US20020077738A1 - Control device and control method for a vehicle - Google Patents
Control device and control method for a vehicle Download PDFInfo
- Publication number
- US20020077738A1 US20020077738A1 US10/058,383 US5838302A US2002077738A1 US 20020077738 A1 US20020077738 A1 US 20020077738A1 US 5838302 A US5838302 A US 5838302A US 2002077738 A1 US2002077738 A1 US 2002077738A1
- Authority
- US
- United States
- Prior art keywords
- speed
- torque
- change
- output shaft
- clutch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 33
- 230000009467 reduction Effects 0.000 claims abstract description 63
- 230000005540 biological transmission Effects 0.000 claims description 18
- 230000008569 process Effects 0.000 description 24
- 230000008878 coupling Effects 0.000 description 15
- 238000010168 coupling process Methods 0.000 description 15
- 238000005859 coupling reaction Methods 0.000 description 15
- 239000000446 fuel Substances 0.000 description 14
- 230000007423 decrease Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000007935 neutral effect Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/50—Architecture of the driveline characterised by arrangement or kind of transmission units
- B60K6/54—Transmission for changing ratio
- B60K6/547—Transmission for changing ratio the transmission being a stepped gearing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/19—Improvement of gear change, e.g. by synchronisation or smoothing gear shift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D25/00—Fluid-actuated clutches
- F16D25/06—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
- F16D25/062—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
- F16D25/063—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
- F16D25/0635—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
- F16D25/0638—Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/12—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
- F16H3/126—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches using an electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H63/00—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
- F16H63/40—Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
- F16H63/50—Signals to an engine or motor
- F16H63/502—Signals to an engine or motor for smoothing gear shifts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/48—Parallel type
- B60K2006/4825—Electric machine connected or connectable to gearbox input shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/10—Change speed gearings
- B60W2510/1015—Input shaft speed, e.g. turbine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0605—Throttle position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/10—Change speed gearings
- B60W2710/1011—Input shaft speed, e.g. turbine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H2003/0818—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts comprising means for power-shifting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
- F16H2061/0407—Synchronisation before shifting by control of clutch in parallel torque path
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H61/0403—Synchronisation before shifting
- F16H2061/0422—Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H2061/0425—Bridging torque interruption
- F16H2061/0429—Bridging torque interruption by torque supply with a clutch in parallel torque path
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
- F16H2061/0425—Bridging torque interruption
- F16H2061/0433—Bridging torque interruption by torque supply with an electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2306/00—Shifting
- F16H2306/40—Shifting activities
- F16H2306/54—Synchronising engine speed to transmission input speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/12—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/904—Component specially adapted for hev
- Y10S903/915—Specific drive or transmission adapted for hev
- Y10S903/917—Specific drive or transmission adapted for hev with transmission for changing gear ratio
- Y10S903/919—Stepped shift
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/945—Characterized by control of gearing, e.g. control of transmission ratio
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/946—Characterized by control of driveline clutch
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19219—Interchangeably locked
- Y10T74/19251—Control mechanism
Definitions
- FIG. 4 is a diagram showing a torque transmitting path after the end of the change-speed
- a motor 27 has an output shaft 26 to which a gear 24 having a clutch 25 is connected.
- the gear 24 is adapted to engage with the gear 7 all the time.
- the clutch 25 as used is of a dry single plate type which enables the transmission of the output torque of the motor 27 to the gear 24 .
- the control of the pressing pressure of the clutch 25 is performed by an actuator 29 which is hydraulically driven, and power transmission from the output shaft 26 to the input shaft 8 can be interrupted by adjusting the pressing pressure of the clutch 25 .
- the amount of intake air is controlled by the electronically controlled throttle 2 attached to an intake pipe (not shown), and the fuel of the amount corresponding to the amount of intake air is injected from a fuel injecting device (not shown). Also, ignition timing is determined on the basis of an air fuel ration defined by the amount of air and the amount of fuel as well as signals such as the number of revolution of the engine, Ne, and ignition is effected by an ignition device (not shown).
- the dog clutch (hub 17 ) is made the released condition to release the coupling between the gear 18 and the output shaft 20 , as shown in FIG. 3.
- the actuator 31 is controlled to press and couple the clutch 10 , thereby to transmit the torque of the engine 1 from the output shaft 3 through the clutch 4 , the input shaft 8 , the gear 5 , the gear 9 and the clutch 10 to the output shaft 20 .
- the gears 5 and 9 are used and the speed changing ratio becomes smaller.
- Step 506 it is determined whether an input/output shaft revolution number ratio Rch which is found by the engine revolution number Ne (input shaft revolution number Nin) and the output shaft revolution number No is within a predetermined range. If it is not within the predetermined range, the process proceeds to Step 506 , and if it is within the predetermined range, the process proceeds to Step 508 .
- the torque reduction correcting value during the change-speed is determined by the torque Tc of the clutch 10 and the inertia torque of the engine 1 , whereby it is possible to perform the torque matching control at the end of the change-speed independently of the torque reduction correcting control during the change-speed.
- revolution number controlling means 801 it is possible to couple the dog clutch to the second speed by controlling the revolution number of the input shaft 8 during the change-speed and it is also possible to improve speed changing ability by suppressing the inertia torque occurring at the time of the second speed coupling.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Transmission Device (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
At the time of the change-speed, by correcting the torque reducing portion of an output shaft during the change-speed, the revolution number of an input shaft is controlled on the basis of the corrected torque reduction correcting value. Also, the torque of said input shaft is adjusted at the end of the change-speed on the basis of said torque correcting value.
Description
- This invention relates to a control device for a vehicle and a control method for a vehicle.
- Japanese Patent Application Laid-Open No.61-45163 (1986) describes a control device for a vehicle using a gear type transmission. This control device is constructed to achieve smooth speed changing by including a friction clutch on a gear providing the minimum change-speed ratio to the gear type transmission, controlling the number of revolution of the input shaft of the transmission by sliding said friction clutch during the change-speed to synchronize it with the number of revolution of the output shaft of the transmission, and correcting torque reduction occurring during the change-speed with the torque transmitted by said friction clutch.
- However, in the prior art control device there is a problem that if during the change-speed the control of the number of revolution only by using the friction clutch, a occupant would receive a sense of incompatibility due to fluctuation of the torque of the output shaft corrected by the friction clutch.
- Also, there is a problem that, of the end of the speed, if the torque reduction correcting value during the change-speed corrected by the friction clutch does not match to the torque of the input shaft which is transmitted to the output shaft by a claw clutch, a torque step is caused at the time of the change-speed whereby shaft vibration is generated after the change-speed.
- An object of this invention is to improve transmission ability for a vehicle by suppressing the fluctuation of the torque of the output shaft caused from the control of the number of revolution during the change-speed and by reducing a torque step at the end of the change-speed.
- This invention relates to a control device for a vehicle wherein it has torque transmitting means between the input shaft of a gear type transmission and the output shaft thereof, the torque transmitting means of at least one speed changing stage is comprised by a friction clutch, the torque transmitting means of the other speed changing stages are comprised by a dog clutch, and said friction clutch is controlled when the change-speed is effected from one speed changing stage to the other changing stage, characterized in that said control device comprises torque reduction correcting means for correcting, at the time of said change-speed, the torque reducing part of said output shaft occurring during the change-speed, and revolution number controlling means for controlling the revolution number of said input shaft on the basis of the torque reduction correcting value corrected by said torque reduction correcting means.
- Further, the control device according to this invention is characterized in that it further comprises torque adjusting means for adjusting the torque of said input shaft at the end of the change-speed on the basis of said torque reduction correcting value.
- Also, this invention relates to a control method for a vehicle wherein torque transmitting means is attached between the input shaft of a gear type transmission and the output shaft thereof, the torque transmitting means of at least one speed changing stage is comprised by a friction clutch, the torque transmitting means of the other speed changing stages are comprised by a dog clutch, and said friction clutch is controlled when the change-speed is effected from one speed changing stage to the other changing stage, characterized in that said control method comprises the steps of correcting, at the time of said change-speed, the torque reducing part of said output shaft occurring during the change-speed, and controlling the revolution number of said input shaft on the basis of the torque reduction correcting value corrected by said torque reduction correcting mean.
- Further, the control method according to this invention is characterized in that it further comprises the step of adjusting the torque of said input shaft at the end of the change-speed on the basis of said torque reduction correcting value.
- FIG. 1 is a block diagram of a vehicle system and its control device which is one embodiment of this invention;
- FIG. 2 is a diagram showing a torque transmitting path in case where the vehicle is running by the driving power of an engine;
- FIG. 3 is a diagram showing a torque transmitting path during change-speed;
- FIG. 4 is a diagram showing a torque transmitting path after the end of the change-speed;
- FIG. 5 is a flow chart of control processes in the torque reduction correcting means of the control device according to one embodiment of this invention;
- FIG. 6 is a flow chart of control processes in the revolution number controlling means and the torque adjusting means of the control device according to one embodiment of this invention;
- FIG. 7 is a time chart showing the control state at the time of the change-speed in one embodiment of this invention;
- FIG. 8 is a block diagram of a control device for a vehicle according to the other embodiment of this invention;
- FIG. 9 is a diagram showing a torque transmitting path during the change-speed in the other embodiment of this invention;
- FIG. 10 is a flow chart showing control processes in the revolution number means and the torque adjusting means of the control device for the vehicle according to the other embodiment of this invention; and
- FIG. 11 is a time chart showing a control state during the change-speed in the other embodiment of this invention.
- Embodiments of this invention will be explained in detail on the basis of the drawings.
- FIG. 1 is a block diagram for a vehicle system and its control device according to one embodiment of this invention.
- An
engine 1 includes an electronically controllingthrottle 2 for adjusting engine torque and a revolution orengine speed sensor 37 for measuring the number of revolution of theengine 1, Ne. Thus, it is possible to control the output torque of the engine with a high degree of accuracy. - A
clutch 4 is attached between theoutput shaft 3 of theengine 1 and theinput shaft 8 of agear type transmission 50 so that the torque of theengine 1 can be transmitted to theinput shaft 8. The clutch 4 as used is of a dry single plate type, in order to control the pressing pressure of the clutch 4 a hydraulically drivenactuator 32 is utilized, and power transmission from theoutput shaft 3 of theengine 1 to theinput shaft 8 can be interrupted by adjusting the pressing pressure of theclutch 4. - The
input shaft 8 hasgears gear 5 is used also as a detector for detecting the number of revolution of theinput shaft 8, Nin. It is possible to detect the revolution of theinput shaft 8, by detecting the movement of the teeth of thegear 5 with asensor 36. - A
motor 27 has anoutput shaft 26 to which agear 24 having a clutch 25 is connected. Thegear 24 is adapted to engage with thegear 7 all the time. The clutch 25 as used is of a dry single plate type which enables the transmission of the output torque of themotor 27 to thegear 24. The control of the pressing pressure of the clutch 25 is performed by anactuator 29 which is hydraulically driven, and power transmission from theoutput shaft 26 to theinput shaft 8 can be interrupted by adjusting the pressing pressure of the clutch 25. - The
gear type transmission 50 includes anoutput shaft 20 which comprises agear 18 having agear 14 and asynchronizer ring 16, agear 11 having agear 12 and asynchronizer ring 15, ahub 17 directly coupling thegear 18 and agear 11 to theoutput shaft 20, and a sleeve (not shown). Thegear 18 and thegear 11 have respective stoppers (not shown) for prohibiting from any movement thereof in the axial direction on theoutput shaft 20. Further, thishub 17 has inside grooves (not shown) engaging with a plurality of grooves (not shown) of theoutput shaft 20, whereby thehub 17 is coupled to theoutput shaft 20 so that the former can relatively move axially with respect to the latter but any relative movement in the rotational direction is limited. Therefore, the torque of thehub 17 is transmitted to theoutput shaft 20. - In order to transmit the torque from the input shaft to the
hub 17, it is needed to move thehub 17 and the sleeve in the axial direction with respect to theoutput shaft 20 to couple directly thehub 17 to thegear 14 or thegear 12 through thesynchronizer ring 16 or thesynchronizer ring 15. A hydraulically drivenactuator 30 is used to move thehub 17 and the sleeve. - The
hub 17 is also used as a detector for detecting the number of revolution No of theoutput shaft 20. In this case, it is possible to detect the revolution number of theoutput shaft 20 by detecting the revolution of thehub 17 with asensor 13. - A claw clutch mechanism acting as torque transmitting means comprising the
hub 17 and the sleeve; thegear 14 and thesynchronizer ring 16; and thegear 12 andsynchronizer ring 15 is referred to a dog clutch. - The mechanism enables to transmit energy from a power source such as the
engine 1 to atire 23 through adifferential device 21 and anaxle 22 with high efficiency, thereby to aid in decreasing fuel consumption. - Further, the
output shaft 20 includes agear 9 having a clutch 10. The clutch 10 is constituted by a wet type multiple plate type friction clutch so that the torque of theinput shaft 8 can be transmitted to theoutput shaft 20. The control of the pressing pressure of the clutch 10 is performed by anactuator 32 which is hydraulically driven, and power transmission from theinput shaft 8 to theoutput shaft 20 can be interrupted by adjusting this pressing pressure. - The speed changing ratio of the
gear 5 and thegear 9 is made smaller than the speed changing ratio of thegear 7 and thegear 18, and the speed changing ratio of thegear 6 and thegear 11. - In the
engine 1, the amount of intake air is controlled by the electronically controlledthrottle 2 attached to an intake pipe (not shown), and the fuel of the amount corresponding to the amount of intake air is injected from a fuel injecting device (not shown). Also, ignition timing is determined on the basis of an air fuel ration defined by the amount of air and the amount of fuel as well as signals such as the number of revolution of the engine, Ne, and ignition is effected by an ignition device (not shown). - As the fuel injection device, there are an intake port fuel injecting system in which fuel is injected to an intake port, and a cylinder fuel injecting system in which fuel is injected directly into a cylinder, but it is preferable to select a system which enables to decrease fuel consumption and is superior to exhaust gas ability, comparing operation areas (areas determined by the engine torque and the engine revolution number) required by the engine.
- Next, a
control device 100 will be explained for controlling theengine 1, theactuators motor 27. - The
control device 100 receives as input signals an acceleration pedal controlling amount signal, a shift lever position signal Ii, an engine revolution number signal Ne detected by asensor 37, an input shaft revolution number signal Nin detected by asensor 36 and an output shaft revolution number signal No detected by asensor 13. In response thereto, thecontrol device 100 computes the torque Te of theengine 1, and sends it to acontrol device 34 through a LAN constituting communication means. - The
control device 34 computes the degree of throttle valve opening, the amount of fuel and ignition timing for achieving the received engine torque, and controls respective actuators (for example, the electronically controlled throttle 2). - Also, the
control device 100 computes the torque and the number of revolution of themotor 27, and sends them to acontrol device 35 through the LAN to control the motor. Thecontrol device 35 functions to charge abattery 28 with power obtained from themotor 27 and supply a power from thebattery 28 to themotor 27 for driving it. - The
control device 100 comprises vehiclespeed detecting means 101, change-speed command generating means, torquereduction correcting means 103, revolution number controlling means 104 and torque adjusting means 105. - The vehicle speed detecting means101 computes the vehicle speed Vsp on the basis of the output shaft revolution number No detected by the sensor 13 (in this case, the computation is performed as Vsp=f(Nm) using function f).
- The change-speed command generating means102 determines a speed changing command Ss on the basis of the input accelerator pedal controlling amount and the vehicle speed Vsp found by the vehicle speed detecting means 101. The speed changing command Ss is selected from values stored in memory means (not shown) within the
control device 100, said values being found by a pre-experiment or a simulation as ones giving the maximum efficiency to theengine 1 andmotor 27. - Now, the control of the clutch10 will be explained when the speed changing stages is altered (speed changed) from first (1) speed operation state to second speed (2) operation state, using FIG. 2, FIG. 3 and FIG. 4. The control of the clutch 10 is effected by controlling the
actuators 29 to 32 on the basis of the commands from thecontrol device 100 so that thecontrol device 33 controls thegear type transmission 50. - FIG. 2 is a view for explaining the first state operation speed in case where the vehicle is intended to be accelerated when it runs with the driving force of the
engine 1. In the drawings, dotted arrow lines indicate torque transmitting paths. As one example, it is assumed where theclutch 4 has been coupled and the dog clutch (hub 17) has been coupled to thegear 18. In this condition, the torque of theengine 1 is transmitted to theoutput shaft 20 trough the clutch 4, theinput shaft 8, thegear 7 and thegear 18. At that time, the clutch 10 is in the released condition. - When the change-speed command Ss is output by the change-speed command generating means102, the dog clutch (hub 17) is made the released condition to release the coupling between the
gear 18 and theoutput shaft 20, as shown in FIG. 3. At the same time, theactuator 31 is controlled to press and couple the clutch 10, thereby to transmit the torque of theengine 1 from theoutput shaft 3 through theclutch 4, theinput shaft 8, thegear 5, thegear 9 and the clutch 10 to theoutput shaft 20. Thus, when the torque of theengine 1 is transmitted to theaxle 22 with the pressing pressure of the clutch 10 to make it the driving torque for the vehicle, thegears engine 1 becomes larger and the number of revolution decreases, whereby the speed changing ratio between theoutput shaft 20 and theinput shaft 8 leaves the speed changing ratio of the first speed and approaches to the speed changing ratio of the second speed (the direction that the speed changing ratio becomes smaller). - Then, when the speed changing ratio between the
input shaft 8 and theoutput shaft 20 becomes the change-speed ratio of the second speed, the dog clutch (hub 17) is coupled to thegear 11 to couple thegear 11 to theoutput shaft 20, as shown in FIG. 4. As soon as this coupling is completed, theactuator 31 is controlled so that the change-speed from the first speed to the second speed is completed by releasing the pressing pressure of the clutch 1O. In this second speed operation state, the torque of theengine 1 is transmitted through the transmitting path passing theoutput shaft 3 of theengine 1, theclutch 4, theinput shaft 8, thegear 6, thegear 11, thehub 17 and theoutput shaft 20 in the order. - From the above-mentioned explanation, it is appreciated that although at the time of the change-speed a neutral state is created by releasing the first speed condition, since at that time the torque of the
engine 1 is adapted to be transmitted to theaxle 22 by the clutch 10 and thegears - Now, a control method at the time of the change-speed in the vehicle control device of this embodiment will be explained by using FIG. 5 to FIG. 7.
- First, control processes in the torque
reduction correcting means 103 will be explained. - FIG. 5 is a flow chart for the control processes in the torque
reduction correcting means 103. -
Step 501 - In this step, a change-speed command Ss output from the change-speed command generating means102 is read.
-
Step 502 - In this step, the torque Tel of the
engine 1 before the change-speed (during the first speed), received by thecontrol device 34 through the LAN is read. -
Step 503 - In this step, the torque Tout1 of the
output shaft 20 before the change-speed (during the first speed) is computed on the basis of the torque Tel of theengine 1 before the change-speed, read inStep 502. - In this step, the FF (Feed Forward) target torque Tc_ff of the clutch10 is computed on the basis of the torque Tout1 of the
output shaft 20 computed inStep 503. Also, assuming that the change-speed ratio at the first speed is referred to R1, the change-speed ratio at the second speed is referred to R2, the engine revolution number before the change-speed is referred to Ne1 and the engine revolution number after the change-speed (at the time of the second speed) is referred to Ne2, the engine revolution number Ne2 after the change-speed may be presumed as Ne2 Ne1×(R2/R1). Further, it is possible to find the engine torque after the change-speed in response to the presumed engine revolution number Ne2 and the amount of throttle opening, and the output shaft torque after the change-speed,Tout 2 can be also presumed. It is possible to compute the FF target torque Tc_ff of the clutch 10 depending upon this presumed torque Tout2. -
Step 505 - In this step, it is determined whether an input/output shaft revolution number ratio Rch which is found by the engine revolution number Ne (input shaft revolution number Nin) and the output shaft revolution number No is within a predetermined range. If it is not within the predetermined range, the process proceeds to Step506, and if it is within the predetermined range, the process proceeds to Step 508.
-
Step 506 - In this step, in case where during the change-speed the input/output shaft revolution number ratio Rch is not within the predetermined range, the torque reduction correcting value during the change-speed, Tc_ref is computed as Tc_ref=Tc_ff.
-
Step 507 - In this step, in case where during the change-speed the input/output shaft revolution number ratio Rch is within the predetermined range, by feeding back an error between the target revolution number ratio corresponding to the change-speed ratio of the second speed and the input/output shaft revolution number ratio Rch, the revolution number ratio FB (Feed Back) target torque Tc_fb is computed. At that time, the revolution number ratio FB target Tc_fb of the clutch10 may be computed by computing the target engine revolution number (input shaft revolution number) depending upon the target revolution number ratio and feeding back the engine revolution number Ne.
-
Step 508 - In this step, the torque reduction correcting value Tc_ref during the change-speed is computed as Tc_ref=Tc_ff+Tc_fb.
-
Step 509 - In this step, the torque reduction correcting value Tc_ref during the change-speed Tc_ref found in
Step 506 andStep 508 is output as the target torque of the clutch 10. The output torque reduction correcting value Tc_ref is sent to thecontrol device 33 through the LAN. - The
control device 33 is a control device for driving hydraulically theactuators 29 to 33, and controls theactuator 31, thereby to correct any torque reducing part during the change-speed on the basis of the value of Tc_ref by adjusting the pressing pressure of the clutch 10. - As explained above, in the torque reduction correcting means, it is possible to improve change-speed ability by correcting the torque reducing portion of the
output shaft 20 occurring during the change-speed. - Next, control processes in the revolution number controlling means104 and the torque adjusting means 105 will be explained.
- FIG. 6 is a flow chart for the control processes in the revolution number controlling means104 and the torque adjusting means 105.
-
Step 601 - In this step, it is determined whether the input/output shaft revolution number ratio Rch found on the basis of the engine revolution number Ne (input shaft revolution number Nin) and the output shaft revolution number No is within a predetermined range. If it is not within the predetermined range, the process proceeds to Step602 in which control processes are preformed by the revolution number controlling means 104, and if it is within the predetermined range, the process proceeds to Step 603 in which control processes are performed by the torque adjusting means 105.
- First, control processes in the revolution number controlling means104 which are effected in
Step 602 to Step 604 will be explained. -
Step 602 - In this step, the torque reduction correcting value Tc_ref found according to Tc_ref=Tc_ff is read.
-
Step 603 - In this step, the target torque of the
engine 1, Te_ref1 achieving the revolution number Ne of theengine 1, Ne giving the predetermined input/output shaft revolution number ratio Rch is computed on the basis of the torque reduction correcting value Tc_ref as read inStep 602. -
Step 604 - In this step, the target torque Te_ref1 of the
engine 1 found inStep 603 is output. The output target torque Te_ref1 of theengine 1 is sent to thecontrol device 34 through the LAN. - The
control device 34 controls the electronically controlledthrottle 2 so that the target torque Te-ref1 of theengine 1 is achieved. - Also, in the revolution number controlling means104, in order to achieve the target torque Te_ref1 of the
engine 1, the air fuel ratio of theengine 1 may be controlled, or ignition timing may be controlled. - As explained above, in the embodiment, it is possible to couple the dog clutch as the second condition by controlling the revolution number of the
input shaft 8 during the change-speed using the revolution number controlling means 104, and also to improve change-speed ability by controlling inertia torque at the time of the coupling to the second speed. - Next, control processes in the torque controlling means105 effected in
Step 605 to Step 607 will be explained. -
Step 605 - In this step, the torque reduction correcting value Tc_ref found according to Tc_ref=Tc_ff+Tc_fb is read.
-
Step 606 - In this step, the target torque Te_ref2 of the
engine 1, making smaller a deviation between the output shaft torque after the change-speed and the torque reduction correcting value Tc_ref is computed on the basis of the torque reduction correcting value Tc_ref read inStep 605. -
Step 607 - In this step, the target torque Te_ref2 of the
engine 1 found inStep 606 is output. The output target torque Te_ref2 of the engine1 is sent to thecontrol device 34 through the LAN. - The
control device 34 controls the electronically controlledthrottle 2 so that the target torque Te_ref2 of theengine 1 is achieved. - Also, in the torque adjusting means105, in order to achieve the target torque Te_ref2 of the
engine 1, the air fuel ratio of theengine 1 may be controlled, or ignition timing may be controlled. - As explained above, in the torque adjusting means105, it is possible to make smaller the deviation between the torque reduction correcting value during the change-speed and the torque of the
output shaft 20 after the change-speed by controlling the torque of theinput shaft 8 at the end of the change-speed, and also it is possible to improve speed changing ability by decreasing the torque step thereby to restrain any shaft vibration or fluctuation after the change-speed. - Next, the operation at the time of the change-speed will be explained.
- FIG. 7 is a time chart showing the control condition at the time of the change-speed. In FIG. 7, (A) shows a speed changing command Ss, (B) a shift lever position corresponding to a dog clutch position, (C) the input/output shaft revolution number ratio Rch , (D) the degree of throttle openingθ, (E) the torque Tc of the clutch10, and (F) the torque Tout of the
output shaft 20. Also, the axis of abscissa represents time. - As shown in (A), when during the driving at the first speed the change-speed command Ss instructing the second speed is output at point a, the speed changing control is started, and as shown in (E) the torque Tc of the clutch10 gradually increases.
- As the torque Tc of the clutch10 gradually increases, as shown in (F) the torque Tout of the
output shaft 20 gradually decreases and at point b, the dog clutch which has been coupled at the first speed side becomes releasable condition. This is because due to the torque to be transmitted with thegears gear - When the dog clutch becomes the releasable condition, the dog clutch which has been coupled at first speed side is released by the control of the
actuator 30, and the shift lever position Ii becomes a neutral state (during the change-speed), whereby the actual change-speed is initiated. - When the shift lever position Ii becomes the neutral state, as shown in (E) the control of the clutch10 for correcting the torque reduction part occurring during the change-speed is started, and the
actuator 31 is controlled in accordance with the value of the target torque Tc_ref=Tc_ff of the clutch 10 output from the torquereduction correcting means 103, whereby as shown in (F) any torque reduction part of theoutput shaft 20 during the change-speed is corrected. - At that time, since the torque transmitted by the clutch10 becomes equal to the torque of the
output shaft 20, it is preferable that the target torque Tc_ref of the clutch 10 has a smooth property to reduce the sense of discomfort which an occupant would receive. Also, it is needed to control, during the change-speed, the input/output shaft revolution number ratio Rch rapidly and smoothly so that it becomes the speed changing ratio R2 of the second speed. - Therefore, in order to obtain the target torque Te_ref1 of the
engine 1 output by the revolution number controlling means 104, the engine revolution number Ne is adjusted by controlling the throttle opening so that it becomesθ=θ_ref1 as shown in (D), whereby the input/output revolution number ratio Rch is caused to be close to the speed changing ratio R2 of the second speed. - By such control of the clutch10 and the electronically controlled
throttle 2, as shown in (C) the input/output shaft revolution number ratio Rch becomes Rch=R2 at point c, but it is preferable that to cause the dog clutch to couple, the engine revolution number Ne is changed toward its increase, thereby to match the input/output shaft revolution number ratio Rch to the speed changing ratio R2. This is disadvantageous that since the number of revolution No of theoutput shaft 20 has been increased by the torque reduction correcting value corrected during the change-speed, if the dog clutch is tried to be coupled at the time when the revolution number of theinput shaft 8 is in the direction of its decrease, torque interference occurs at the biting portions of the dog clutch, which makes the coupling defficult. This is because the way by which the dog clutch is coupled in the direction in which the number of revolution of theinput shaft 8 increases gives lesser torque interference. - Since after point c the relationship between Rch and R2 becomes Rch<R2, it is needed to increase the input/output shaft revolution number ratio Rch. However, since just before the coupling (between point c and point d), with the control of the engine torque Te a slight delay occurs in its response, it is preferable to adjust the input/output shaft revolution number ratio Rch with the torque of the clutch 10. To this end, during the period from point c to point d, the revolution number ratio FB target torque Tc_fb depending upon the deviation between the input/output shaft revolution number ratio Rch and the speed changing ratio R2 at the second speed is added, thereby to set the target torque of the clutch 10 to Tc_ref=Tc_ff+Tc_fb.
- As described above, by feeding back the input/output shaft revolution number ratio during only a period in which the deviation between the input/output shaft revolution number ratio Rch and the speed changing ratio at the second speed is small, it is possible to restrain, to the minimum, the torque variation of the torque reduction correcting value occurring during the change-speed and it is possible to assuage the sense of discomfort which the occupant receives. By such revolution number ratio FB control of the clutch10, the relationship of Rch R2 occurs in the direction in which the input/output shaft revolution number ratio Rch increases, and the dog clutch becomes the condition in which it can be coupled at the second speed.
- When the dog clutch becomes the condition in which it can be coupled at the second speed, the control of the
actuator 30 results in the coupling of the dog clutch at the second speed. However, at that time, it is preferable that by make smaller the deviation between the torque reduction correcting value Tc_ref-Tc_ff+Tc_fb during the change-speed and the torque of theoutput shaft 20 after the change-speed (after the coupling at the second speed), the torque step of theoutput shaft 20 at the end of the change-speed is reduced, thereby to suppress the occurrence of the shaft vibration. - Since the torque reduction correcting value during the change-speed is determined by the torque Tc of the clutch10 and the torque of the
output shaft 20 after the change-speed is determined by the torque Te of theengine 1 and the speed changing ratio R2 at the second speed, between point c and point d the throttle opening is controlled so that it becomes θ=θ_ref2, so as thereby to achieve the target torque Te_ref2 of theengine 1. Since during the change-speed the clutch 10 is under a slippage condition, if the torque Te of theengine 1 is larger than a predetermined value, the torque reduction correcting value during the change-speed is determined by the torque Tc of the clutch 10 and the inertia torque of theengine 1, whereby it is possible to perform the torque matching control at the end of the change-speed independently of the torque reduction correcting control during the change-speed. - When at point d the actual change-speed is completed by the fact that the dog clutch is coupled to the second speed, the throttle openingθ is returned gradually to the opening before the change-speed and at point e the speed changing control is finished.
- As explained above, in accordance with this embodiment, in the speed changing operation by finding the torque reduction correcting value of the
output shaft 20 during the change-speed, controlling the revolution number of theinput shaft 8 on the basis of this torque reduction correcting value, and at the end of the change-speed adjusting the torque of theinput shaft 8, the torque variation of thetransmission output shaft 20 can be suppressed. - Next, a construction of the control device for a vehicle according to the other embodiment of this invention will be explained using FIG. 8 to FIG. 11.
- FIG. 8 is a block diagram for the control device according to this embodiment. Since the overall system construction of the vehicle is the same as one in the embodiment shown in FIG. 1, its explanation is abbreviated. Also, constructive parts in this embodiment equivalent to the constructive parts in the embodiment in FIG. 1 will be explained affixing thereto the same reference numerals.
- A
control device 800 comprises the vehiclespeed detecting means 101, the change-speed command generating means 102, the torquereduction correcting means 103, revolution number controlling means 801 and torque adjusting means 802. - Since the control processes preformed in the vehicle
speed detecting means 101 and the change-speed command generating 102 are similar to those in the embodiment shown in FIG. 1, the explanation therefor is abbreviated. - Now, the control for the clutch10 and the
motor 27 at the time when the change-speed is carried out from the first speed operation state to the second speed operation state will be explained using FIG. 9. - When the change-speed command Ss is output by the25 change-speed command generating means 102, the dog clutch (hub 17) is made the uncoupled condition to release the coupling between the
gear 18 and theoutput shaft 20, as shown in FIG. 9. At that time, the clutch 25 has been made the coupled condition by the control of theactuator 29. At that time, the torque of themotor 27 is transmitted along a motor torque transmitting path passing theoutput shaft 26 of themotor 27, the clutch 25, thegear 24, thegear 7, theinput shaft 8, thegear 5, thegear 9, the clutch 10 and theoutput shaft 20 in the order, whereby the revolution number control and the torque adjustment for theinput shaft 8 by themotor 27 becomes possible. - During the change-speed, the torque of the
engine 1 is transmitted to theoutput shaft 20 through thegears actuator 31. By this pressing pressure for the clutch 10 the torque of theengine 1 is transmitted to theaxle 22 to be used as the driving torque of the vehicle, and the revolution number of theengine 1 is decreased because the load of theengine 1 becomes larger as a result of the small speed changing ratio by the use of thegears output shaft 20 and theinput shaft 8 approaches the speed changing ratio of the second speed (the sense in which it becomes smaller) from the speed changing ratio of the first speed. - At that time, the torque of the
engine 1 is transmitted along a transmitting path passing theoutput shaft 3 of theengine 1, theclutch 4, theinput shaft 8, thegear 5, thegear 9, the clutch 10 and theoutput shaft 20 in the order. Then, when the speed changing ratio between theinput shaft 8 and theoutput shaft 20 becomes the speed changing ratio of the second speed, thegear 11 and theoutput shaft 20 are coupled by coupling the dog clutch to thegear 11. As soon as the dog clutch is coupled to the second speed state, theactuator 31 is controlled to release the pressing pressure of the clutch 10, whereby the change-speed is completed. - As mentioned above, although at the time of the change-speed the neutral state occurs by releasing the first speed, since at that time the torque of the
engine 1 and themotor 27 is transmitted to theaxle 22 through theoutput shaft 20 by the clutch 10 and thegear - Now, a control method at the time of the change-speed in the control device for a vehicle according to this embodiment will be explained using FIG. 10 and FIG. 11. Incidentally, since the control processes in the torque
reduction correcting means 103 are equivalent to those explained using FIG. 5, the explanation therefor is abbreviated. - First, control processes in the revolution number controlling means801 and the torque adjusting means 802 will be explained using FIG. 10. FIG. 10 is a flow chart for the control processes performed in the revolution number controlling means 801 and the torque adjusting means 802.
- Step1001
- In this step, it is determined whether the input/output shaft revolution number ratio Rch found on the basis of the engine revolution number Ne (input shaft revolution number Nin) and the output shaft revolution number No is within a predetermined range. If it is not within the predetermined range, the process proceeds to Step1002 in which the control by the revolution number controlling means 801 is preformed, and if it is within the predetermined range, the process proceeds to Step 1005 in which the control process by the torque adjusting means 802 is performed.
- First, control processes in the revolution number controlling means801 which are performed in Step 1002 to Step 1004 will be explained.
- Step1002
- The torque reduction correcting value Tc_ref found by Tc_ref=Tc_ff is read.
- Step1003
- The target torque Tm_ref1 of the
motor 27 which achieves the revolution number Ne of theengine 1 effectuating a predetermined input/output shaft revolution Rch is computed on the basis of the torque reduction correcting value Tc_ref read in Step 1002. - Step1004
- In this step, the target torque Tm_ref1 of the
motor 27 found in Step 1003 is output. The outputtarget torque Tm_ref 1 of themotor 27 is sent to thecontrol device 35 through the LAN. - The
control device 35 controls themotor 27 and thebattery 28 to achieve the target torque Tm_ref1 of themotor 27. - As explained above, in the revolution number controlling means801, it is possible to couple the dog clutch to the second speed by controlling the revolution number of the
input shaft 8 during the change-speed and it is also possible to improve speed changing ability by suppressing the inertia torque occurring at the time of the second speed coupling. - Next, control processes in the torque adjusting means802 preformed in Step 1005 to Step 1007 will be explained.
- Step1005
- In this step, the torque reduction correcting value Tc_ref fouded by Tc_ref=Tc_ff+Tc_fb is read.
- In this step, on the basis of the torque reduction correcting value Tc_ref read in Step1005, the target torque Tm_ref2 of the
motor 27 which makes smaller the deviation between the output shaft torque after the change-speed and the torque reduction correcting value Tc_ref is computed. - Step1007
- In this step, the target torque Tm_ref2 of the
motor 27 found in Step 1006 is output. The output target torque Tm_ref2 of themotor 27 is sent to thecontrol device 35 through the LAN. - The
control device 35 controls themotor 27 and thebattery 28 to achieve the target torque Tm_ref2 of themotor 27. - As explained above, in the torque adjusting means802, by controlling the torque of the
input shaft 8 at the end of the change-speed, it is possible to make smaller the deviation between the torque reduction correcting value during the change-speed and the torque of theoutput shaft 20 after the change-speed, and it is also possible to improve speed changing ability by reducing the torque step, thereby to suppress any shaft vibration occurring after the change-speed. - Next, the operation at the time of change-speed will be explained.
- FIG. 11 is a time chart showing a control state at the time of the change-speed. In FIG. 11, (A) indicates a change-speed command Ss, (B) a shift lever position Ii corresponding to a dog clutch position, (C) an input/output shaft revolution number ratio Rch, (D) the torque Tm of the
motor 27, (E) the torque Tc of the clutch 10 and (F) the torque Tout of theoutput shaft 20. Also, the abscissa of this time chart indicates time. - As shown in (A), when the speed changing command Ss instructing the second speed is output at point a during traveling at the first speed, speed changing control is started, whereby as shown in (E) the torque Tc of the clutch10 gradually increases.
- As the torque Tc of the clutch10 increases, as shown in (F) the torque Tout of the
output shaft 20 gradually decreases and at point b the dog clutch which is being coupled at the first speed side becomes a releasable state. This is because by the torque transmitted with thegears gear - When the dog clutch becomes the releasable state, by the control of the
actuator 30 the dog clutch which has been coupled at the first speed side is released, whereby as shown in (B) the shift lever position Ii becomes a neutral state (during the change-speed) and the actual change-speed is started. - When the shift lever position Ii becomes the neutral state, as shown in (E) the control of the clutch10 for correcting the torque reduction part occurring during the change-speed is started, and the
actuator 31 is controlled in accordance with the value of the target torque Tc_ref=Tc_ff of the clutch 10 output from the torquereduction correcting means 103, whereby as shown in (F) any torque reduction part of theoutput shaft 20 during the change-speed is corrected. - At that time, since the torque transmitted by the clutch10 becomes equal to the torque of the
output shaft 20, it is preferable that the target torque Tc_ref of the clutch 10 has a smooth property to reduce the sense of discomfort which an occupant would receive. Also, it is needed to control, during the change-speed, the input/output shaft revolution number ratio Rch rapidly and smoothly so that it becomes the speed changing ratio R2 of the second speed. - Therefore, as shown in (D), the
motor 27 and thebattery 28 are controlled to obtain the target torque Te_ref1 of themotor 27 output by the revolution number controlling means 801, thereby to adjust the engine revolution number Ne, whereby the input/output revolution number ratio Rch is caused to be close to the speed changing ratio R2 of the second speed. - By such control of the clutch10 and the
motor 27, as shown in (C) the input/output shaft revolution number ratio Rch becomes Rch=R2 at point c, but it is preferable that to cause the dog clutch to couple, the engine revolution number Ne is changed toward its increase, thereby to match the input/output shaft revolution number ratio Rch to the speed changing ratio R2. This is disadvantageous that since the number of revolution No of theoutput shaft 20 has been increased by the torque reduction correcting value corrected during the change-speed, if the dog clutch is tried to be coupled at the time when the revolution number of theinput shaft 8 is in the direction of its decrease, torque interference occurs at the biting portions of the dog clutch, which makes the coupling difficult. This is because the way by which the dog clutch is coupled in the direction in which the number of revolution of theinput shaft 8 increases gives lesser torque interference. - Since after point c the relationship between Rch and R2 becomes Rch<R2, it is needed to increase the input/output shaft revolution number ratio Rch. However, immediate before the coupling (during points c to d), both of the torque and the revolution number of the
motor 27 must be controlled. If as the motor 27 a motor that merely can carry out only one of the torque control and the revolution has been selected, it is needed that the input/output shaft revolution number ratio Rch be adjusted by the torque of the clutch 10. To this end, during the period from point c to point d, the revolution number ratio FB target torque Tc_fb depending upon the deviation between the input/output shaft revolution number ratio Rch and the speed changing ratio R2 at the second speed is added, thereby to set the target torque of the clutch 10 to Tc_ref=Tc_ff+Tc_fb. - As described above, by feeding back the input/output shaft revolution number ratio during only a period in which the deviation between the input/output shaft revolution number ratio Rch and the speed changing ratio of the second speed is small, it is possible to restrain, to the minimum, the torque variation of the torque reduction correcting value occurring during the change-speed and it is possible to assuage the sense of discomfort which the occupant receives. By such revolution number ratio FB control of the clutch10, the relationship of Rch R2 occurs in the direction in which the input/output shaft revolution number ratio Rch increases, and the dog clutch becomes the condition in which it can be coupled at the second speed.
- When the dog clutch becomes the condition in which it can be coupled at the second speed, the control of the
actuator 30 results in the coupling of the dog clutch at the second speed. However, at that time, it is preferable that by make smaller the deviation between Tc_ref−Tc_ff+Tc_fb corresponding to the torque reduction correcting value during the change-speed and the torque of theoutput shaft 20 after the change-speed (after the coupling at the second speed), the torque step of theoutput shaft 20 at the end of the change-speed is reduced, thereby to suppress the occurrence of the shaft vibration. - Since the torque reduction correcting value during the change-speed is determined by the torque Tc of the clutch10 and the torque of the
output shaft 20 after the change-speed is determined by the torque Te of theengine 1, and the torque Tm of themotor 27 andthe speed changing ratio R2 at the second speed, between point c and point d themotor 27 and the thebattery 28 are is controlled so that the target torque Tm_ref2 of themotor 27 is achieved. Since during the change-speed the clutch 10 is under a slippage condition, if the sum of the torque Te of theengine 1 the torque Tm of themotor 27 is larger than a predetermined value, the torque reduction correcting value during the change-speed is determined by the torque Tc of the clutch 10 and the inertia torque of theengine 1 and themotor 27, whereby it is possible to perform the torque matching control at the end of the change-speed independently of the torque reduction correcting control during the change-speed. - At point d the actual change-speed is completed by the fact that the dog clutch is coupled to the second speed. After the completion of the change-speed, the torque Tm of the
motor 27 is returned to zero gradually, and at point e the speed changing control finishes. - As explained above, in accordance with this embodiment, in the speed changing operation, by finding the torque reduction correcting value of the
output shaft 20 during the change-speed, controlling the revolution number of theinput shaft 8 on the basis of this torque reduction correcting value, and at the end of the change-speed adjusting the torque of theinput shaft 8, the torque variation of thetransmission output shaft 20 can be suppressed, thereby to improve the speed changing ability. - Incidentally, this invention is not intended to be limited to the system construction in the above-mentioned embodiments. This invention is applicable to a control device for a vehicle in which the
motor 27 is not used. Also, it is possible to use as theclutch 4 and the clutch 10 all types of friction clutches including a dry type single plate clutch, a wet type multiple plate clutch, an electromagnetic clutch, etc. Further, it is possible to use as the clutch 25 all types of clutches including a dry type single plate clutch, a wet type multiple plate clutch, an electromagnetic clutch, a dog clutch, etc. - Since this invention is constructed so that any torque variation of the output shaft occurring by the revolution number control carried out during the change-speed and the torque of the input shaft at the end of the change-speed is adjusted, it is possible to reduce any torque step of output shaft and suppress any shaft vibration, thereby to improve speed changing ability for a vehicle,
Claims (4)
1. A control device for a vehicle having a torque transmitting means between the input shaft of a gear type transmission and the output shaft thereof, the torque transmitting means of at least one speed changing stage being comprised by a friction clutch, the torque transmitting means of the other speed changing stages being comprised by a dog clutch, and said friction clutch being controlled when the change-speed is effected from one speed changing stage to the other changing stage, further comprising;
a torque reduction correcting means for correcting, at the time of said change-speed, the torque reducing part of said output shaft occurring during the change-speed, and
a revolution number controlling means for controlling the revolution number of said input shaft on the basis of the torque reduction correcting value corrected by said torque reduction correcting means.
2. A control device as recited in claim 1 , further comprising a torque adjusting means for adjusting the torque of said input shaft at the end of the change-speed on the basis of said torque reduction correcting value.
3. A control method for a vehicle wherein a torque transmitting means is attached between the input shaft of a gear type transmission and the output shaft thereof, the torque transmitting means of at least one speed changing stage being comprised by a friction clutch, the torque transmitting means of the other speed changing stages are comprised by a dog clutch, and said friction clutch being controlled when the change-speed is effected from one speed changing stage to the other changing stage, further comprising the steps of;
correcting, at the time of said change-speed, the torque reducing part of said output shaft occurring during the change-speed, and
controlling the revolution number of said input shaft on the basis of the torque reduction correcting value corrected by said torque reduction correcting means.
4. A control method as recited in claim 3 , further comprising the step of adjusting the torque of said input shaft at the end of the change-speed on the basis of said torque reduction correcting value.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/058,383 US6449546B1 (en) | 2000-02-22 | 2002-01-30 | Control device and control method for a vehicle |
US10/730,028 US7037238B2 (en) | 2000-02-22 | 2003-12-09 | Control device and control method for a vehicle |
US10/900,358 US7263423B2 (en) | 2000-02-22 | 2004-07-28 | Control device and control method for a vehicle |
US11/503,974 US7313473B2 (en) | 2000-02-22 | 2006-08-15 | Control device and control method for a vehicle |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-50529 | 2000-02-22 | ||
JP2000050529A JP3294230B2 (en) | 2000-02-22 | 2000-02-22 | Vehicle control device, vehicle control method, transmission |
JP2000-050529 | 2000-02-22 | ||
US09/652,658 US6560521B1 (en) | 2000-02-22 | 2000-08-31 | Control device and control method for a vehicle |
US10/058,383 US6449546B1 (en) | 2000-02-22 | 2002-01-30 | Control device and control method for a vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/652,658 Continuation US6560521B1 (en) | 2000-02-22 | 2000-08-31 | Control device and control method for a vehicle |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,751 Continuation US6892125B2 (en) | 2000-02-22 | 2003-03-04 | Control device and control method for a vehicle |
US10/730,028 Continuation US7037238B2 (en) | 2000-02-22 | 2003-12-09 | Control device and control method for a vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020077738A1 true US20020077738A1 (en) | 2002-06-20 |
US6449546B1 US6449546B1 (en) | 2002-09-10 |
Family
ID=18572299
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/652,658 Expired - Fee Related US6560521B1 (en) | 2000-02-22 | 2000-08-31 | Control device and control method for a vehicle |
US10/058,383 Expired - Fee Related US6449546B1 (en) | 2000-02-22 | 2002-01-30 | Control device and control method for a vehicle |
US10/377,751 Expired - Fee Related US6892125B2 (en) | 2000-02-22 | 2003-03-04 | Control device and control method for a vehicle |
US10/730,028 Expired - Fee Related US7037238B2 (en) | 2000-02-22 | 2003-12-09 | Control device and control method for a vehicle |
US10/900,358 Expired - Fee Related US7263423B2 (en) | 2000-02-22 | 2004-07-28 | Control device and control method for a vehicle |
US11/503,974 Expired - Fee Related US7313473B2 (en) | 2000-02-22 | 2006-08-15 | Control device and control method for a vehicle |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/652,658 Expired - Fee Related US6560521B1 (en) | 2000-02-22 | 2000-08-31 | Control device and control method for a vehicle |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/377,751 Expired - Fee Related US6892125B2 (en) | 2000-02-22 | 2003-03-04 | Control device and control method for a vehicle |
US10/730,028 Expired - Fee Related US7037238B2 (en) | 2000-02-22 | 2003-12-09 | Control device and control method for a vehicle |
US10/900,358 Expired - Fee Related US7263423B2 (en) | 2000-02-22 | 2004-07-28 | Control device and control method for a vehicle |
US11/503,974 Expired - Fee Related US7313473B2 (en) | 2000-02-22 | 2006-08-15 | Control device and control method for a vehicle |
Country Status (5)
Country | Link |
---|---|
US (6) | US6560521B1 (en) |
EP (2) | EP1127731B1 (en) |
JP (1) | JP3294230B2 (en) |
KR (1) | KR20010083029A (en) |
DE (2) | DE60042041D1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7387043B2 (en) | 2003-10-10 | 2008-06-17 | Hitachi, Ltd. | Method of changing gears of an automobile, automotive gear shifter, controller for automotive gear shifter, and actuator controller for automotive gear shifter |
CN114593202A (en) * | 2022-03-30 | 2022-06-07 | 广汽埃安新能源汽车有限公司 | A kind of vehicle gear shift control method and system based on dual motor type |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6319168B1 (en) | 2000-04-25 | 2001-11-20 | General Motors Corporation | Apparatus and method for active transmission synchronization and shifting |
JP3293613B2 (en) * | 2000-06-23 | 2002-06-17 | 株式会社日立製作所 | Vehicle control device, vehicle control method, transmission |
GB2375576A (en) * | 2001-05-19 | 2002-11-20 | Luk Lamellen & Kupplungsbau | Gear changing method and apparatus |
CN1318773C (en) * | 2001-08-24 | 2007-05-30 | 卢克摩擦片和离合器两合公司 | Method and system for control of an automatic friction clutch arranged between an engine and a gearbox on a motor vehicle |
JP3848175B2 (en) * | 2002-02-13 | 2006-11-22 | 日産ディーゼル工業株式会社 | Vehicle hybrid system |
EP1353095A1 (en) * | 2002-04-10 | 2003-10-15 | Van Doorne's Transmissie B.V. | Control method for an automatic transmission |
JP2006214454A (en) * | 2005-02-01 | 2006-08-17 | Hitachi Ltd | Automobile transmission control device and automatic transmission device |
FR2887496B1 (en) * | 2005-06-27 | 2007-09-14 | Peugeot Citroen Automobiles Sa | METHOD FOR PILOTING THE COUPLING OR DECOUPLING OF TWO ENGINES OF A PARALLEL HYBRID MOTOR POWERTRAIN |
DE102005042352A1 (en) * | 2005-09-07 | 2007-03-15 | Zf Friedrichshafen Ag | Device and method for reducing traction interruption in drive trains with automated manual transmissions |
DE102005046894A1 (en) * | 2005-09-30 | 2007-05-03 | Zf Friedrichshafen Ag | Automated automotive manual transmission and method for switching control of an automated automotive manual transmission |
DE102005049178A1 (en) * | 2005-10-14 | 2007-04-19 | Zf Friedrichshafen Ag | Method and device for controlling a gear change of an automated manual transmission |
JP4352339B2 (en) * | 2005-12-27 | 2009-10-28 | 株式会社デンソー | Rotating electric machine control device for hybrid vehicle |
JP4529940B2 (en) * | 2006-05-02 | 2010-08-25 | 日産自動車株式会社 | Hybrid vehicle transmission state switching control device |
SE530447C2 (en) * | 2006-10-25 | 2008-06-10 | Scania Cv Abp | Lubrication device, gearbox and ways to lubricate a gearbox |
FR2910101B1 (en) * | 2006-12-15 | 2009-01-30 | Peugeot Citroen Automobiles Sa | METHOD OF CHANGING REPORTING IN A GEARBOX, IN PARTICULAR FOR HYBRID VEHICLES |
DE102007005525A1 (en) * | 2007-02-03 | 2008-08-07 | Zf Friedrichshafen Ag | Transmission device and method for operating a transmission device |
FR2913225B1 (en) * | 2007-03-01 | 2009-10-16 | Peugeot Citroen Automobiles Sa | METHOD OF CHANGING REPORTING IN A GEARBOX EQUIPPED WITH A VEHICLE |
CN101450609B (en) * | 2007-11-30 | 2012-09-05 | 比亚迪股份有限公司 | Hybrid drive system and method |
CN101450608B (en) * | 2007-12-07 | 2012-09-05 | 比亚迪股份有限公司 | Parking powder facility of hybrid drive vehicle and control method thereof |
DE102007055830A1 (en) * | 2007-12-17 | 2009-06-18 | Zf Friedrichshafen Ag | Method and device for operating a hybrid drive of a vehicle |
JP2009227268A (en) * | 2008-02-26 | 2009-10-08 | Nissan Motor Co Ltd | Vehicular drive apparatus |
DE102009012223A1 (en) * | 2009-03-07 | 2010-09-09 | Daimler Ag | Group transmission device |
JP5218860B2 (en) * | 2010-04-02 | 2013-06-26 | アイシン・エィ・ダブリュ株式会社 | Control device |
CN102639351B (en) * | 2010-06-07 | 2015-11-25 | 丰田自动车株式会社 | Motor vehicle driven by mixed power and control method thereof |
CN103097220B (en) * | 2010-10-21 | 2015-09-30 | 日野自动车株式会社 | Speed-change control device, hybrid vehicle and shifting control method |
JP5779954B2 (en) * | 2011-04-14 | 2015-09-16 | トヨタ自動車株式会社 | Shift control device for hybrid vehicle |
DE102011106443B4 (en) * | 2011-07-04 | 2013-10-31 | Voith Patent Gmbh | vehicle transmissions |
JP2013023141A (en) * | 2011-07-25 | 2013-02-04 | Mitsubishi Motors Corp | Clutch control device for vehicle |
DE102011081005B4 (en) * | 2011-08-16 | 2022-12-22 | Zf Friedrichshafen Ag | Control device of a motor vehicle and method for operating a motor vehicle |
DE102011117586A1 (en) * | 2011-11-03 | 2013-05-08 | Knorr-Bremse Systeme für Nutzfahrzeuge GmbH | Method for synchronizing a synchronizable transmission, transmission control and synchronisable transmission |
JP2014149020A (en) * | 2013-01-31 | 2014-08-21 | Aisin Seiki Co Ltd | Dog clutch control device for automatic transmission |
JP6239451B2 (en) * | 2014-06-30 | 2017-11-29 | アイシン・エーアイ株式会社 | Vehicle power transmission control device |
CN111605413B (en) * | 2020-04-28 | 2021-10-08 | 中国第一汽车股份有限公司 | Control method, control device, vehicle and storage medium |
PL439827A1 (en) * | 2021-12-14 | 2023-06-19 | Auto Design Olszewski, Skornóg, Kwiatkowski Spółka Jawna | Electromechanical drive unit for motor vehicles |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3714846A (en) * | 1971-02-23 | 1973-02-06 | Sundstrand Corp | Hydrostatic-differential transmission |
CA1037738A (en) * | 1975-08-04 | 1978-09-05 | Harold W. Melles | Hydromechanical transmission with overspeed limited variable drive |
US4361060A (en) * | 1978-01-24 | 1982-11-30 | Smyth Robert Ralston | Mechanical automatic transmission |
EP0088486A3 (en) | 1982-02-05 | 1985-05-22 | Automotive Products Public Limited Company | Rotary transmission |
JPS58221061A (en) * | 1982-06-18 | 1983-12-22 | Toyota Motor Corp | Gear type transmission |
JPS5950259A (en) | 1982-09-14 | 1984-03-23 | Mazda Motor Corp | Shift control apparatus for gear box of vehicle |
DE3470496D1 (en) * | 1983-06-01 | 1988-05-26 | Mazda Motor | Control means for vehicle automatic transmissions |
DE3415909A1 (en) * | 1984-04-28 | 1985-10-31 | J.M. Voith Gmbh, 7920 Heidenheim | POWERTRAIN TRANSMISSION |
JPS6145163A (en) * | 1984-08-10 | 1986-03-05 | Hitachi Ltd | automatic transmission system |
DE3534971A1 (en) * | 1984-10-04 | 1986-04-10 | Zahnradfabrik Friedrichshafen Ag, 7990 Friedrichshafen | CONTROL DEVICE FOR THE AUTOMATIC SWITCHING OF STEPPING GEARBOXES |
US4829433A (en) * | 1985-10-07 | 1989-05-09 | Nissan Motor Co., Ltd. | Control system for continuously variable transmission |
JPS62292927A (en) * | 1986-06-10 | 1987-12-19 | Honda Motor Co Ltd | Hydraulic clutch |
US4860607A (en) * | 1986-06-20 | 1989-08-29 | Toyota Jidosha Kabushiki Kaisha | Automatic transmission for automotive vehicle |
JP2696819B2 (en) * | 1986-10-08 | 1998-01-14 | 日産自動車株式会社 | Shift shock reduction device for automatic transmission |
JPS63130951A (en) | 1986-11-19 | 1988-06-03 | Hitachi Ltd | Automatic transmission for vehicles |
FR2609473A1 (en) * | 1987-01-08 | 1988-07-15 | Stein Heurtey | DEVICE FOR THE INTERIOR AND EXTERIOR TEMPERING OF TUBULAR PARTS |
US4922424A (en) * | 1987-04-20 | 1990-05-01 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Control method for a driving system provided in a vehicle |
US4846009A (en) * | 1987-10-21 | 1989-07-11 | Caterpillar Inc. | Countershaft transmission |
EP0367020B1 (en) * | 1988-10-31 | 1992-12-23 | Volkswagen Aktiengesellschaft | Method for gear shift of a change speed gear |
US5062062A (en) * | 1988-12-30 | 1991-10-29 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Torque detecting apparatus |
US5030179A (en) * | 1989-02-02 | 1991-07-09 | Ganoung David P | Discrete-ratio transmissions |
US5171294A (en) * | 1989-02-28 | 1992-12-15 | Fuji Jukogyo Kabushiki Kaisha | Torque distribution control system for a four-wheel drive motor vehicle |
US5313856A (en) * | 1990-03-01 | 1994-05-24 | Volkswagen Ag | Multistage transmission and shifting process therefor |
US5243526A (en) * | 1990-05-18 | 1993-09-07 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Output control apparatus for vehicle |
US5255192A (en) * | 1990-05-18 | 1993-10-19 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Output control apparatus for vehicle |
US5157608A (en) * | 1990-09-14 | 1992-10-20 | Ford Motor Company | Electronic control system for multiple ratio transmission including circuit pressure control |
US5159856A (en) * | 1990-09-28 | 1992-11-03 | Mazda Motor Corporation | Automatic transmission line pressure control system |
US5238460A (en) * | 1991-02-28 | 1993-08-24 | Mazda Motor Corporation | Power transmission system for vehicle |
US5101688A (en) * | 1991-06-03 | 1992-04-07 | Ford New Holland, Inc. | Driveline engagement/disengagement |
JP3572623B2 (en) * | 1992-08-31 | 2004-10-06 | 本田技研工業株式会社 | Control device for vehicle clutch |
JP3230713B2 (en) * | 1992-10-23 | 2001-11-19 | トヨタ自動車株式会社 | Peak torque reduction mechanism |
US5470288A (en) * | 1993-10-06 | 1995-11-28 | Ford Motor Company | Engine torque compensation shift scheduling of an automatic transmission for motor vehicles |
DE19504847B4 (en) * | 1994-02-23 | 2006-04-27 | Luk Gs Verwaltungs Kg | Monitoring method for a torque transmission system of a motor vehicle |
JP3193244B2 (en) * | 1994-10-26 | 2001-07-30 | 株式会社日立製作所 | Vehicle drive torque control device |
GB2297811A (en) * | 1995-02-07 | 1996-08-14 | New Holland Belguim Nv | Transmission control sytem moves synchroniser to neutral and engages clutch for a predetermined time |
FR2731661B1 (en) * | 1995-03-18 | 1999-06-25 | Luk Getriebe Systeme Gmbh | METHOD FOR CONTROLLING A TORQUE TRANSMISSION SYSTEM AND APPARATUS FOR IMPLEMENTING IT |
JP3612773B2 (en) * | 1995-03-24 | 2005-01-19 | アイシン・エィ・ダブリュ株式会社 | Continuously variable transmission |
JP4301572B2 (en) * | 1995-07-12 | 2009-07-22 | ルーク ゲトリーベ−ジステーメ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Operating device |
DE19532136A1 (en) * | 1995-08-31 | 1997-03-06 | Clouth Gummiwerke Ag | Drive system, in particular for a motor vehicle, and method for operating the same |
JP3675018B2 (en) * | 1996-02-21 | 2005-07-27 | 日産自動車株式会社 | Vehicle driving force control device |
JPH10122A (en) * | 1996-06-14 | 1998-01-06 | Suruga Kk | Clothes cabinet |
GB9700960D0 (en) * | 1997-01-17 | 1997-03-05 | Rover Group | Hybrid vehicle powertrain control |
JP3523003B2 (en) * | 1997-02-06 | 2004-04-26 | ジヤトコ株式会社 | Control device for automatic transmission |
JP3716569B2 (en) * | 1997-08-25 | 2005-11-16 | マツダ株式会社 | Control device for continuously variable transmission |
JP3262046B2 (en) * | 1997-09-17 | 2002-03-04 | トヨタ自動車株式会社 | Method for reducing gear rattle in gear mechanism, power output device, and hybrid vehicle equipped with this power output device |
DE19802820C1 (en) | 1998-01-26 | 1999-12-16 | Getrag Getriebe Zahnrad | Motor vehicle step transmission |
JP3336951B2 (en) * | 1998-04-28 | 2002-10-21 | 株式会社日立製作所 | Automotive power transmission |
EP1164310A4 (en) * | 1998-12-03 | 2006-05-17 | Hitachi Ltd | AUTOMATIC GEAR AND AUTOMOTIVE TRANSMISSION USING THE SAME |
JP2000224714A (en) * | 1999-02-03 | 2000-08-11 | Mitsubishi Motors Corp | Vehicle with electric motor |
FR2789743A1 (en) * | 1999-02-17 | 2000-08-18 | Mannesmann Sachs Ag | AUTOMATIC GEARBOX |
US6165096A (en) * | 1999-03-12 | 2000-12-26 | Ingersoll-Rand Company | Self-shifting transmission apparatus |
FR2794512B1 (en) * | 1999-06-04 | 2001-07-27 | Renault | METHOD OF CONTROLLING CHANGED SPEEDS UNDER TORQUE |
EP1792799A3 (en) * | 1999-07-01 | 2008-10-22 | Hitachi, Ltd. | Apparatus for controlling run of a car, and car using the apparatus |
JP3879960B2 (en) * | 1999-08-09 | 2007-02-14 | マツダ株式会社 | Vehicle drive device |
JP3706290B2 (en) * | 2000-02-04 | 2005-10-12 | 株式会社日立製作所 | Control device for hybrid vehicle |
JP2003343324A (en) * | 2002-05-29 | 2003-12-03 | Toyota Motor Corp | Diesel engine control method and device |
-
2000
- 2000-02-22 JP JP2000050529A patent/JP3294230B2/en not_active Expired - Fee Related
- 2000-08-30 EP EP00118186A patent/EP1127731B1/en not_active Expired - Lifetime
- 2000-08-30 DE DE60042041T patent/DE60042041D1/en not_active Expired - Fee Related
- 2000-08-30 EP EP06002051A patent/EP1659317B1/en not_active Expired - Lifetime
- 2000-08-30 DE DE60027534T patent/DE60027534T2/en not_active Expired - Lifetime
- 2000-08-31 KR KR1020000051008A patent/KR20010083029A/en not_active Ceased
- 2000-08-31 US US09/652,658 patent/US6560521B1/en not_active Expired - Fee Related
-
2002
- 2002-01-30 US US10/058,383 patent/US6449546B1/en not_active Expired - Fee Related
-
2003
- 2003-03-04 US US10/377,751 patent/US6892125B2/en not_active Expired - Fee Related
- 2003-12-09 US US10/730,028 patent/US7037238B2/en not_active Expired - Fee Related
-
2004
- 2004-07-28 US US10/900,358 patent/US7263423B2/en not_active Expired - Fee Related
-
2006
- 2006-08-15 US US11/503,974 patent/US7313473B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7387043B2 (en) | 2003-10-10 | 2008-06-17 | Hitachi, Ltd. | Method of changing gears of an automobile, automotive gear shifter, controller for automotive gear shifter, and actuator controller for automotive gear shifter |
CN114593202A (en) * | 2022-03-30 | 2022-06-07 | 广汽埃安新能源汽车有限公司 | A kind of vehicle gear shift control method and system based on dual motor type |
Also Published As
Publication number | Publication date |
---|---|
US20030139870A1 (en) | 2003-07-24 |
KR20010083029A (en) | 2001-08-31 |
US6449546B1 (en) | 2002-09-10 |
DE60042041D1 (en) | 2009-05-28 |
US7037238B2 (en) | 2006-05-02 |
EP1127731A3 (en) | 2002-08-14 |
EP1127731A2 (en) | 2001-08-29 |
US20060276302A1 (en) | 2006-12-07 |
US7313473B2 (en) | 2007-12-25 |
DE60027534T2 (en) | 2007-03-08 |
US6560521B1 (en) | 2003-05-06 |
EP1127731B1 (en) | 2006-04-26 |
EP1659317B1 (en) | 2009-04-15 |
JP2001235023A (en) | 2001-08-31 |
EP1659317A1 (en) | 2006-05-24 |
US6892125B2 (en) | 2005-05-10 |
DE60027534D1 (en) | 2006-06-01 |
JP3294230B2 (en) | 2002-06-24 |
US20050005721A1 (en) | 2005-01-13 |
US20040116248A1 (en) | 2004-06-17 |
US7263423B2 (en) | 2007-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6892125B2 (en) | Control device and control method for a vehicle | |
US6536296B2 (en) | Apparatus and method of controlling a vehicle | |
EP1122109B1 (en) | Hybrid car comprising a control device for gear shifting | |
EP1475556B1 (en) | Method and system for controlling a vehicle | |
US6550352B2 (en) | Device and method for automatic transmission control | |
US20040087413A1 (en) | Automatic transmission control method and automatic transmission controller | |
US20060135317A1 (en) | Method for controlling centrifugal clutch engagement using engine torque requests | |
JP2004182101A (en) | Hybrid vehicle control device and control method | |
JP2002021998A (en) | Automotive control device and control method thereof | |
JP4416966B2 (en) | Vehicle control apparatus and vehicle control method | |
JP3752435B2 (en) | Control device for automatic transmission | |
JP2986170B2 (en) | Fluid coupling fastening force control device | |
JP2878384B2 (en) | Fluid coupling fastening force control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100910 |