaa 300 gaatttaaaa aagctgcagc tggccgtttt ggttcaggtt gggcttggtt agtgatggaa 360 aatggtaaat tagcgatcac ttcaacagcc aaccaagatt caccattaat ggaaggcaaa 420 acacctattt taggttta 438 28 438 DNA Enterococcus hirae 28 tatatcgatg aagaaacgat gcacttgcat catgacaaac accataatac ttatgtaaca 60 aatttaaatg cagcgattga aaaacatcca gaactaggtg aaaaaacaat cgaagaacta 120 ctttctgata tggatgctgt ccctacagat atcaagactg ctgtacgtaa taatggtggc 180 ggacatgcaa accattcttt cttctggaaa atcatggcac caaatgctgg tggcgaacca 240 actggtgcaa ttaaagaagc gattgatgaa gcctttggtg attttgcaac atttaaggaa 300 gaatttaaaa aagctgcggc tggccgtttt ggttcaggtt gggcttggtt agtgatggaa 360 aatggtaaat tagcgatcac ttcaacagcc aaccaagatt caccattaat ggaaggcaaa 420 acacctattt taggttta 438 29 438 DNA Enterococcus casseliflavus 29 tatattgatg aagaaacgat gcatttgcat catgataaac accacaacac ttatgtaaca 60 aacttaaatg cagcgattga aaaacatcct gaattaggtg aaaaaacagt tgaagaatta 120 ttagcagact tttcttctgt acctgaagat attcaaacag cggttcgcaa caatggcggc 180 ggccatgcta accacacatt cttctgggaa atcttaggcc caaatgctgg tggcgaacct 240 actggggcaa tcaaagaggc aattgaagaa acattcggca gctttgaaga ctttaaagaa 300 gaatttaaaa ctgctgcaac tggacgtttt ggttcaggtt gggcatggtt agtcgttaaa 360 gacggtaaac tagcaatcac ttcaaccgcg aatcaagatt caccattgat ggatggtcaa 420 acacctgtat taggttta 438 30 438 DNA Enterococcus faecium 30 tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg 60 aatttaaatg cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta 120 ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc 180 ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct 240 acaggagaaa taaaagaagc gattaaagaa gcttttggtg atttttcttc ttttaaagaa 300 gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa 360 aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag 420 acaccaattc taggtttg 438 31 438 DNA Enterococcus faecium 31 tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg 60 aatttaaatt cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta 120 ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc 180 ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct 240 acaggagaaa taaaagaagc gattaatgaa gcttttggtg atttttcttc ttttaaagaa 300 gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa 360 aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag 420 acaccaattc taggtttg 438 32 438 DNA Enterococcus faecium 32 tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg 60 aatttaaatg cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta 120 ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc 180 ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct 240 acaggagaaa taaaagaagc gattaatgaa gcttttggtg atttttcttc ttttaaagaa 300 gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa 360 aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag 420 acaccaattc taggtttg 438 33 438 DNA Enterococcus faecium 33 tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg 60 aatttaaatg cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta 120 ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc 180 ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct 240 acaggagaaa taaaagaagc gattaatgaa gcttttggtg atttttcttc ttttaaagaa 300 gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa 360 aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag 420 acaccaattc taggtttg 438 34 438 DNA Enterococcus faecium 34 tatattgacg aagaaacgat gcatctgcat catgataagc atcacaatac ttatgtgacg 60 aatttaaatt cagcaattga gaaataccca gaattaggcg aaaaaacaat agaagaatta 120 ttatctgata tggacgctat tccaacagat atcaagacag ctgtacgtaa caatggtggc 180 ggacatgcta accattcatt tttctgggaa atcatggcac caaatgctgg tggcgaacct 240 acaggagaaa taaaagaagc gattaatgaa gctttttgtg atttttcttc ttttaaagaa 300 gaattcaaaa aagcagccgc tggacgattt ggttctggat gggcttggct tgtaatggaa 360 aatggaaaat tagctattac ctctactgca aatcaagatt ctccattgat ggaaggaaag 420 acaccaattc taggtttg 438 35 438 DNA Enterococcus gallinarum 35 tgcattgatg aagaaacgat gcatttgcat catgacaagc atcacaatac ttacgtcaca 60 aatttgaatg cagcaattga aaaacatcct gaattaggtg aaaaatcagt tgaagaatta 120 cttgctgatt ttgattcggt gcctgaagac atcaaaacag ctgtccgtaa taacggtggt 180 ggtcatgcaa atcacagctt tttctgggaa atcttggcac caaatgctgg tggtgaacca 240 acaggagcca tcaaagaagc catcgaagaa acatttggca gctttgctga tttcaaagaa 300 gaattcaaaa cagcagcaac tggccgcttt ggttctggct gggcttggtt agtcatcaaa 360 gatggtaaat tagcgatcac ttcaactgcg aaccaagatt caccattaat ggacggtcaa 420 acgccagttt taggctta 438 36 438 DNA Enterococcus avium 36 tatatcgatg ttgaaacgat gcatttgcat catgacaaac accataacac ttatgtaaca 60 aatttaaatg ctgcgattga aaaatatccg gaattagaag aacagtcaat tgaagagcta 120 atgaaaaact taaatgaagt tcctgaggac attcgtacgg ctgtacgtaa taacggcggc 180 ggacatgcta accacagctt cttctggaaa attatggctc caaatgctgg tggtgaacct 240 acaggcgcga ttaaggacgc aattgatcaa gcatttggca gctttgaaaa aatgaaggaa 300 gaattcaaga ctgcagcaac tggtcgtttt ggttctggct gggcatggtt agtattgaac 360 aatggaaaat tagaaattac ttctactgca aatcaagaca gcccattaac tgatggaaaa 420 acaccgatca ttggctta 438 37 435 DNA Streptococcus difficilis 37 catattgatg ctgagacaat gacactacat catgataagc accatgcaac ttatgttgct 60 aatgcaaatg ctgctcttga gaaacatcct gaaattggag aagacttaga ggcgctctta 120 gctgatgttt ctcaaattcc agaagatatt cgtcaggcag tcatcaataa cggtggtgga 180 catcttaacc acgctctttt ctgggaattg atgtcaccag aagaaactca aatttcaaaa 240 gagttatctg aagacattga tgcaactttt ggttcatttg aagactttaa agctgctttc 300 acagcagcag caacaggacg ttttggttca ggttgggctt ggcttgttgt taatgctgaa 360 ggcaaacttg aagtgctttc aactgccaat caagatactc caattatgga aggtaagaaa 420 ccaattttag ggctt 435 38 435 DNA Streptococcus ferus 38 caaattgatg cggagacaat gactctccac catgataaac accatgcaac ttatgtggct 60 aacgcaaatg cagcccttga aaaacaccca gaaatcggtg acgatttaga aaaattgttg 120 gccgatgttg agtctattcc agaagatatc cgccaggctt tgattaataa tggcggaggc 180 catctgaatc atgcgctttt ctgggagttg ctgtcaccag aaaaaacaac catttcagct 240 gaactgaagg ctgatattga agctagtttt ggttcttttg accagtttaa agaggccttt 300 acaacggctg ctacaacacg ctttggttca ggctgggctt ggctcgttgt caatcaagaa 360 ggacagttag aggtggtttc aacagctaat caagacacac caatttcaca aggtttgaaa 420 cccatcttgg ttcta 435 39 435 DNA Streptococcus gallolyticus 39 tatattgata cagaaacaat gacaattcac catgataaac atcacgctac ttatgtggca 60 aatgtaaatg cagcgcttga aaaacatcca gaaattggag aggatttgga agctttgttg 120 gcagatgttg acagtattcc agcagatatc cgtcaagcgg tgattaataa cggtggtggg 180 catttgaatc acgccctttt ctgggaattg ttatcgcctg aaaaacaaga accaacagcg 240 caagtgttgg ctgcgattga ggaagatttt ggctcatttg acgaattcaa agctgctttc 300 acgcaagctg cgacaactcg ctttgggtca gggtgggctt ggcttgtggt gaatgaaaat 360 ggcaaacttg aagtgctctc aacagctaat caagacacac caatttcaca aggaaaagca 420 ccaattttgg cactt 435 40 435 DNA Streptococcus hyointestinalis 40 tatatcgatg ctgagacaat gactctccac catgacaaac accatgcgac ttatgtggca 60 aatgtcaatg cggcccttga aaaacacact gaaatcggtg aagacttggt ggcacttttg 120 tctgacgtgg aaaaaatccc tgctgacatc cgtcaagccg ttatcaacaa cggcggagga 180 catctcaacc acgctctttt ctgggaattg atgacaccag aaaagacaga ggtttcagca 240 gaattgttag cagatattga agctactttt ggctcatttg acgctttcaa agacgctttc 300 tcagcagcag ctgcgactcg ctttggctca ggttgggctt ggcttgtcgt gaatgctgaa 360 ggaaaactcg aaattctctc aacagctaac caagacaacc ctatcatgga tggcaaacaa 420 cctatccttg gacta 435 41 435 DNA Streptococcus hyovaginalis 41 caaattgatg cagaaacaat gacccttcat cacgacaagc accacgctac ttatgtagca 60 aatgctaatg ccgctttgga aaaacacccc gaacttggag atgacgttgc agcactctta 120 tcggatgttg acagcattcc agaagatatt cgccaagccc tcatcaataa tggcggtggt 180 caccttaacc acgcattgtt ctgggaactt ctttcaccag aaaagacaga aatcacagaa 240 gatgtcaagg ctgctattga tgacgctttt ggttcatttg acgccttcaa agaggccttt 300 acggcggcag caacaacacg ttttggttca ggttgggcat ggttagttgt taatgcagaa 360 ggaaaacttg aggtgacatc aactccaaac caagatactc cacttatgga tggtaacacg 420 ccaatccttg gttta 435 42 435 DNA Streptococcus infantarius 42 tacatcgatg cagaaacaat gacattgcat catgacaaac atcacgctac ttacgtagca 60 aatgcaaatg ctgctcttga aaaacaccct gaacttggag atgatttaga agttatcttg 120 gcagagcttg acaagattcc agcagatatt cgtcaagcgg tgattaacaa cggtggtggt 180 gctcttaacc actcactttt ctgggaattg ctatctcctg aaaaacaaga accaacagca 240 gatgtacttg cggcaattga agaagcattt ggctcatttg aagatttcaa aacagctttc 300 acgcaagcag cgacaactcg ctttggttca ggttgggctt ggcttgtcgt taacaaagat 360 ggcaaacttg aagtaacctc aactgctaac caagatactc cactttcaga aggtaagaaa 420 ccaattcttg ctctt 435 43 435 DNA Streptococcus macacae 43 tattttgata aagaaacaat gacgcttcac catgataaac atcatgccac ttatgttgct 60 aatgctaatg ctgcattgga aaaacaccca gaaataggtg aagatttaga aggcttactg 120 gcagatgttg agaagattcc tgaggatatt cgtcaggctt tgattaataa tggcggcggt 180 catcttaacc actctctttt ttgggaattg ctttccccag aaaaaacaga aatcactgaa 240 gaagtggctg cagctattaa tgattctttt ggctcttttg acgcttttaa agaagcattt 300 acaactgctg cgacgactcg ctttggttct ggctgggctt ggctggttgt caaccgccaa 360 gggaagcttg aagtgatttc aacggctaat caagatacgc caatttcaca agggctaaag 420 ccaatcctag cgctt 435 44 435 DNA Streptococcus macedonicus 44 tatattgatg cagaaacaat gacaattcat catgataaac atcacgctac ttatgtggca 60 aatgtaaatg cagcgcttga aaaacatcca gaaattggag aggatttgga aactttgttg 120 gcagatgttg acagtattcc agcagatatc cgtcaagcgg tgattaataa cggtggtggg 180 catttgaatc acgccctttt ctgggaattg ttatcgcctg aaaaacaaga accaacagcg 240 caagtgctgg ctgcgattga ggaagctttt ggctcatttg acgaattcaa agctactttc 300 acgcaagctg cgacaactcg ttttgggtca ggttgggctt ggcttgtggt gaatgaaaat 360 ggcaaacttg aagtgctctc aacagctaat caagatacac caatttcaca aggaaaagca 420 ccaattttgg cactt 435 45 435 DNA Streptococcus parauberis 45 caatttgacc aagaaacaat gactctccat catgataaac accatgcaac ttatgttgca 60 aatgccaatg ctgctttaga aaaacaccca gaaattggtg aagatctaga aactcttcta 120 gcagacgtgg aatctattcc ttcagatatt cgtcaagccc taattaataa tggtggtgga 180 catttgaatc acgcactatt ttgggaatta ttatctcctg agaatactga aatttcttca 240 gaagttgcat ctgcaattga tgaagcattt ggttcatttg atgcctttaa agaacaattc 300 acagctgcag caacaggacg ttttggttct ggatgggcat ggctagttgt aaataaagaa 360 ggtaaacttg aaattatgtc aactgctaat caagatacac caatttcatc aggattaaaa 420 ccaattttag gattg 435 46 435 DNA Streptococcus phocae 46 tattttgata tggagacaat gactctgcat catgacaagc accatgcaac atatgttgca 60 aacactaatg ctgctttgga aaaacaccct gaaatcggtg aggaccttga agcattgtta 120 gcagatgttg atgcgatacc agcagatatt cgtcaagctg tgataaataa cggtggtggg 180 catttgaatc atagcttgtt ctgggaatta ctgtctccag aaaagcaaga ggttactgct 240 gacgttgccg cagccattga cgaagcattt ggttcgtttg atgcttttaa agaacaattc 300 actgcagcag caacaggtcg ctttggatca ggttgggcat ggttagttgt caataaagaa 360 ggcaagcttg aaatcacgtc aactgctaac caagacacac caatctcaga tggtaaaaag 420 cctattttaa cgctt 435 47 435 DNA Streptococcus ratti 47 tatattgatg cagaaacaat gacccttcat catgataaac accatgctac ctatgtggca 60 aatgctaatg cagctctcga aaaacatcca gaaattggtg aaaatttaga agttctcttg 120 gctgatgttc agcaaattcc ggaagatatc cgtcaggctc ttgttaacaa cggcggcggt 180 caccttaacc acgcactttt ctgggaactt ctgtcaccag aaaaaacaga gattactaaa 240 gaagtggctg cagcaattga cgaagctttt ggctcatttg aggcttttaa gacagctttc 300 actcaggcag cagcaacacg ctttggttca ggctgggctt ggctagttgt caacgcagaa 360 ggtaagcttg aagtaatgtc aacagccaac caagatacac cgatttcgca aggtttaaaa 420 ccaatcttgg ccctt 435 48 435 DNA Streptococcus thoraltensis 48 cattttgatg cggagacaat gactcttcac catgataaac accatgcgac atacgtgaac 60 aacgcaaatg ctgctttgga aaaacaccct gaaatcggtg aagaccttga agctcttttg 120 tcagatgtca acagcattcc tgaagacatt cgtcaagcgc ttatcaacaa tggcggtgga 180 catcttaacc atgccctttt ctgggaactt ctttcaccag aaaaaacaga aattacagaa 240 gatgtgaaag cagccattga tgaagctttc ggttcatttg aagccttcca agaaaaattc 300 actacagcag ctacaacacg ctttggttca ggttgggctt ggttagttgt taacgctgaa 360 ggtaaactcg aggtcacatc aacaccaaac caagacactc cacttatgga aggtaaaaaa 420 ccaatccttg gactt 435 49 435 DNA Streptococcus uberis 49 caaattgata aagaaacaat gactcttcat catgacaaac atcatgcgac atatgttgct 60 aatgccaatg ctgcgcttga aaaacatcca gaaattggtg aagatttggt ggcgttatta 120 tctgatgtgt catcaattcc agaagatatt cgtcaagctc ttatcaataa tggaggcgga 180 catcttaacc atgcactttt ttgggaactt ctttcacctg agaaaacaga aatcacttcg 240 gaagtagctt ctgctattga tgaagcattt ggttcttttg atgcatttaa agaaaaattt 300 acagcagcag caacgggacg ttttggatct ggttgggctt ggttagttgt caataaagaa 360 ggagaacttg aagtaacttc aactgcaaac caagatacac caatttctga aggtaaacag 420 cctattttgg gtctt 435 50 435 DNA Streptococcus waius 50 tatattgatg cagaaacaat gacaattcat catgataaac atcacgctac ttatgtggca 60 aatgtaaatg cagcgcttga aaaacatcca gaaattggag aggatttgga aactttgttg 120 gcagatgttg acagtattcc agcagatatc cgtcaagcgg tgattaataa cggtggtggg 180 catttgaatc acgccctttt ctgggaattg ttatcgcctg aaaaacaaga accaacagcg 240 caagtgctgg ctgcgattga ggaagctttt ggctcatttg acgaattcaa agctactttc 300 acgcaagctg cgacaactcg ttttgggtca ggttgggctt ggcttgtggt gaatgaaaat 360 ggcaaacttg aagtgctctc aacagctaat caagatacac caatttcaca aggaaaagca 420 ccaattttgg cactt 435 51 438 DNA Abiotrophia adiacens 51 cattttgatg cacgtacaat ggaaatccac catgacaaac atcacaatgc atatgttaca 60 aatttaaacg cagcggtaga aaaacaccct gaattattcg aaaaaacagt tgaagaatta 120 gttagcgatt taaacgctgt tccagaagat atccgtgtag ctgttcgcaa caatggtggt 180 gggcatgcaa accatagctt attctggact caattatctc ttgatggtgc aaaagctcca 240 gaaggtgctt tattagcagc tatcaacgaa gcattcggaa gcttcgacga attcaaagca 300 gcattcgcac aagcagcagc aactcgtttt gggtctggtt gggcttggtt agttctttct 360 aacggaaaat tagaagtcgt ttctactcca aaccaagata accctctatc agaaggcaaa 420 actccattat taggatta 438 52 441 DNA Abiotrophia defectivus 52 gcttttgacg cgcgcaccat ggaaattcac cacaccaagc accaccaaac ccacgttaac 60 aacttgaatg ccgccttaga aggtcacgca gacttggcag ctaagtctat cgaagactta 120 gtcgctaacc ttaaggattt acctgaaagc attcaaacag ctgtccgtaa caatggtggg 180 ggtcacttca accatagctt cttctgggaa agcctacaag cgccaagtgc agaagcagct 240 attcctgctg gcctcaagtc tcgcttagaa gcagactttg gttctgttga agccttcaaa 300 gaagcttttg ctaaggcagc tgcgactcgc tttggttctg gttgggcttg gctcgtagac 360 cgtgacggtc acttagaagt cttatctact gctaaccaag acacaccttt agaattaggg 420 cttaagccac ttttaggttt a 441 53 438 DNA Abiotrophia elegans 53 catgtggatg ctttaacaat ggaaatccat catgacagac atcataacac ttatgtaaca 60 aacttaaacg cagcagtaga aaaacaccct gctttatttg aaaaaagtgt ggaagaatta 120 gtagcagatt tagcatctgt accagaaggt attcgtggag ctgttcgtaa caatggtggt 180 ggacatgcaa accacagctt attctggaca gtaatttcac cgaatggtgg aggtcaacct 240 actggcgaat tagcagcagc aatcgatagc aaattcggtg ggtttgatgc gtttaaacaa 300 gcattctctc aagcagcagc aactcgtttc ggttctggtt gggcttggtt agttgtttca 360 aatggtgaat tagaagtagt ttctactcca aaccaagata acccattaac agatggtaaa 420 actccaattt taggatta 438 54 429 DNA Staphylococcus arlettae 54 cacattgata aagaaacaat ggaaattcat catgacaagc accacaacac atatgttaca 60 aaattaaatg cagcagtaga aggtactgat ttagaatcta aatcaattga agaaatcgtc 120 gctaacttag atagcgtacc tgaagatatt caaacagctg tgcgtaacaa tggtggagga 180 catatcaacc attcattgtt ctgggaatta ttaactccta actctgaaga aaaaggtact 240 gtagttgata aaattaaaga acaatggggt tctttagatg catttaaaga agaatttgca 300 aataaagctg cagcacgttt tggttcaggt tgggcatggt tagtagtaaa taacggtaac 360 ttagaaatcg ttactacacc taaccaagac aacccattaa ctgaaggtaa aacacctatt 420 ttaggttta 429 55 432 DNA Staphylococcus auricularis 55 tatattgata aagaaactat ggaaatccac catgacaaac accacaacac atatgtaact 60 aaattaaatt cagcagttga aggtacagat ttagaaaata aatctatcga agaaattgtt 120 gctaatttag atagcgtacc tgaagatatt caaacagctg tacgaaataa tggtggtgga 180 cacttaaatc actcattatt ctgggaatta ttaactccta actctgaaga aaaaggtaca 240 gtcgtagata aaattaaaga acaatggggt tctttagacg atttcaaaaa agaatttgct 300 gacgctgcag cagctcgctt tggttcagac tggggttggc tcgttgtaaa tgctgaaggt 360 aaattagaaa tcactactac acctaaccaa gataacccaa ttacagaagg taaaacacct 420 attttaggta tt 432 56 429 DNA Staphylococcus capitis subsp. captis 56 cacattgata aacaaactat ggaaattcac catgacaaac accataacac atatgtaact 60 aaattaaact cagcagttga aggaacagat ttagaagcta aatcaatcga agaaattgtt 120 gctaatttag atagcgtacc ttcagatatt caaactgcag tacgtaataa tggtggcggt 180 cacttaaacc actcattatt ctgggaatta ttatcaccaa attctgaaga aaaaggtgaa 240 gtagtagaca aaattaaaga acaatggggt tctttagatg aattcaaaaa agaatttgca 300 gataaagctg ctgcacgctt tggatctggt tgggcatggt tagtagtaaa taacggtcaa 360 ttagaaatcg ttactactcc aaaccaagat aacccattaa ctgaaggtaa aactccaatc 420 ttaggttta 429 57 429 DNA Staphylococcus capitis subsp. ureolyticus 57 cacattgata aacaaactat ggaaattcac cacgacaaac accataacac atatgtaact 60 aaattaaact cagcagttga aggaacagat ttagaagcta aatcaatcga agaaattgtt 120 gctaatttag atagcgtacc ttcagatatt caaactgcag tacgtaataa tggtggcggt 180 cacttaaacc actcattatt ctgggaatta ttatcaccaa attctgaaga aaaaggtgaa 240 gtagtagaca aaattaaaga acaatggggt tctttagatg aattcaaaaa agaatttgca 300 gataaagctg ctgcacgctt tggatctggt tgggcatggt tagtagtaaa taacggtcaa 360 ttagaaatcg ttactactcc aaaccaagat aacccattaa ctgaaggtaa aactccaatc 420 ttaggttta 429 58 429 DNA Staphylococcus caprae 58 cacatcgata aacaaactat ggagattcat cacgacaaac accataacac atatgtaact 60 aaattaaact cagcagttga aggaacagat ttagaagcta aatcaatcga agaaattgtt 120 gcaaatttag atagcgtacc ttctgatatt caaacagcag tacgtaacaa tggtggcggt 180 cacttaaacc actcattatt ctgggaatta ttatcaccta attctgaaga aaaaggtgaa 240 gttgtagaca aaatcaaaga acaatggggc tctttagatg aattcaaaaa agaattcgct 300 gacaaagcag cagctcgttt cggttcaggt tgggcttggt tagtagtaaa caacggtcaa 360 ttagaaatcg taactacacc aaaccaagat aacccattaa ctgaaggtaa aacaccaatc 420 ttaggttta 429 59 432 DNA Staphylococcus carnosus subsp. carnosus 59 tatatcgata aagaaacaat ggaaatccat catgacaaac atcataatac ttatgtaaca 60 aaattaaatg cagcaatcga aggtactgat ttagaaaata aatctatcga agagatcgtt 120 gctaatttag acagcgtacc atctgacatc caaactgcag ttcgtaataa cggtggtgga 180 catttaaacc attcattatt ctggcaactt ctaacaccta attctgaaga aaaaggtaca 240 gtaattgata aaatcaaaga agaatggggt tctttagaca aatttaaaga tgaatttgct 300 aaaaaagctg ctggacaatt tggttcaggt tgggcatggc tagttgtaga taaagacggt 360 aaactagaaa tcgtttctac tcctaaccaa gacaatccaa tcacagaagg caaaactcct 420 attttaggac tt 432 60 432 DNA Staphylococcus carnosus subsp. utilis 60 tatatcgata aagaaacaat ggaaatccat catgacaaac atcataacac ttatgtaata 60 aaattaaatg cagcaatcga aggtactgat ttagaaaata aatctatcga agagatcgtt 120 gctaatttag acagcgtacc atctgacatc caaactgcag ttcgtaataa cggtggtgga 180 catttaaacc attcattatt ctggcaactt ctaacaccta attctgaaga aaaaggtaca 240 gtaattgata aaatcaaaga agaatggggt tctttagaca aatttaaaga tgaatttgct 300 aaaaaagctg ctggacaatt tggttcaggt tgggcatggc tagttgtaga taaagacggt 360 aaactagaaa tcgtttctac tcctaaccaa gacaatccaa tcacagaagg caaaactcct 420 attttaggac tt 432 61 429 DNA Staphylococcus chromogenes 61 catattgata aagaaacgat ggaaatccat catagtaaac accataacac atacgtgact 60 aagttaaacg atgcagttaa aggtactgat ttagagaaca aatcaatcga agaaattatt 120 gctaacttaa atagcgtacc agaagataaa caaactcctg tacgtaataa tggtggcggt 180 cacttaaacc actctttatt ctggcaatta ctttcaccac aatcagaaga aaaaggtgaa 240 gtcgtagata aaattaaaga gcaatggggc tctttagatg atttcaaaaa agaatttgca 300 gacaaagcag cagctcgttt tggttctggt tgggcatggc tcgttgtaaa taatggtcaa 360 ttagaaatcg ttactacacc aaaccaagac aacccaattt ctgaaggtaa aactcctatc 420 ttaggatta 429 62 429 DNA Staphylococcus cohnii subsp. cohnii 62 catattgatc aacaaacaat ggaaattcat cacgacaaac atcataacac ttatgttact 60 aaattaaatg cagcaattga aggtactgat ttagagtcta aatcaattga agaaattatt 120 gcaaatttag acagtgtacc agaagatatt caaacagctg ttagaaataa tggcggtgga 180 cacttaaacc actcattatt ctgggaatta ttaactccaa actctgaaga aaaaggaact 240 gtagttgata aaattaaaga acaatggggt tctttagatg catttaaaga agaatttgca 300 gataaagctg cagctcgttt tggttcagga tgggcttggc tagttgttaa taatggtaat 360 ttagaaattg ttacaactcc aaaccaagat aacccactta cagaaggtaa aacaccaatc 420 ctaggctta 429 63 429 DNA Staphylococcus cohnii subsp. urealyticum 63 catattgatc aacaaacaat ggaaatccac catgacaaac atcataacac ttatgttact 60 aaattaaatg cagcaattga aggtactgat ttagaatcta aatcaattga agaaattgta 120 gcaaatttag acagtgtacc agaaaatatt caaacagctg ttagaaataa tggtggtgga 180 cacttaaacc attcattatt ctgggaatta ttaactccaa actctgaaga aaaaggaact 240 gtagttgata aaattaagga acaatggggt tctttagatg catttaaaga agaatttgca 300 gataaagctg cagctcgttt tggttcaggt tgggcttggc tagttgttaa taatggcaat 360 ttagaaattg ttacaactcc aaaccaagat aacccattaa ctgaaggtaa aacacctatc 420 ttaggctta 429 64 432 DNA Staphylococcus condimenti 64 tatatcgata aagaaacaat ggaaatccat catgacaaac atcacaacac ttatgtaaca 60 aaattaaatg cagcaatcga aggtactgat ttagaaaata aatctatcga agaaatcgtt 120 gcaaatttag acagcgtacc atctgacatc caaactgcag ttcgtaataa tggtggtgga 180 catctaaacc attcattatt ctggcaactt ctaacaccta attctgaaga aaaaggtaca 240 gtaattgata aaatcaaaga agaatggggt tctttagaca aattcaaaga tgaatttgct 300 aaaaaagctg ctggacaatt tggttcaggt tgggcttggc tagttgtaga taaaaacggt 360 aacttagaaa tcgtttctac tccaaaccaa gacaacccaa ttacagaagg caaaactcct 420 attttaggac tt 432 65 429 DNA Staphylococcus delphini 65 cacattgata aagaaactat ggaaatccat cacagcaagc atcataacac ttatgtaaca 60 aaattaaatg ctgctgttga aggtactgaa tttgaaaata aatcattaga agatttaatt 120 gcaaacttag acagcgtacc agaaaactta cgtacagcag ttcgtaataa tggtggcggt 180 cacttaaatc actctatttt ctggcaaatc ttaacaccta actcagaaga aaaaggtgaa 240 gttgtcgata aaattaaaga acaatggggt tctttagatg aattcaaaaa cgaatttgca 300 gacaaagcag ctggccgttt cggttcaggt tgggcttggc ttgttgttaa caacggtaaa 360 ttagaaatcg ttacaactgc aaaccaagat agtccattaa ctgatggttt aacaccaatt 420 ttagcgtta 429 66 429 DNA Staphylococcus epidermidis 66 cacatcgaca aacaaactat ggaaattcat catgacaaac atcataacac atatgttaca 60 aaattaaatt cagcagttga agggacagat ttagaagcta aatcaatcga agaaattgtt 120 gctaatttag atagtgtgcc atctaatatt caaacagctg ttcgtaataa tggcggtggt 180 caccttaacc attcattgtt ctgggaacta ttatcaccaa attctgaaga aaaaggtgaa 240 gtagtagata aaattaaaga acaatggggt tctttagatg aatttaaaaa agaatttgca 300 gataaagctg cagcacgctt tggttcagga tgggcttggt tagttgtaaa caatggacaa 360 ttagaaattg ttacaacacc aaatcaagat aatccaatta ctgaaggaaa aacaccaatt 420 ttaggttta 429 67 429 DNA Staphylococcus equorum 67 cacattgatc aacaaacaat ggagattcac catgacaaac accataacac ttatgtaact 60 aaattaaacg cagcagttga aggaactgat ttagaatcta aatcaatcga agaaattgtt 120 gcaaacttag acagtgtacc agaaaacatt caaacagctg ttcgcaataa tggtggagga 180 cacttaaacc attcattatt ctgggaatta ttaactccaa actctgaaga aaaaggtact 240 gttgttgata aaattaaaga acaatggggt tctttagatg cattcaaaga agagtttgct 300 aaccaagctg cagcacgttt cggttcaggt tgggcatggc tagttgtaaa cgatggtaaa 360 ttggaaatcg ttactacacc taatcaagat aacccattaa ctgaaggtaa aacacctatc 420 ctaggctta 429 68 429 DNA Staphylococcus felis 68 cacatcgata aagaaactat ggaaattcac catagcaaac accataacac atatgttaca 60 aaattaaacg ctacagtaga aggttcagat ttagaaaata aatctcttga agatcttatt 120 gccaatgtag atagtcttcc agaagacaag aaaacagctg tacgtaataa tggtggcggt 180 catcttaacc actcattctt ctgggcactt ttaacaccta attctgaaga aaaaggtgaa 240 gtagttgata aaatcaatga aaaatggggc tcattagacg cattcaaaaa agaatttggc 300 gatgcggctg ctggtcgatt tggttcaggc tgggcatggt tagttgtgaa caatggtgaa 360 ttagaaattg tttcaacacc taaccaagac aatccattgt ctgaaggtaa aacgccaatt 420 ttagctctt 429 69 429 DNA Staphylococcus gallinarum 69 aatattgaca aagaaactat ggaaatccac catggtaaac accacaacac ttatgtaact 60 aaattaaatg ctgcagttga aggtactgat ttagaatcta aatcaatcga agaaattgtt 120 gcaaacttag acagtgtacc agaaaatatt caaacagctg ttagaaataa tggtggtgga 180 cacttaaacc actcattatt ctgggaatta ttaactccta actctgaaga aaaaggtact 240 gtagttgata aaattaaaga acaatggggt tctttagatg catttaaaga agaatttgca 300 gataaagctg cagcacgctt tggttcaggt tgggcatggc tagttgtaaa taacggtaac 360 ttagaaatcg ttactacacc taaccaagac aaccctatta ctgaaggtaa aacacctatc 420 ttaggttta 429 70 429 DNA Staphylococcus haemolyticus 70 cacattgaca aacaaactat ggaaatccat catgacaaac accacaacac gtatgttacc 60 aaattaaatt ctgcagttga gggaacagat cttgaatcta aatcaattga agaaattgtt 120 gctaatttag atagtgtacc tgaagatatt caaacagctg ttcgtaataa tggtggcgga 180 cacttaaatc actcattatt ctgggaatta ttaactccta attctgaaga aaaaggtact 240 gttgttgata aaatcaaaga acaatggggc tctttagatg aattcaaaaa agaattcgct 300 gacaaagcag cagctcgttt cggttcaggt tgggcatggt tagtagttaa caatggtcag 360 ttagaaattg ttactacacc taaccaagat aacccattaa cggaaggtaa aacacctatc 420 ttaggttta 429 71 429 DNA Staphylococcus hominis subsp. hominus 71 catatcgaca aagaaacaat ggaaattcat catgacaaac atcataacac ttatgttaca 60 aaattaaact ctgcagttga aggtactgat ttagaatcta aatcaattga agaaattgtt 120 gcaaatttag atagtgtatc tgaaaatatt caaacagcag tacgtaataa tggtggaggt 180 catttaaatc actcattatt ctgggaatta ttaactccta attctgaaga aaaaggtact 240 gtagttgata aaattaaaga acaatggggt tctttagatg agtttaaaaa agaattcgct 300 gataaagctg cagcacgttt tggttcaggt tgggcttggt tagtagtaaa taatggaaaa 360 ttagaaattg ttactactcc aaatcaagat aaccctatta ctgaaggaaa aactccaatt 420 ttaggctta 429 72 429 DNA Staphylococcus hominis subsp. novobiosepticus 72 catatcgaca aagaaacaat ggaaattcat catgacaaac atcataacac ttatgttaca 60 aaattaaatt ctgcagttga aggtactgat ttagaatcta aatcaattga agaaattgtt 120 gcaaatttag atagtgtacc tgaaaatatt caaacagcag tacgtaataa tggtggaggt 180 catttaaatc actcattatt ctgggaatta ttaactccta attctgaaga aaaaggtact 240 gtaattgata aaattaaaga acaatggggt tctttagatg agtttaaaaa agaattcgct 300 gataaagctg cagcacgttt tggttcaggt tgggcttggt tagtagtaaa taatggaaaa 360 ttagaaattg ttactactcc aaatcaagat aaccctatta ctgaaggaaa aactccaatt 420 ttaggctta 429 73 429 DNA Staphylococcus hyicus 73 catattgaca aagaaactat ggaaatccac catagcaaac atcataacac ttatgtaaca 60 aaattaaacg acgctgtaaa aggtacagag ttagaagata aatctattga agagcttatc 120 gcgaatgttg accaattacc tgaggataaa aagactgcgg ttcgtaacaa tggtggcggt 180 cactttaacc attctttatt ctggcaattt ttatccccag aatctgaaga aaaaggtgaa 240 gttgttgaca aaattaaaga acaatggggt tctttagacg catttaaaaa agaattctca 300 gataaagcag cagcacgatt tggatctggc tgggcttggc ttgtagtaaa taatggtcaa 360 ttagaaattg ttacaacagc aaaccaagat agcccattat cagaaggtaa gacaccaata 420 ctcgctcta 429 74 429 DNA Staphylococcus intermedius 74 cacattgata aagaaactat ggaaatccat cacagtaagc atcataacac ttacgtaacg 60 aaattaaatg ctgctgttga aggtactgaa tttgaaaata aatcattaga agatttaatt 120 gcaaacttaa atagtgtacc tgaaaacatt cgtacagcgg tacgtaataa tggtggcggt 180 cacttaaatc actctatttt ctggcaactt ttaacaccta actcagaaga aaaaggtgaa 240 gttgtagata aaatcaaaga acaatggggt tctttagatg aatttaaaaa cgaatttgcg 300 gataaagcag cagcacgttt cggttcaggt tgggcttggc ttgttgtcaa taacggcaaa 360 ttagaaatcg ttacaacagc aaaccaagac agtccattaa ctgacggatt atcaccaatc 420 ttagcatta 429 75 429 DNA Staphylococcus kloosii 75 cacatcgata aagaaactat ggaaattcac cacgataaac accataacac ttatgtaaca 60 aaattaaacg cagcagttga aggaactgaa ttagaatcta agtcaattga agaaattatt 120 gcaaacttag acagtgttcc tgaaaacatt caaacagctg ttcgtaataa tggtggggga 180 catattaacc attcattatt ctgggaatta ttaactccta actctgaaga aaaaggtact 240 gtagtagata aaattaaaga acaatggggt tctttagatg catttaaaga agaatttgct 300 gataaagctg caggccgttt cggttcaggt tgggcatggt tagtagtaaa taacggtaac 360 ttagaaatcg ttactacacc taaccaagac aatccattaa ctgaaggtaa aacacctatc 420 ttaggttta 429 76 432 DNA Staphylococcus lentus 76 cacatcgata aagagacaat ggagattcat catacgaaac accataacac ttatgtaaca 60 aaactaaatg atgcagttaa aggtactgac ttagaaagta aatctattga agatattatt 120 aaaaacttaa attctgtacc agatgatatc cgtactgcag ttcaaaacaa tggtggcgga 180 cattacaatc actcattatt ctgggagatg ttaactccaa atgcttctga accatcaggc 240 gaagtagtag atgcaatcag ttctactttc ggttcattag acaaatttaa agaagagttt 300 gcagcagcag cagctggacg cttcggttca ggttgggcat ggttagttgt agataacggt 360 gaattatcaa tcgtttcaac tccaaaccaa gataacccat tatctgaagg taaaattcct 420 gtattaggat ta 432 77 429 DNA Staphylococcus lugdunensis 77 catattgata aagaaacaat ggaaatccat catgataaac atcataatac gtatgtgact 60 aaattaaatt ctgcagttga aggtacagac ttagagtcta aatctattga ggaaattatt 120 gccaatttag atagcgttcc tgaaaacatt caaacagctg tacgtaataa tggtggtgga 180 cacttaaacc attcactatt ctgggaattt ttaactccta attctgaaga aaaaggtact 240 gtagttgata aaattaaaga acaatggggt tctttagatg aattcaagaa agaattcgct 300 gacaaagctg caggtcgttt tggttcaggt tgggcatggt tagttgtaaa taacggtaaa 360 ttagaaattg ttacaacgcc taaccaagac aacccattaa ctgaaggaaa aacacctatc 420 ttatgtata 429 78 429 DNA Staphylococcus lurae 78 catatcgata aagaaacaat ggagctccat cacggtaaac atcataacac atacgttact 60 aaattaaatg ctgctgttga aggcacagaa ttggaaaata aatcacttga agatttaatc 120 acacatttag atcgcgtacc tgaaaatgta cgtactgctg tgcgtaacaa tggtggcggt 180 catttaaatc actcattttt ctggcaactg cttacaccaa actctgaaga aaaaggtgaa 240 gtagtggata aaattaaaga acaatgggga tcattagacg cattcaaaga agaatttgca 300 gataaagcag cgggtcgttt cggttctggt tgggcttggc ttgttttaaa taatggaaaa 360 ttagaaatta ttacaacacc taaccaagac agtccgttaa ctgaaggttt aacaccgctt 420 ttaacttta 429 79 429 DNA Staphylococcus muscae 79 catttcgaca aagaaacaat ggagattcat catacgaagc atcataacac ttatgttaca 60 aagttaaacg gtgcagttga aggaacagaa tttgaaaaca aatcaattga agatcttgtt 120 gcaaacttaa atgatgtacc tgaagaaaaa cgcacagctg tacgtaataa tggtggcggc 180 cacttaaacc actcattatt ctggcagtta ttaacaccta attcagaaga aaaaggtaca 240 gtggttgaaa aaatcactga aaaatggggt agcttagata gtttcaaaca agaatttgcc 300 gataaagcag cagctcgatt cggttcaggt tgggcatggt tagttgtaga caatggcgag 360 ttagcgattg tgacaactcc aaatcaagac aatccaatca cagatggaaa aactccacta 420 ttaggtctt 429 80 429 DNA Staphylococcus pasteuri 80 cacatcgata aagaaactat ggagattcac catgataaac accataacac ttatgtaaca 60 aaattaaacg ctgcagttga aggtactgat ttagaagcta aatcaatcga agaaattgta 120 gctaatttag acagtgtacc ttctgatatc caaactgctg ttagaaataa tggtggcgga 180 cacttaaacc actcattatt ctgggaatta ctaacaccta actcagaaga aaaaggtgaa 240 gtagtagata aaattaaaga acaatggggt tctttagatg aattcaaaaa agaatttgct 300 gacaaagcag cagctcgttt tggttcaggt tgggcttggt tagtagtaaa taacgggcaa 360 ttagaaatcg ttacaactcc aaaccaagat aatccattaa ctgaaggtaa aacacctatc 420 ttaggttta 429 81 432 DNA Staphylococcus piscifermentans 81 tatatcgaca aagaaacaat ggaaatccat catgacaaac accataacac ttatgtaaca 60 aaattaaatg cagcaatcga aggtactgat ttagaaaata aatcaatcga agaaatcgtt 120 gctaatttag acagcgtacc atcagacatc caaactgcag ttcgtaataa tggtggggga 180 cacttaaacc actcattatt ctggcaactt cttacaccta attctgaaga aaaaggtact 240 gtaattgata aaattaaaga agaatggggc tctttagata aattcaaaga tgaatttgct 300 aaaaaagctg ctggacaatt tggttcaggt tgggcatggc tagttgtaga taaaaacggt 360 aaattagaaa tcgtttctac accaaaccaa gacaacccta ttacagaagg caaaactcct 420 attttaggct ta 432 82 432 DNA Staphylococcus pulvereri 82 cacatcgata aagaaactat ggagattcac catacgaaac accataacac ttatgtaaca 60 aaattaaatg acgcagttaa aggtacagat ttagaaagta aatctattga agatatcatt 120 aaaaatttaa attctgttcc tgaaaatatt cgtactgcag ttcaaaacaa tggtggcgga 180 cattataatc actcattatt ctgggaacta ttaacaccaa atgcttctga accttcagga 240 gaagttgtgg atgcaattag ttctacattc ggttcattag acaaattcaa agaagaattt 300 gcagctgcag cagctggccg tttcggttca ggttgggcat ggttagttgt agataacggt 360 gaattagcga tcgtttcaac tccaaaccaa ggtaacccta tttcagaagg taaacttcca 420 gtattaggct ta 432 83 429 DNA Staphylococcus saccharolyticus 83 cacatcgata aacaaactat ggaattacat catgacaaac atcacaacac atatgtaact 60 aaattaaact cagcagttga aggaacagat ttagaagcta aatcaatcga agaaattgtt 120 gctaatttag acaatgtccc atcaaatatt caaacagctg ttcgtaacaa tggcggtgga 180 catttaaacc attcattatt ctgggaatta ttatcaccta actcagaaga aaaaggtgaa 240 gttgtagata aaattaaaga acaatggggt tctttagatg aatttaaaaa agaatttgcg 300 gataaagcta cagctcgttt tggttcaggt tgggcatggt tagtagtaga taatggccaa 360 ttagagattg taacaacact taatcaagac aatccattaa ctgaagggaa aactccaatt 420 ctagcttta 429 84 429 DNA Staphylococcus saprophyticus subsp. bovis 84 cacattgata aacaaacaat ggaaattcac catgacaaac accataacac ttatgtaact 60 aaattaaatg cagcagtaga aggaactgat ttagaatcta aatcaatcga agaaattgtt 120 gcaaacttag acagtgttcc agaaaatatt caaacagctg ttcgaaataa tggtggtgga 180 cacttaaacc actcactatt ctgggaatta ttaactccaa actcagaaga aaaaggtact 240 gttgttgata aaattaaaga acaatggggc tctttagatg catttaaaga agaatttgct 300 gacaaagcag cagctcgttt cggttcaggt tgggcatggc tagttgtgaa taacggtaac 360 ttagaaatcg ttacaacacc taaccaagat aacccattaa ctgaaggtaa aacaccaatc 420 ttaggatta 429 85 429 DNA Staphylococcus saprophyticus subsp. saprophyticus 85 cacattgata aacaaacaat ggaaattcac catgacaaac accataacac ttatgtaact 60 aaattaaatg cagcagtaga aggaactgat ttagaatcta aatcaatcga agaaattgtt 120 gcaaacttag acagtgttcc agaaaatatt caaacagctg ttcgaaataa tggtggtgga 180 cacttaaacc actcactatt ctgggaatta ttaactccaa actcagaaga aaaaggtact 240 gttgttgata aaattaaaga acaatggggc tctttagatg catttaaaga agaatttgct 300 gacaaagcag cagctcgttt cggttcaggt tgggcatggc tagttgtgaa taacggtaac 360 ttagaaatcg ttacaacacc taaccaagat aacccattaa ctgaaggtaa aacaccaatc 420 ttaggatta 429 86 429 DNA Staphylococcus saprophyticus subsp. coagulans 86 cacattgaca aagaaacaat ggtgctacat catgacaaac atcataatac gtatgtaaca 60 aagttaaacg cagcagttga aggtacagat ttagaaaata aatctattga agatttaatt 120 gctaatttag acagtgtgcc tgaagataaa cgtactgcag ttcgtaataa tggtggtgga 180 cacttaaacc actcattttt ctggcaaatt atttcaccta actcagaaga aaaaggtgaa 240 gttgtagata aaattaaaga acaatggggt tctttagatg cattcaaaaa agaatttgct 300 gataaagctg caggtcaatt tggttcaggt tgggcatggt tagtagtgaa taatggtcaa 360 ttagaaatcg taacgactcc taaccaagat agtccactta ctaatggcca aactccaatt 420 ttaaactta 429 87 429 DNA Staphylococcus schleiferi subsp. schleiferi 87 cacattgata aagaaacaat ggtgctacat catgacaaac atcataatac gtatgtaaca 60 aagttaaacg cagcagttga aggtacagat ttagaagata aatctattga agatttaatt 120 gctaatttag atagtgtacc tgaagataaa cgtactgcag ttcgtaataa tggtggtgga 180 cacttaaacc actcattttt ctggcaaatt atttcaccta actcagaaga aaaaggtgaa 240 gttgtagata aaattaaaga acaatggggt tctttagatg cattcaaaaa agaatttgct 300 gaaaaagctg caggtcaatt tggttcaggt tgggcatggt tagtagtgaa taatggtcaa 360 ttagaaatcg taacgactcc taaccaagat agtccactta ctaatggcca aactccaatt 420 ttaaactta 429 88 432 DNA Staphylococcus sciuri subsp. carnaticus 88 cacatcgata aagaaactat ggagattcat catacgaaac accataacac ttatgtaaca 60 aaattaaatg atgcagtgaa aggtacagat ttagaaagca aatctattga agatattgtt 120 aaaaacttaa actctgttcc tgatgatatc cgtactgcag ttcaaaacaa tggtggcgga 180 cattataatc attcattatt ctgggaacta ttaactccaa atgcttctga gccttcagga 240 gaagttgtag atacaattag ttctacattt ggttcattag acaaattcaa agaagaattt 300 gcagctgcag cagctggccg ttttggttca ggatgggcat ggttagttgt agataatggc 360 gaattagcga ttgtttcaac tccaaaccaa gataacccaa tttcagaagg taaacttcca 420 attttaggtt ta 432 89 432 DNA Staphylococcus sciuri subsp. sciuri 89 cacatcgata aagaaactat ggagattcat catacgaaac accataacac ttatgtaaca 60 aaattaaatg atgcagtgaa aggtacagat ttagaaagca aatctattga agatattgtt 120 aaaaacttaa actctgttcc tgatgatatc cgtactgcag ttcaaaacaa tggtggcgga 180 cattataatc attcattatt ctgggaacta ttaactccaa acgcttctga gccttcagga 240 gaagttgtag atgcaattag ttctacattt ggttcattag acaaattcaa agaagaattt 300 gcagctgcag cagctggccg ttttggttca ggatgggcat ggttagttgt agataatggc 360 caattagcga ttgtttcaac tccaaaccaa gataacccaa tttcagaagg taaacttcca 420 attttaggtt ta 432 90 432 DNA Staphylococcus simulans 90 cacatcgata aagaaacgat ggaaattcac catgacaaac accataacac ttatgttaca 60 aaattaaacg cagcaatcga aggaactgat ttagaaaaca aatcaatcga agaaattgtt 120 gctaacttag atagtgtacc atctgacatc caaactgcag tccgtaataa tggtggtgga 180 cacttaaacc actcattatt ctggcaaatc ctttcaccta actctgaaga gaaaggtaca 240 gtagttgata aaattaaaga acaatggggt tctttagacg aattcaaaga cgaatttgct 300 aaaaaagctg ctggacaatt tggttcaggt tgggcttggc tagtagtaga taaagacggt 360 aaattagaaa tcgttactac agcaaaccaa gacaacccaa ttactgaagg caaaactcct 420 atcctaggct ta 432 91 432 DNA Staphylococcus vitulinus 91 cacatcgata aagaaactat ggagattcac catacgaaac accataacac ttatgtaaca 60 aaattaaatg acgcagttaa aggtacagat ttagaaagta aatctattga agatatcatt 120 aaaaatttaa attctgttcc tgaaaatatt cgtactgcag ttcaaaacaa tggtggcgga 180 cattataacc actcattatt ctgggaacta ttaacaccaa atgcttctga accttcagga 240 gaagttgtgg atgcaattag ttctacattc ggttcattag acaaattcaa agaagaattt 300 gcagctgcag cagctggccg tttcggttca ggttgggcat ggttagttgt agataacggt 360 gaattagcga tcgtttcaac tccaaaccaa gataacccta tttcagaagg taaacttcca 420 gtattaggct ta 432 92 429 DNA Staphylococcus warneri 92 cacatcgata aagaaactat ggagattcac catgataaac accacaacac ttatgtaaca 60 aaattaaatg cagctgtaga aggtactgac ttagaagcta aatcaatcga agaaattgta 120 gctaacttag atagtgttcc ttctgatatt caaactgcag taagaaataa cggtggcgga 180 cacttaaacc actcattatt ctgggaatta ttaacaccta attcagaaga aaaaggtgaa 240 gtagtagata aaattaaaga acaatggggt tctttagatg aattcaaaaa agaattcgct 300 gacaaagctg cagctcgttt tggttcaggt tgggcttggt tagttgttaa taatggtcaa 360 ttagaaatcg ttacaactcc aaaccaagat aacccattaa ctgaaggtaa aacacctatc 420 ctaggctta 429 93 429 DNA Staphylococcus xylosus 93 cacattgatc aacaaacaat ggaaattcac catggcaaac accataacac ttatgtaact 60 aaattaaacg cagcagtaga aggaactgat ttagaatcta aatcaattga agaaattgtt 120 gcaaatctag acagtgttcc agaaaatatt caaacagctg ttcgcaataa tggcggtgga 180 catttaaacc actcattatt ctgggaatta ttaactccaa actcagaaga aaaaggtact 240 gttgttgata aaattaaaga acaatggggt tctttagatg catttaaaga agaatttgca 300 gacaaagcag cagcacgttt cggttcaggt tgggcctggt tagtagttaa taacggtaac 360 ttagaaatcg ttactacacc taaccaagac aatccaatta ctgaaggtaa aacacctatc 420 ttaggatta 429 94 427 DNA Macrococcus caseolyticus 94 cacatcgaca aagaaacgat ggagattcac catacaaaac atcataacac ttatgtaacg 60 aaattaaatg atgcagtggc tggtacggag tttgagaatg tatctatcga agatctgatg 120 aagagaattg atgaagttcc tgcagacaag aaaactgctg tagttaataa tggtggcggt 180 cattataacc actcattgtt ctggacattg cttgctccag gtaaagaagc gaaaggtgaa 240 gttgttgatg cgattgaatc aaaatttggt tctttagatg catttaaaca agaatttgct 300 gatgctgcag ctgggcgctt cggttcaggc tgggcatggt tagttgttaa taacggagag 360 cttgaagtaa cttcaacgcc aaaccaggaa aatccattaa tggaaggcaa aacaccaatc 420 ttaggat 427 95 26 DNA Artificial Sequence synthetic DNA 95 ccntayncnt aygaygcnyt ngarcc 26 96 26 DNA Artificial Sequence synthetic DNA 96 arrtartang crtgytccca nacrtc 26

Claims (21)

1. A method for accurate identification of the species of a gram positive bacteria in a sample comprising
providing a sample suspected of containing said gram positive bacteria;
hybridizing a specific probe for a sodA gene or a fragment thereof to nucleic acids from said microorganism; and
detecting the presence or absence of hybridization.
2. The method according to claim 1, further comprising amplification of said sodA gene from the microorganism prior to said hybridizing.
3. The method according to claim 1, wherein said microorganism is selected from the group consisting of Enterococci, Abiotrophia, Streptococci and Staphylococci.
4. The method according to claim 3, wherein said microorganism is an Enterococci and is selected from the group consisting of E. avium, E. casseliflavus, E. cecorum, E. columbae, E. dispar, E. durans, E. faecalis, E. faecium, E. flavescens, E. gallinarum, E. hirae, E. malodoratus, E. mundtii, E. pseudoavium, E. raffinosus, E. saccharolyticus, E. seriolicida, E. solitarius, and E. sulfureus
5. The method of claim 1, wherein specific probe is selected from the group consisting of SEQ ID NOS:1-94.
6. The method according to claim 3, wherein said microorganisms is a Staphyloccus and is selected from the group consisting of S. arlettae, S. auricularis, S. capitis subspecies capitis, S. capitis subspecies ureolyticus, S. caprae, S. carnosus subspecies carnosus, S. carnosus subspecies utilis, S. chromogenes, S cohnii subspecies cohnii, S. cohnii subspecies urealyticum, S. condimenti, S. delphini, S epidermidis, S. equorum, S felis, S. gallinarum, S. haemolyticus, S. hominis subspecies hominis, S. hominis subspecies novobiosepticus, S. hyicus, S. intermedius, S. kloosii, S. lentus, S. lugdunensis, S. luntae, S. muscae, S. pasterui, S. piscifermentans, S. pulvereri, S. saccharolyticus, S. saprophyticus subspecies bovis, S. saprophyticus subspecies saprophyticus, S schleiferi subspecies coagulans, S. schleiferi subspecies schleiferi, S. sciuri subspecies carnaticus, S. sciuri subspecies sciuri, S. simulans, S vitulinus, S. warneri, and S. xylosus.
7. A polynucleotide or fragment thereof specifically hybridizing to an Enterococcus microorganism, wherein SEQ ID NO:1 is specific for E. avium, SEQ ID NO:2 is specific for E. casseliflavus, SEQ ID NO:3 is specific for E. cecorum, SEQ ID NO:4 is specific for E. columbae, SEQ ID NO:5 is specific for E. dispar, SEQ ID NO:6 is specific for E. durans, SEQ ID NO:7 is specific for E.faecalis, SEQ ID NO:8 is specific for E. faecium, SEQ ID NO:9 is specific for E. flavescens, SEQ ID NO:10 is specific for E. gallinarum, SEQ ID NO:11 is specific for E. hirae, SEQ ID NO:12 is specific for E. malodoratus, SEQ ID NO:13 is specific for E. mundtii, SEQ ID NO:14 is specific for E. pseudoavium, SEQ ID NO:17 is specific for E. raffinosus, SEQ ID NO:15 is specific for E. saccharolyticus, SEQ ID NO:18 is specific for E. seriolicida, SEQ ID NO:16 is specific for E. solitarius, and SEQ ID NO:19 is specific for E. sulfureus
8. A polynucleotide or fragment thereof specifically hybridizing to a microorganism of the genus Enterococci, wherein SEQ ID NOS:21-36 are specific for species in the Enterococci.
9. A polynucleotide or fragment thereof specifically hybridizing to a microorganism of the genus Lactococcus garvieae, wherein said polynucleotide is SEQ ID NO:20.
10. A polynucleotide or fragment thereof specifically hybridizing to a microorganism of the genus Streptococcus, wherein SEQ ID NOS:37-50 are specific for species in the Streptococci.
11. A polynucleotide or fragment thereof specifically hybridizing to a microorganism of the genus Abiotrophia, wherein SEQ ID NOS:51-53 are specific for species in the Abiotrophia.
12. A polynucleotide or fragment thereof specifically hybridizing to a microorganism of the genus Staphlococcus, wherein SEQ ID NOS:54-93 are specific for species in the Staphlococcus.
13. A DNA chip comprising at least one polynucleotide or a fragment thereof according to claims 7, 8, 9, 10, 11, or 12.
14. The method according to claim 1, wherein said fragment of sodA is sodAint.
15. A method for the identification of a gram positive bacterial species selected from the group consisting of Streptococci, Staphylococci, Abiotrophia and Enterococci comprising
selecting a polynucleotide of about 425 to 445 bp comprised between two conserved domains of SOD gene said polynucleotide having flanking regions consisting in two oligonucleotidic sequences and being specific for the genus or the species to be detected;
hybridizing the DNA of the sample with the polynucleotide;
washing the hybridized sample;
visualizing the reaction of hybridization with an electric or electronic or calorimetric system.
16. A kit for the detection of a gram positive bacteria present in a sample containing at least a polynucleotide in SEQ ID NOS: 1-94.
17. A 400 bp polynucleotide sequence obtained after amplification of a DNA template from a sample by using a pair of primers SEQ ID NOS:95 and 96, wherein said pair of primers is specific for the SOD gene of a gram positive bacteria.
18. The method of claim 15, wherein the polynucleotide is about 429 bp and is specific for a Staphylococi species.
19. The method of claim 15, wherein the polynucleotide is about 435 and is specific for Streptococci species.
20. The method of claim 15, wherein the polynucleotide is about 438 bp and is specific for Enterococci species.
21. The method of claim 15, wherein the polynucleotide is about 438 to 441 bp and is specific for Abiotrophia species.
TABLE 1 Enterococcal type strains used in this study Other sodAint Straina designationb accession n° E. avium CIP 103019 T ATCC 14025 AJ387906 E. casseliflavus CIP 103018 T ATCC 25788 AJ387907 E. cecorum CIP 103676 T ATCC 43198 AJ387908 E. columbae CIP 103675 T ATCC 51263 AJ387909 E. dispar CIP 103646 T ATCC 51266 AJ387910 E. durans CIP 55.125 T ATCC 19432 AJ387911 E. faecalis CIP 103015 T ATCC 19433 AJ387912 E. faecium CIP 103014 T ATCC 19434 AJ387913 E. flavescens CIP 103525 T ATCC 49996 AJ387914 E. gallinarum CIP 103013 T ATCC 49573 AJ387915 E. hirae CIP 53.48 T ATCC 8043 AJ387916 E. malodoratus CIP 103012 T ATCC 43197 AJ387917 E. mundtii CIP 103010 T ATCC 43186 AJ387918 E. pseudoavium CIP 103647 T ATCC 49372 AJ387919 E. saccharolyticus CIP 103246 T ATCC 43076 AJ387920 E. solitarius CIP 103330 T NCTC 12193 AJ387921 E. raffinosus CIP 103329 T ATCC 49427 AJ387922 E. seriolicida CIP 104369 T ATCC 49156 AJ387923 E. sulfureus CIP 1043737 T DSM 6905 AJ387924 L. garvieae CIP 102507 T DSM 20684 AJ387925
TABLE 2 Identification of various enterococcal strains by sequencing the sodAintfragment. Strain Relevant characteristicsa Bacterial speciesb Accession number NEM1616 E. faecalis; vanA E. faecalis (99.5) AJ387927 NEM1617 E. faecalis; vanA E. faecalis (98.6) AJ387928 NEM1618 Enterococcus sp. E. durans (99.3) AJ387929 NEM1619 E. hirae E. durans (99.5) AJ387930 NEM1620 Enterococcus sp. E. durans (99.1) AJ387931 NEM1621 E. hirae E. hirae (99.8) AJ387932 NEM1622 Enterococcus sp. E. hirae (99.5) AJ387933 NEM1623 E. casseliflavus E. casseliflavus (99.1) AJ387934 NEM1624 E. faecium; vanB E. faecium (99.5) AJ387935 NEM1625 E. faecium; vanA E. faecium (100) AJ387936 NEM1626 E. faecium; vanB E. faecium (99.8) AJ387937 NEM1627 E. faecium; multiply resistant strain E. faecium (99.8) AJ387938 NEM1628 E. faecium; multiply resistant strain E. faecium (99.8) AJ387939 NEM1629 Enterococcus sp. E. gallinarum (98.6) AJ387940 NEM1630 E. avium E. avium (100) AJ387941
TABLE 3 Identity matrix based on pairwise comparisons of sodAint fragments of enterococcal type strains % of identity with: Straina 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  1 C. avium 74.0 67.4 71.9 70.3 70.3 73.7 69.9 74.2 75.1 75.6 71.0 80.1 72.6 74.0 85.4 87.9 60.7 67.1  2 E. casseliflavus 66.4 70.8 72.6 72.4 77.9 72.4 99.5 83.1 78.5 77.4 71.5 73.5 74.0 76.7 76.7 66.4 75.6  3 E. cecorum 78.8 72.4 66.0 68.7 66.2 66.9 67.4 70.3 64.2 65.5 71.7 65.8 67.6 66.0 62.8 68.7  4 E. colombae 69.4 68.9 71.7 69.2 70.8 72.6 73.1 68.7 69.6 72.1 72.8 73.3 71.9 67.1 69.2  5 E. dispar 70.3 77.4 68.7 72.8 72.1 73.5 72.8 70.5 71.0 69.4 72.1 70.3 62.6 74.9  6 E. durans 73.1 81.3 72.4 76.3 84.9 80.1 69.6 72.8 70.5 71.5 73.3 62.1 73.7  7 E. faecalis 72.6 78.3 77.6 77.9 72.4 71.2 78.8 73.5 77.9 75.1 67.1 76.5  8 E. faecium 72.4 77.2 83.1 81.7 67.4 72.6 69.4 71.9 71.9 62.1 72.1  9 E. flavescens 83.1 78.3 77.2 72.1 72.8 74.4 77.2 76.9 65.8 74.9 10 E. gallinarum 80.8 78.5 73.3 76.0 73.5 77.4 75.1 66.2 76.7 11 E. hirae 83.6 71.5 73.3 73.5 77.4 76.7 63.5 75.3 12 E. mundtii 70.8 69.4 69.6 71.9 73.5 63.9 74.4 13 E. pseudoavium 70.5 69.2 81.7 80.4 62.8 65.3 14 E. saccharolyti- 72.4 75.1 71.0 62.1 76.7   cus 15 E. solitarius 74.2 72.8 64.8 72.1 16 E. malodoratus 87.9 63.5 70.5 17 E. raffinosus 64.6 67.6 18 E. seriolicida 61.6 19 E. sulfureus
US09/860,432 2000-05-19 2001-05-21 Methods for detecting and identifying a gram positive bacteria in a sample Abandoned US20020081606A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/860,432 US20020081606A1 (en) 2000-05-19 2001-05-21 Methods for detecting and identifying a gram positive bacteria in a sample

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20523700P 2000-05-19 2000-05-19
US09/860,432 US20020081606A1 (en) 2000-05-19 2001-05-21 Methods for detecting and identifying a gram positive bacteria in a sample

Publications (1)

Publication Number Publication Date
US20020081606A1 true US20020081606A1 (en) 2002-06-27

Family

ID=22761388

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/860,432 Abandoned US20020081606A1 (en) 2000-05-19 2001-05-21 Methods for detecting and identifying a gram positive bacteria in a sample

Country Status (3)

Country Link
US (1) US20020081606A1 (en)
AU (1) AU2001274412A1 (en)
WO (1) WO2001088186A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107641A1 (en) * 1999-03-10 2002-08-08 Schaeffer Anthony J. Methods and kits for managing diagnosis and therapeutics of bacterial infections
US20080118923A1 (en) * 2006-09-28 2008-05-22 Samsung Electronics Co., Ltd. Method and compositions for discriminating gram-negative and gram-positive bacteria
US20110200995A1 (en) * 2009-09-04 2011-08-18 Intelligent Medical Devices, Inc. Optimized probes and primers and methods of using same for the detection, screening, isolation and sequencing of vancomycin resistance genes and vancomycin resistant enterococci
CN116004865A (en) * 2022-08-16 2023-04-25 四川大学 A kind of primer combination of Streptococcus bovis and Coccidia bovis double target and its LAMP detection method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003302809A1 (en) 2002-12-06 2004-06-30 Innogenetics N.V. Detection, identification and differentiation of eubacterial taxa using a hybridization assay
CN108411002B (en) * 2018-05-22 2021-07-13 大连海洋大学 PCR primers and identification methods used to identify the hybrid sea urchin and sea urchin intermedius

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737248B2 (en) * 1996-01-05 2004-05-18 Human Genome Sciences, Inc. Staphylococcus aureus polynucleotides and sequences

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107641A1 (en) * 1999-03-10 2002-08-08 Schaeffer Anthony J. Methods and kits for managing diagnosis and therapeutics of bacterial infections
US7418399B2 (en) * 1999-03-10 2008-08-26 Illinois Institute Of Technology Methods and kits for managing diagnosis and therapeutics of bacterial infections
US20080319800A1 (en) * 1999-03-10 2008-12-25 Schaeffer Anthony J Method for the construction and utilization of a medical records system
US7627489B2 (en) 1999-03-10 2009-12-01 Illinois Institute Of Technology Method for the construction and utilization of a medical records system
US20080118923A1 (en) * 2006-09-28 2008-05-22 Samsung Electronics Co., Ltd. Method and compositions for discriminating gram-negative and gram-positive bacteria
US20110200995A1 (en) * 2009-09-04 2011-08-18 Intelligent Medical Devices, Inc. Optimized probes and primers and methods of using same for the detection, screening, isolation and sequencing of vancomycin resistance genes and vancomycin resistant enterococci
CN116004865A (en) * 2022-08-16 2023-04-25 四川大学 A kind of primer combination of Streptococcus bovis and Coccidia bovis double target and its LAMP detection method

Also Published As

Publication number Publication date
WO2001088186A3 (en) 2003-03-13
AU2001274412A1 (en) 2001-11-26
WO2001088186A2 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP4176146B2 (en) Specific and universal probes and amplification primers for the rapid detection and identification of common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
JP5221507B2 (en) Species-specific, genus-specific and universal probes and primers for the rapid detection and identification of common bacterial and fungal pathogens and related antibiotic resistance genes from clinical specimens for diagnosis in microbiology laboratories
RU2154106C2 (en) Simultaneous determination, identification and differentiation of eubacterial taxons using hybridization analysis
JP3109599B2 (en) Hybridization probe for detecting non-viral microorganisms derived from spacer region between 16S and 23S rRNA genes
JP3015462B2 (en) Probes and methods for detecting Listeria
JP4422019B2 (en) Microbe identification probe and identification method using the same
JPH11503921A (en) Universal target for species identification
CA2698476A1 (en) Method for detecting bacteria and fungi
JP2540023B2 (en) Detection and identification of mycobacteria
US7989170B2 (en) Method for the detection of bacterial species of the genera anaplasma/ehrlichia and bartonella
Hu et al. Simultaneous analysis of foodborne pathogenic bacteria by an oligonucleotide microarray assay
US20020081606A1 (en) Methods for detecting and identifying a gram positive bacteria in a sample
JP4717441B2 (en) Molecular level identification of bacteria of Streptococcus and related genera
EP0739987A2 (en) Oligonucleotides for detecting Salmonella species and detection process using the same
Chen et al. Identification and differentiation of Mycobacterium avium and M. intracellulare by PCR
JP2006509500A (en) Nucleic acid probes and broad range primers from the region of topoisomerase gene and methods of using them
KR100436741B1 (en) Genes for detecting bacteria and detection method by using the same
US20090253129A1 (en) Identification of usa300 community-associated methicillin-resistant staphylococcus aureus
EP2324052B1 (en) Marker of streptococcus anginosus / streptococcus constellatus (moac) and uses thereof
AU705198C (en) Specific and universal probes and amplification primers to rapidly detect and identify common bacterial pathogens and antibiotic resistance genes from clinical specimens for routine diagnosis in microbiology laboratories
EP1511860A1 (en) Improvements in and relating to a method of dna testing for------mycobacterium paratuberculosis strains
WO2000017381A1 (en) Pcr methods and materials
Class et al. Patent application title: ASSAYS AND KITS FOR SEROTYPING PSEUDOMONAS AERUGINOSA AND OLIGONUCLEOTIDE SEQUENCES USEFUL IN SUCH METHODS AND KITS Inventors: Thomas Emrich (Iffeldorf, DE) Thomas Emrich (Iffeldorf, DE) Michael Rudolf (Ittigen, CH) Holger Koch (Zurich, CH) Assignees: Kenta Biotech AG
Fan Longitudinal Analysis of Methicillin-resistant Staphylococcus aureus (MRSA) in a Hong Kong Teaching Hospital

Legal Events

Date Code Title Description
AS Assignment

Owner name: INSTITUT PASTEUR, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRIEU-CUOT, PATRICK;POYART, CLAIRE;REEL/FRAME:012335/0233

Effective date: 20010509

Owner name: INSERM, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRIEU-CUOT, PATRICK;POYART, CLAIRE;REEL/FRAME:012335/0233

Effective date: 20010509

AS Assignment

Owner name: INSTITUT PASTEUR, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNORS' EXECUTION DATES FILED ON 12-03-01. RECORDED ON REEL 012335 FRAME 0233;ASSIGNORS:TRIEU-CUOT, PATRICK;POYART, CLAIRE;REEL/FRAME:012898/0427

Effective date: 20010905

Owner name: INSERM, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNORS' EXECUTION DATES FILED ON 12-03-01. RECORDED ON REEL 012335 FRAME 0233;ASSIGNORS:TRIEU-CUOT, PATRICK;POYART, CLAIRE;REEL/FRAME:012898/0427

Effective date: 20010905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载