US20020072584A1 - Biostability of polymeric structures - Google Patents
Biostability of polymeric structures Download PDFInfo
- Publication number
- US20020072584A1 US20020072584A1 US09/985,821 US98582101A US2002072584A1 US 20020072584 A1 US20020072584 A1 US 20020072584A1 US 98582101 A US98582101 A US 98582101A US 2002072584 A1 US2002072584 A1 US 2002072584A1
- Authority
- US
- United States
- Prior art keywords
- solvent
- polymeric material
- extraction
- swelling
- solubility parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002904 solvent Substances 0.000 claims abstract description 91
- 239000000463 material Substances 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 53
- 230000008569 process Effects 0.000 claims abstract description 47
- 239000004814 polyurethane Substances 0.000 claims abstract description 32
- 229920002635 polyurethane Polymers 0.000 claims abstract description 32
- 238000000605 extraction Methods 0.000 claims abstract description 20
- 230000008961 swelling Effects 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 13
- 229920000570 polyether Polymers 0.000 claims abstract description 13
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 15
- 238000000638 solvent extraction Methods 0.000 claims description 14
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 5
- -1 polydimethyl-siloxane urethane Polymers 0.000 claims description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 4
- 229920001692 polycarbonate urethane Polymers 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 239000012633 leachable Substances 0.000 abstract description 25
- 238000002513 implantation Methods 0.000 abstract description 6
- 229920000515 polycarbonate Polymers 0.000 abstract description 5
- 239000004417 polycarbonate Substances 0.000 abstract description 5
- 229920005862 polyol Polymers 0.000 description 21
- 150000003077 polyols Chemical class 0.000 description 20
- 239000012620 biological material Substances 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- 239000007943 implant Substances 0.000 description 13
- 239000012948 isocyanate Substances 0.000 description 11
- 150000002513 isocyanates Chemical class 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 239000000126 substance Substances 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 7
- 210000004027 cell Anatomy 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000004970 Chain extender Substances 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 150000002009 diols Chemical class 0.000 description 5
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 230000010261 cell growth Effects 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000008467 tissue growth Effects 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000120 cytopathologic effect Effects 0.000 description 3
- 150000004985 diamines Chemical group 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 230000021368 organ growth Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 2
- 239000004604 Blowing Agent Substances 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical class [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000004067 bulking agent Substances 0.000 description 2
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical compound NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000012707 chemical precursor Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 230000003073 embolic effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920000909 polytetrahydrofuran Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000013557 residual solvent Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- BJZYYSAMLOBSDY-QMMMGPOBSA-N (2s)-2-butoxybutan-1-ol Chemical compound CCCCO[C@@H](CC)CO BJZYYSAMLOBSDY-QMMMGPOBSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- 229940043375 1,5-pentanediol Drugs 0.000 description 1
- PWGJDPKCLMLPJW-UHFFFAOYSA-N 1,8-diaminooctane Chemical compound NCCCCCCCCN PWGJDPKCLMLPJW-UHFFFAOYSA-N 0.000 description 1
- FZQMJOOSLXFQSU-UHFFFAOYSA-N 3-[3,5-bis[3-(dimethylamino)propyl]-1,3,5-triazinan-1-yl]-n,n-dimethylpropan-1-amine Chemical compound CN(C)CCCN1CN(CCCN(C)C)CN(CCCN(C)C)C1 FZQMJOOSLXFQSU-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical class [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical class [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical class [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical class [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical class [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical class [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical class [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical class [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical class [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical class [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Chemical class 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical class [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Chemical class 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- OYQYHJRSHHYEIG-UHFFFAOYSA-N ethyl carbamate;urea Chemical compound NC(N)=O.CCOC(N)=O OYQYHJRSHHYEIG-UHFFFAOYSA-N 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000025339 heart septal defect Diseases 0.000 description 1
- PWSKHLMYTZNYKO-UHFFFAOYSA-N heptane-1,7-diamine Chemical compound NCCCCCCCN PWSKHLMYTZNYKO-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Chemical class 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical class [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Chemical class 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 210000001539 phagocyte Anatomy 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002145 thermally induced phase separation Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000002407 tissue scaffold Substances 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical class [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Chemical class 0.000 description 1
- 229910052726 zirconium Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/14—Materials characterised by their function or physical properties, e.g. lubricating compositions
- A61L29/146—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2101/00—Manufacture of cellular products
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0008—Foam properties flexible
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2110/00—Foam properties
- C08G2110/0083—Foam properties prepared using water as the sole blowing agent
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2531/00—Microcarriers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/30—Synthetic polymers
Definitions
- This invention relates to biocompatible polymeric structures suitable for long term implantation within a living human body, and as a substratum for cell, tissue and organ growth technologies.
- a serious limitation associated with the processes and materials available to the biomedical designer today is the fact that virtually all materials available today require some level of additives.
- An additional limitation of current materials is that polymerization reactions are far from perfect and generate materials which contain low molecular weight material, oligomers, unreacted monomers, catalysts, stabilizers and a host of other additives within the material. Irrespective of the source, these chemicals present a serious problem as they can leach into the tissue surrounding the implant.
- This invention therefore is directed towards providing process and material technologies that can produce leachable free polymer systems with properties suitable for implantation.
- solvent extracting the polymeric material with an extraction solvent the solvent being a solvent which generates a volumetric swelling and having a solubility parameter of from 17 to 27 MPa 0.5 .
- the solvent extraction technique involves extracting the polymer in the presence of a swelling solvent.
- the solvent swells the material of the implant by more than 30%, more preferably by more than 100% and still more preferably by more than 150%.
- the solubility parameter of the solvent extraction system is selected for compatibility with the solubility parameter of the polymeric material or its phases.
- the solubility parameter of the solvent extraction system is within ⁇ 4 MPa 1 ⁇ 2 of the solubility parameter of the polymer or its phases.
- solubility parameter is from 18-24 MPa 1 ⁇ 2 .
- the hydrogen-bonding component of the solvent solubility parameter is in excess of 3 MPa 1 ⁇ 2 .
- the solvent solubility parameter is selected such that it is similar to that of material leachables.
- the solvent is miscible with water.
- the solvent has a vapour pressure in excess of 2 kPa. More preferably the vapour pressure is in excess of 5 kPa. Even more preferably the vapour pressure is in excess of 10 kPa.
- the vapour pressure of MEK is 12.6 kPa, while the vapour pressure of THF is 21.6 kPa at room temperature.
- the solvent selected has a low content of stabilizers and other additives and is non-reactive.
- MEK is the preferred solvent due to its excellent ability to swell cross-linked polyurethanes, its miscibility with water, its high vapour pressure, its stability and it can be obtained at high level of purity.
- the method includes the step of removing residual solvent from the structure, after solvent extraction.
- residual solvent is removed by treatment with water.
- the solvent is removed by freeze drying or by thermally induced phase separation.
- the biocompatible material may for example be a polyether polyurethane, a polycarbonate urethane, a polydimethylsiloxane urethane, a polyester urethane, a fatty acid derived polyurethane, a polybutadiene polyurethane, a urethane urea of any of the above or mixtures.
- the polyurethane is a polyether polyurethane, a polycarbonate polyurethane or a polydimethylsiloxane polyurethane.
- the material is in the form of a medical implant.
- the implant may be a septal defect occluder, a vessel occluder, a vessel defect occluder, a mammary prosthesis, a muscle bulking agent, a gynecological implant, a vascular graft, an embolising implant, a pacemaker housing cover, or an embolic filter.
- the material may be in the form of a porous substratum for cell growth, tissue growth, organ growth or organ reconstruction.
- the article may be formed from an organic diisocyanate, a polyol, a chain extender and a blowing agent.
- a cross-lining agent may be employed to enhance the cross-linking of the material.
- a catalyst and surfactant may also be employed.
- the blowing agent is preferably water.
- the ratios of the reaction components are selected to promote the formation of a three dimensional porous molecular structure of polyurethane biomaterial.
- the article may be processed by a metering and mixing process, wherein the chemical components are aggressively mixed and dispensed into a vessel and chain extension and blowing reactions occur substantially simultaneously.
- the article is processed by a reactive moulding process, wherein the chemical components are mixed and dispensed into a vessel wherein chain extension occurs.
- the polyurethane scaffold has a pore size of from 10 microns to 300 microns. Ideally the scaffold has a pore size of between 35 microns to 200 microns.
- the biocompatible, leachable free polyurethanes of this invention are derived from organic diisocyanates and polyols.
- the reaction step converts the chemical precursors into a 3 dimensional molecular cross-linked structure.
- a 3-dimensional network of this kind is insoluble and intractable.
- the biomaterial is a three dimensional structure at a molecular level allows it to be processed aggressively to remove leachable chemicals from the material.
- Low molecular weight chemicals have the potential to leach from the article and result in toxic reactions in living cells.
- the severity of the inflammation, following implantation of a synthetic material is strongly dependent on the type and quantity of chemicals that can migrate from the implant to the surrounding tissue.
- the processes of the invention expand the biomaterials volume at a molecular level. This expansion facilitates the removal of leachables such as monomers, oligomers, high molecular weight linear polymers, catalysts, surfactants, and other additives.
- the solvent extraction process also reduces any internal stresses within the material.
- the solvent expands the material by separating the molecular chains and suspending the chains in a solvent matrix. This loss of interchain attraction seriously compromises the mechanical properties of the matrix during the extraction step.
- the 3-dimensional cross-links however provide the materials with molecular memory and prevent the molecular structure from being completely solubilised.
- the recovery step removes the solvent and de-swells the material to its original state.
- multiple solvent swelling extractions may be carried out. These extractions preferably use solvents that have an affinity for different leachables.
- Low solubility parameter solvents have an affinity for surfactant leachables.
- Moderate solubility parameter solvents are used to remove the bulk of the leachables including soft phase monomers, oligomers and diols.
- High solubility parameter solvents have an affinity for hard phase monomers, dimers, oligomers and amine catalysts.
- affinity of a particular leachable to a solvent must be off set against the ability of the solvent to swell the matrix. Higher swelling ratio solvents tend to be most effective in removing a wide spectrum of leachables.
- the process of the invention is specifically designed to the treatment of polyurethane polymers. More specifically the invention is designed to treat polyurethane porous structures and scaffolds. However it is recognised that the principles of the invention can be applied to other materials. Indeed, most cross-linked polymer materials can be treated by the processes of the invention. The optimum swelling solvents will naturally have different solubility parameters to those specified for polyurethanes.
- This process enhances the material biocompatible for use as an implantable medical device or as a 3 dimensional matrix for use as a cell scaffold in tissue engineering applications.
- Altering the chemical precursors and the processing conditions of the material may alter the pore size and the density of the material, as required, to meet the requirements of the application.
- the scaffold is immersed in the swelling solvent and placed in an ultrasonic chamber for a minimum of six hours.
- the ultrasonic bath facilitates solvent penetration of the scaffold and assists in the migration of leachables from the polymer into the solvent.
- the solvent is diluted by the drop wise addition of non-solvent, miscible with the solvent over a period of 1-3 hours.
- the concentration of solvent should be less than 5% after the addition of non-solvent.
- the scaffold is then immersed in pure non-solvent for 7-8 hours.
- the scaffold is dried in an oven for 72 hours to remove all traces of the non-solvent.
- This process is carried out in a fashion whereby material is subjected to minimal mechanical stress during the processing. This is particularly important during the swollen phase.
- Achieving incredibly low levels of leachables may require multiple solvent swelling extraction steps. Different solvents may be used in each extraction steps.
- Leachable levels can be measured gravimetrically or analytically (chromatography). HPLC grade water extraction of the materials or scaffold at 40° C. should produce a leachables content less than 1.0 mg per g. More preferably the water extracted leachables content is less than 10 ⁇ g per g: Even more preferably the water extracted leachables content is less than 0.1 ⁇ g per g. Extraction times in excess of 12 hours should be employed. These levels are near or below the level of detection for many analytical systems and may be demonstrated by extrapolation.
- the exposure of the processed scaffold to a solvent whose solubility parameter is between 18 MPa 1 ⁇ 2 and 24 MPa ⁇ fraction (1/2) ⁇ , at 40° C. should produce a leachables content less than 10.0 mg per g in the solvent. More preferably the solvent extracted leachables content is less than 100 ⁇ g per g. Even more preferably the solvent extracted leachables content of the scaffold is less than 10.0 ⁇ g per g.
- Suitable solvents for this assessment of polyurethane biomaterials include MEK, DMA and THF.
- Solvents that provide the maximum swelling are preferred per this invention.
- the volume swelling during solvent extraction should be above 30%.
- the solvent swelling should be in excess of 100%. Even more preferable is solvent swelling in excess of 150%.
- the level of solvent swelling decreases as the average molecular weight between cross-links decreases. However a minimum cross-link density is necessary to provide solvent swelling memory.
- the molecular weight between cross-links of the material should preferably be between 300 and 6,000. Preferably the molecular weight between cross-links of the material is between 800 and 2,000. At very high cross-link densities the ability of the polymer to swell in the presence of a swelling solvent is diminished. At very low cross-ink densities large amounts of the polymer structure become solubilised. This creates recovery problems or results in a loss of structure.
- the 3-dimensional molecular structure is important to achieving the physical and chemical characteristics of the invention.
- the three dimensional aspect is achieved with polyurethane's either by incorporating a trifunctional entity within the formulation or by employing an isocyanate index in excess of 1.
- Linear polymer systems cannot be subjected to such an aggressive solvent extraction since the use of a solvent with a similar solubility parameter will cause both the polymer and it's leachables to dissolve.
- the biocompatible polyurethanes of this invention are useful for the manufacture of catheters, vascular grafts, septal occluders, vessel occluders, embolisation devices, mammary prosthesis, pacemaker housing covers, a stent cuffs, a stent covering, a tissue bridge, a vessel defect occluder, a muscle bulking agent, a gynecological implant, a vascular graft, an embolic filter and other such implant and blood contacting devices.
- the material is in the form of a medical implant.
- the material may be in the form of a porous substratum for cell growth, tissue growth, organ growth or organ reconstruction.
- biostable polyurethanes of this invention are based on organic diisocyanates, polyols, and diol, diamine or water chain extenders and combinations thereof.
- organic diisocyanates are of the general formula:
- R is an aliphatic, aromatic, cycloaliphatic, or an aliphatic-aromatic hydrocarbon entity containing between 4 and 24 carbon atoms and “n” varies between 2.0 and 3. More preferably, R contains between 4 and 15 carbon atoms. Where n is 2, a polymer with a linear molecular structure may be produced. A three dimensional molecular network may be produced where n varies from 2.0 to 3.0. Ideally n should be 2.
- Suitable isocyanates include: p-phenylene diisocyanate, tetramethylene diisocyanate, cyclohexane 1,2-diisocyanate, m-tetramethylxylene diisocyanate, hexamethylene diisocyanate, 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 2,4 toluene diisocyanate, 2,6 toluene diisocyanate, cyclohexane 1,4 diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and mixtures of the above.
- isocyanates can be used to manufacture suitable materials; 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 2,4 toluene diisocyanate, 2, 6 toluene diisocyanate, cyclohexane 1,4 diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and mixtures of the above.
- polyols may be used per this invention. These include polyether polyols, polyester polyols, polycarbonate polyols, silicone based polyols, fatty acid derived polyols, polybutadiene polyols.
- the molecular weights of the polyols is in excess of 400 and less than 6000. More preferably the molecular weight is between 600 and 2500.
- Polyether polyols, PDMS polyols and polycarbonate polyols are preferred for long term implantation applications.
- Polyether polyols that may be used include products obtained by the polymerisation of cyclic oxide, for example, ethylene oxide, propylene oxide, butylene oxide, or tetrahydrofuran.
- Useful polyether polyols include polytetramethylene glycols obtained by the polymerisation of tetrahydrofuran. Polyols of differing molecular weights can be used together in a single formulation. Multiple polyols can be used in a single formulation.
- the polyurethanes of this invention are based on diol, diamine, alkanolamine, water chain extenders or mixtures of these.
- Diol chain extenders react with isocyanate to generate urethane linkages.
- Most diols or diamines make suitable chain extenders.
- chain extenders include, ethylene glycol, 1,4 butanediol, diethylene glycol, triethylene glycol, 1,2 propane diol, 1,3 propane diol, 1,5 pentane diol, ethylene diamine, 1,4 diaminobutane, 1,6 diaminohexane, 1,7 diaminoheptane, 1,8 diaminooctane, and 1,5 diaminopentane.
- Useful catalysts are widely available in the marketplace and include organic and inorganic salts of bismuth, lead, tin, iron, antimony, cadmium, cobalt, aluminum, mercury, zinc, cerium, molybdenum, vanadium, copper, manganese and zirconium, as well as phosphines and tertiary amines.
- Tertiary amines are an important class of catalyst in which the nitrogen atom is not directly attached to an aromatic ring.
- tertiary armines are: triethylamine, N,N,N′,N′-tetramethylenediamine, N-N,N′,N′-tetramethyl-1,3-butanediamine, bis-2-dimethylaminoethyl ether, N,N-dimethylcyclohexylamine, N,N-dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, 1,4-diazabicyclo-[2.2.2] octane and the like.
- Standard cross-linking agents may also be employed to improve the cross-linked aspect of the material.
- TEA is an exemplary example.
- the one shot process, the quasiprepolymer method or the prepolymer method can be used to prepare the polyurethanes of this invention.
- the solubility parameter and hydrogen bonding parameters of the solvent will affect the suitability of the solvent.
- the solubility of the solvents of the invention is typically in the region of 17-27 MPa 1 ⁇ 2 . More preferably the solubility parameter is from 18-24 MPa 1 ⁇ 2 .
- the solvent system used for the extract system should have a solubility parameter in the same range as that of the biomaterial or scaffold.
- Solvents that may be used include methylethyl ketone, tetrahydrofuran, 1,2-dichloroethane, propan-2-ol, and combinations of the above. Many other solvents have suitable properties and could equally be employed.
- the materials are mixed at 50-60° C. for a minimum of 25-30 minutes.
- the polyol resin is stored in containers, under a blanket of nitrogen gas.
- An isocyanate pre-polymer is prepared from flake MDI (Desmodur from Bayer) and PTMEG (Terathane 1000 MW from DuPont). The amount of MDI and polyol used yield a NCO % content by weight of 15.6% and can be readily determined by those skilled in the art.
- a number of polyether polyurethane biomaterials are prepared at varying isocyanate indices using techniques described in our copending patent. The following isocyanate index materials were reacted and cured in a cylindrical mould; 0.95, 0.99, 1.04, 1.08, 1.13, 1.18, 1.23 and 1.29. The samples were cut to a length of 15 mm and had a diameter of 21.5 mm.
- a 250 ml wide necked conical flask was filled with MEK to the 250 ml mark.
- a separate flask was used for samples of each index. Five samples were placed in each flask. The flasks were stoppered and placed in a water filled ultrasonic bath. The bath was at room temperature. The flasks were sonified for 6 hours. After the 6 hours the samples were removed from the flask by pouring the contents into a sieve. The samples were rinsed in water and placed in an oven at 80° C. to dry. The samples were weighed at 30 minute intervals until the weight stabilised. The weight loss for each sample was measured.
- This biomaterial scored zero when subjected to the Cytotoxicity test as outlined in ISO standard 10993-5. This is the lowest possible score with this test method. This means that when cell growth media, previously incubated with the biomaterial, supported the growth of L-929 cells and did not induce a cytopathic effect. Media incubated with cytotoxic materials induce cytopathic effects when incubated with L-929 cells. The extent of cytopathic effect can be correlated to the cytotoxicity of the biomaterial.
- This polyether polyurethane biomaterial was also implanted in the gluteal muscle of rats and left for up to 6 months. The histological analysis conducted on the explants indicated that the implant was well tolerated in the animal model and did not induce any adverse inflammatory response.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medicinal Chemistry (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Polymers & Plastics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Polyurethanes Or Polyureas (AREA)
- Materials For Medical Uses (AREA)
Abstract
A biocompatible polymeric material is prepared by forming a three dimensional cross-linked structure of a biocompatible polymeric material such as a polyether or polycarbonate polyurethane and solvent extracting the material with a swelling solvent such as MEK which swells the material by up to 150%. The solvent swollen polymeric material is then de-swelled with a non solvent such as water which is miscible with the extraction solvent. The process produces polymeric materials which do not produce leachables and thereby have properties that are suitable for implantation.
Description
- This invention relates to biocompatible polymeric structures suitable for long term implantation within a living human body, and as a substratum for cell, tissue and organ growth technologies.
- Extensive investigations have been undertaken over many years to find materials that will be biologically and chemically stable towards body fluids and body tissue. This area of research has become increasingly important with the development of various objects and articles which can be implanted into a living body, such as pacemaker leads, vascular grafts, mammary prostheses, pacemaker bodies, probes, catheters and the like. Understanding the interactions between the host cells, tissue structures, physiological fluids biological agents and synthetic materials has become an area of intense research in recent years.
- A serious limitation associated with the processes and materials available to the biomedical designer today is the fact that virtually all materials available today require some level of additives. An additional limitation of current materials is that polymerization reactions are far from perfect and generate materials which contain low molecular weight material, oligomers, unreacted monomers, catalysts, stabilizers and a host of other additives within the material. Irrespective of the source, these chemicals present a serious problem as they can leach into the tissue surrounding the implant.
- Among the most important implantation material available today are the polyurethane's, silicones, fluoropolymers, and the polyesters. All of these classes of material suffer from the liberation of leachables. Among the most important of these materials are the polyurethanes. The polyurethane family of materials is unsurpassed in the area of soft tissue implantable materials. Attempts have been made to make porous structures from these materials for application as tissue scaffolds. While these porous structures have been implanted successfully it has hitherto been impossible to control the tissue growth process with any precision. One of the primary reasons for this has been the evolution of toxic leachables from the materials.
- Thus, while there are some polymeric materials available for use in medical implant technologies there is a need for an improved technology for producing polymeric materials with enhanced biostability and biocompatibility.
- This invention therefore is directed towards providing process and material technologies that can produce leachable free polymer systems with properties suitable for implantation.
- According to the invention there is provided a process for preparing a biocompatible polymeric material comprising the steps of:
- forming a three dimensional cross-linked structure of a biocompatible polymeric material; and
- solvent extracting the polymeric material with an extraction solvent, the solvent being a solvent which generates a volumetric swelling and having a solubility parameter of from 17 to 27 MPa0.5.
- The solvent extraction technique involves extracting the polymer in the presence of a swelling solvent. In a preferred embodiment the solvent swells the material of the implant by more than 30%, more preferably by more than 100% and still more preferably by more than 150%.
- Ideally the solubility parameter of the solvent extraction system is selected for compatibility with the solubility parameter of the polymeric material or its phases. Preferably the solubility parameter of the solvent extraction system is within ±4 MPa½ of the solubility parameter of the polymer or its phases.
- Most preferably the solubility parameter is from 18-24 MPa½.
- In a preferred embodiment the hydrogen-bonding component of the solvent solubility parameter is in excess of 3 MPa½.
- In a preferred embodiment the solvent solubility parameter is selected such that it is similar to that of material leachables.
- In a preferred embodiment the solvent is miscible with water. In another embodiment the solvent has a vapour pressure in excess of 2 kPa. More preferably the vapour pressure is in excess of 5 kPa. Even more preferably the vapour pressure is in excess of 10 kPa. The vapour pressure of MEK is 12.6 kPa, while the vapour pressure of THF is 21.6 kPa at room temperature.
- Preferably the solvent selected has a low content of stabilizers and other additives and is non-reactive. MEK is the preferred solvent due to its excellent ability to swell cross-linked polyurethanes, its miscibility with water, its high vapour pressure, its stability and it can be obtained at high level of purity.
- In a preferred embodiment of the invention the method includes the step of removing residual solvent from the structure, after solvent extraction. Preferably residual solvent is removed by treatment with water. Alternatively the solvent is removed by freeze drying or by thermally induced phase separation.
- The biocompatible material may for example be a polyether polyurethane, a polycarbonate urethane, a polydimethylsiloxane urethane, a polyester urethane, a fatty acid derived polyurethane, a polybutadiene polyurethane, a urethane urea of any of the above or mixtures. Preferably the polyurethane is a polyether polyurethane, a polycarbonate polyurethane or a polydimethylsiloxane polyurethane.
- In one case the material is in the form of a medical implant. The implant may be a septal defect occluder, a vessel occluder, a vessel defect occluder, a mammary prosthesis, a muscle bulking agent, a gynecological implant, a vascular graft, an embolising implant, a pacemaker housing cover, or an embolic filter.
- The material may be in the form of a porous substratum for cell growth, tissue growth, organ growth or organ reconstruction.
- In the case of a polyurethane biomaterial/scaffold the article may be formed from an organic diisocyanate, a polyol, a chain extender and a blowing agent. A cross-lining agent may be employed to enhance the cross-linking of the material. A catalyst and surfactant may also be employed. The blowing agent is preferably water. For tissue engineering applications, the ratios of the reaction components are selected to promote the formation of a three dimensional porous molecular structure of polyurethane biomaterial.
- The article may be processed by a metering and mixing process, wherein the chemical components are aggressively mixed and dispensed into a vessel and chain extension and blowing reactions occur substantially simultaneously.
- Typically the article is processed by a reactive moulding process, wherein the chemical components are mixed and dispensed into a vessel wherein chain extension occurs.
- Preferably the polyurethane scaffold has a pore size of from 10 microns to 300 microns. Ideally the scaffold has a pore size of between 35 microns to 200 microns.
- Further details of the invention are set out in the claims.
- The biocompatible, leachable free polyurethanes of this invention are derived from organic diisocyanates and polyols. The reaction step converts the chemical precursors into a 3 dimensional molecular cross-linked structure. A 3-dimensional network of this kind is insoluble and intractable.
- The fact that the biomaterial is a three dimensional structure at a molecular level allows it to be processed aggressively to remove leachable chemicals from the material. Low molecular weight chemicals have the potential to leach from the article and result in toxic reactions in living cells. The severity of the inflammation, following implantation of a synthetic material, is strongly dependent on the type and quantity of chemicals that can migrate from the implant to the surrounding tissue. The processes of the invention expand the biomaterials volume at a molecular level. This expansion facilitates the removal of leachables such as monomers, oligomers, high molecular weight linear polymers, catalysts, surfactants, and other additives. The solvent extraction process also reduces any internal stresses within the material. The solvent expands the material by separating the molecular chains and suspending the chains in a solvent matrix. This loss of interchain attraction seriously compromises the mechanical properties of the matrix during the extraction step. The 3-dimensional cross-links however provide the materials with molecular memory and prevent the molecular structure from being completely solubilised. The recovery step removes the solvent and de-swells the material to its original state.
- While the polymer is in the swollen state, the molecular chains can orient themselves into preferred relaxed conformation. These relaxations are limited by the cross-links such that no gross structural change is observed. This process allows the polymer chains to relieve any internal stresses. Relieving internal stress within the polyurethane increases the resistance of the material to phagocyte mediated oxidative degradation.
- It is worth noting that with the process of the invention there is always two phase in the system. The solvent never succeeds in dissolving the cross-linked polymer phase.
- Where a very high level of material purity is required, as in tissue engineering applications, multiple solvent swelling extractions may be carried out. These extractions preferably use solvents that have an affinity for different leachables. Low solubility parameter solvents have an affinity for surfactant leachables. Moderate solubility parameter solvents are used to remove the bulk of the leachables including soft phase monomers, oligomers and diols. High solubility parameter solvents have an affinity for hard phase monomers, dimers, oligomers and amine catalysts. In general the affinity of a particular leachable to a solvent must be off set against the ability of the solvent to swell the matrix. Higher swelling ratio solvents tend to be most effective in removing a wide spectrum of leachables.
- The process of the invention is specifically designed to the treatment of polyurethane polymers. More specifically the invention is designed to treat polyurethane porous structures and scaffolds. However it is recognised that the principles of the invention can be applied to other materials. Indeed, most cross-linked polymer materials can be treated by the processes of the invention. The optimum swelling solvents will naturally have different solubility parameters to those specified for polyurethanes.
- This process enhances the material biocompatible for use as an implantable medical device or as a 3 dimensional matrix for use as a cell scaffold in tissue engineering applications. Altering the chemical precursors and the processing conditions of the material may alter the pore size and the density of the material, as required, to meet the requirements of the application.
- The process for the removal of leachables consists of the following general steps:
- The scaffold is immersed in the swelling solvent and placed in an ultrasonic chamber for a minimum of six hours. The ultrasonic bath facilitates solvent penetration of the scaffold and assists in the migration of leachables from the polymer into the solvent.
- Following the preliminary step, the solvent is diluted by the drop wise addition of non-solvent, miscible with the solvent over a period of 1-3 hours.
- The concentration of solvent should be less than 5% after the addition of non-solvent. The scaffold is then immersed in pure non-solvent for 7-8 hours.
- The scaffold is dried in an oven for 72 hours to remove all traces of the non-solvent.
- This process is carried out in a fashion whereby material is subjected to minimal mechanical stress during the processing. This is particularly important during the swollen phase.
- Achieving incredibly low levels of leachables may require multiple solvent swelling extraction steps. Different solvents may be used in each extraction steps.
- Leachable levels can be measured gravimetrically or analytically (chromatography). HPLC grade water extraction of the materials or scaffold at 40° C. should produce a leachables content less than 1.0 mg per g. More preferably the water extracted leachables content is less than 10 μg per g: Even more preferably the water extracted leachables content is less than 0.1 μg per g. Extraction times in excess of 12 hours should be employed. These levels are near or below the level of detection for many analytical systems and may be demonstrated by extrapolation.
- In another embodiment the exposure of the processed scaffold to a solvent whose solubility parameter is between 18 MPa½ and 24 MPa{fraction (1/2)}, at 40° C., should produce a leachables content less than 10.0 mg per g in the solvent. More preferably the solvent extracted leachables content is less than 100 μg per g. Even more preferably the solvent extracted leachables content of the scaffold is less than 10.0 μg per g. Suitable solvents for this assessment of polyurethane biomaterials include MEK, DMA and THF.
- Solvents that provide the maximum swelling are preferred per this invention. The volume swelling during solvent extraction should be above 30%. Preferably the solvent swelling should be in excess of 100%. Even more preferable is solvent swelling in excess of 150%. The level of solvent swelling decreases as the average molecular weight between cross-links decreases. However a minimum cross-link density is necessary to provide solvent swelling memory.
- The molecular weight between cross-links of the material should preferably be between 300 and 6,000. Preferably the molecular weight between cross-links of the material is between 800 and 2,000. At very high cross-link densities the ability of the polymer to swell in the presence of a swelling solvent is diminished. At very low cross-ink densities large amounts of the polymer structure become solubilised. This creates recovery problems or results in a loss of structure.
- The 3-dimensional molecular structure is important to achieving the physical and chemical characteristics of the invention. The three dimensional aspect is achieved with polyurethane's either by incorporating a trifunctional entity within the formulation or by employing an isocyanate index in excess of 1. Linear polymer systems cannot be subjected to such an aggressive solvent extraction since the use of a solvent with a similar solubility parameter will cause both the polymer and it's leachables to dissolve.
- The implications of a leachable free scaffold are very significant. It means that the response of cells, the foreign body system and the immune system to the scaffold is geometry, morphology and surface chemistry driven. It means that the tissue structures, which propagate through the scaffold in vivo, depend on where the scaffold is placed, the geometry, morphology or surface chemistry characteristics of the scaffold and the chemical environment. The chemical environment can be altered with growth factors, chemo-attractants or other agents, which alter the path of tissue structure development. These features ensure the maintenance of phenotype. This is critical in both in vivo and in vitro applications. These issues are described in detail in our co-pending PCT Application No. ______ filed May 8, 2000, the entire contents of which are herein incorporated by reference (SALV20).
- In conventional implant applications the biocompatible polyurethanes of this invention are useful for the manufacture of catheters, vascular grafts, septal occluders, vessel occluders, embolisation devices, mammary prosthesis, pacemaker housing covers, a stent cuffs, a stent covering, a tissue bridge, a vessel defect occluder, a muscle bulking agent, a gynecological implant, a vascular graft, an embolic filter and other such implant and blood contacting devices.
- In one case the material is in the form of a medical implant. The material may be in the form of a porous substratum for cell growth, tissue growth, organ growth or organ reconstruction.
- The biostable polyurethanes of this invention are based on organic diisocyanates, polyols, and diol, diamine or water chain extenders and combinations thereof.
- To manufacture and process linear polymers into required geometries, normally requires the use of additives and catalysts, which cannot be removed completely by conventional solvent extraction. The 3 dimensional materials, detailed in this invention can be laser machined into the required geometries.
- Details on the chemistry of the invention are as follows.
- The organic diisocyanates are of the general formula:
- R-(NCO)n
- R is an aliphatic, aromatic, cycloaliphatic, or an aliphatic-aromatic hydrocarbon entity containing between 4 and 24 carbon atoms and “n” varies between 2.0 and 3. More preferably, R contains between 4 and 15 carbon atoms. Where n is 2, a polymer with a linear molecular structure may be produced. A three dimensional molecular network may be produced where n varies from 2.0 to 3.0. Ideally n should be 2.
- Examples of suitable isocyanates include: p-phenylene diisocyanate, tetramethylene diisocyanate, cyclohexane 1,2-diisocyanate, m-tetramethylxylene diisocyanate, hexamethylene diisocyanate, 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 2,4 toluene diisocyanate, 2,6 toluene diisocyanate, cyclohexane 1,4 diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and mixtures of the above.
- More ideally the following isocyanates can be used to manufacture suitable materials; 2,4 diphenylmethane diisocyanate, 4,4 diphenylmethane diisocyanate, 2,4 toluene diisocyanate, 2, 6 toluene diisocyanate, cyclohexane 1,4 diisocyanate, isophorone diisocyanate, 4,4-dicyclohexylmethane diisocyanate, and mixtures of the above.
- Even more ideally, 4,4 diphenylmethane diisocyanate, with a low 2,4 isomer content is used.
- A wide variety of polyols may be used per this invention. These include polyether polyols, polyester polyols, polycarbonate polyols, silicone based polyols, fatty acid derived polyols, polybutadiene polyols.
- The molecular weights of the polyols is in excess of 400 and less than 6000. More preferably the molecular weight is between 600 and 2500.
- Polyether polyols, PDMS polyols and polycarbonate polyols are preferred for long term implantation applications. Polyether polyols that may be used include products obtained by the polymerisation of cyclic oxide, for example, ethylene oxide, propylene oxide, butylene oxide, or tetrahydrofuran.
- Useful polyether polyols include polytetramethylene glycols obtained by the polymerisation of tetrahydrofuran. Polyols of differing molecular weights can be used together in a single formulation. Multiple polyols can be used in a single formulation.
- The polyurethanes of this invention are based on diol, diamine, alkanolamine, water chain extenders or mixtures of these. Diol chain extenders react with isocyanate to generate urethane linkages. Most diols or diamines make suitable chain extenders. Examples of such chain extenders include, ethylene glycol, 1,4 butanediol, diethylene glycol, triethylene glycol, 1,2 propane diol, 1,3 propane diol, 1,5 pentane diol, ethylene diamine, 1,4 diaminobutane, 1,6 diaminohexane, 1,7 diaminoheptane, 1,8 diaminooctane, and 1,5 diaminopentane.
- Useful catalysts are widely available in the marketplace and include organic and inorganic salts of bismuth, lead, tin, iron, antimony, cadmium, cobalt, aluminum, mercury, zinc, cerium, molybdenum, vanadium, copper, manganese and zirconium, as well as phosphines and tertiary amines.
- Tertiary amines are an important class of catalyst in which the nitrogen atom is not directly attached to an aromatic ring. Examples of tertiary armines are: triethylamine, N,N,N′,N′-tetramethylenediamine, N-N,N′,N′-tetramethyl-1,3-butanediamine, bis-2-dimethylaminoethyl ether, N,N-dimethylcyclohexylamine, N,N-dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, 1,4-diazabicyclo-[2.2.2] octane and the like.
- Standard cross-linking agents may also be employed to improve the cross-linked aspect of the material. TEA is an exemplary example.
- The chemistry and process for some preferred polyether and polycarbonate polyurethanes is described in more detail in our co-pending PCT application No. ______ filed May 8, 2000, the entire contents of which are herein incorporated by reference (SALV12).
- The one shot process, the quasiprepolymer method or the prepolymer method, can be used to prepare the polyurethanes of this invention.
- Different solvents are available for carrying out this process. The solubility parameter and hydrogen bonding parameters of the solvent will affect the suitability of the solvent. The solubility of the solvents of the invention is typically in the region of 17-27 MPa½. More preferably the solubility parameter is from 18-24 MPa½. The solvent system used for the extract system should have a solubility parameter in the same range as that of the biomaterial or scaffold.
- Solvents that may be used include methylethyl ketone, tetrahydrofuran, 1,2-dichloroethane, propan-2-ol, and combinations of the above. Many other solvents have suitable properties and could equally be employed.
- Preparation of polyether polyurethane biomaterials suitable for solvent extraction.
- Polyol Preparation.
- In the preparation of the polyol resin the following raw materials are added to a heated round bottom flask and mixed;
Raw material Quantity (php) PTMEG (MW 1000)1 100 Triethanolamine2 4.60 Water3 2.56 1,4 Butanediol4 8.05 BF 22705 1.0 RC Catalyst 1056 2.96 Desmorapid PP7 0.34 Kac/Deg8 0.73 - The materials are mixed at 50-60° C. for a minimum of 25-30 minutes.
- The polyol resin is stored in containers, under a blanket of nitrogen gas.
- An isocyanate pre-polymer is prepared from flake MDI (Desmodur from Bayer) and PTMEG (Terathane 1000 MW from DuPont). The amount of MDI and polyol used yield a NCO % content by weight of 15.6% and can be readily determined by those skilled in the art. A number of polyether polyurethane biomaterials are prepared at varying isocyanate indices using techniques described in our copending patent. The following isocyanate index materials were reacted and cured in a cylindrical mould; 0.95, 0.99, 1.04, 1.08, 1.13, 1.18, 1.23 and 1.29. The samples were cut to a length of 15 mm and had a diameter of 21.5 mm.
- Solvent Extraction.
- A 250 ml wide necked conical flask was filled with MEK to the 250 ml mark. A separate flask was used for samples of each index. Five samples were placed in each flask. The flasks were stoppered and placed in a water filled ultrasonic bath. The bath was at room temperature. The flasks were sonified for 6 hours. After the 6 hours the samples were removed from the flask by pouring the contents into a sieve. The samples were rinsed in water and placed in an oven at 80° C. to dry. The samples were weighed at 30 minute intervals until the weight stabilised. The weight loss for each sample was measured.
- Note: The materials processed in this experiment suffered from shrinkage. This was overcome in more recent experiments by using a larger vessel, adding the water as non-solvent to the extraction vessel over a period of 3 hours to achieve a solution concentration of <5%. This avoids the mechanical deformation associated with sieving and the differential shrinkage associated with drying the material while it is still solvent swollen. The procedure was further optimised by placing the samples in water for 6-8 hours. This step removes virtually all the solvent prior to the drying step.
- The following table details the average % weight losses at the various isocyanate indices.
Average % weight Isocyanate Index loss 0.95 21.7% 0.99 13.5% 1.04 7.2% 1.08 5.5% 1.13 4.8% 1.18 5.5% 1.23 10.3% 1.29 9.8% - The minimum weight loss for polyether polyurethane biomaterial was achieved with an isocyanate index of 1.13. This was achieved with swelling of the biomaterial to 150%. It is concluded from this example that the formation of a cross linked structure is most efficiently achieved at an isocyanate index of 1.13.
- Cytotoxicity
- This biomaterial scored zero when subjected to the Cytotoxicity test as outlined in ISO standard 10993-5. This is the lowest possible score with this test method. This means that when cell growth media, previously incubated with the biomaterial, supported the growth of L-929 cells and did not induce a cytopathic effect. Media incubated with cytotoxic materials induce cytopathic effects when incubated with L-929 cells. The extent of cytopathic effect can be correlated to the cytotoxicity of the biomaterial.
- In vivo Response
- This polyether polyurethane biomaterial was also implanted in the gluteal muscle of rats and left for up to 6 months. The histological analysis conducted on the explants indicated that the implant was well tolerated in the animal model and did not induce any adverse inflammatory response.
- The invention is not limited to the embodiments hereinbefore described which may be varied in detail.
Claims (29)
1. A process for preparing a biocompatible polymeric material comprising the steps of:
forming a three dimensional cross-linked structure of a biocompatible polymeric material; and
solvent extracting the polymeric material with an extraction solvent, the solvent being a solvent which generates a volumetric swelling and having a solubility parameter of from 17 to 27 MPa0.5.
2. A process as claimed in claim 1 including the step of de-swelling the solvent swollen polymeric material.
3. A process as claimed in claim 2 wherein the polymeric material is de-swelled by contacting the solvent swollen polymeric material with a non-solvent which is miscible with the extraction solvent.
4. A process as claimed in any of claims 1 to 3 including the step of drying the polymeric material to substantially remove solvent residues.
5. A process as claimed in claim 4 including the step, prior to drying, of extracting the polymeric material with water.
6. A process as claimed in any of claims 1 to 5 wherein the polymeric material is extracted with a number of extraction solvents.
7. A process as claimed in claim 6 wherein the solvent extractions are carried out sequentially.
8. A process as claimed in any preceding claim wherein the solubility parameter of the extraction solvent is within ±4 Mpa0.5 of the solubility parameter of the polymeric material or its phases.
9. A process as claimed in any preceding claim wherein the vapour pressure of the extraction solvent is greater than 2 kPa at 25° C.
10. A process as claimed in claim 9 wherein the vapour pressure of the extraction solvent is greater than 5 kPa at 25° C.
11. A process as claimed in claim 10 wherein the vapour pressure of the extraction solvent is greater than 10 kPa at 25° C.
12. A process as claimed in any preceding claim wherein the extraction solvent has a polar component of its solubility parameter in excess of 3 MPa0.5.
13. A process as claimed in any preceding claim wherein the solvent has a solvability parameter of from 18 to 24 MPa0.5.
14. A process as claimed in any preceding claim wherein the swelling solvent swells the material by more than 30%.
15. A process as claimed in claim 14 wherein the swelling solvent swells the material by more than 100%.
16. A process as claimed in claim 14 or 15 wherein the swelling solvent swells the material by more than 150%.
17. A process as claimed in any of claims 1 to 16 wherein the extraction solvent is water miscible.
18. A process as claimed in any of claims 1 to 17 wherein the extraction solvent includes tetrahydrofuran (THF).
19. A process as claimed in any of claims 1 to 19 wherein the extraction solvent includes methyl ethyl ketone (MEK).
20. A process as claimed in any of claims 1 to 15 wherein the solvent extraction step is carried out for a period of at least 2 hours at room temperature.
21. A process as claimed in any preceding claim wherein the solvent extraction step is carried out at a temperature in excess of 20° C.
22. A process as claimed in any preceding claim wherein the solvent extraction step is carried out in an ultrasonic bath.
23. A process as claimed in any of claims 3 to 22 wherein the non solvent is water.
24. A process as claimed in any of claims 3 to 22 wherein the non solvent is and alcohol.
25. A process as claimed in any of claims 3 to 24 wherein the non solvent is added to the solvent swollen polymeric material in an amount and at a rate to maintain a low concentration gradient.
26. A process as claimed in any of claims 3 to 25 wherein the de-swelling is carried out at a temperature of less than 40° C.
27. A process as claimed in any preceding claim wherein the polymeric material is a polyether polyurethane.
28. A process as claimed in any of claims 1 to 26 wherein the polymeric material is a polycarbonate urethane.
29. A process as claimed in any of claims 1 or 26 wherein the polymeric material is a polydimethyl-siloxane urethane.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IEPCT/IE99/00037 | 1999-05-07 | ||
PCT/IE1999/000037 WO2000067811A1 (en) | 1999-05-07 | 1999-05-07 | Biostable polyether polyurethane product |
IEPCT/IE99/00038 | 1999-05-07 | ||
PCT/IE1999/000038 WO2000067812A1 (en) | 1999-05-07 | 1999-05-07 | Biostability of polymeric structures |
PCT/IE2000/000058 WO2000067814A1 (en) | 1999-05-07 | 2000-05-08 | Biostability of polymeric structures |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IE2000/000058 Continuation WO2000067814A1 (en) | 1999-05-07 | 2000-05-08 | Biostability of polymeric structures |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020072584A1 true US20020072584A1 (en) | 2002-06-13 |
Family
ID=26320278
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/985,821 Abandoned US20020072584A1 (en) | 1999-05-07 | 2001-11-06 | Biostability of polymeric structures |
US09/985,819 Abandoned US20020072550A1 (en) | 1999-05-07 | 2001-11-06 | Biostable polyurethane products |
US11/152,780 Abandoned US20070003594A1 (en) | 1999-05-07 | 2005-06-15 | Tissue engineering scaffold |
US12/271,336 Expired - Fee Related US8168431B2 (en) | 1999-05-07 | 2008-11-14 | Tissue engineering scaffold comprising polyurethane material having voids interconnected by pores |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/985,819 Abandoned US20020072550A1 (en) | 1999-05-07 | 2001-11-06 | Biostable polyurethane products |
US11/152,780 Abandoned US20070003594A1 (en) | 1999-05-07 | 2005-06-15 | Tissue engineering scaffold |
US12/271,336 Expired - Fee Related US8168431B2 (en) | 1999-05-07 | 2008-11-14 | Tissue engineering scaffold comprising polyurethane material having voids interconnected by pores |
Country Status (5)
Country | Link |
---|---|
US (4) | US20020072584A1 (en) |
EP (3) | EP1176995A1 (en) |
AU (3) | AU4426600A (en) |
DE (1) | DE60003178T2 (en) |
WO (3) | WO2000067813A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10243965A1 (en) * | 2002-09-20 | 2004-04-01 | Adiam Life Science Ag | Process for the production of biocompatible polyurethanes |
US20100234955A1 (en) * | 2007-02-14 | 2010-09-16 | Santerre J Paul | Fibrous scaffold for use in soft tissue engineering |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7964207B2 (en) * | 2002-03-22 | 2011-06-21 | Doctor's Research Group, Inc. | Methods of performing medical procedures that promote bone growth, method of making compositions that promote bone growth, and apparatus for use in such methods |
US20040127563A1 (en) * | 2002-03-22 | 2004-07-01 | Deslauriers Richard J. | Methods of performing medical procedures which promote bone growth, compositions which promote bone growth, and methods of making such compositions |
US7303575B2 (en) * | 2002-08-01 | 2007-12-04 | Lumen Biomedical, Inc. | Embolism protection devices |
DE10243966A1 (en) * | 2002-09-20 | 2004-04-01 | Adiam Life Science Ag | Process for the production of biocompatible polyurethanes |
US20050043585A1 (en) * | 2003-01-03 | 2005-02-24 | Arindam Datta | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
US7803395B2 (en) * | 2003-05-15 | 2010-09-28 | Biomerix Corporation | Reticulated elastomeric matrices, their manufacture and use in implantable devices |
US7879062B2 (en) * | 2003-07-22 | 2011-02-01 | Lumen Biomedical, Inc. | Fiber based embolism protection device |
US8048042B2 (en) * | 2003-07-22 | 2011-11-01 | Medtronic Vascular, Inc. | Medical articles incorporating surface capillary fiber |
US7763077B2 (en) | 2003-12-24 | 2010-07-27 | Biomerix Corporation | Repair of spinal annular defects and annulo-nucleoplasty regeneration |
US20050165480A1 (en) * | 2004-01-23 | 2005-07-28 | Maybelle Jordan | Endovascular treatment devices and methods |
MY144221A (en) | 2004-03-03 | 2011-08-15 | Polynovo Biomaterials Pty Ltd | Biocompatible polymer compositions for dual or multistaged curing. |
CA2557231C (en) * | 2004-03-05 | 2013-12-31 | The Trustees Of Columbia University In The City Of New York | Multi-phased, biodegradable and osteointegrative composite scaffold for biological fixation of musculoskeletal soft tissue to bone |
US20070190108A1 (en) * | 2004-05-17 | 2007-08-16 | Arindam Datta | High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair |
US8258198B2 (en) | 2004-05-28 | 2012-09-04 | Air Products And Chemicals, Inc. | Fast demold/extended cream time polyurethane formulations |
US8771294B2 (en) | 2004-11-26 | 2014-07-08 | Biomerix Corporation | Aneurysm treatment devices and methods |
EP1945690B1 (en) | 2005-09-20 | 2016-07-27 | Polynovo Biomaterials Pty Limited | Chain extenders |
US8052714B2 (en) * | 2005-11-22 | 2011-11-08 | Medtronic Vascular, Inc. | Radiopaque fibers and filtration matrices |
WO2008014561A1 (en) | 2006-08-02 | 2008-02-07 | Polynovo Biomaterials Pty Ltd | Biocompatible polymer compositions |
US8753391B2 (en) | 2007-02-12 | 2014-06-17 | The Trustees Of Columbia University In The City Of New York | Fully synthetic implantable multi-phased scaffold |
CN101896526B (en) | 2007-10-03 | 2013-09-11 | 新型聚合物生物材料有限公司 | High modulus polyurethane and polyurethane/urea compositions |
US7923486B2 (en) * | 2007-10-04 | 2011-04-12 | Board Of Regents, The University Of Texas System | Bio-polymer and scaffold-sheet method for tissue engineering |
JP5610542B2 (en) | 2008-04-21 | 2014-10-22 | コヴィディエン リミテッド パートナーシップ | Blade ball embolization device and delivery system |
US9675482B2 (en) | 2008-05-13 | 2017-06-13 | Covidien Lp | Braid implant delivery systems |
US20100318108A1 (en) * | 2009-02-02 | 2010-12-16 | Biomerix Corporation | Composite mesh devices and methods for soft tissue repair |
JP5814913B2 (en) | 2009-04-28 | 2015-11-17 | サーモディクス,インコーポレイテッド | Bioactive agent delivery device and delivery method |
EP2275466A1 (en) * | 2009-07-16 | 2011-01-19 | Bayer MaterialScience AG | Polyuric-based cloth adhesive |
EP2467173B8 (en) | 2009-08-21 | 2019-06-19 | Novan, Inc. | Wound dressings, methods of using the same and methods of forming the same |
US20110207166A1 (en) * | 2009-11-06 | 2011-08-25 | Sarah Rivkah Vaiselbuh | Human bone marrow microenvironments and uses thereof |
EP2558024B1 (en) * | 2010-04-12 | 2017-03-08 | The University Of Miami | Macroporous bioengineered scaffolds for cell transplantation |
US9554888B2 (en) * | 2010-04-20 | 2017-01-31 | University Of Utah Research Foundation | Phase separation sprayed scaffold |
US9288089B2 (en) | 2010-04-30 | 2016-03-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Orthogonal differential vector signaling |
US9288082B1 (en) | 2010-05-20 | 2016-03-15 | Kandou Labs, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication using sums of differences |
US9106238B1 (en) | 2010-12-30 | 2015-08-11 | Kandou Labs, S.A. | Sorting decoder |
US9985634B2 (en) | 2010-05-20 | 2018-05-29 | Kandou Labs, S.A. | Data-driven voltage regulator |
US8593305B1 (en) | 2011-07-05 | 2013-11-26 | Kandou Labs, S.A. | Efficient processing and detection of balanced codes |
US9479369B1 (en) | 2010-05-20 | 2016-10-25 | Kandou Labs, S.A. | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage |
US9401828B2 (en) | 2010-05-20 | 2016-07-26 | Kandou Labs, S.A. | Methods and systems for low-power and pin-efficient communications with superposition signaling codes |
US9077386B1 (en) | 2010-05-20 | 2015-07-07 | Kandou Labs, S.A. | Methods and systems for selection of unions of vector signaling codes for power and pin efficient chip-to-chip communication |
ES2527998T3 (en) * | 2011-02-09 | 2015-02-03 | Medical Adhesive Revolution Gmbh | Adhesive for tissues based on nitrogen-modified aspartates |
US9925296B2 (en) | 2011-03-23 | 2018-03-27 | The Regents Of The University Of California | Mesh enclosed tissue constructs |
US8900862B2 (en) | 2011-03-23 | 2014-12-02 | The Regents Of The University Of California | Mesh enclosed tissue constructs |
US9968446B2 (en) | 2011-03-23 | 2018-05-15 | The Regents Of The University Of California | Tubular scaffold for fabrication of heart valves |
US10610616B2 (en) | 2011-03-23 | 2020-04-07 | The Regents Of The University Of California | Mesh enclosed tissue constructs |
ES2544935T3 (en) * | 2011-04-19 | 2015-09-07 | Medical Adhesive Revolution Gmbh | Medical adhesive to stop bleeding |
US9861727B2 (en) | 2011-05-20 | 2018-01-09 | Surmodics, Inc. | Delivery of hydrophobic active agent particles |
US11246963B2 (en) | 2012-11-05 | 2022-02-15 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents |
KR20150084959A (en) | 2012-11-13 | 2015-07-22 | 코비디엔 엘피 | Occlusive devices |
CN105122758B (en) | 2013-02-11 | 2018-07-10 | 康杜实验室公司 | High bandwidth interchip communication interface method and system |
US11399842B2 (en) * | 2013-03-13 | 2022-08-02 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10682436B2 (en) * | 2013-03-15 | 2020-06-16 | Arsenal Medial, Inc. | In-Situ forming foam for the treatment of vascular dissections |
EP2983643A4 (en) | 2013-04-12 | 2016-12-28 | Univ Columbia | METHODS FOR HOST CELL ECOTROPISM AND DENTAL PULP REGENERATION |
WO2015077608A1 (en) | 2013-11-22 | 2015-05-28 | Kandou Labs SA | Multiwire linear equalizer for vector signaling code receiver |
US9806761B1 (en) | 2014-01-31 | 2017-10-31 | Kandou Labs, S.A. | Methods and systems for reduction of nearest-neighbor crosstalk |
US9100232B1 (en) | 2014-02-02 | 2015-08-04 | Kandou Labs, S.A. | Method for code evaluation using ISI ratio |
DE102014201889A1 (en) | 2014-02-03 | 2015-08-20 | Aesculap Ag | Medical product for use in the treatment of hernias |
CN106105123B (en) | 2014-02-28 | 2019-06-28 | 康杜实验室公司 | Method and system for the embedded vector signaling code of tranmitting data register |
US9148087B1 (en) | 2014-05-16 | 2015-09-29 | Kandou Labs, S.A. | Symmetric is linear equalization circuit with increased gain |
US9852806B2 (en) | 2014-06-20 | 2017-12-26 | Kandou Labs, S.A. | System for generating a test pattern to detect and isolate stuck faults for an interface using transition coding |
US9112550B1 (en) | 2014-06-25 | 2015-08-18 | Kandou Labs, SA | Multilevel driver for high speed chip-to-chip communications |
US9900186B2 (en) | 2014-07-10 | 2018-02-20 | Kandou Labs, S.A. | Vector signaling codes with increased signal to noise characteristics |
US9432082B2 (en) | 2014-07-17 | 2016-08-30 | Kandou Labs, S.A. | Bus reversable orthogonal differential vector signaling codes |
EP3175592B1 (en) | 2014-08-01 | 2021-12-29 | Kandou Labs S.A. | Orthogonal differential vector signaling codes with embedded clock |
RU2018139473A (en) * | 2016-04-11 | 2020-05-13 | Басф Се | POROUS THERMOPLASTIC MEMBRANES |
EP4516244A2 (en) | 2016-10-27 | 2025-03-05 | Conformal Medical, Inc. | Devices for excluding the left atrial appendage |
US11426172B2 (en) | 2016-10-27 | 2022-08-30 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US10898446B2 (en) | 2016-12-20 | 2021-01-26 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces |
CN108276556B (en) * | 2018-02-06 | 2021-04-27 | 昆明医科大学 | Medical polyurethane material, preparation method and repair stent |
CA3090763A1 (en) * | 2018-02-07 | 2019-08-15 | Cidra Corporate Services Llc | Open cell or reticulated foam having 3-dimensional open-network structure made of a hydrophobic material for selective separation of mineral particles |
CN113727672A (en) | 2019-02-07 | 2021-11-30 | 拜欧雷兹有限公司 | Composite scaffold for soft tissue repair, reconstruction and regeneration |
US12144508B2 (en) | 2019-02-08 | 2024-11-19 | Conformal Medical, Inc. | Devices and methods for excluding the left atrial appendage |
US12226552B2 (en) | 2019-09-30 | 2025-02-18 | Surmodics, Inc. | Active agent depots formed in situ |
US11826863B2 (en) | 2019-11-04 | 2023-11-28 | Covidien Lp | Systems and methods for treating aneurysms |
EP4432984A1 (en) * | 2021-11-17 | 2024-09-25 | The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin | A tissue regeneration scaffold |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4186448A (en) * | 1976-04-16 | 1980-02-05 | Brekke John H | Device and method for treating and healing a newly created bone void |
US4182827A (en) * | 1978-08-31 | 1980-01-08 | Union Carbide Corporation | Polyurethane hydrogels having enhanced wetting rates |
US4383867A (en) * | 1980-03-11 | 1983-05-17 | The United States Of America As Represented By The Secretary Of The Air Force | Solvent mixture for removing cured polyurethane coatings |
US4604762A (en) * | 1981-02-13 | 1986-08-12 | Thoratec Laboratories Corporation | Arterial graft prosthesis |
US4687482A (en) * | 1984-04-27 | 1987-08-18 | Scripps Clinic And Research Foundation | Vascular prosthesis |
US4600652A (en) * | 1985-04-01 | 1986-07-15 | Warner-Lambert Company | Permanently bonded antithrombogenic polyurethane surface |
DE3603996A1 (en) * | 1986-02-08 | 1987-08-13 | Bayer Ag | METHOD FOR THE CONTINUOUS PRODUCTION OF AQUEOUS POLYURETHANE DISPERSIONS AND THEIR USE AS A COATING AGENT OR AS AN ADHESIVE |
US4743629A (en) * | 1987-07-02 | 1988-05-10 | Becton, Dickinson And Company | Crosslinked polyetherurethane membranes useful in blood electrolyte sensors |
US5376117A (en) * | 1991-10-25 | 1994-12-27 | Corvita Corporation | Breast prostheses |
US5478867A (en) * | 1993-07-07 | 1995-12-26 | The Dow Chemical Company | Microporous isocyanate-based polymer compositions and method of preparation |
US5545708A (en) * | 1993-07-14 | 1996-08-13 | Becton, Dickinson And Company | Thermoplastic polyurethane method of making same and forming a medical article therefrom |
US5502092A (en) * | 1994-02-18 | 1996-03-26 | Minnesota Mining And Manufacturing Company | Biocompatible porous matrix of bioabsorbable material |
DE69530928T2 (en) * | 1994-08-22 | 2003-12-24 | Zeon Corp., Tokio | POLYURETHANE OBJECT IN A TUBULAR BALLOON SHAPE |
US6147168A (en) * | 1995-03-06 | 2000-11-14 | Ethicon, Inc. | Copolymers of absorbable polyoxaesters |
US5716413A (en) * | 1995-10-11 | 1998-02-10 | Osteobiologics, Inc. | Moldable, hand-shapable biodegradable implant material |
US5993972A (en) * | 1996-08-26 | 1999-11-30 | Tyndale Plains-Hunter, Ltd. | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US6130309A (en) * | 1996-09-20 | 2000-10-10 | Tyndale Plains-Hunter, Ltd. | Hydrophilic polyether polyurethanes containing carboxylic acid |
AU7178698A (en) * | 1996-11-15 | 1998-06-03 | Advanced Bio Surfaces, Inc. | Biomaterial system for in situ tissue repair |
WO1999024084A1 (en) * | 1997-11-07 | 1999-05-20 | Salviac Limited | Biostable polycarbonate urethane products |
CA2307764A1 (en) * | 1997-11-07 | 1999-05-20 | Salviac Limited | Implantable occluder devices for medical use |
CA2221195A1 (en) * | 1997-11-14 | 1999-05-14 | Chantal E. Holy | Biodegradable polymer matrix |
US6187329B1 (en) * | 1997-12-23 | 2001-02-13 | Board Of Regents Of The University Of Texas System | Variable permeability bone implants, methods for their preparation and use |
-
2000
- 2000-05-08 WO PCT/IE2000/000056 patent/WO2000067813A1/en active Search and Examination
- 2000-05-08 AU AU44266/00A patent/AU4426600A/en not_active Abandoned
- 2000-05-08 WO PCT/IE2000/000058 patent/WO2000067814A1/en not_active Application Discontinuation
- 2000-05-08 AU AU46067/00A patent/AU4606700A/en not_active Abandoned
- 2000-05-08 EP EP00927682A patent/EP1176995A1/en not_active Withdrawn
- 2000-05-08 WO PCT/IE2000/000059 patent/WO2000067815A1/en not_active Application Discontinuation
- 2000-05-08 EP EP00927681A patent/EP1176994A1/en not_active Withdrawn
- 2000-05-08 AU AU46066/00A patent/AU4606600A/en not_active Abandoned
- 2000-05-08 DE DE60003178T patent/DE60003178T2/en not_active Expired - Fee Related
- 2000-05-08 EP EP00925547A patent/EP1176993B1/en not_active Expired - Lifetime
-
2001
- 2001-11-06 US US09/985,821 patent/US20020072584A1/en not_active Abandoned
- 2001-11-06 US US09/985,819 patent/US20020072550A1/en not_active Abandoned
-
2005
- 2005-06-15 US US11/152,780 patent/US20070003594A1/en not_active Abandoned
-
2008
- 2008-11-14 US US12/271,336 patent/US8168431B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10243965A1 (en) * | 2002-09-20 | 2004-04-01 | Adiam Life Science Ag | Process for the production of biocompatible polyurethanes |
US20100234955A1 (en) * | 2007-02-14 | 2010-09-16 | Santerre J Paul | Fibrous scaffold for use in soft tissue engineering |
US8696750B2 (en) * | 2007-02-14 | 2014-04-15 | Mount Sinai Hospital | Fibrous scaffold for use in soft tissue engineering |
Also Published As
Publication number | Publication date |
---|---|
EP1176994A1 (en) | 2002-02-06 |
EP1176995A1 (en) | 2002-02-06 |
AU4426600A (en) | 2000-11-21 |
DE60003178D1 (en) | 2003-07-10 |
US8168431B2 (en) | 2012-05-01 |
AU4606600A (en) | 2000-11-21 |
AU4606700A (en) | 2000-11-21 |
EP1176993B1 (en) | 2003-06-04 |
EP1176993A1 (en) | 2002-02-06 |
WO2000067815A1 (en) | 2000-11-16 |
DE60003178T2 (en) | 2004-04-08 |
US20020072550A1 (en) | 2002-06-13 |
US20090163612A1 (en) | 2009-06-25 |
US20070003594A1 (en) | 2007-01-04 |
WO2000067814A1 (en) | 2000-11-16 |
WO2000067813A1 (en) | 2000-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020072584A1 (en) | Biostability of polymeric structures | |
US5863627A (en) | Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers | |
US20110028661A1 (en) | Hybrid polyurethane block copolymers with thermoplastic processability and thermoset properties | |
Park et al. | PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study | |
Gunatillake et al. | Designing biostable polyurethane elastomers for biomedical implants | |
US5254662A (en) | Biostable polyurethane products | |
JPH04226119A (en) | Polyurethane stable in vivo and manufacture thereof | |
US4906465A (en) | Antithrombogenic devices containing polysiloxanes | |
JPH05507953A (en) | Polyurethane or polyurethaneurea elastomer composition | |
US20020142413A1 (en) | Tissue engineering scaffold | |
EP2001923A1 (en) | Biostable polyurethanes | |
CN114456346A (en) | Polyurethane with biological stability and mechanical stability, preparation method and application thereof | |
IE20000346A1 (en) | A polymeric structure | |
CA2091564A1 (en) | Biostable polyurethane products | |
WO2000067812A1 (en) | Biostability of polymeric structures | |
CN112831013A (en) | A kind of functionalized polyurethane and its preparation method and application | |
IE20000347A1 (en) | Tissue Engineering | |
EP4442287A1 (en) | Medical device | |
Tang | Surface modifying macromolecules for biomaterials. | |
EP4316541A1 (en) | Composition for medical use and application of same | |
Vlad | Hydrolytic stability of some thermoplastic poly (ether-urethane-urea) s | |
CN119735783A (en) | A calcification-resistant, blood-compatible, fatigue-resistant multi-silicon-integrated polyurethane and its preparation method and application | |
BRPI1106992A2 (en) | USE OF BIOPOLYMER MEMBRANES IN CARDIOVASCULAR PROSTHESIS | |
CN118108921A (en) | A biocompatible and biostable polydimethylsiloxane type polyurethane urea extended by a urea-based chain extender, preparation and application thereof | |
CN118085226A (en) | Anti-fouling material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SALVIAC LIMITED, IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BRADY, EAMON;CANNON, ANN MARLE;FARRELL, FERGAL;REEL/FRAME:012299/0150;SIGNING DATES FROM 20011003 TO 20011005 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |