US20020068316A1 - Method for predicting the efficacy of anti-cancer drugs - Google Patents
Method for predicting the efficacy of anti-cancer drugs Download PDFInfo
- Publication number
- US20020068316A1 US20020068316A1 US09/730,700 US73070000A US2002068316A1 US 20020068316 A1 US20020068316 A1 US 20020068316A1 US 73070000 A US73070000 A US 73070000A US 2002068316 A1 US2002068316 A1 US 2002068316A1
- Authority
- US
- United States
- Prior art keywords
- cells
- chamber
- electromagnetic radiation
- labeling
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000002246 antineoplastic agent Substances 0.000 title claims abstract description 17
- 229940041181 antineoplastic drug Drugs 0.000 title claims abstract description 17
- 239000012528 membrane Substances 0.000 claims abstract description 36
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 31
- 230000005012 migration Effects 0.000 claims abstract description 31
- 238000013508 migration Methods 0.000 claims abstract description 31
- 229940079593 drug Drugs 0.000 claims abstract description 25
- 239000003814 drug Substances 0.000 claims abstract description 25
- 238000001574 biopsy Methods 0.000 claims abstract description 21
- 201000011510 cancer Diseases 0.000 claims abstract description 18
- 230000030833 cell death Effects 0.000 claims abstract description 15
- 231100000433 cytotoxic Toxicity 0.000 claims abstract description 12
- 230000005855 radiation Effects 0.000 claims abstract description 11
- 230000002095 anti-migrative effect Effects 0.000 claims abstract description 10
- 230000001472 cytotoxic effect Effects 0.000 claims abstract description 8
- 239000006285 cell suspension Substances 0.000 claims abstract description 4
- 230000005670 electromagnetic radiation Effects 0.000 claims description 16
- 238000002372 labelling Methods 0.000 claims description 14
- 238000012360 testing method Methods 0.000 claims description 9
- 239000000975 dye Substances 0.000 claims description 8
- 239000013043 chemical agent Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 230000012292 cell migration Effects 0.000 claims description 5
- 238000000338 in vitro Methods 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 3
- 239000007850 fluorescent dye Substances 0.000 claims 8
- 230000004936 stimulating effect Effects 0.000 claims 6
- 239000000463 material Substances 0.000 claims 3
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 230000035572 chemosensitivity Effects 0.000 abstract description 15
- 239000003269 fluorescent indicator Substances 0.000 abstract description 11
- 230000005911 anti-cytotoxic effect Effects 0.000 abstract description 6
- 238000002360 preparation method Methods 0.000 abstract description 2
- 229940126585 therapeutic drug Drugs 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 71
- 238000003556 assay Methods 0.000 description 25
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 12
- WNRZHQBJSXRYJK-UHFFFAOYSA-N carboxyamidotriazole Chemical compound NC1=C(C(=O)N)N=NN1CC(C=C1Cl)=CC(Cl)=C1C(=O)C1=CC=C(Cl)C=C1 WNRZHQBJSXRYJK-UHFFFAOYSA-N 0.000 description 11
- 238000012602 chemosensitivity assay Methods 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229960001603 tamoxifen Drugs 0.000 description 8
- 230000001093 anti-cancer Effects 0.000 description 7
- 230000005764 inhibitory process Effects 0.000 description 6
- 230000035926 haptotaxis Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 210000000481 breast Anatomy 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000003399 chemotactic effect Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 3
- 208000026310 Breast neoplasm Diseases 0.000 description 3
- 230000006820 DNA synthesis Effects 0.000 description 3
- 102000016359 Fibronectins Human genes 0.000 description 3
- 108010067306 Fibronectins Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- BQRGNLJZBFXNCZ-UHFFFAOYSA-N calcein am Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O)=C(OC(C)=O)C=C1OC1=C2C=C(CN(CC(=O)OCOC(C)=O)CC(=O)OCOC(=O)C)C(OC(C)=O)=C1 BQRGNLJZBFXNCZ-UHFFFAOYSA-N 0.000 description 3
- 230000019522 cellular metabolic process Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000030505 negative regulation of chemotaxis Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 230000035605 chemotaxis Effects 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 231100000582 ATP assay Toxicity 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000012411 Intermediate Filament Proteins Human genes 0.000 description 1
- 108010061998 Intermediate Filament Proteins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 206010028116 Mucosal inflammation Diseases 0.000 description 1
- 201000010927 Mucositis Diseases 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 102000013127 Vimentin Human genes 0.000 description 1
- 108010065472 Vimentin Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 108010007093 dispase Proteins 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 239000003777 experimental drug Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000008629 immune suppression Effects 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012603 in vitro chemosensitivity assay Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000012933 kinetic analysis Methods 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000010232 migration assay Methods 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 231100001221 nontumorigenic Toxicity 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000002046 pro-migratory effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 210000005048 vimentin Anatomy 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/52—Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/968—High energy substrates, e.g. fluorescent, chemiluminescent, radioactive
Definitions
- the present invention relates to assays for predicting the chemosensitivity of tissues to particular drugs, and more specifically to a method for measuring both the anti-migratory effect and cytotoxic effect of drugs on tissues in vitro.
- Solid tissue cancers are broadly defined by two general characteristics, namely: (1) a mass of hyperproliferating cells of clonal origin, and (2) acquisition of an aggressively invasive phenotype, wherein cancer cells leave the tissue of origin and establish new tumor metastases at distant sites.
- Current methods for evaluating the effect of accepted and experimental anti-cancer drugs on human cancers focus on measuring the arrest of hyperproliferation or the stimulation of cell death, both markers of only the first characteristic of cancer.
- these current methods require that single cells be isolated from a tumor biopsy and then grown in a culture. The cultured cells are then exposed to a drug, and after a certain amount of time has elapsed cytostatic or cytotoxic effects are measured. These measurements are made in many ways, including: incorporation of the toxic substance, inducement of programmed cell death (termed apoptosis), depletion of intracellular metabolites such as adenosine triphosphate (ATP), depression of cell growth, and compromise of the cell membrane.
- apoptosis inducement of programmed cell death
- ATP adenosine triphosphate
- the present invention takes advantage of several aspects of a procedure for automatically measuring cell migration described in U.S. Pat. No. 5,601,997 to Tchao, modified and adapted for the novel use described herein.
- the present invention further incorporates for novel use the cell death determination procedure described by Nieminen, A. L., A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol Appl Pharmacol 115(2): pp 147-155, (1992).
- the present invention provides the first efficient method for simultaneously measuring the anti-migratory effect and cytotoxic effect of drugs on biopsy cells without the need to expand the cells in culture.
- This assay is particularly useful for predicting the chemosensitivity of an individual patient's cancer to therapeutic drugs.
- This assay is unique among chemosensitivity assays for the ability to measure both the anti-migratory and cytotoxic effects of drugs. Because the formation of solid tissue cancer is dependent upon the invading cell's ability to migrate across tissues as well as hyperproliferation, a chemosensitivity assay that measures the both the anti-migratory and cytotoxic effect of drugs is a more comprehensive and more sensitive method for determining the chemosensitivity of biopsies than other assays. Moreover, obviating the need to expand cells in culture reduces the risk of experimental factors which can bias the assay outcome, and allows the assay to be performed more quickly than current methods.
- biopsy samples are dissociated into individual cells which are exposed to anticancer drugs and introduced into a top chamber of a migration assay apparatus.
- a stimulant then induces the cells to migrate across a porous membrane.
- migrated cells are labeled with a live cell fluorescent indicator and non-migrated cells are labeled with a fluorescent indicator of cell death.
- the fluorescence of both fluorophores are measured in a fluorescence plate reader.
- the fluorescence intensity of the cell death reporter indicates the sensitivity of the cells to cytotoxic effects of the drugs.
- the fluorescence emitted from the migrated cells indicates ability of the biopsy cells to migrate in the presence of the drugs.
- the present invention is distinct from all the prior art, including the procedure described in U.S. Pat. No. 5,601,997 to Tchao, in that the prior art procedures all require that the cells in the assay be first pre-labeled.
- the presence of a labeling chemical dye in the prior art procedures can influence migration behavior and may interact with the chemical agent being tested.
- the inventive assay does not introduce chemical agents into the process, as it is not intended to for kinetic analysis of the migratory behavior of cells, and the incorporation of a cytotoxic assay into the procedure is entirely novel.
- FIG. 1 is a flow chart illustrating each step of the present invention for predicting the efficacy of anti-cancer drugs on human tissue
- FIG. 2 is an illustrative diagram of the test chambers of a suitable migration plate apparatus useful with the present invention
- FIGS. 3A and 3B are exemplary comparison charts of the sensitivity of human breast cancer cells to the anti-migratory and cytotoxic effects of two anticancer drugs wherein the anticancer drugs compared are the common anticancer drug tamoxifen (FIG. 3A) and an experimental anticancer drug carboxyamido-triazole (FIG. 3B).
- the anticancer drugs compared are the common anticancer drug tamoxifen (FIG. 3A) and an experimental anticancer drug carboxyamido-triazole (FIG. 3B).
- Breast cancer cells were allowed to migrate towards serum (chemotaxis) or fibronectin (haptotaxis) in the presence of tamoxifen (a) and carboxyamido-triazole (CAI) (B). After 18 hours, migrated cells were labeled with calcein-AM and fluorescence quantitated from the bottom.
- the present invention is an assay for simultaneously and automatically measuring the antimigratory and cytotoxic properties of anticancer drugs on human tissues. This assay is useful for predicting the chemosensitivity of biopsy samples to various chemical agents or combinations of chemical agents.
- a flow chart describing the steps of the present invention is provided in FIG. 1 carried out in its substantial aspects in a migration plate structure illustrated in FIG. 2, which in its detailed form may be like that described in U.S. Pat. No. 5,801,055.
- step 101 of FIG. 1 the cells of a biopsy are disaggregated by gentle mechanical agitation and/or proteolytic digestion in a serum free medium suitable for maintaining the cells in culture.
- steps 102 and 103 the cells are exposed to an anticancer chemical agent and introduced into the first chamber 8 of a migration plate.
- the anticancer drug is directly added to the cell suspension to reach a final concentration typically in the range of 1 to 100 ⁇ Molar.
- the top chamber 8 of the migration plate is separated from a second chamber 10 by an electromagnetic radiation opaque membrane having a plurality of substantially perpendicular transverse pores 9 .
- a migration stimulus is then added to the second chamber 10 which may be a chemotactic stimulus, (a chemical dissolved in the medium of the second chamber), or a haptotactic stimulus, (a non-solubilized molecule adhered to the radiation opaque membrane on the side facing the second chamber).
- step 104 the cells are then allowed to migrate in the appropriate conditions (temperature, pH, humidity, and carbon dioxide concentration) from the first chamber through the pores of the radiation opaque membrane towards the second chamber in conditions suitable to maintain human tissues, e.g., 37° C., pH 7.4, 5% carbon dioxide.
- appropriate conditions e.g., temperature, pH, humidity, and carbon dioxide concentration
- the cells adhered to the side of the membrane facing the second chamber are labeled with a live-cell fluorescent indicator in step 105 .
- the non migrated cells which remain adhered to the side of the membrane facing the first chamber are labeled with a fluorescent indicator of cell death.
- the fluorophores are added directly to the medium to reach a final concentration typically from 1-50 micro Molar.
- Live cell fluorescent indicator suitable for quantitating migrated cells include metabolic dyes such as calcein-AM, membrane dyes such as DiO, DiI, or fluorescent microspheres that are spontaneously endocytosed by live cells.
- Fluorescent indicators suitable for quantifying cell death include ethidium bromide and propidium iodide.
- step 106 the intensity of the electromagnetic radiation emitted from the fluorophores on either side of the membrane are measured in a fluorescence plate reader.
- a fluorescence plate reader is the SpectraFluor manufactured by TECAN Research Triangle Park, NC).
- the fluorescence 11 emitted from the live cell fluorescent indicator on the side of the membrane facing the second chamber is an indicator of the amount of cells that have migrated across the filter.
- the fluorescence 12 emitted from the fluorescent indicator of cell death on the side of the membrane facing the first chamber is an indicator of the amount of cells that are not viable.
- the strength of these signals indicate the chemosensitivity of the cells to the drug being tested.
- a strong relative emission from the first chamber indicates sensitivity to cell death induced by the chemical.
- a weak relative emission from the second chamber indicates sensitivity to inhibition of migration induced by the chemical.
- the data offer meaningful predictions of chemosensitivity of the cancer cells when compared to appropriate drug-free controls and to other drugs.
- a potential limitation of the method described is the contamination of biopsy samples by non-tumorigenic cells that could potentially influence assay results.
- Epithelial cultures in particular, are prone to fibroblast contamination and this cell type predominates the colon, breast, and lung cancer biopsies.
- the extent of fibroblast contamination can be determined by double immunofluorescence staining using antibodies specific for the intermediate filament protein subunits vimentin (as a marker for fibroblasts) and keratin (for epithelial cells).
- the methods of the present invention are useful with a wide variety of cells.
- These include solid tumor cells of biopsies derived from breast, colorectal, lung, and other tissues, and hematopoietic cells.
- the tumor cells may be of epithelial origin (carcinomas), arise in the connective tissue (sarcomas), or arise from specialized cells such as melanocytes (melanomas) and lymphoid cells (lymphomas), and the like.
- the cells may be derived from primary tumors or metastatic tumors.
- tumor samples were aseptically transferred to tubes containing RPMI 1640 cell culture media (Irvine Scientific, Santa Ana, Calif.) supplemented with penicillin (100 U/ml) and streptomycin (100 ⁇ g/ml). Sample size was approximately 1 cm in diameter. Tissues were minced with a sterile razor into pieces less than 1 mm 3 . Single cells were separated from tissue fragments by filtration through two sheets of sterile gauze (16XX mesh).
- DME Dulbecco's modified eagle's medium
- 1 mM sodium pyruvate and 292 ⁇ g/ml L-glutamine, 100 U/ml penicillin, and 100 ⁇ g/ml streptomycin Dulbecco's modified eagle's medium
- tissues were first minced into approximately 3 mm 3 pieces and added to media containing collagenase and dispase and incubated for approximately 30 minutes at 37° C. with gentle agitation. The cells were then allowed a rest period ranging from 1 to 12 hours in a humidified incubator maintained at 37° C. and 5% carbon dioxide.
- the cell suspension was added to the first chamber of a migration plate containing 96 chambers per plate at a concentration of about 80,000 cells per chamber.
- the migration plate used in this assay was manufactured by Polyfiltronics. Similar plates are available from Becton-Dickinson (U.S. Pat No. 5,801,055).
- the second chamber contained either haptotactic stimulus in the form of 20 82 g/ml fibronectin or chemotactic in the form of 5% fetal calf serum. Cells were allowed to migrate in a humidified incubator at 37° C. and 5% carbon dioxide for twelve hours.
- calcein-AM Molecular Probes, Eugene, Oreg.
- propidium iodide was added to the first chamber to a final concentration of 30 ⁇ M.
- the underside of the filters were washed twice in phosphate buffered saline. Fluorescence from each individual well chamber was measured from the bottom using 485 nm excitation and 530 nm emission filters.
- FIG. 3 demonstrates the influence of tamoxifen and carboxyamido triazole (CAI) on the migration and viability of highly metastatic breast cells.
- CAI carboxyamido triazole
- Tamoxifen and CAI inhibited migration in a dose-dependent manner at sublethal concentration, and CAI was more effective than tamoxifen at halting migration.
- Haptotactic migration on fibronectin was more sensitive to drug effects than chemotactic migration.
- Cells exposed to 10 ⁇ M CAI demonstrated 32% inhibition of haptotaxis and 7% inhibition of chemotaxis.
- CAI abolished haptotaxis and inhibited chemotaxis by 42% (FIG. 3B).
- FIG. 3A Cells exposed to tamoxifen demonstrated non-significant inhibition of chemotaxis and haptotaxis at 10 ⁇ M, and only 51% inhibition of haptotaxis and 9% inhibition of chemotaxis at 20 ⁇ M (FIG. 3A). These cells were more sensitive to the cytotoxic effects of tamoxifen than CAI as evidenced by the increased propidium iodide fluorescence (FIG. 3A, 3B). The asterisks represent a significant difference from positive control (p ⁇ 0.05).
- a cancer preventative compound is described here as a drug that substantially inhibits the migration of cancer cells but does not inhibit cell proliferation. Such a drug would potentially not cause to the patient the side effects typical of anti-proliferative compounds. These side effects include damage to normal tissues, immune suppression, mucositis, hair loss, nausea, and vomiting.
- established cultured cell lines are used in place of biopsy samples. These cell lines serve as representative examples of human cancers from a range of tissues such as breast, lung, bone, colon, prostate, etc.
- Experimental compounds are added to suspensions of cultured cells to reach a final concentration typically in the range of 1-100 ⁇ M. These compounds are typically stored in dimethyl sulfoxide, a chemical toxic to cells. For that reason, care must be taken to limit the dimethyl sulfoxide concentration to an amount not harmful to the cells, typically ⁇ 50 ⁇ M.
- the chemosensitivity assay is performed as described in the main embodiment.
- Promising anticancer compounds are defined as those which substantially inhibit migration and induce cell death in a cancer cell type.
- Promising cancer preventative compounds are defined as those that inhibit cell migration without inducing cell death.
- the present invention of a method for quantifying the chemosensitivity of cancer cells to anticancer compounds has the following advantages over other chemosensitivity assays.
- the present invention measures an endpoint characteristic of metastasis formation, a feature unique among chemosensitivity assays.
- the present invention measures two endpoints of anticancer effect instead of just one, making the assay more comprehensive, and not specific to one cell response.
- the present invention does not require that biopsy cells be expanded in culture, thus shortening the time frame of the assay and avoiding the bias that culturing causes by selecting a subset of biopsy cells.
- the present invention has the advantage over most other chemosensitivity assays in that results are quantified automatically, thus avoiding the bias inherent in subjective sampling by humans.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Food Science & Technology (AREA)
- Cell Biology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- This application is a continuation of co-pending provisional patent application Ser. No. 60/183,628 filed Feb. 18, 2000, entitled Method and System for in Vitro Screening of Compounds for Pro/Anti-Migratory Effects.
- 1. Field of the Invention
- The present invention relates to assays for predicting the chemosensitivity of tissues to particular drugs, and more specifically to a method for measuring both the anti-migratory effect and cytotoxic effect of drugs on tissues in vitro.
- 2. Description of Prior Art
- Solid tissue cancers are broadly defined by two general characteristics, namely: (1) a mass of hyperproliferating cells of clonal origin, and (2) acquisition of an aggressively invasive phenotype, wherein cancer cells leave the tissue of origin and establish new tumor metastases at distant sites. Current methods for evaluating the effect of accepted and experimental anti-cancer drugs on human cancers focus on measuring the arrest of hyperproliferation or the stimulation of cell death, both markers of only the first characteristic of cancer.
- In general, these current methods require that single cells be isolated from a tumor biopsy and then grown in a culture. The cultured cells are then exposed to a drug, and after a certain amount of time has elapsed cytostatic or cytotoxic effects are measured. These measurements are made in many ways, including: incorporation of the toxic substance, inducement of programmed cell death (termed apoptosis), depletion of intracellular metabolites such as adenosine triphosphate (ATP), depression of cell growth, and compromise of the cell membrane.
- The most significant drawback of these methods is the inability to assess the effect of anticancer drugs on the second, and most lethal, characteristic of cancers, i.e., the invasive characteristic that leads to establishment of tumors at distant sites. Other drawbacks include:
- 1. The requirement to grow/expand biopsy cells in culture before testing allows selective expansion of subsets of tumor cells that are not necessarily representative of the entire tumor. In addition, many biopsies suffer from low plating efficiency, precluding them from being tested.
- 2. Measurements of cellular metabolism cannot discriminate cells that are injured and will recover from those which are truly dead.
- 3. Assays using differential staining techniques are subject to individual interpretation, and frequently cannot distinguish live cells from cellular debris.
- 4. All assays that measure a single biochemical endpoint, such as cell proliferation or inhibition of DNA synthesis are limited by the particular characteristics of that endpoint, and do not accurately reflect cell survival.
- 5. These assays suffer from long turn-around time, ranging from 5 days to several weeks. It is therefore desirable to provide an alternative assay for measuring the chemosensitivity of cancer biopsies that does not require the expansion of cells in culture, can assess the effect of anticancer drugs on both the hyperproliferation and invasive characteristics of human cancers, that is not dependent on cell metabolism or differential staining, and can be performed quickly with a minimum of manipulations.
- Alternative assays proposed to predict the chemosensitivity of biopsies in vitro can be found in U.S. Pat. No. 4,816,395 and U.S. Pat. No. 4,937,182. A review of several chemosensitivity assays that use metabolite production and hyperproliferation analysis as chemosensitivity determinants is given by Bellamy, W. T., Prediction of response to drug therapy of cancer. A review of in vitro assays. Drugs 44(5): pp 690-708, (1992), Sevin, B. U., et al., Current status and future directions of chemosensitivity testing. Contrib Gynecol Obstet 19: pp179-194, (1994), and Cramer, A. B., et al., Chemosensitivity testing: a critical review. Crit Rev Clin Lab Sci 28(5-6): pp 405-413 (1991, Hoffinan, R. M., In vitro assays for chemotherapy sensitivity. Crit Rev Oncol Hematol 15(2): pp 99-111, (1993). A chemosensitivity assay using radioactive nucleotide incorporation is given by Kitaoka A., et al, Improvement of in vitro chemosensitivity assay for human solid tumors by application of a preculture using collagen matrix. Clin Cancer Res 3(2): pp 295-299, (1997). A method using DNA synthesis as an indicator of cell growth is given by Kawabata, K. et al., Anticancer chemosensitivity and growth rate of freshly separated human colorectal cancer cells assessed by in vitro DNA synthesis inhibition assay. Anticancer Res 18(3A): pp 1633-1640 (1998). Chemosensitivity assays that measure cell viability by cellular metabolism are: Furukawa, T., et al., Clinical applications of the histoculture drug response assay. Clin Cancer Res 1(3): pp 305-311, (1995), and Kawamura, H., et al., The usefulness of the ATP assay with serum-free culture for chemosensitivity testing of gastrointestinal cancer. Eur J Cancer 33(6): pp 960-966, (1997). An embodiment of the present invention is described in Rust, W. L., Screening assay for promigratory/antimigratory compounds. Anal Biochem 280(1) pp 11-19, (2000). Each of these suffers from at least one of the disadvantages listed above.
- The present invention takes advantage of several aspects of a procedure for automatically measuring cell migration described in U.S. Pat. No. 5,601,997 to Tchao, modified and adapted for the novel use described herein. The present invention further incorporates for novel use the cell death determination procedure described by Nieminen, A. L., A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol Appl Pharmacol 115(2): pp 147-155, (1992).
- The present invention provides the first efficient method for simultaneously measuring the anti-migratory effect and cytotoxic effect of drugs on biopsy cells without the need to expand the cells in culture. This assay is particularly useful for predicting the chemosensitivity of an individual patient's cancer to therapeutic drugs. This assay is unique among chemosensitivity assays for the ability to measure both the anti-migratory and cytotoxic effects of drugs. Because the formation of solid tissue cancer is dependent upon the invading cell's ability to migrate across tissues as well as hyperproliferation, a chemosensitivity assay that measures the both the anti-migratory and cytotoxic effect of drugs is a more comprehensive and more sensitive method for determining the chemosensitivity of biopsies than other assays. Moreover, obviating the need to expand cells in culture reduces the risk of experimental factors which can bias the assay outcome, and allows the assay to be performed more quickly than current methods.
- In accordance with the present invention biopsy samples are dissociated into individual cells which are exposed to anticancer drugs and introduced into a top chamber of a migration assay apparatus. A stimulant then induces the cells to migrate across a porous membrane. After a period of time, migrated cells are labeled with a live cell fluorescent indicator and non-migrated cells are labeled with a fluorescent indicator of cell death. The fluorescence of both fluorophores are measured in a fluorescence plate reader. The fluorescence intensity of the cell death reporter indicates the sensitivity of the cells to cytotoxic effects of the drugs. The fluorescence emitted from the migrated cells indicates ability of the biopsy cells to migrate in the presence of the drugs.
- Significantly, the present invention is distinct from all the prior art, including the procedure described in U.S. Pat. No. 5,601,997 to Tchao, in that the prior art procedures all require that the cells in the assay be first pre-labeled. The presence of a labeling chemical dye in the prior art procedures can influence migration behavior and may interact with the chemical agent being tested. In contradistinction, the inventive assay does not introduce chemical agents into the process, as it is not intended to for kinetic analysis of the migratory behavior of cells, and the incorporation of a cytotoxic assay into the procedure is entirely novel.
- FIG. 1 is a flow chart illustrating each step of the present invention for predicting the efficacy of anti-cancer drugs on human tissue;
- FIG. 2 is an illustrative diagram of the test chambers of a suitable migration plate apparatus useful with the present invention;
- FIGS. 3A and 3B are exemplary comparison charts of the sensitivity of human breast cancer cells to the anti-migratory and cytotoxic effects of two anticancer drugs wherein the anticancer drugs compared are the common anticancer drug tamoxifen (FIG. 3A) and an experimental anticancer drug carboxyamido-triazole (FIG. 3B). Breast cancer cells were allowed to migrate towards serum (chemotaxis) or fibronectin (haptotaxis) in the presence of tamoxifen (a) and carboxyamido-triazole (CAI) (B). After 18 hours, migrated cells were labeled with calcein-AM and fluorescence quantitated from the bottom. Nonmigrated cells were labeled with propidium iodide and fluorescence quantitated from the top. Estimation of 100% cell death was made by lysing cells in a test chamber with 1% Triton X-100 (TX 100) Error bars represent the standard deviation of 4-16 replicate test chambers. Asterisks represent a significant difference from migration without drugs (P<0.05). RFU=relative fluorescence units.
- The present invention is an assay for simultaneously and automatically measuring the antimigratory and cytotoxic properties of anticancer drugs on human tissues. This assay is useful for predicting the chemosensitivity of biopsy samples to various chemical agents or combinations of chemical agents. A flow chart describing the steps of the present invention is provided in FIG. 1 carried out in its substantial aspects in a migration plate structure illustrated in FIG. 2, which in its detailed form may be like that described in U.S. Pat. No. 5,801,055. In
step 101 of FIG. 1 the cells of a biopsy are disaggregated by gentle mechanical agitation and/or proteolytic digestion in a serum free medium suitable for maintaining the cells in culture. Insteps 102 and 103 the cells are exposed to an anticancer chemical agent and introduced into thefirst chamber 8 of a migration plate. The anticancer drug is directly added to the cell suspension to reach a final concentration typically in the range of 1 to 100 μMolar. Thetop chamber 8 of the migration plate is separated from asecond chamber 10 by an electromagnetic radiation opaque membrane having a plurality of substantially perpendicular transverse pores 9. A migration stimulus is then added to thesecond chamber 10 which may be a chemotactic stimulus, (a chemical dissolved in the medium of the second chamber), or a haptotactic stimulus, (a non-solubilized molecule adhered to the radiation opaque membrane on the side facing the second chamber). In step 104 the cells are then allowed to migrate in the appropriate conditions (temperature, pH, humidity, and carbon dioxide concentration) from the first chamber through the pores of the radiation opaque membrane towards the second chamber in conditions suitable to maintain human tissues, e.g., 37° C., pH 7.4, 5% carbon dioxide. - After a predetermined amount of time, typically 4-24 hours, the cells adhered to the side of the membrane facing the second chamber are labeled with a live-cell fluorescent indicator in
step 105. The non migrated cells which remain adhered to the side of the membrane facing the first chamber are labeled with a fluorescent indicator of cell death. In each instance the fluorophores are added directly to the medium to reach a final concentration typically from 1-50 micro Molar. Live cell fluorescent indicator suitable for quantitating migrated cells include metabolic dyes such as calcein-AM, membrane dyes such as DiO, DiI, or fluorescent microspheres that are spontaneously endocytosed by live cells. Fluorescent indicators suitable for quantifying cell death include ethidium bromide and propidium iodide. The mechanism of action of these indicators is the enhancement of fluorescence intensity upon binding deoxyribonucleic acid (DNA). These dyes easily permeate the compromised membranes of dead cells but are largely excluded from live cells. The fluorophores must be chosen such that the migration plate membrane is opaque to either the excitation or emission or both wavelengths of the fluorophore. Instep 106 the intensity of the electromagnetic radiation emitted from the fluorophores on either side of the membrane are measured in a fluorescence plate reader. An example of a suitable fluorescence plate reader is the SpectraFluor manufactured by TECAN Research Triangle Park, NC). Then instep 107, the last step of the invention the analysis of the emitted fluorescence data is carried out. Thefluorescence 11 emitted from the live cell fluorescent indicator on the side of the membrane facing the second chamber is an indicator of the amount of cells that have migrated across the filter. Thefluorescence 12 emitted from the fluorescent indicator of cell death on the side of the membrane facing the first chamber is an indicator of the amount of cells that are not viable. The strength of these signals indicate the chemosensitivity of the cells to the drug being tested. A strong relative emission from the first chamber indicates sensitivity to cell death induced by the chemical. A weak relative emission from the second chamber indicates sensitivity to inhibition of migration induced by the chemical. The data offer meaningful predictions of chemosensitivity of the cancer cells when compared to appropriate drug-free controls and to other drugs. - A potential limitation of the method described is the contamination of biopsy samples by non-tumorigenic cells that could potentially influence assay results. Epithelial cultures, in particular, are prone to fibroblast contamination and this cell type predominates the colon, breast, and lung cancer biopsies. The extent of fibroblast contamination can be determined by double immunofluorescence staining using antibodies specific for the intermediate filament protein subunits vimentin (as a marker for fibroblasts) and keratin (for epithelial cells).
- The methods of the present invention are useful with a wide variety of cells. These include solid tumor cells of biopsies derived from breast, colorectal, lung, and other tissues, and hematopoietic cells. The tumor cells may be of epithelial origin (carcinomas), arise in the connective tissue (sarcomas), or arise from specialized cells such as melanocytes (melanomas) and lymphoid cells (lymphomas), and the like. The cells may be derived from primary tumors or metastatic tumors.
- The anti-cancer drugs which may be assessed by the assay of present invention include natural or synthetic, common or experimental drugs. Compounds which are only effective after being metabolised by the body must be used in their active conformation.
- The following examples are offered by way of illustration, not by way of limitation.
- Upon biopsy and/or surgical removal, tumor samples were aseptically transferred to tubes containing RPMI 1640 cell culture media (Irvine Scientific, Santa Ana, Calif.) supplemented with penicillin (100 U/ml) and streptomycin (100 μg/ml). Sample size was approximately 1 cm in diameter. Tissues were minced with a sterile razor into pieces less than 1 mm3. Single cells were separated from tissue fragments by filtration through two sheets of sterile gauze (16XX mesh). Cells were collected by centrifugation and washed with phosphate buffered saline, repelleted and resuspended in migration media preferrably comprising of Dulbecco's modified eagle's medium (DME, Ivine Scientific, Santa Ana, Calif.) supplemented with 1 mM sodium pyruvate and 292 μg/ml L-glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin. For proteolytic digestion, tissues were first minced into approximately 3 mm3 pieces and added to media containing collagenase and dispase and incubated for approximately 30 minutes at 37° C. with gentle agitation. The cells were then allowed a rest period ranging from 1 to 12 hours in a humidified incubator maintained at 37° C. and 5% carbon dioxide.
- The cell suspension was added to the first chamber of a migration plate containing 96 chambers per plate at a concentration of about 80,000 cells per chamber. The migration plate used in this assay was manufactured by Polyfiltronics. Similar plates are available from Becton-Dickinson (U.S. Pat No. 5,801,055). The second chamber contained either haptotactic stimulus in the form of 2082 g/ml fibronectin or chemotactic in the form of 5% fetal calf serum. Cells were allowed to migrate in a humidified incubator at 37° C. and 5% carbon dioxide for twelve hours.
- During the last half hour of the incubation, calcein-AM (Molecular Probes, Eugene, Oreg.) was added to the second chamber to a final concentration of 5 μM and propidium iodide was added to the first chamber to a final concentration of 30 μM. At the end of the incubation the underside of the filters were washed twice in phosphate buffered saline. Fluorescence from each individual well chamber was measured from the bottom using 485 nm excitation and 530 nm emission filters.
- Fluorescence from each individual well chamber was measured from the top using 560 nm excitation and 645 nm emission wavelength filters using a Tecan SpectraFluor fluorescent plate reader (Research Triangle Park N.C.). FIG. 3 demonstrates the influence of tamoxifen and carboxyamido triazole (CAI) on the migration and viability of highly metastatic breast cells. The dynamics of inhibition of migration are different than cytotoxic effects caused by drug exposure (FIGS. 3A, 3B). Both haptotactic and chemotactic migration are inhibited at lower concentrations than those that cause cell death for both tamoxifen and CAI (FIGS. 3A, 3B). Tamoxifen and CAI inhibited migration in a dose-dependent manner at sublethal concentration, and CAI was more effective than tamoxifen at halting migration. Haptotactic migration on fibronectin was more sensitive to drug effects than chemotactic migration. Cells exposed to 10 μM CAI demonstrated 32% inhibition of haptotaxis and 7% inhibition of chemotaxis. At 20 μM, CAI abolished haptotaxis and inhibited chemotaxis by 42% (FIG. 3B). Cells exposed to tamoxifen demonstrated non-significant inhibition of chemotaxis and haptotaxis at 10 μM, and only 51% inhibition of haptotaxis and 9% inhibition of chemotaxis at 20 μM (FIG. 3A). These cells were more sensitive to the cytotoxic effects of tamoxifen than CAI as evidenced by the increased propidium iodide fluorescence (FIG. 3A, 3B). The asterisks represent a significant difference from positive control (p<0.05).
- With the following modifications, the present invention is useful as a tool for discovery of novel anticancer compounds and cancer preventative compounds. A cancer preventative compound is described here as a drug that substantially inhibits the migration of cancer cells but does not inhibit cell proliferation. Such a drug would potentially not cause to the patient the side effects typical of anti-proliferative compounds. These side effects include damage to normal tissues, immune suppression, mucositis, hair loss, nausea, and vomiting.
- In this embodiment, established cultured cell lines are used in place of biopsy samples. These cell lines serve as representative examples of human cancers from a range of tissues such as breast, lung, bone, colon, prostate, etc. Experimental compounds are added to suspensions of cultured cells to reach a final concentration typically in the range of 1-100 μM. These compounds are typically stored in dimethyl sulfoxide, a chemical toxic to cells. For that reason, care must be taken to limit the dimethyl sulfoxide concentration to an amount not harmful to the cells, typically <50 μM. The chemosensitivity assay is performed as described in the main embodiment. Promising anticancer compounds are defined as those which substantially inhibit migration and induce cell death in a cancer cell type. Promising cancer preventative compounds are defined as those that inhibit cell migration without inducing cell death. Conclusion, Ramifications, and Scope.
- The present invention of a method for quantifying the chemosensitivity of cancer cells to anticancer compounds has the following advantages over other chemosensitivity assays. The present invention measures an endpoint characteristic of metastasis formation, a feature unique among chemosensitivity assays. The present invention measures two endpoints of anticancer effect instead of just one, making the assay more comprehensive, and not specific to one cell response. The present invention does not require that biopsy cells be expanded in culture, thus shortening the time frame of the assay and avoiding the bias that culturing causes by selecting a subset of biopsy cells. Also, the present invention has the advantage over most other chemosensitivity assays in that results are quantified automatically, thus avoiding the bias inherent in subjective sampling by humans.
- While my above description contains many specifics, these should not be construed as limitations on the scope of the invention, but rather as an exemplification of one preferred embodiment thereof Many other variation are possible. For example, the type of cells used or drug characteristics are unimportant to the method. The type of fluorescent cell labels used are also of little importance, as long as they can be readily detected by a fluorescence plate reader, and as long as the radiation opaque membrane of the migration plate is opaque to either the excitation or emission wavelengths of the fluorophore. The specific design or manufacture of the migration plate is unimportant as long as two suitable test chambers are separated by a radiation opaque membrane with pore sizes appropriate for the migration of the cell type being tested (typically 4-10 μm).
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/730,700 US6448030B1 (en) | 2000-02-18 | 2000-12-05 | Method for predicting the efficacy of anti-cancer drugs |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18362800P | 2000-02-18 | 2000-02-18 | |
US09/730,700 US6448030B1 (en) | 2000-02-18 | 2000-12-05 | Method for predicting the efficacy of anti-cancer drugs |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020068316A1 true US20020068316A1 (en) | 2002-06-06 |
US6448030B1 US6448030B1 (en) | 2002-09-10 |
Family
ID=26879370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/730,700 Expired - Fee Related US6448030B1 (en) | 2000-02-18 | 2000-12-05 | Method for predicting the efficacy of anti-cancer drugs |
Country Status (1)
Country | Link |
---|---|
US (1) | US6448030B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050164321A1 (en) * | 2004-01-22 | 2005-07-28 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
US20060121546A1 (en) * | 2002-02-01 | 2006-06-08 | Promega Corporation | Bioluminescent protease assay |
EP1550869A3 (en) * | 2003-12-23 | 2006-10-04 | Millipore Corporation | Cell motility assay |
US20070048812A1 (en) * | 2005-09-01 | 2007-03-01 | Moravec Richard A | Cell-based luminogenic and nonluminogenic proteasome assays |
US20070178545A1 (en) * | 2004-01-22 | 2007-08-02 | Andrew Niles | Luminogenic and nonluminogenic multiplex assay |
CN102460165A (en) * | 2009-05-19 | 2012-05-16 | 维维雅生物技术公司 | Methods for providing personalized medicine tests ex vivo for hematological neoplasms |
CN102483407A (en) * | 2009-06-26 | 2012-05-30 | 通用电气医疗集团英国有限公司 | Methods for Predicting Toxicity of Chemical Substances |
US8227205B2 (en) | 2007-04-13 | 2012-07-24 | Promega Corporation | Luminescent live and dead cell assay |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2697752B1 (en) * | 1992-11-10 | 1995-04-14 | Rhone Poulenc Rorer Sa | Antitumor compositions containing taxane derivatives. |
AU784538B2 (en) * | 1999-12-06 | 2006-04-27 | Geistlich Pharma Ag | Use of methylol-containing compounds to treat tumors |
US20020183266A1 (en) * | 2001-03-15 | 2002-12-05 | Aventis Pharma, S.A. | Combination comprising combretastatin and anticancer agents |
US7074824B2 (en) * | 2001-07-31 | 2006-07-11 | Arqule, Inc. | Pharmaceutical compositions containing beta-lapachone, or derivatives or analogs thereof, and methods of using same |
US20030220376A1 (en) * | 2001-08-10 | 2003-11-27 | Pharmacia Corporation | Methods for treating carbonic anhydrase mediated disorders |
US20030100594A1 (en) * | 2001-08-10 | 2003-05-29 | Pharmacia Corporation | Carbonic anhydrase inhibitor |
US20040067992A1 (en) * | 2001-08-10 | 2004-04-08 | Pharmacia Corporation | Compositions of a cyclooxygenase-2 selective inhibitor and a carbonic anhydrase inhibitor for the treatment of neoplasia |
US7547673B2 (en) * | 2001-09-13 | 2009-06-16 | The Johns Hopkins University | Therapeutics for cancer using 3-bromopyruvate and other selective inhibitors of ATP production |
JP2005519055A (en) * | 2002-01-11 | 2005-06-30 | ラート・マティアス | Nutritional pharmaceutical formulations containing polyphenols and methods of use thereof in the treatment of cancer (Description of Related Applications) This application is a U.S. patent law of US Provisional Patent Application No. 60 / 348,143 filed Jan. 11, 2002. We claim the benefits under section 119 (e), the contents of which are incorporated herein by reference in their entirety. |
US8263375B2 (en) | 2002-12-20 | 2012-09-11 | Acea Biosciences | Dynamic monitoring of activation of G-protein coupled receptor (GPCR) and receptor tyrosine kinase (RTK) in living cells using real-time microelectronic cell sensing technology |
US7470533B2 (en) | 2002-12-20 | 2008-12-30 | Acea Biosciences | Impedance based devices and methods for use in assays |
WO2005047482A2 (en) * | 2003-11-12 | 2005-05-26 | Xiao Xu | Real time electronic cell sensing systems and applications for cell-based assays |
US8206903B2 (en) | 2002-12-20 | 2012-06-26 | Acea Biosciences | Device and method for electroporation-based delivery of molecules into cells and dynamic monitoring of cell responses |
JP4745056B2 (en) * | 2002-07-20 | 2011-08-10 | アセア バイオサイエンシーズ,インク. | Apparatus and method for measuring cells and fine particles by impedance |
US7468255B2 (en) * | 2002-12-20 | 2008-12-23 | Acea Biosciences | Method for assaying for natural killer, cytotoxic T-lymphocyte and neutrophil-mediated killing of target cells using real-time microelectronic cell sensing technology |
US7560269B2 (en) * | 2002-12-20 | 2009-07-14 | Acea Biosciences, Inc. | Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays |
US7732127B2 (en) * | 2002-12-20 | 2010-06-08 | Acea Biosciences, Inc. | Dynamic monitoring of cell adhesion and spreading using the RT-CES system |
US10539523B2 (en) | 2002-12-20 | 2020-01-21 | Acea Biosciences, Inc. | System and method for monitoring cardiomyocyte beating, viability, morphology, and electrophysiological properties |
US10215748B2 (en) | 2002-12-20 | 2019-02-26 | Acea Biosciences, Inc. | Using impedance-based cell response profiling to identify putative inhibitors for oncogene addicted targets or pathways |
US11346797B2 (en) | 2002-12-20 | 2022-05-31 | Agilent Technologies, Inc. | System and method for monitoring cardiomyocyte beating, viability, morphology and electrophysiological properties |
US10551371B2 (en) | 2003-11-10 | 2020-02-04 | Acea Biosciences, Inc. | System and method for monitoring cardiomyocyte beating, viability and morphology and for screening for pharmacological agents which may induce cardiotoxicity or modulate cardiomyocyte function |
US9612234B2 (en) | 2008-05-05 | 2017-04-04 | Acea Biosciences, Inc. | Data analysis of impedance-based cardiomyocyte-beating signals as detected on real-time cell analysis (RTCA) cardio instruments |
US20060234374A1 (en) * | 2005-04-13 | 2006-10-19 | Pranela Rameshwar | Malignant Cells and Method for Selecting the Same |
US8324175B2 (en) | 2006-02-16 | 2012-12-04 | Young Hee Ko | Compositions and methods for the treatment of cancer |
US8041515B2 (en) * | 2006-09-20 | 2011-10-18 | Acea Biosciences, Inc. | Use of impedance-based cytological profiling to classify cellular response profiles upon exposure to biologically active agents |
EP2114413B1 (en) * | 2006-12-18 | 2014-10-22 | The Johns Hopkins University | Therapeutics for treating cancer using 3-bromopyruvate |
US8876688B2 (en) | 2008-04-24 | 2014-11-04 | The Invention Science Fund I, Llc | Combination treatment modification methods and systems |
US9282927B2 (en) | 2008-04-24 | 2016-03-15 | Invention Science Fund I, Llc | Methods and systems for modifying bioactive agent use |
US9560967B2 (en) * | 2008-04-24 | 2017-02-07 | The Invention Science Fund I Llc | Systems and apparatus for measuring a bioactive agent effect |
US9239906B2 (en) | 2008-04-24 | 2016-01-19 | The Invention Science Fund I, Llc | Combination treatment selection methods and systems |
US8615407B2 (en) * | 2008-04-24 | 2013-12-24 | The Invention Science Fund I, Llc | Methods and systems for detecting a bioactive agent effect |
US20100100036A1 (en) * | 2008-04-24 | 2010-04-22 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Computational System and Method for Memory Modification |
US7801686B2 (en) * | 2008-04-24 | 2010-09-21 | The Invention Science Fund I, Llc | Combination treatment alteration methods and systems |
US8606592B2 (en) * | 2008-04-24 | 2013-12-10 | The Invention Science Fund I, Llc | Methods and systems for monitoring bioactive agent use |
US20100280332A1 (en) * | 2008-04-24 | 2010-11-04 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Methods and systems for monitoring bioactive agent use |
US9662391B2 (en) * | 2008-04-24 | 2017-05-30 | The Invention Science Fund I Llc | Side effect ameliorating combination therapeutic products and systems |
US20100030089A1 (en) * | 2008-04-24 | 2010-02-04 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Methods and systems for monitoring and modifying a combination treatment |
US7974787B2 (en) | 2008-04-24 | 2011-07-05 | The Invention Science Fund I, Llc | Combination treatment alteration methods and systems |
US8682687B2 (en) * | 2008-04-24 | 2014-03-25 | The Invention Science Fund I, Llc | Methods and systems for presenting a combination treatment |
US9649469B2 (en) | 2008-04-24 | 2017-05-16 | The Invention Science Fund I Llc | Methods and systems for presenting a combination treatment |
US9026369B2 (en) | 2008-04-24 | 2015-05-05 | The Invention Science Fund I, Llc | Methods and systems for presenting a combination treatment |
US8930208B2 (en) | 2008-04-24 | 2015-01-06 | The Invention Science Fund I, Llc | Methods and systems for detecting a bioactive agent effect |
US9064036B2 (en) | 2008-04-24 | 2015-06-23 | The Invention Science Fund I, Llc | Methods and systems for monitoring bioactive agent use |
US9449150B2 (en) | 2008-04-24 | 2016-09-20 | The Invention Science Fund I, Llc | Combination treatment selection methods and systems |
EP2291645B1 (en) | 2008-05-05 | 2015-09-09 | Acea Biosciences, Inc. | Label-free monitoring of excitation-contraction coupling and excitable cells using impedance based systems with millisecond time resolution |
WO2010021750A2 (en) * | 2008-08-21 | 2010-02-25 | The Johns Hopkins University | Methods and compositions for administration of 3-halopyruvate and related compounds for the treatment of cancer |
CA3024263A1 (en) * | 2009-01-29 | 2010-08-05 | Young Hee Ko | Compositions and methods for the treatment of cancer |
US9476871B2 (en) | 2012-05-02 | 2016-10-25 | Diatech Oncology Llc | System and method for automated determination of the relative effectiveness of anti-cancer drug candidates |
CN115054698B (en) | 2014-01-14 | 2024-11-08 | 约翰斯·霍普金斯大学 | Cyclodextrin composition encapsulating selective ATP inhibitor and its application |
EP3370712B1 (en) | 2015-11-06 | 2025-02-19 | The Johns Hopkins University | 3-bromopyruvate for treating liver fibrosis |
US12066428B2 (en) | 2015-11-20 | 2024-08-20 | Agilent Technologies, Inc. | Cell-substrate impedance monitoring of cancer cells |
WO2018093658A1 (en) | 2016-11-17 | 2018-05-24 | Nantbio, Inc. | Validation of inferred anticancer pathways |
WO2018161063A1 (en) | 2017-03-03 | 2018-09-07 | Acea Biosciences, Inc. | METHODS AND SYSTEMS FOR FUNCTIONAL MATURATION OF iPSC AND ESC DERIVED CARDIOMYOCYTES |
USD941488S1 (en) | 2020-02-07 | 2022-01-18 | Agilent Technologies, Inc. | Instrument for analyzing biological cells |
US20210301245A1 (en) | 2020-03-29 | 2021-09-30 | Agilent Technologies, Inc. | Systems and methods for electronically and optically monitoring biological samples |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4649151A (en) * | 1982-09-27 | 1987-03-10 | Health Research, Inc. | Drugs comprising porphyrins |
US4816395A (en) | 1985-12-19 | 1989-03-28 | Peralta Cancer Research Institute | Method for predicting chemosensitivity of anti-cancer drugs |
US4937182A (en) | 1985-12-19 | 1990-06-26 | Peralta Cancer Research Institute | Method for predicting chemosensitivity of anti-cancer drugs |
US5601997A (en) * | 1995-02-03 | 1997-02-11 | Tchao; Ruy | Chemotaxis assay procedure |
US5801055A (en) | 1997-09-10 | 1998-09-01 | Becton Dickinson And Company | Multi-well culture dish assembly |
-
2000
- 2000-12-05 US US09/730,700 patent/US6448030B1/en not_active Expired - Fee Related
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666987B2 (en) | 2002-02-01 | 2010-02-23 | Promega Corporation | Bioluminescent caspase assay compounds |
US20060121546A1 (en) * | 2002-02-01 | 2006-06-08 | Promega Corporation | Bioluminescent protease assay |
US8071328B2 (en) | 2002-02-01 | 2011-12-06 | Promega Corporation | Bioluminescent protease assay |
US20100249427A1 (en) * | 2002-02-01 | 2010-09-30 | Promega Corporation | Bioluminescent protease assay |
EP1550869A3 (en) * | 2003-12-23 | 2006-10-04 | Millipore Corporation | Cell motility assay |
JP2007526766A (en) * | 2004-01-22 | 2007-09-20 | プロメガ コーポレイション | Luminogenic and non-luminescent multiplex assays |
US8476036B2 (en) | 2004-01-22 | 2013-07-02 | Promega Corporation | Nonluminogenic assay for living cells |
US7416854B2 (en) | 2004-01-22 | 2008-08-26 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
US20080268482A1 (en) * | 2004-01-22 | 2008-10-30 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
US20090017482A1 (en) * | 2004-01-22 | 2009-01-15 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
US7553632B2 (en) | 2004-01-22 | 2009-06-30 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
WO2005073722A3 (en) * | 2004-01-22 | 2007-08-09 | Promega Corp | Luminogenic and nonluminogenic multiplex assay |
US20070178545A1 (en) * | 2004-01-22 | 2007-08-02 | Andrew Niles | Luminogenic and nonluminogenic multiplex assay |
JP2011188857A (en) * | 2004-01-22 | 2011-09-29 | Promega Corp | Luminogenic and nonluminogenic multiplex assay |
JP2015119739A (en) * | 2004-01-22 | 2015-07-02 | プロメガ コーポレイションPromega Corporation | Luminogenic dead cell assay |
US8715950B2 (en) | 2004-01-22 | 2014-05-06 | Promega Corporation | Kits for luminogenic and nonluminogenic multiplex assays |
EP2631651A1 (en) * | 2004-01-22 | 2013-08-28 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
JP2013162804A (en) * | 2004-01-22 | 2013-08-22 | Promega Corp | Luminogenic and nonluminogenic multiplex assay |
US20050164321A1 (en) * | 2004-01-22 | 2005-07-28 | Promega Corporation | Luminogenic and nonluminogenic multiplex assay |
US20070048812A1 (en) * | 2005-09-01 | 2007-03-01 | Moravec Richard A | Cell-based luminogenic and nonluminogenic proteasome assays |
US8227205B2 (en) | 2007-04-13 | 2012-07-24 | Promega Corporation | Luminescent live and dead cell assay |
CN102460165A (en) * | 2009-05-19 | 2012-05-16 | 维维雅生物技术公司 | Methods for providing personalized medicine tests ex vivo for hematological neoplasms |
CN102460165B (en) * | 2009-05-19 | 2016-08-17 | 维维雅生物技术公司 | For the method providing in vitro individuation drug test for neoplastic hematologic disorder |
CN102483407A (en) * | 2009-06-26 | 2012-05-30 | 通用电气医疗集团英国有限公司 | Methods for Predicting Toxicity of Chemical Substances |
Also Published As
Publication number | Publication date |
---|---|
US6448030B1 (en) | 2002-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6448030B1 (en) | Method for predicting the efficacy of anti-cancer drugs | |
DE60200248T2 (en) | Procedure for solution-based diagnosis | |
US20020192638A1 (en) | Method for preparing cell cultures from biological specimens for chemotherapeutic and other assays | |
US5491069A (en) | Biomarkers of cell senescence | |
WO1999043788A1 (en) | In vitro model for viral infection and immune response | |
JP2009508487A (en) | Cell migration assay | |
Rotman et al. | Individual human tumors in short-term micro-organ cultures: chemosensitivity testing by fluorescent cytoprinting | |
ES2137538T3 (en) | ANALYSIS METHOD AND REAGENT KIT FOR IN VITRO QUANTITATIVE DETERMINATION, IN BIOLOGICAL SAMPLES, OF THE ACTIVITY OF PROTEINS THAT CAUSE RESISTANCE TO MULTIPLE DRUGS IN TUMORS. | |
US20020168679A1 (en) | Staining agents and protocols for characterizing malignant cells in culture | |
US20040132037A1 (en) | Materials and methods for the induction of premature chromosone condensation | |
US20080254480A1 (en) | Microcytoxicity assay by pre-labeling target cells | |
Sutherland et al. | Breast cancer as analyzed by the human tumor stem cell assay | |
Governa et al. | Impairment of human polymorphonuclear leukocyte chemotaxis by 2, 5-hexanedione | |
Cram et al. | Flow microfluorometric quantitation of the blastogenic response of lymphocytes. | |
US6562586B1 (en) | In vitro model for HIV and other viral diseases | |
US5472846A (en) | Test kit and method for amplification and detection of antigen cells | |
Wang et al. | Kinetics of NF-κB nucleocytoplasmic transport probed by single-cell screening without imaging | |
Dyson et al. | Quantitation by flow cytofluorometry of response of tumours of the uterine cervix to radiotherapy | |
US11982675B2 (en) | Method of assessing ABC transporter activity using fluorescent dye accumulation assay | |
Ito et al. | Cloning of human neuroblastoma cells in methylcellulose culture | |
Benz et al. | Flow cytometric analysis of fluorescein‐conjugated estradiol (E‐BSA‐FITC) binding in breast cancer suspensions | |
Betel et al. | Mitogenic activation and proliferation of mouse thymocytes: comparison between isotope incorporation and flow-microfluorometry | |
Benz et al. | Flow cytometric analysis of fluorescent estrogen binding in cancer cell suspensions | |
Gerharz et al. | Modulation of invasive potential in different clonal subpopulations of a rat rhabdomyosarcoma cell line (BA-HAN-1) by differentiation induction | |
DE69432517T2 (en) | METHOD FOR PREDICTING THE EFFECTIVENESS OF TUMOR TREATMENT BY IN-VITRO DETERMINATION OF SURVIVALITY AND VITABILITY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF NEVADA-LAS VEGAS, NEVADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RUST, WILLIAM L.;HUFF, JANICE L.;PLOPPER, GEORGE E.;REEL/FRAME:012086/0596 Effective date: 20001130 |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100910 |