US20020065011A1 - Water-decomposable cleaning article and manufacturing method therefor - Google Patents
Water-decomposable cleaning article and manufacturing method therefor Download PDFInfo
- Publication number
- US20020065011A1 US20020065011A1 US10/012,957 US1295701A US2002065011A1 US 20020065011 A1 US20020065011 A1 US 20020065011A1 US 1295701 A US1295701 A US 1295701A US 2002065011 A1 US2002065011 A1 US 2002065011A1
- Authority
- US
- United States
- Prior art keywords
- water
- woven fabric
- soluble resin
- water soluble
- cleaning article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 184
- 239000004745 nonwoven fabric Substances 0.000 claims abstract description 157
- 229920005989 resin Polymers 0.000 claims abstract description 122
- 239000011347 resin Substances 0.000 claims abstract description 122
- 239000000835 fiber Substances 0.000 claims abstract description 108
- 238000001035 drying Methods 0.000 claims description 36
- 239000011248 coating agent Substances 0.000 claims description 26
- 238000000576 coating method Methods 0.000 claims description 26
- 238000012360 testing method Methods 0.000 claims description 15
- 238000005452 bending Methods 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 40
- 229920001577 copolymer Polymers 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- -1 polypropylene Polymers 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000002344 surface layer Substances 0.000 description 10
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 229920001131 Pulp (paper) Polymers 0.000 description 8
- 229920013820 alkyl cellulose Polymers 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000011122 softwood Substances 0.000 description 8
- 229920003169 water-soluble polymer Polymers 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 229920000297 Rayon Polymers 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000002964 rayon Substances 0.000 description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 6
- 239000003232 water-soluble binding agent Substances 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000011976 maleic acid Substances 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical class OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 150000003862 amino acid derivatives Chemical class 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008213 purified water Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 229920001059 synthetic polymer Polymers 0.000 description 4
- 229920003043 Cellulose fiber Polymers 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000004627 regenerated cellulose Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 206010016322 Feeling abnormal Diseases 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000010933 acylation Effects 0.000 description 2
- 238000005917 acylation reaction Methods 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical group O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910017053 inorganic salt Inorganic materials 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 235000010981 methylcellulose Nutrition 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- LZDDXRWBWZUFHD-ODZAUARKSA-N (z)-but-2-enedioic acid;2-methylprop-1-ene Chemical compound CC(C)=C.OC(=O)\C=C/C(O)=O LZDDXRWBWZUFHD-ODZAUARKSA-N 0.000 description 1
- PEXNXOXCZLFQAO-ODZAUARKSA-N (z)-but-2-enedioic acid;ethenyl acetate Chemical compound CC(=O)OC=C.OC(=O)\C=C/C(O)=O PEXNXOXCZLFQAO-ODZAUARKSA-N 0.000 description 1
- HHEHWCIYDICHCG-ODZAUARKSA-N (z)-but-2-enedioic acid;methoxyethene Chemical compound COC=C.OC(=O)\C=C/C(O)=O HHEHWCIYDICHCG-ODZAUARKSA-N 0.000 description 1
- NMGHGBGDOAAPMI-BTJKTKAUSA-N (z)-but-2-enedioic acid;pent-1-ene Chemical compound CCCC=C.OC(=O)\C=C/C(O)=O NMGHGBGDOAAPMI-BTJKTKAUSA-N 0.000 description 1
- JSYPRLVDJYQMAI-ODZAUARKSA-N (z)-but-2-enedioic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)\C=C/C(O)=O JSYPRLVDJYQMAI-ODZAUARKSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-UHFFFAOYSA-N 5-oxoproline Chemical class OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 101100065885 Caenorhabditis elegans sec-15 gene Proteins 0.000 description 1
- 101100172892 Caenorhabditis elegans sec-8 gene Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical group NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 235000011126 aluminium potassium sulphate Nutrition 0.000 description 1
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 235000011128 aluminium sulphate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- AVTYONGGKAJVTE-OLXYHTOASA-L potassium L-tartrate Chemical compound [K+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O AVTYONGGKAJVTE-OLXYHTOASA-L 0.000 description 1
- 229940050271 potassium alum Drugs 0.000 description 1
- GRLPQNLYRHEGIJ-UHFFFAOYSA-J potassium aluminium sulfate Chemical compound [Al+3].[K+].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRLPQNLYRHEGIJ-UHFFFAOYSA-J 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000001472 potassium tartrate Substances 0.000 description 1
- 229940111695 potassium tartrate Drugs 0.000 description 1
- 235000011005 potassium tartrates Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229940071139 pyrrolidone carboxylate Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 229940045920 sodium pyrrolidone carboxylate Drugs 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 239000001433 sodium tartrate Substances 0.000 description 1
- 229960002167 sodium tartrate Drugs 0.000 description 1
- 235000011004 sodium tartrates Nutrition 0.000 description 1
- HYRLWUFWDYFEES-UHFFFAOYSA-M sodium;2-oxopyrrolidine-1-carboxylate Chemical compound [Na+].[O-]C(=O)N1CCCC1=O HYRLWUFWDYFEES-UHFFFAOYSA-M 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/64—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/12—Coatings without pigments applied as a solution using water as the only solvent, e.g. in the presence of acid or alkaline compounds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H25/00—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
- D21H25/005—Mechanical treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/609—Cross-sectional configuration of strand or fiber material is specified
- Y10T442/61—Cross-sectional configuration varies longitudinally along strand or fiber material
Definitions
- the present invention concerns a cleaning article using a water-decomposable non-woven fabric which is dispersed easily by a water stream and, more in particular, it relates to a cleaning article of low density and having high surface strength.
- Cleaning articles formed with water-decomposable non-woven fabrics are used for the cleaning operation of wiping human skins such as on hips or for cleaning toilets and thereabouts.
- the cleaning articles can be directly flushed away in toilets after use.
- Japanese Patent Laid-Open No. 229295/1990 discloses a water-decomposable non-woven fabric used for cleaning articles of this kind in which a non-woven fabric formed of water dispersible fibers contains carboxymethyl cellulose (CMC) as a water soluble binder and also contains a polyvalent metal salt for preventing dissolution of the water soluble binder in a wet state thereby improving the wet strength.
- CMC carboxymethyl cellulose
- Japanese Patent Laid-Open No. 228214/1997 discloses a product prepared by entangling under a water stream regenerated cellulose fibers having a fiber length of 4 mm to 20 mm and pulp fibers by a water jetting treatment, which intends to establish a balance between the strength and the water decomposability of the non-woven fabric by selecting the fiber length of the regenerated cellulose fibers.
- fluffing often occurs on the surface of the non-woven fabric during wiping of dirt, or the surface of the non-woven fabric is often broken upon wiping of firmly deposited dirt.
- the amount of the binder to be impregnated into the non-woven fabric has to be increased.
- the water soluble binder is impregnated by spraying into the non-woven fabric, there is a limit for the amount of the binder that can be impregnated into the non-woven fabric.
- the present invention intends to overcome the foregoing problems in the prior art and it is an object thereof to provide a cleaning article by using a non-woven fabric of satisfactory water decomposability, in which the surface strength of the non-woven fabric is increased thereby enabling to prevent fluffing on the surface and dropping of fibers upon wiping operation and, further, prevent breakage on the surface, as well as a manufacturing method thereof
- a cleaning article comprising a water-decomposable non-woven fabric containing water dispersible fibers and a water soluble resin coated on at least one side of the water-decomposable non-woven fabric, in which the water soluble resin is contained more in a surface portion of a fiber assembly than in a remaining portion of the fiber assembly.
- the remaining portion of the fiber assembly when the water soluble resin is coated on both sides of the non-woven fabric, the remaining portion of the fiber assembly, as sandwiched between two surface portions, may be called “inner portion” or “intermediate portion”.
- the term “inner portion” is used hereinafter for describing the remaining portion, it being understood that the term “inner portion” never intends to limit the invention to the case where the water soluble resin is coated on both sides of the non-woven fabric.
- the cleaning article of the invention can be produced, for example, by coating the water soluble resin on one side or both sides of the water-decomposable non-woven fabric in the state of a solution with a viscosity ranging from 1,000 cps to 100,000 cps.
- the solution of the water soluble resin (for example, which is prepared by dissolving the water soluble resin in water or purified water) has such a high viscosity that it adheres mainly to the surface portion (surface layer), on one side or on each side of the non-woven fabric, without being impregnated uniformly into the non-woven fabric. Accordingly, in a state where the fiber web of the water decomposable non-woven fabric is dried, the amount of the water soluble resin adhered (or deposited) to the fibers is greater in the surface portion (surface layer) of the non-woven fabric than in the inner portion thereof.
- Preferred range of the viscosity is from 5,000 cps to 70,000 cps and, further preferably, from 10,000 cps to 70,000 cps.
- the viscosity exceeds 100,000 cps, it is difficult to coat the solution uniformly on the surface of the non-woven fabric due to such a high viscosity. When it is 70,000 cps or less, the solution can be coated uniformly with no problem.
- the fiber density of the water-decomposable non-woven fabric is preferably 0.3 g/cm 3 or less.
- the invention is suitable for a cleaning article comprising such a relatively bulky non-woven fabric having a low fiber density.
- the average fiber length of fibers constituting the water-decomposable non-woven fabric is preferably 10 mm or less and, more preferably, 7 mm or less.
- the fibers having such a short fiber length for the non-woven fabric when the cleaning article is flushed in a flushing toilet, the fibers are easily dispersible, thereby improving the water decomposability of the cleaning article.
- the surface strength of the non-woven fabric is improved by the water soluble resin, these short fibers is prevented from dropping off from the surface of the non-woven fabric.
- the amount of coating of the water soluble resin is preferably from 0.5 g to 30 g based on 100 g of the fibers forming the water-decomposable non-woven fabric.
- the coating amount of the water soluble resin is measured after drying the solution. If the coating amount is less than the lower limit described above, the surface strength of the non-woven fabric can not be improved sufficiently. On the other hand, when the coating amount exceeds the upper limit, the softness of the non-woven fabric is decreased.
- the cleaning article of the invention preferably has such a softness in a dry state that the B value (which indicates the bending rigidity) of the cleaning article in a dry state as measured according to a KES bending test is from 0.05 or more to 1.0 or less.
- the B value which indicates the bending rigidity
- used is the bulky non-woven fabric of a low density and therefore, the rigidity is not excessive and the softness is excellent.
- the rigidity (B value) of 0.05 or more as described above can be attained.
- the cleaning article of the invention When the cleaning article of the invention is prepared for use in a wet (moistened) state, an insolubilizing agent for the water soluble resin is preferably added. This can maintain the wet (moistened) strength of the cleaning article at a high level.
- the cleaning article of the invention may be used in a dry state as it is.
- the cleaning article of the invention preferably has such a softness that the B value (which indicates the bending rigidity) of the cleaning article in a wet state as measured according to a KES bending test is 0.03 or more.
- the upper limit is preferably 0.1 or less.
- the water soluble resin when the water soluble resin is coated only on one side, it is preferred that the water soluble resin is coated on a surface of the water-decomposable non-woven fabric to be contacted by a drying drum for drying the water-decomposable non-woven fabric in a manufacturing process thereof. Because the surface becomes relatively smooth after in contact with the drying drum, the solution of the water soluble resin, when coated, less intrudes into the non-woven fabric.
- the water soluble resin is coated on a surface to be used as a cleaning surface.
- the present invention also provides a method of manufacturing a cleaning article comprising:
- the water-decomposable non-woven fabric after the water jetting treatment is dried by using a drying drum, and the solution of the water soluble resin is coated to the water-decomposable non-woven fabric after drying on a surface contacted by the drying drum.
- FIG. 1(A) is an enlarged fragmentary cross sectional view of a cleaning article of the invention in which a water soluble resin is coated on one side of a water-decomposable non-woven fabric;
- FIG. 1(B) is an enlarged fragmentary cross sectional view of a cleaning article of the invention in which a water soluble resin is coated on both sides of a water-decomposable non-woven fabric;
- FIG. 2 is an enlarged fragmentary plan view showing a water-decomposable non-woven fabric constituting the cleaning article of the invention
- FIG. 3 is an explanatory view showing one example of a step for coating a water soluble resin on one side of a water-decomposable non-woven fabric
- FIG. 4 is an explanatory view showing another example of a step for coating a water soluble resin on one side of a water-decomposable non-woven fabric
- FIG. 5 is an explanatory view showing one example of a step for coating a water soluble resin on both sides of a water-decomposable non-woven fabric
- FIG. 6 is an explanatory view showing another example of a step for coating a water soluble resin on both sides of a water-decomposable non-woven fabric.
- FIG. 7 is an explanatory view showing still another example of a step for coating a water soluble resin on both sides of a water-decomposable non-woven fabric.
- FIG. 1(A) is an enlarged fragmentary cross sectional view of a cleaning article in which a water soluble resin is coated on one side of a water-decomposable non-woven fabric
- FIG. 1(B) is an enlarged fragmentary cross sectional view of a cleaning article in which a water soluble resin is coated on both sides of a water-decomposable non-woven fabric.
- a water soluble resin is coated by use of a coater on one surface 3 of a water-decomposable non-woven fabric 2 , which is formed by subjecting a fiber web of water dispersible fibers to a water jetting treatment so that the fibers are entangled under a water stream to some extent.
- a surface layer 5 of fibers adhered with the water soluble resin on their surfaces hereinafter, referred to as water soluble resin layer 5
- the surface 3 to be coated is a surface subjected to the water jetting and contacted with a drying drum after the water jetting and therefore, it is relatively flat compared with another surface 4 .
- the strength of the relatively flat surface 3 is improved by the water soluble resin.
- the surface 3 is used as a cleaning surface, therefore, dropping or fluffing of fibers less occurs or the surface is less broken during wiping.
- a cleaning article 6 shown in FIG. 1(B) the same water-decomposable non-woven fabric 2 as that shown in FIG. 1(A) is used, but the water soluble resin is coated by use of a coater on both surfaces 3 and 4 of the non-woven fabric 2 to form water soluble resin layers 5 and 5 .
- both surfaces of the cleaning article 6 are suitable for use as cleaning surfaces.
- FIG. 2 is an enlarged fragmentary plan view of the water-decomposable non-woven fabric 2 .
- the water-decomposable non-woven fabric 2 prepared by subjecting a fiber web to a water jetting treatment includes a fiber assembly 7 of a high fiber density extending in the machine direction (MD), a fiber assembly 8 of a high fiber density extending in the cross direction (CD) perpendicular to MD and a region 9 of a low fiber density surrounded with the assembly 7 and the assembly 8 .
- the formation of the assemblies 7 and 8 and the region 9 may be controlled by adjusting water jetting pressure or the like.
- the region 9 is an area from which many fibers are removed by water jetting.
- the water-decomposable non-woven fabric 2 is made relatively bulky to have a density (average density of the entire non-woven fabric) of 0.3 g/cm 3 or less.
- the water soluble resin coated is present in a greater amount in the surface portion than in the inner portion.
- the water soluble resin coated is present in a greater amount in the surface portion than in the inner portion.
- the water soluble resin may be impregnated relatively uniformly.
- the surface strength can be improved on the surface 3 or on both the surfaces 3 and 4 of the water-decomposable non-woven fabric 2 .
- the non-woven fabric 2 which is bulky and shaped as shown in FIG. 2 is easily decomposable in water since the strength at break upon wet state of the non-woven fabric is less than 100 g/25 mm (strength at break before formation of the water soluble resin layer 5 ). However, since the water soluble resin layer 5 is present on the surface 3 or on the surfaces 3 and 4 as described above, the strength (wet strength) upon wiping operation can be increased in a state where the water soluble resin of the layer 5 is not dissolved with water.
- the surface strength is reinforced with the water soluble resin layer 5 but the non-woven fabric 2 itself is soft because the entire non-woven fabric 2 is of low density and bulky. Therefore, cleaning article 1 or 6 of the invention is bulky and has a soft feeling.
- the softness of the cleaning article 1 or 6 of the invention in a dry state is preferably such that the B value measured according to the KES bending test (bending rigidity) is 0.05 or more and 1.0 or less.
- the rigidity of 0.05 or more as described above can be obtained even for the bulky non-woven fabric of low density, and the entire portion is soft.
- the B value as measured according the KES bending test is 0.03 or more and 0.1 or less.
- the amount of coating the water soluble resin (in a dried state) is preferably from 0.5 g to 30 g based on 100 g of the fibers of the water-decomposable non-woven fabric. If the coating amount is less than the lower limit, the surface strength of the non-woven fabric can not be improved. On the contrary, if the amount exceeds the upper limit, the softness of the non-woven fabric is deteriorated.
- Fibers used for constituting the water-decomposable non-woven fabric 2 for the cleaning article 1 or 6 according to the invention are those having high water dispersibility (i.e., water dispersible fibers).
- the water dispersibility referred to herein has the same meaning as the water decomposability, which is a property of being divided finely in contact with a great amount of water (fibers are disintegrated from each other).
- a cleaning article prepared by manufacturing a non-woven fabric using such fibers and, further, coating the water soluble resin on the surface has a high strength, particularly, on the surface upon wiping operation and, when the article is in contact with a great amount of water, the water soluble resin as a binder is dissolved to disengage the bonds between the fibers so that the fibers are disintegrated from each other.
- chemical fibers and/or natural fibers can be used.
- the chemical fibers include, for example, regenerated fibers of rayon, acetate, etc.; synthetic fibers of polypropylene, etc.
- the natural fibers include, for example, those from wood pulp such as soft wood pulp, hard wood pulp, etc.; and also those from Manila hemp, linter pulp, bamboo pulp, kenafu, etc. Further, the fibers mentioned above may be used as the main ingredient while being incorporated with other fibers such as natural fibers from cotton, etc; synthetic fibers of polypropylene, polyvinyl alcohol, polyester, polyacrylonitrile, nylon, etc; synthetic pulp of polyethylene, etc; inorganic fibers; etc.
- rayon as regenerated fibers.
- Rayon is well dispersible in water and is also biodegradable.
- soft wood pulp as natural fibers is blended with rayon.
- soft wood pulp has excellent water dispersibility.
- the average fiber length of the soft wood pulp is as short as from 1.0 mm to 4.5 mm and therefore, the soft wood pulp functions as a disintegrating agent in contact with a great amount of water so that the water-decomposable non-woven fabric can be easily disintegrated.
- the pulp preferably has CSF (measured value by Canadian Standard Freeness: JIS P 8121) of from 400 cc to 750 cc. When pulp with CFS of less than 400 cc, that is, highly beaten pulp is used, feeling of the non-woven fabric is worsened. It is more preferably from 500 cc to 750 cc. Further, as the soft wood pulp, bleached soft wood kraft pulp is generally used.
- the fiber length of fibers such as rayon and natural fiber constituting the fiber web is preferably 10 mm or less.
- the fibers are not entangled much to increase no entangled portions of fibers or the fibers are entangled properly upon applying the water jetting treatment to the fiber web, so that the water decomposability is improved.
- the lower limit of the fiber length but further shorter fiber length may also be adopted so long as the fibrous sheet can be formed. That is, in the water-decomposable non-woven fabric constituting the cleaning article of the invention, the average fiber length for each of different fibers is preferably 10 mm or less and, more preferably, 7 mm or less.
- the water-decomposable non-woven fabric 2 constituting the cleaning article of the invention preferably has a basis weight (this may be referred to as “METSUKE”) for the fibers of from 20 to 100 g/m 2 . If the basis weight is less than the lower limit, no required strength as the cleaning article can be obtained. If the basis weight is more than the upper limit, the softness is poor and the fibers are less dispersible in water to deteriorate the water decomposability. In the cleaning article of the invention, the more preferred basis weight for the fibers is from 30 to 80 g/m 2 in view of the strength of the sheet, dirt wiping effect and soft feeling upon touching.
- METSUKE basis weight
- any of water soluble polymers having a binder effect of securing fibers to each other may be used for the water soluble resin.
- a water soluble polymer having a biodegradability is preferable while considering flushing of the cleaning article into a flushing toilet.
- the water soluble polymer described above is coated in a state being dissolved in water to the non-woven fabric 2 .
- Examples of the water soluble polymer include a natural polymer, a semi-synthetic polymer and a synthetic polymer
- the natural polymer one or two or more materials selected from locust bean gum, gum arabic, starch, gelatin, casein and guar gum can be used.
- the semi-synthetic polymer one or two or more materials selected from alkyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, ethylhydroxyethyl cellulose, methylhydroxypropyl cellulose, soluble starch, carboxymethyl starch, alginate and methyl starch can be used.
- the alkyl cellulose is a compound in which hydroxyl groups in the cyclic glucose unit of cellulose are substituted with alkyl groups.
- the alkyl cellulose can include, for example, methyl cellulose, ethyl cellulose and benzyl cellulose. Among them, methyl cellulose is particularly preferred in view of the good water decomposability and the strength.
- polyvinyl alcohol and/or modified polyvinyl alcohol can be used as the synthetic polymer.
- the modified polyvinyl alcohol is a vinyl alcoholic polymer containing a predetermined amount of sulfonic groups or carboxyl groups.
- copolymers of polymerizable acid anhydride compounds with other compounds can also be used for improving the effect of the water soluble polymer. They may also be used as the water soluble resin having substantially the same function as the water soluble polymer. For example, they include compounds obtained by copolymerization of maleic anhydride or fumaric anhydride as the acid anhydride, with methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate or butyl methacrylate.
- the copolymer is preferably selected from (meth)acrylic acid-maleic acid resin, (meth)acrylic acid-fumaric acid resin, vinyl acetate-maleic acid resin, rosin modified fumaric acid resin, methyl vinyl ether-maleic acid resin, ⁇ -olefin-maleic acid resin, ⁇ -olefin fumaric acid resin, isobutylene maleic acid resin and pentene-maleic acid resin.
- copolymers for example, urea formalin resin, resins containing hydroxyl groups such as methylol melamine resin, organic compounds having two or more hydroxyl groups such as glyoxal or tunnic acid and epoxy polyamide series resins can be used.
- urea formalin resin resins containing hydroxyl groups such as methylol melamine resin, organic compounds having two or more hydroxyl groups such as glyoxal or tunnic acid and epoxy polyamide series resins
- (meth)acrylic acid (ester) maleic acid copolymer and/or (meth)acrylic acid (ester) fumaric acid copolymer are preferred since they are highly safe and improve the wet strength of the cleaning article.
- copolymers are preferably used after partially saponifying them under the effect of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide into sodium carboxylates.
- the degree of saponification is preferably from 0.1 to 1.0. Since adjacent carboxylic acid groups are formed into salts, partially saponified copolymers are more water soluble. They are preferably used together with the aforementioned water soluble polymer such as alkyl cellulose.
- the water soluble resin or the water soluble resin and the copolymer of the polymerizable acid anhydride compound with other compound are dissolved into an aqueous solution such that the viscosity is at 1,000 cps to 100,000 cps (preferably, 5,000 cps to 70,000 cps, more preferably, 10,000 cps to 70,000 cps), and the solution is coated on the surface 3 of the water-decomposable non-woven fabric 2 .
- the viscosity changes depending on the concentration contained in the aqueous solution.
- the water-decomposable non-woven fabric 2 which is coated with the solution of the water soluble resin on the surface and then dried preferably has a strength of 250 g/25 mm or more for both MD and CD when it subsequently contains water to a wet state. That is, the cleaning article of the invention preferably has a wet strength of 250 g/25 mm or more for both MD and CD.
- the wet strength of the non-woven fabric can be increased by further incorporating an electrolyte as an insolubilizing agent.
- an organic salt and an inorganic salt can be used.
- the inorganic salt includes, for example, sodium sulfate, potassium sulfate, zinc sulfate, zinc nitrate, potassium alum, sodium chloride, aluminium sulfate, magnesium sulfate, potassium chloride, sodium carbonate, sodium hydrogencarbonate, ammonium carbonate, etc.
- the organic salt includes, for example, sodium pyrrolidone-carboxylate, sodium citrate, potassium citrate, sodium tartrate, potassium tartrate, sodium lactate, sodium succinate, calcium pantothenate, calcium lactate, sodium laurylsulfate, etc.
- a bivalent salt is preferred for improving the strength of the water-decomposable non-woven fabric.
- alkyl cellulose is used for the water soluble resin
- a monovalent salt is preferred.
- polyvinyl alcohol or modified polyvinyl alcohol is used as the water soluble resin, a monovalent salt is also preferable for use.
- the electrolyte may be added to the water-decomposable non-woven fabric such that the electrolyte is dissolved into water and the aqueous solution is then impregnated into the non-woven fabric.
- the electrolyte is preferably water soluble.
- the concentration of the electrolyte in the aqueous solution to be impregnated into the water-decomposable non-woven fabric 2 is preferably from 0.5% to 10% by weight. It is more preferably from 1.0% to 5.0% by weight.
- the aqueous solution containing the electrolyte dissolved therein is impregnated, preferably, by 200 g to 350 g based on 100 g of the water-decomposable non-woven fabric. As the content of the electrolyte increases, the strength of the water-decomposable non-woven fabric increases.
- the aqueous solution can be impregnated into the water-decomposable non-woven fabric by a method of immersion or spraying.
- an amino acid derivative is preferably incorporated.
- the amino acid derivative is dissolved in water together with the electrolyte and impregnated into the water-decomposable non-woven fabric.
- the amino acid derivative is a compound produced from an amino acid, by subjecting the amino acid to acylation, dehydration and condensation, esterification, neutralization of fatty acid, or polymerization.
- the amino acid derivative includes trimethyl glycine as an N-trialkyl-substituted glutamic acid; DL-pyrrolidone carboxylic acid, DL-pyrrolidone sodium carboxylate, and DL-pyrrolidone carboxylate triethanolamine, which are produced by subjecting glutamic acid to dehydration and condensation; N-coconut oil fatty acid acyl L-arginine ethyl DL-pyrrolidone carbonic acid produced by acylation and esterification of arginine, and poly(sodium aspartate) produced by polymerizing aspartic acid.
- trimethyl glycine is particularly preferable because of its great safety profile and the increased wet strength of the resulting cleaning article.
- a water-decomposable non-woven fabric having a wet strength (MD or CD) of 250 g/25 mm or more can be obtained by coating the water soluble resin on the surface of the non-woven fabric and incorporating the electrolyte.
- the degree of water decomposability of the resulting water-decomposable non-woven fabric is preferably 120 sec or less and, more preferably, 100 sec or less.
- FIG. 3 and FIG. 4 are explanatory views, each showing a production process of the cleaning article 1 of FIG. 1(A) in which the water soluble resin is coated only on one side.
- the water-decomposable non-woven fabric 2 formed by a water jetting treatment is dried by a drying drum 11 after the water jetting treatment.
- the non-woven fabric 2 is brought into contact, at the surface thereof applied with the water jetting, with the drying drum 11 and dried.
- a coater 12 is brought into contact with the surface of the water-decomposable non-woven fabric 2 that was in contact with the drying drum 11 .
- the coater 12 has a slit formed on its surface and the solution of the water soluble resin is delivered from a tank 21 by way of a pump 22 and then coated by the coater 12 to the surface (i.e., surface 3 in FIG. 1(A)), on one side of the water-decomposable non-woven fabric 2 .
- the water-decomposable non-woven fabric 2 coated with the solution of the water soluble resin is then brought into contact, at the coated surface thereof, with a drying drum 13 , and the solution of the water soluble resin is dried and then the dried product is taken up as the cleaning article 1 of the invention in which the water soluble resin layer (i.e., water soluble resin layer 5 in FIG. 1(A)) is formed as a surface layer.
- the water soluble resin layer i.e., water soluble resin layer 5 in FIG. 1(A)
- the water-decomposable non-woven fabric 2 formed by the water jetting treatment is dried by the drying drum 11 , coated with the solution of the water soluble resin on one side by the coater 12 and then supplied to a hot blow drier 14 , in which the water soluble resin is dried and then the dried product is taken up as the cleaning article 1 of the invention.
- FIG. 5 to FIG. 7 are explanatory views, each showing a production process of the cleaning article 6 of FIG. 1(B) in which the solution of the water soluble resin is coated on both sides of the water-decomposable non-woven fabric 2 .
- the solution of the water soluble resin may be coated on both sides of the water-decomposable non-woven fabric 2 by repeating the process shown in FIG. 3 or FIG. 4.
- the solution of the water soluble resin can be coated easily on both sides of the water-decomposable non-woven fabric 2 in a short period of time by using the process shown in FIG. 5, FIG. 6 or FIG. 7.
- coaters 12 , 12 are applied respectively one to each side of the water-decomposable non-woven fabric 2 , and the solution of the water soluble resin delivered from pumps 22 , 22 is coated on both sides of the water-decomposable non-woven fabric 2 .
- the water-decomposable non-woven fabric 2 after the coating is brought into contact with a drying drum 13 , by which the water soluble resin at the surface on one side thereof is dried.
- auxiliary hot blow drier auxiliary drier
- the solution of the water soluble resin is coated by a coater 12 on one side of the water-decomposable non-woven fabric 2 after the drying step by a drying drum 11 . Then, the surface coated with the solution of the water soluble resin is brought into contact with a succeeding drying drum 13 and the water soluble resin is dried. Subsequently, the solution of the water soluble resin is coated again on the other surface (opposite surface) of the water-decomposable non-woven fabric 2 by another coater 12 and the opposite surface coated immediately before is brought into contact with a succeeding drying drum 16 , by which the water soluble resin on the opposite surface is dried. Then, the resulting dried product is taken up as the cleaning article 6 .
- FIG. 7 The process shown in FIG. 7 is similar to that shown in FIG. 4.
- the solution of the water soluble resin is coated on both sides of the water-decomposable non-woven fabric 2 by coater 12 , 12 .
- the non-woven fabric 2 is sent to a hot blow drier 14 and the water soluble resin coated on both sides of the non-woven fabric 2 is dried.
- NNKP bleached soft-wood kraft pulp
- rayon fibers manufactured by Toho Rayon Co.
- the fiber web has a size of 25 cm ⁇ 25 cm and a basis weight of 40 g/m 2 . Without being dried but still on the plastic wire, the resulting fiber web was put on a transfer conveyor.
- the fiber web was subjected to a water-jetting treatment, whereby the fibers constituting it were entangled.
- the high-pressure water-jetting device used for the treatment was equipped with 2000 nozzles/meter each having an orifice diameter of 95 microns, at intervals of 0.5 mm between the adjacent nozzles, and the pressure of the jetting water stream applied to the web was 30 kg/cm 2 . In that condition, jetting water was applied to one surface of the web so that it passes through its back surface.
- the processing speed was 30 m/min.
- the water-jetting treatment was repeated once again under the same condition. Then, the fiber web was dried by using a drying drum to obtain a water-decomposable non-woven fabric 2 .
- a water soluble resin was coated on one side of the water-decomposable non-woven fabric 2 for the blank described above by using a coater.
- the coated water soluble resin was alkyl cellulose and (meth)acrylic acid (ester) maleic acid copolymer dissolved in purified water.
- the concentration of the alkyl cellulose and (meth)acrylic acid (ester) maleic acid copolymer in purified water was 7.5% by weight and the mixing ratio of the alkyl cellulose and (meth)acrylic acid (ester) maleic acid copolymer was 5:1.
- the solution was used at a viscosity controlled to 30,000 cps and the coating amount only on one side of the non-woven fabric was 3.0 g/m 2 being converted as the water soluble resin in the dry state.
- Example 2 The same water soluble resin as in Example 1 was coated on both sides of the non-woven fabric 2 for the blank described above by using a coater.
- the amount of coating was 1.5 g/m 2 for each side of the non-woven fabric and, thus, 3.0 g/m 2 for the total of both sides.
- the chemical solution was impregnated by 250 g based on 100 g of the water-decomposable non-woven fabric by using a spray.
- the bending rigidity for the characteristic item B was measured by using a KES tester (manufactured by Kato Tech Co.). In the KES test, the bending rigidity is higher as the B value is higher.
- the test for the water decomposability was conducted based on a test for the looseness of toilet paper according to JIS P 4501. Referring specifically, a piece of the water-decomposable non-woven fabric cut into 10 cm length and 10 cm width was placed in a 300 ml volume beaker containing 300 ml of ion exchanged water and stirred by using a rotor. The number of rotation was 600 rpm. The condition of the test piece being dispersed in water was macroscopically observed, and the time until the test piece was finely dispersed was measured (unit:sec).
- Example Blank 1 2 1 2 Coating Coating Not Coated on Coated Impregnation spray condition method coated one side both sides coating coating Resin (cps) none 30000 30000 300 300 viscosity Coating (g/cm 2 ) none 3.0 3.0 3.0 3.0 amount (1.5:one side) Dry state Surface cycles of 7 50 or 50 or 38 25 strength friction more more Softness Bending 0.0278 0.0752 0.913 0.124 0.998 (KES) test, B value Water decompos- sec 15 27 32 30 30 ability Chemical Surface cycles of 1 24 16 9 7 solution strength friction impregnated Softness Bending 0.0233 0.0431 0.0512 0.0924 0.0754 state (KES) test, B value Water sec 8 30 35 35 31 decompos- ability
- the water-decomposable cleaning article according to the invention has higher surface strength, excellent softness and favorable water decomposability compared with existent articles.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
- Body Washing Hand Wipes And Brushes (AREA)
- Sanitary Thin Papers (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
There is disclosed a cleaning article including a water-decomposable non-woven fabric containing water dispersible fibers and a water soluble resin coated on one side or both sides of the water-decomposable non-woven fabric. The water soluble resin is contained more in a surface portion or surface portions of a fiber assembly than in a remaining portion or inner portion of the fiber assembly. The water soluble resin thus contained can increase only the surface strength of the non-woven fabric sufficiently without deteriorating the softness of the entire article, so that dropping of fibers or breakage of surface upon wiping operation can be prevented.
Description
- 1. Field of the Invention
- The present invention concerns a cleaning article using a water-decomposable non-woven fabric which is dispersed easily by a water stream and, more in particular, it relates to a cleaning article of low density and having high surface strength.
- 2. Related Art
- Cleaning articles formed with water-decomposable non-woven fabrics are used for the cleaning operation of wiping human skins such as on hips or for cleaning toilets and thereabouts. The cleaning articles can be directly flushed away in toilets after use.
- Japanese Patent Laid-Open No. 229295/1990 discloses a water-decomposable non-woven fabric used for cleaning articles of this kind in which a non-woven fabric formed of water dispersible fibers contains carboxymethyl cellulose (CMC) as a water soluble binder and also contains a polyvalent metal salt for preventing dissolution of the water soluble binder in a wet state thereby improving the wet strength.
- Further, Japanese Patent Laid-Open No. 228214/1997 discloses a product prepared by entangling under a water stream regenerated cellulose fibers having a fiber length of 4 mm to 20 mm and pulp fibers by a water jetting treatment, which intends to establish a balance between the strength and the water decomposability of the non-woven fabric by selecting the fiber length of the regenerated cellulose fibers.
- In Japanese Patent Laid-Open No. 229295/1990 the water soluble binder is impregnated into the entire non-woven fabric formed of the water dispersible fibers to improve the strength of the non-woven fabric in the wet state. However, in the fabrics of this type, since the water soluble binder is impregnated into the non-woven fabric generally by using a spray, while the tensile strength of the entire non-woven fabric can be increased to some extent, the strength at the surface of the non-woven fabric can not be improved sufficiently.
- Accordingly, fluffing often occurs on the surface of the non-woven fabric during wiping of dirt, or the surface of the non-woven fabric is often broken upon wiping of firmly deposited dirt.
- Further, when the surface strength is intended to be improved by increasing the strength for the entire non-woven fabric, the amount of the binder to be impregnated into the non-woven fabric has to be increased. However, when the water soluble binder is impregnated by spraying into the non-woven fabric, there is a limit for the amount of the binder that can be impregnated into the non-woven fabric. Further, for impregnating a great amount of the water soluble binder into the non-woven fabric and improving the wet strength, it is necessary to incorporate a great amount of a metal salt in a wet state to bring about a problem in view of safety to human skins.
- Then, in Japanese Patent Laid-Open No. 228214/1997, it is intended to improve the strength and make the water decomposability favorable by selecting the fiber length of the regenerated cellulose fibers. However, it is actually difficult to appropriately make a balance between the strength and the water decomposability. Moreover, since the entire strength is intended to be obtained merely by the entangled state of the fibers, the surface strength of the non-woven fabric is extremely low and the non-woven fabric involves a problem that the fibers appearing on the surface drop off during wiping operation or the surface of the non-woven fabric is broken easily.
- The present invention intends to overcome the foregoing problems in the prior art and it is an object thereof to provide a cleaning article by using a non-woven fabric of satisfactory water decomposability, in which the surface strength of the non-woven fabric is increased thereby enabling to prevent fluffing on the surface and dropping of fibers upon wiping operation and, further, prevent breakage on the surface, as well as a manufacturing method thereof
- In accordance with the present invention, the foregoing object can be attained by a cleaning article comprising a water-decomposable non-woven fabric containing water dispersible fibers and a water soluble resin coated on at least one side of the water-decomposable non-woven fabric, in which the water soluble resin is contained more in a surface portion of a fiber assembly than in a remaining portion of the fiber assembly.
- Here, when the water soluble resin is coated on both sides of the non-woven fabric, the remaining portion of the fiber assembly, as sandwiched between two surface portions, may be called “inner portion” or “intermediate portion”. For convenience in illustrating the invention, therefore, the term “inner portion” is used hereinafter for describing the remaining portion, it being understood that the term “inner portion” never intends to limit the invention to the case where the water soluble resin is coated on both sides of the non-woven fabric.
- The cleaning article of the invention can be produced, for example, by coating the water soluble resin on one side or both sides of the water-decomposable non-woven fabric in the state of a solution with a viscosity ranging from 1,000 cps to 100,000 cps.
- In this case, the solution of the water soluble resin (for example, which is prepared by dissolving the water soluble resin in water or purified water) has such a high viscosity that it adheres mainly to the surface portion (surface layer), on one side or on each side of the non-woven fabric, without being impregnated uniformly into the non-woven fabric. Accordingly, in a state where the fiber web of the water decomposable non-woven fabric is dried, the amount of the water soluble resin adhered (or deposited) to the fibers is greater in the surface portion (surface layer) of the non-woven fabric than in the inner portion thereof.
- Preferred range of the viscosity is from 5,000 cps to 70,000 cps and, further preferably, from 10,000 cps to 70,000 cps.
- When the viscosity of the solution of the water soluble resin is less than 1,000 cps, the solution is impregnated almost uniformly into the non-woven fabric so that the water soluble resin can not be deposited sufficiently on the fibers of the surface layer. But, too much addition of the water soluble resin is undesirable. In this case, therefore, it is difficult to improve the surface strength of the non-woven fabric to a desired degree. When the viscosity is from 1,000 to less than 5,000 or 10,000 cps, the uniform impregnation of the solution can be prevented but it is still relatively difficult to permit only the surface layer to have a sufficient strength.
- On the other hand, if the viscosity exceeds 100,000 cps, it is difficult to coat the solution uniformly on the surface of the non-woven fabric due to such a high viscosity. When it is 70,000 cps or less, the solution can be coated uniformly with no problem.
- As described above, when the solution of the water soluble resin at a high viscosity is coated on the surface of the water-decomposable non-woven fabric and the amount of the water soluble resin in the surface layer is more than that in the inner portion, only the surface strength of the cleaning article can be improved satisfactorily. This enables prevention of fluffing on the surface, dropping of fibers and breakage at the surface upon wiping, and it also enables readily wiping of firmly deposited dirt.
- The fiber density of the water-decomposable non-woven fabric is preferably 0.3 g/cm3 or less.
- In such a relatively bulky non-woven fabric having a low fiber density, a water soluble resin easily intrudes between fibers. Therefore, if a solution of a water soluble resin at a low viscosity is added by use of a spray as in the prior art, the water soluble resin comes into the inner portion of the non-woven fabric, so that it is difficult to improve only the surface strength of the non-woven fabric. In the invention, on the other hand, because the solution of the water soluble resin at a relatively high viscosity is coated on the surface, on one side or each side of the non-woven fabric, the water soluble resin can be maintained in the surface layer of the non-woven fabric to a desired degree. As a result, according to the invention, even in such a bulky non-woven fabric having a low fiber density, the surface strength can be improved. That is, the invention is suitable for a cleaning article comprising such a relatively bulky non-woven fabric having a low fiber density.
- The average fiber length of fibers constituting the water-decomposable non-woven fabric is preferably 10 mm or less and, more preferably, 7 mm or less.
- By the use of the fibers having such a short fiber length for the non-woven fabric, when the cleaning article is flushed in a flushing toilet, the fibers are easily dispersible, thereby improving the water decomposability of the cleaning article. In addition, since the surface strength of the non-woven fabric is improved by the water soluble resin, these short fibers is prevented from dropping off from the surface of the non-woven fabric.
- The amount of coating of the water soluble resin is preferably from 0.5 g to 30 g based on 100 g of the fibers forming the water-decomposable non-woven fabric. Here, the coating amount of the water soluble resin is measured after drying the solution. If the coating amount is less than the lower limit described above, the surface strength of the non-woven fabric can not be improved sufficiently. On the other hand, when the coating amount exceeds the upper limit, the softness of the non-woven fabric is decreased.
- The cleaning article of the invention preferably has such a softness in a dry state that the B value (which indicates the bending rigidity) of the cleaning article in a dry state as measured according to a KES bending test is from 0.05 or more to 1.0 or less. In the invention, used is the bulky non-woven fabric of a low density and therefore, the rigidity is not excessive and the softness is excellent. In addition, even for such bulky non-woven fabric of a low density, because the solution of the water soluble resin at a high viscosity is coated on the surface of the non-woven fabric thereby forming the water soluble resin-containing surface layer, the rigidity (B value) of 0.05 or more as described above can be attained.
- When the cleaning article of the invention is prepared for use in a wet (moistened) state, an insolubilizing agent for the water soluble resin is preferably added. This can maintain the wet (moistened) strength of the cleaning article at a high level. However, the cleaning article of the invention may be used in a dry state as it is.
- In such a wet state, the cleaning article of the invention preferably has such a softness that the B value (which indicates the bending rigidity) of the cleaning article in a wet state as measured according to a KES bending test is 0.03 or more. In this case, the upper limit is preferably 0.1 or less.
- Further, when the water soluble resin is coated only on one side, it is preferred that the water soluble resin is coated on a surface of the water-decomposable non-woven fabric to be contacted by a drying drum for drying the water-decomposable non-woven fabric in a manufacturing process thereof. Because the surface becomes relatively smooth after in contact with the drying drum, the solution of the water soluble resin, when coated, less intrudes into the non-woven fabric.
- In the cleaning article of the invention, the water soluble resin is coated on a surface to be used as a cleaning surface.
- The present invention also provides a method of manufacturing a cleaning article comprising:
- a step of subjecting a fiber web containing water dispersible fibers to a water jetting treatment thereby forming a water-decomposable non-woven fabric,
- a step of drying the water-decomposable non-woven fabric after the water jetting treatment,
- a step of coating a solution of a water soluble resin with a viscosity ranging from 1,000 cps to 100,000 cps (preferably, 5,000 cps to 70,000 cps, and more preferably, 10,000 cps to 70,000 cps) on at least one side of the water-decomposable non-woven fabric after drying, and
- a step of drying the coated solution of the water soluble resin.
- In the method described above, it is preferred that the water-decomposable non-woven fabric after the water jetting treatment is dried by using a drying drum, and the solution of the water soluble resin is coated to the water-decomposable non-woven fabric after drying on a surface contacted by the drying drum.
- FIG. 1(A) is an enlarged fragmentary cross sectional view of a cleaning article of the invention in which a water soluble resin is coated on one side of a water-decomposable non-woven fabric;
- FIG. 1(B) is an enlarged fragmentary cross sectional view of a cleaning article of the invention in which a water soluble resin is coated on both sides of a water-decomposable non-woven fabric;
- FIG. 2 is an enlarged fragmentary plan view showing a water-decomposable non-woven fabric constituting the cleaning article of the invention;
- FIG. 3 is an explanatory view showing one example of a step for coating a water soluble resin on one side of a water-decomposable non-woven fabric;
- FIG. 4 is an explanatory view showing another example of a step for coating a water soluble resin on one side of a water-decomposable non-woven fabric;
- FIG. 5 is an explanatory view showing one example of a step for coating a water soluble resin on both sides of a water-decomposable non-woven fabric;
- FIG. 6 is an explanatory view showing another example of a step for coating a water soluble resin on both sides of a water-decomposable non-woven fabric; and
- FIG. 7 is an explanatory view showing still another example of a step for coating a water soluble resin on both sides of a water-decomposable non-woven fabric.
- FIG. 1(A) is an enlarged fragmentary cross sectional view of a cleaning article in which a water soluble resin is coated on one side of a water-decomposable non-woven fabric and FIG. 1(B) is an enlarged fragmentary cross sectional view of a cleaning article in which a water soluble resin is coated on both sides of a water-decomposable non-woven fabric.
- In a
cleaning article 1 shown in FIG. 1(A), a water soluble resin is coated by use of a coater on onesurface 3 of a water-decomposablenon-woven fabric 2, which is formed by subjecting a fiber web of water dispersible fibers to a water jetting treatment so that the fibers are entangled under a water stream to some extent. As a result, there is formed asurface layer 5 of fibers adhered with the water soluble resin on their surfaces (hereinafter, referred to as water soluble resin layer 5) as shown in FIG. 1(A). Here, thesurface 3 to be coated is a surface subjected to the water jetting and contacted with a drying drum after the water jetting and therefore, it is relatively flat compared with anothersurface 4. - The strength of the relatively
flat surface 3 is improved by the water soluble resin. When thesurface 3 is used as a cleaning surface, therefore, dropping or fluffing of fibers less occurs or the surface is less broken during wiping. - In a
cleaning article 6 shown in FIG. 1(B), the same water-decomposablenon-woven fabric 2 as that shown in FIG. 1(A) is used, but the water soluble resin is coated by use of a coater on bothsurfaces non-woven fabric 2 to form watersoluble resin layers - In the
cleaning article 6 shown in FIG. 1(B), the surface strength is improved on bothsurfaces non-woven fabric 2 with the watersoluble resin layers cleaning article 6 are suitable for use as cleaning surfaces. - FIG. 2 is an enlarged fragmentary plan view of the water-decomposable
non-woven fabric 2. - As shown in FIG. 2, the water-decomposable
non-woven fabric 2 prepared by subjecting a fiber web to a water jetting treatment includes afiber assembly 7 of a high fiber density extending in the machine direction (MD), afiber assembly 8 of a high fiber density extending in the cross direction (CD) perpendicular to MD and aregion 9 of a low fiber density surrounded with theassembly 7 and theassembly 8. The formation of theassemblies region 9 may be controlled by adjusting water jetting pressure or the like. Theregion 9 is an area from which many fibers are removed by water jetting. The water-decomposablenon-woven fabric 2 is made relatively bulky to have a density (average density of the entire non-woven fabric) of 0.3 g/cm3 or less. - At least in the
fiber assembly 7, the water soluble resin coated is present in a greater amount in the surface portion than in the inner portion. In thefiber assembly 8, also, it is preferred that the water soluble resin coated is present in a greater amount in the surface portion than in the inner portion. However, in theregion 9 of a low fiber density, the water soluble resin may be impregnated relatively uniformly. - As described above, since the water soluble resin is present more in the surface portion (surface layer) than in the inner portion, at least in the
fiber assembly 7, the surface strength can be improved on thesurface 3 or on both thesurfaces non-woven fabric 2. - The
non-woven fabric 2 which is bulky and shaped as shown in FIG. 2 is easily decomposable in water since the strength at break upon wet state of the non-woven fabric is less than 100 g/25 mm (strength at break before formation of the water soluble resin layer 5). However, since the watersoluble resin layer 5 is present on thesurface 3 or on thesurfaces layer 5 is not dissolved with water. - Further, in the
cleaning article soluble resin layer 5 but thenon-woven fabric 2 itself is soft because the entirenon-woven fabric 2 is of low density and bulky. Therefore, cleaningarticle - The softness of the
cleaning article - Further, for the softness in the wet state, it is preferred that the B value as measured according the KES bending test (bending rigidity) is 0.03 or more and 0.1 or less.
- Further, the amount of coating the water soluble resin (in a dried state) is preferably from 0.5 g to 30 g based on 100 g of the fibers of the water-decomposable non-woven fabric. If the coating amount is less than the lower limit, the surface strength of the non-woven fabric can not be improved. On the contrary, if the amount exceeds the upper limit, the softness of the non-woven fabric is deteriorated.
- Fibers used for constituting the water-decomposable
non-woven fabric 2 for thecleaning article - In the invention, chemical fibers and/or natural fibers can be used. The chemical fibers include, for example, regenerated fibers of rayon, acetate, etc.; synthetic fibers of polypropylene, etc. The natural fibers include, for example, those from wood pulp such as soft wood pulp, hard wood pulp, etc.; and also those from Manila hemp, linter pulp, bamboo pulp, kenafu, etc. Further, the fibers mentioned above may be used as the main ingredient while being incorporated with other fibers such as natural fibers from cotton, etc; synthetic fibers of polypropylene, polyvinyl alcohol, polyester, polyacrylonitrile, nylon, etc; synthetic pulp of polyethylene, etc; inorganic fibers; etc.
- Among the fibers described above, preferred is rayon as regenerated fibers. Rayon is well dispersible in water and is also biodegradable.
- In this case, it is further preferred that soft wood pulp as natural fibers is blended with rayon. This is because soft wood pulp has excellent water dispersibility. The average fiber length of the soft wood pulp is as short as from 1.0 mm to 4.5 mm and therefore, the soft wood pulp functions as a disintegrating agent in contact with a great amount of water so that the water-decomposable non-woven fabric can be easily disintegrated. The pulp preferably has CSF (measured value by Canadian Standard Freeness: JIS P 8121) of from 400 cc to 750 cc. When pulp with CFS of less than 400 cc, that is, highly beaten pulp is used, feeling of the non-woven fabric is worsened. It is more preferably from 500 cc to 750 cc. Further, as the soft wood pulp, bleached soft wood kraft pulp is generally used.
- It is preferred that the fiber length of fibers such as rayon and natural fiber constituting the fiber web is preferably 10 mm or less. When the fiber length is 10 mm or less, the fibers are not entangled much to increase no entangled portions of fibers or the fibers are entangled properly upon applying the water jetting treatment to the fiber web, so that the water decomposability is improved. There is no particular restriction for the lower limit of the fiber length, but further shorter fiber length may also be adopted so long as the fibrous sheet can be formed. That is, in the water-decomposable non-woven fabric constituting the cleaning article of the invention, the average fiber length for each of different fibers is preferably 10 mm or less and, more preferably, 7 mm or less.
- Even in a case of forming the water-decomposable non-woven fabric with fibers of such a short fiber length, dropping of the fibers at the surface can be prevented because the surface of the non-woven fabric is formed with the water
soluble resin layer 5. - The water-decomposable
non-woven fabric 2 constituting the cleaning article of the invention preferably has a basis weight (this may be referred to as “METSUKE”) for the fibers of from 20 to 100 g/m2. If the basis weight is less than the lower limit, no required strength as the cleaning article can be obtained. If the basis weight is more than the upper limit, the softness is poor and the fibers are less dispersible in water to deteriorate the water decomposability. In the cleaning article of the invention, the more preferred basis weight for the fibers is from 30 to 80 g/m2 in view of the strength of the sheet, dirt wiping effect and soft feeling upon touching. - Any of water soluble polymers having a binder effect of securing fibers to each other may be used for the water soluble resin. A water soluble polymer having a biodegradability is preferable while considering flushing of the cleaning article into a flushing toilet. The water soluble polymer described above is coated in a state being dissolved in water to the
non-woven fabric 2. Examples of the water soluble polymer include a natural polymer, a semi-synthetic polymer and a synthetic polymer - As the natural polymer, one or two or more materials selected from locust bean gum, gum arabic, starch, gelatin, casein and guar gum can be used.
- As the semi-synthetic polymer, one or two or more materials selected from alkyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, ethylhydroxyethyl cellulose, methylhydroxypropyl cellulose, soluble starch, carboxymethyl starch, alginate and methyl starch can be used. The alkyl cellulose is a compound in which hydroxyl groups in the cyclic glucose unit of cellulose are substituted with alkyl groups. The alkyl cellulose can include, for example, methyl cellulose, ethyl cellulose and benzyl cellulose. Among them, methyl cellulose is particularly preferred in view of the good water decomposability and the strength.
- As the synthetic polymer, polyvinyl alcohol and/or modified polyvinyl alcohol can be used. The modified polyvinyl alcohol is a vinyl alcoholic polymer containing a predetermined amount of sulfonic groups or carboxyl groups.
- In addition, copolymers of polymerizable acid anhydride compounds with other compounds can also be used for improving the effect of the water soluble polymer. They may also be used as the water soluble resin having substantially the same function as the water soluble polymer. For example, they include compounds obtained by copolymerization of maleic anhydride or fumaric anhydride as the acid anhydride, with methyl methacrylate, methyl acrylate, ethyl acrylate, ethyl methacrylate or butyl methacrylate. In the case where the cleaning article is used directly to human skins, for example, the copolymer is preferably selected from (meth)acrylic acid-maleic acid resin, (meth)acrylic acid-fumaric acid resin, vinyl acetate-maleic acid resin, rosin modified fumaric acid resin, methyl vinyl ether-maleic acid resin, α-olefin-maleic acid resin, α-olefin fumaric acid resin, isobutylene maleic acid resin and pentene-maleic acid resin. In the case where the cleaning article is not used directly to human skins, other copolymers, for example, urea formalin resin, resins containing hydroxyl groups such as methylol melamine resin, organic compounds having two or more hydroxyl groups such as glyoxal or tunnic acid and epoxy polyamide series resins can be used. Among the copolymers, (meth)acrylic acid (ester) maleic acid copolymer and/or (meth)acrylic acid (ester) fumaric acid copolymer are preferred since they are highly safe and improve the wet strength of the cleaning article. These copolymers are preferably used after partially saponifying them under the effect of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide into sodium carboxylates. The degree of saponification is preferably from 0.1 to 1.0. Since adjacent carboxylic acid groups are formed into salts, partially saponified copolymers are more water soluble. They are preferably used together with the aforementioned water soluble polymer such as alkyl cellulose.
- The water soluble resin or the water soluble resin and the copolymer of the polymerizable acid anhydride compound with other compound are dissolved into an aqueous solution such that the viscosity is at 1,000 cps to 100,000 cps (preferably, 5,000 cps to 70,000 cps, more preferably, 10,000 cps to 70,000 cps), and the solution is coated on the
surface 3 of the water-decomposablenon-woven fabric 2. The viscosity changes depending on the concentration contained in the aqueous solution. - The water-decomposable
non-woven fabric 2 which is coated with the solution of the water soluble resin on the surface and then dried preferably has a strength of 250 g/25 mm or more for both MD and CD when it subsequently contains water to a wet state. That is, the cleaning article of the invention preferably has a wet strength of 250 g/25 mm or more for both MD and CD. However, even when the non-woven fabric has a wet strength lower than the aimed wet strength, the wet strength of the non-woven fabric can be increased by further incorporating an electrolyte as an insolubilizing agent. - For the electrolyte as the insolubilizing agent, either one or both of an organic salt and an inorganic salt can be used. The inorganic salt includes, for example, sodium sulfate, potassium sulfate, zinc sulfate, zinc nitrate, potassium alum, sodium chloride, aluminium sulfate, magnesium sulfate, potassium chloride, sodium carbonate, sodium hydrogencarbonate, ammonium carbonate, etc.; and the organic salt includes, for example, sodium pyrrolidone-carboxylate, sodium citrate, potassium citrate, sodium tartrate, potassium tartrate, sodium lactate, sodium succinate, calcium pantothenate, calcium lactate, sodium laurylsulfate, etc. When carbxymethyl cellulose is used as the water soluble resin, a bivalent salt is preferred for improving the strength of the water-decomposable non-woven fabric. On the other hand, when alkyl cellulose is used for the water soluble resin, a monovalent salt is preferred. When polyvinyl alcohol or modified polyvinyl alcohol is used as the water soluble resin, a monovalent salt is also preferable for use.
- The electrolyte may be added to the water-decomposable non-woven fabric such that the electrolyte is dissolved into water and the aqueous solution is then impregnated into the non-woven fabric. Accordingly, the electrolyte is preferably water soluble. In this case, the concentration of the electrolyte in the aqueous solution to be impregnated into the water-decomposable
non-woven fabric 2 is preferably from 0.5% to 10% by weight. It is more preferably from 1.0% to 5.0% by weight. The aqueous solution containing the electrolyte dissolved therein is impregnated, preferably, by 200 g to 350 g based on 100 g of the water-decomposable non-woven fabric. As the content of the electrolyte increases, the strength of the water-decomposable non-woven fabric increases. The aqueous solution can be impregnated into the water-decomposable non-woven fabric by a method of immersion or spraying. - Further, in a case of coating the aforementioned copolymer of the polymerizable acid anhydride compound with other compound, an amino acid derivative is preferably incorporated. The amino acid derivative is dissolved in water together with the electrolyte and impregnated into the water-decomposable non-woven fabric. The amino acid derivative is a compound produced from an amino acid, by subjecting the amino acid to acylation, dehydration and condensation, esterification, neutralization of fatty acid, or polymerization. For example, the amino acid derivative includes trimethyl glycine as an N-trialkyl-substituted glutamic acid; DL-pyrrolidone carboxylic acid, DL-pyrrolidone sodium carboxylate, and DL-pyrrolidone carboxylate triethanolamine, which are produced by subjecting glutamic acid to dehydration and condensation; N-coconut oil fatty acid acyl L-arginine ethyl DL-pyrrolidone carbonic acid produced by acylation and esterification of arginine, and poly(sodium aspartate) produced by polymerizing aspartic acid. Among them, trimethyl glycine is particularly preferable because of its great safety profile and the increased wet strength of the resulting cleaning article.
- As described above, according to the invention, a water-decomposable non-woven fabric having a wet strength (MD or CD) of 250 g/25 mm or more can be obtained by coating the water soluble resin on the surface of the non-woven fabric and incorporating the electrolyte.
- Further, the degree of water decomposability of the resulting water-decomposable non-woven fabric is preferably 120 sec or less and, more preferably, 100 sec or less.
- FIG. 3 and FIG. 4 are explanatory views, each showing a production process of the
cleaning article 1 of FIG. 1(A) in which the water soluble resin is coated only on one side. - In the process shown in FIG. 3, the water-decomposable
non-woven fabric 2 formed by a water jetting treatment is dried by a dryingdrum 11 after the water jetting treatment. Thenon-woven fabric 2 is brought into contact, at the surface thereof applied with the water jetting, with the dryingdrum 11 and dried. After the drying step by the dryingdrum 11, acoater 12 is brought into contact with the surface of the water-decomposablenon-woven fabric 2 that was in contact with the dryingdrum 11. Thecoater 12 has a slit formed on its surface and the solution of the water soluble resin is delivered from atank 21 by way of apump 22 and then coated by thecoater 12 to the surface (i.e.,surface 3 in FIG. 1(A)), on one side of the water-decomposablenon-woven fabric 2. - The water-decomposable
non-woven fabric 2 coated with the solution of the water soluble resin is then brought into contact, at the coated surface thereof, with a dryingdrum 13, and the solution of the water soluble resin is dried and then the dried product is taken up as thecleaning article 1 of the invention in which the water soluble resin layer (i.e., watersoluble resin layer 5 in FIG. 1(A)) is formed as a surface layer. - In the process shown in FIG. 4, the water-decomposable
non-woven fabric 2 formed by the water jetting treatment is dried by the dryingdrum 11, coated with the solution of the water soluble resin on one side by thecoater 12 and then supplied to a hot blow drier 14, in which the water soluble resin is dried and then the dried product is taken up as thecleaning article 1 of the invention. - Then, FIG. 5 to FIG. 7 are explanatory views, each showing a production process of the
cleaning article 6 of FIG. 1(B) in which the solution of the water soluble resin is coated on both sides of the water-decomposablenon-woven fabric 2. - The solution of the water soluble resin may be coated on both sides of the water-decomposable
non-woven fabric 2 by repeating the process shown in FIG. 3 or FIG. 4. However, the solution of the water soluble resin can be coated easily on both sides of the water-decomposablenon-woven fabric 2 in a short period of time by using the process shown in FIG. 5, FIG. 6 or FIG. 7. - In the process shown in FIG. 5, after the water-decomposable
non-woven fabric 2 formed by a water jet treatment is dried by a dryingdrum 11,coaters non-woven fabric 2, and the solution of the water soluble resin delivered frompumps non-woven fabric 2. The water-decomposablenon-woven fabric 2 after the coating is brought into contact with a dryingdrum 13, by which the water soluble resin at the surface on one side thereof is dried. By disposing an auxiliary hot blow drier (auxiliary drier) 15 to the periphery of the dryingdrum 13, the water soluble resin at the surface on the side opposite to that contacted with the dryingdrum 13 is dried. Then, the resulting dried product is taken up as thecleaning article 6. - In the process shown in FIG. 6, the solution of the water soluble resin is coated by a
coater 12 on one side of the water-decomposablenon-woven fabric 2 after the drying step by a dryingdrum 11. Then, the surface coated with the solution of the water soluble resin is brought into contact with a succeeding dryingdrum 13 and the water soluble resin is dried. Subsequently, the solution of the water soluble resin is coated again on the other surface (opposite surface) of the water-decomposablenon-woven fabric 2 by anothercoater 12 and the opposite surface coated immediately before is brought into contact with a succeeding dryingdrum 16, by which the water soluble resin on the opposite surface is dried. Then, the resulting dried product is taken up as thecleaning article 6. - The process shown in FIG. 7 is similar to that shown in FIG. 4. In this process, after the water-decomposable
non-woven fabric 2 formed by a water jet treatment is dried by a dryingdrum 11, the solution of the water soluble resin is coated on both sides of the water-decomposablenon-woven fabric 2 bycoater non-woven fabric 2 is sent to a hot blow drier 14 and the water soluble resin coated on both sides of thenon-woven fabric 2 is dried. - The invention is described in more detail with reference to the following Examples, which, however, are not intended to restrict the scope of the invention.
- (Blank)
- As raw material fibers, 50% by weight of bleached soft-wood kraft pulp (NBKP) (Canadian Standard Freeness, CSF=740 ml) and 50% by weight of rayon fibers (manufactured by Toho Rayon Co.) having a fineness of 1.5 denier and a fiber length of 5 mm were used. They were processed at 0.2% concentration by a laboratory hand-papermaking machine to form a fiber web on a plastic wire. The fiber web has a size of 25 cm×25 cm and a basis weight of 40 g/m2. Without being dried but still on the plastic wire, the resulting fiber web was put on a transfer conveyor. While being moved at a speed of 30 m/min, the fiber web was subjected to a water-jetting treatment, whereby the fibers constituting it were entangled. The high-pressure water-jetting device used for the treatment was equipped with 2000 nozzles/meter each having an orifice diameter of 95 microns, at intervals of 0.5 mm between the adjacent nozzles, and the pressure of the jetting water stream applied to the web was 30 kg/cm2. In that condition, jetting water was applied to one surface of the web so that it passes through its back surface. The processing speed was 30 m/min. The water-jetting treatment was repeated once again under the same condition. Then, the fiber web was dried by using a drying drum to obtain a water-decomposable
non-woven fabric 2. - A water soluble resin was coated on one side of the water-decomposable
non-woven fabric 2 for the blank described above by using a coater. The coated water soluble resin was alkyl cellulose and (meth)acrylic acid (ester) maleic acid copolymer dissolved in purified water. The concentration of the alkyl cellulose and (meth)acrylic acid (ester) maleic acid copolymer in purified water was 7.5% by weight and the mixing ratio of the alkyl cellulose and (meth)acrylic acid (ester) maleic acid copolymer was 5:1. The solution was used at a viscosity controlled to 30,000 cps and the coating amount only on one side of the non-woven fabric was 3.0 g/m2 being converted as the water soluble resin in the dry state. - The same water soluble resin as in Example 1 was coated on both sides of the
non-woven fabric 2 for the blank described above by using a coater. The amount of coating was 1.5 g/m2 for each side of the non-woven fabric and, thus, 3.0 g/m2 for the total of both sides. - The same water soluble resin as in Example 1 at a viscosity controlled to 300 cps was impregnated by 3.0 g/m2 to the blank described above.
- The same water soluble resin as in Example 1 at a viscosity controlled to 300 cps was blown by spraying from one side at 3.0 g/m2 to the blank described above.
- (Chemical solution impregnated state)
- Products of the blank, Example 1, Example 2, Comparative Example 1 and Comparative Example 2 were each impregnated with a chemical solution for test in a chemical solution impregnated state.
- The chemical solution was impregnated by 250 g based on 100 g of the water-decomposable non-woven fabric by using a spray. The composition of the chemical solution was; sodium sulfate anhydride:trimethyl glycine:propylene glycol:purified water=4:4:10:82 by weight ratio.
- (Test)
- (1) Surface strength
- The number of cycles till rounded fluffing occurred on the surface of the non-woven fabric (in a dry state) or breakage was caused on the surface of the non-woven fabric (in a chemical solution impregnated state) was measured according to JIS P 8136 by using a friction fastness tester.
- (2) Softness
- The bending rigidity for the characteristic item B was measured by using a KES tester (manufactured by Kato Tech Co.). In the KES test, the bending rigidity is higher as the B value is higher.
- (3) Water decomposability
- The test for the water decomposability was conducted based on a test for the looseness of toilet paper according to JIS P 4501. Referring specifically, a piece of the water-decomposable non-woven fabric cut into 10 cm length and 10 cm width was placed in a 300 ml volume beaker containing 300 ml of ion exchanged water and stirred by using a rotor. The number of rotation was 600 rpm. The condition of the test piece being dispersed in water was macroscopically observed, and the time until the test piece was finely dispersed was measured (unit:sec).
- The surface strength, softness and water decomposability were measured both in the dry state and the chemical solution impregnated state for each of the blank, Example 1, Example 2, Comparative Example 1 and Comparative Example 2 respectively. The results are shown in the following Table 1.
TABLE 1 Example Comp. Example Blank 1 2 1 2 Coating Coating Not Coated on Coated Impregnation spray condition method coated one side both sides coating coating Resin (cps) none 30000 30000 300 300 viscosity Coating (g/cm2) none 3.0 3.0 3.0 3.0 amount (1.5:one side) Dry state Surface cycles of 7 50 or 50 or 38 25 strength friction more more Softness Bending 0.0278 0.0752 0.913 0.124 0.998 (KES) test, B value Water decompos- sec 15 27 32 30 30 ability Chemical Surface cycles of 1 24 16 9 7 solution strength friction impregnated Softness Bending 0.0233 0.0431 0.0512 0.0924 0.0754 state (KES) test, B value Water sec 8 30 35 35 31 decompos- ability - As can be seen from the Table above, the products obtained by practicing the invention, although being bulky and of low density, have higher surface strength compared with Comparative Examples 1 and 2. In addition, the softness was comparable with Comparative Examples 1 and 2 and, further, the water decomposability was also favorable.
- As has been described above, the water-decomposable cleaning article according to the invention has higher surface strength, excellent softness and favorable water decomposability compared with existent articles.
- While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
Claims (11)
1. A cleaning article comprising a water-decomposable non-woven fabric containing water dispersible fibers and a water soluble resin coated on at least one side of the water-decomposable non-woven fabric, wherein the water soluble resin is contained more in a surface portion of a fiber assembly than in a remaining portion of the fiber assembly.
2. A cleaning article as defined in claim 1 , wherein the water soluble resin is coated on the water-decomposable non-woven fabric at a viscosity ranging from 1,000 cps to 100,000 cps in the state of a solution.
3 . A cleaning article as defined in claim 1 , wherein the fiber density of the water-decomposable non-woven fabric as measured according to JIS P 8118 is 0.3 g/cm3 or less.
4. A cleaning article as defined in claim 1 , wherein the average fiber length of the fibers forming the water-decomposable non-woven fabric is 10 mm or less.
5. A cleaning article as defined in claim 1 , wherein the coating amount of the water soluble resin is from 0.5 to 30 g based on 100 g of the fibers forming the water-decomposable non-woven fabric.
6 A cleaning article as defined in claim 1 , wherein the B value of the cleaning article in a dry state as measured according to a KES bending test is from 0.05 or more to 1.0 or less.
7. A cleaning article as defined in claim 1 , which contains an insolubilizing agent for preventing the water soluble resin from being dissolved when the cleaning article is in a wet state.
8. A cleaning article as defined in claim 7 , wherein the B value of the cleaning article in a wet state as measured according to a KES bending test is from 0.03 or more to 0.1 or less.
9. A cleaning article as defined in claim 1 , wherein when the water soluble resin is coated on only one side, the water soluble resin is coated on a surface of the water-decomposable non-woven fabric to be contacted by a drying drum for drying the water-decomposable non-woven fabric in a manufacturing process thereof.
10. A method of manufacturing a cleaning article comprising
a step of subjecting a fiber web containing water dispersible fibers to a water jetting treatment thereby forming a water-decomposable non-woven fabric,
a step of drying the water-decomposable non-woven fabric after the water jetting treatment,
a step of coating a solution of a water soluble resin with a viscosity ranging from 1,000 cps to 100,000 cps on at least one side of the water-decomposable non-woven fabric after drying, and
a step of drying the coated solution of the water soluble resin.
11. A method of manufacturing a cleaning article as defined in claim 10 , wherein the water-decomposable non-woven fabric after the water jetting treatment is dried by using a drying drum, and the solution of the water soluble resin is coated to the water-decomposable non-woven fabric after drying on a surface contacted by the drying drum.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/012,957 US6660334B2 (en) | 1999-04-20 | 2001-12-07 | Water-decomposable cleaning article and manufacturing method therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-112772 | 1999-04-20 | ||
JP11277299A JP3594835B2 (en) | 1999-04-20 | 1999-04-20 | Water disintegratable cleaning articles and method for producing the same |
US55069000A | 2000-04-17 | 2000-04-17 | |
US10/012,957 US6660334B2 (en) | 1999-04-20 | 2001-12-07 | Water-decomposable cleaning article and manufacturing method therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US55069000A Division | 1999-04-20 | 2000-04-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020065011A1 true US20020065011A1 (en) | 2002-05-30 |
US6660334B2 US6660334B2 (en) | 2003-12-09 |
Family
ID=14595130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/012,957 Expired - Lifetime US6660334B2 (en) | 1999-04-20 | 2001-12-07 | Water-decomposable cleaning article and manufacturing method therefor |
Country Status (4)
Country | Link |
---|---|
US (1) | US6660334B2 (en) |
EP (1) | EP1046747B1 (en) |
JP (1) | JP3594835B2 (en) |
DE (1) | DE60045174D1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040088808A1 (en) * | 2002-09-05 | 2004-05-13 | Vitantonio Marc. L. | Toilet cleaning apparatus and caddy |
US20080095959A1 (en) * | 2006-10-20 | 2008-04-24 | The Republic Of Tea | Infusion package |
US20100080993A1 (en) * | 2008-09-29 | 2010-04-01 | Marc Privitera | Electrospun Functional Fibers |
US20140014284A1 (en) * | 2011-03-28 | 2014-01-16 | Uni-Charm Corporation | Manufacturing method for nonwoven fabric |
US20140246159A1 (en) * | 2011-09-29 | 2014-09-04 | Unicharm Corporation | Wet wipe and method for manufacturing the same |
US20150030811A1 (en) * | 2012-03-30 | 2015-01-29 | Unicharm Corporation | Nonwoven fabric and production method for nonwoven fabric |
CN106854793A (en) * | 2015-12-08 | 2017-06-16 | 东纶科技实业有限公司 | A kind of preparation method of self-bonded nonwoven cloth |
US20210251459A1 (en) * | 2018-06-15 | 2021-08-19 | McCormack Innovation Limited | Dissolvable Wet Wipe |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6423804B1 (en) | 1998-12-31 | 2002-07-23 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive hard water dispersible polymers and applications therefor |
US7276459B1 (en) | 2000-05-04 | 2007-10-02 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6579570B1 (en) | 2000-05-04 | 2003-06-17 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6713414B1 (en) | 2000-05-04 | 2004-03-30 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6444214B1 (en) | 2000-05-04 | 2002-09-03 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US7101612B2 (en) | 2000-05-04 | 2006-09-05 | Kimberly Clark Worldwide, Inc. | Pre-moistened wipe product |
US6815502B1 (en) | 2000-05-04 | 2004-11-09 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersable polymers, a method of making same and items using same |
US6683143B1 (en) | 2000-05-04 | 2004-01-27 | Kimberly Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6599848B1 (en) | 2000-05-04 | 2003-07-29 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6653406B1 (en) | 2000-05-04 | 2003-11-25 | Kimberly Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6548592B1 (en) | 2000-05-04 | 2003-04-15 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6429261B1 (en) | 2000-05-04 | 2002-08-06 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
US6835678B2 (en) | 2000-05-04 | 2004-12-28 | Kimberly-Clark Worldwide, Inc. | Ion sensitive, water-dispersible fabrics, a method of making same and items using same |
DE10059584A1 (en) | 2000-11-30 | 2002-06-06 | Beiersdorf Ag | Cosmetic or dermatological soaked wipes |
US6586529B2 (en) | 2001-02-01 | 2003-07-01 | Kimberly-Clark Worldwide, Inc. | Water-dispersible polymers, a method of making same and items using same |
US7070854B2 (en) | 2001-03-22 | 2006-07-04 | Kimberly-Clark Worldwide, Inc. | Water-dispersible, cationic polymers, a method of making same and items using same |
US6897168B2 (en) | 2001-03-22 | 2005-05-24 | Kimberly-Clark Worldwide, Inc. | Water-dispersible, cationic polymers, a method of making same and items using same |
US6828014B2 (en) | 2001-03-22 | 2004-12-07 | Kimberly-Clark Worldwide, Inc. | Water-dispersible, cationic polymers, a method of making same and items using same |
US6908966B2 (en) | 2001-03-22 | 2005-06-21 | Kimberly-Clark Worldwide, Inc. | Water-dispersible, cationic polymers, a method of making same and items using same |
JP3938290B2 (en) * | 2001-05-16 | 2007-06-27 | ユニ・チャーム株式会社 | Water-decomposable sheet and method for producing the same |
JP4824882B2 (en) * | 2001-05-24 | 2011-11-30 | ユニ・チャーム株式会社 | Laminated sheet |
US7871946B2 (en) | 2003-10-09 | 2011-01-18 | Kuraray Co., Ltd. | Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof |
GB2418357B (en) * | 2004-09-22 | 2006-08-09 | Roy Alfred Ackroyd | Improved personal washing or skin treatment aid |
JP3998683B2 (en) * | 2004-12-28 | 2007-10-31 | 花王株式会社 | Cleaning sheet |
US7612031B2 (en) * | 2005-12-15 | 2009-11-03 | Kimberly-Clark Worldwide, Inc. | Health-and-hygiene appliance comprising a dispersible component and a releasable component disposed adjacent or proximate to said dispersible component; and processes for making said appliance |
JP2011229871A (en) * | 2010-04-08 | 2011-11-17 | Kikuo Yamada | Cleaning sheet |
CN102599866B (en) * | 2012-03-23 | 2014-03-12 | 浙江梅盛实业股份有限公司 | Wiping cloth and manufacturing process of wiping cloth |
US10519579B2 (en) | 2013-03-15 | 2019-12-31 | Gpcp Ip Holdings Llc | Nonwoven fabrics of short individualized bast fibers and products made therefrom |
JP6439929B2 (en) * | 2015-02-06 | 2018-12-19 | セイコーエプソン株式会社 | Sheet manufacturing apparatus and sheet manufacturing method |
JP6275671B2 (en) * | 2015-07-31 | 2018-02-07 | 大王製紙株式会社 | Water-decomposable sheet and method for producing water-degradable sheet |
JP6641150B2 (en) * | 2015-10-09 | 2020-02-05 | 大王製紙株式会社 | Water disintegrable sheet and method for producing the same |
JP7284610B2 (en) * | 2019-03-27 | 2023-05-31 | 大王製紙株式会社 | Nonwoven fabric sheet and method for producing nonwoven fabric sheet |
JP2024151109A (en) * | 2023-04-11 | 2024-10-24 | 株式会社日本製鋼所 | Nonwoven fabric sheet manufacturing method, nonwoven fabric sheet manufacturing apparatus, and nonwoven fabric sheet |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1504374A (en) * | 1974-06-21 | 1978-03-22 | Kimberly Clark Co | Creped laminar tissue and process and machine for the manufacture thereof |
GB1441690A (en) * | 1974-10-03 | 1976-07-07 | Scott Paper Co | Flushable pre-moistened wipers |
JPS55148298A (en) * | 1979-05-07 | 1980-11-18 | Duskin Franchise Co | Production of cellulosic element for stool cleaning |
JPH076122B2 (en) * | 1985-06-19 | 1995-01-30 | ア−ス製薬株式会社 | Water-degradable non-woven fabric |
JP2584508B2 (en) | 1989-02-28 | 1997-02-26 | 花王株式会社 | Water disintegration paper for cleaning supplies |
JP2501534B2 (en) * | 1989-02-28 | 1996-05-29 | 花王株式会社 | Hydrolyzed paper |
US5137600A (en) * | 1990-11-01 | 1992-08-11 | Kimberley-Clark Corporation | Hydraulically needled nonwoven pulp fiber web |
JPH0813385A (en) * | 1994-06-24 | 1996-01-16 | Lintec Corp | Production of water-dispersible substrate |
JP3129192B2 (en) * | 1995-07-26 | 2001-01-29 | 王子製紙株式会社 | Water disintegrable nonwoven fabric and method for producing the same |
JP3237495B2 (en) * | 1995-12-18 | 2001-12-10 | 東洋インキ製造株式会社 | Water disintegrable sheet |
US5935880A (en) * | 1997-03-31 | 1999-08-10 | Wang; Kenneth Y. | Dispersible nonwoven fabric and method of making same |
JPH1147026A (en) * | 1997-07-30 | 1999-02-23 | Fukuyoo:Kk | Hydrolyzable wiping paper and its package |
JP3948071B2 (en) * | 1997-09-12 | 2007-07-25 | 王子製紙株式会社 | Water-decomposable nonwoven fabric and method for producing the same |
JP3571192B2 (en) * | 1997-09-26 | 2004-09-29 | ユニ・チャーム株式会社 | Water-degradable cleaning sheet containing modified polyvinyl alcohol |
CO5031319A1 (en) * | 1997-10-17 | 2001-04-27 | Kimberly Clark Co | COMPOSITE MATERIAL NOT WOVEN, HYDRAULICALLY WRAPPED, STRONG, SOFT, AND METHOD FOR MANUFACTURING |
JP3703644B2 (en) * | 1998-01-16 | 2005-10-05 | ユニ・チャーム株式会社 | Water-decomposable nonwoven fabric and method for producing the same |
JP3574318B2 (en) * | 1998-01-28 | 2004-10-06 | ユニ・チャーム株式会社 | Water dissolvable wet tissue |
-
1999
- 1999-04-20 JP JP11277299A patent/JP3594835B2/en not_active Expired - Fee Related
-
2000
- 2000-04-19 EP EP00303320A patent/EP1046747B1/en not_active Expired - Lifetime
- 2000-04-19 DE DE60045174T patent/DE60045174D1/en not_active Expired - Lifetime
-
2001
- 2001-12-07 US US10/012,957 patent/US6660334B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040088808A1 (en) * | 2002-09-05 | 2004-05-13 | Vitantonio Marc. L. | Toilet cleaning apparatus and caddy |
US7032270B2 (en) | 2002-09-05 | 2006-04-25 | Novalabs, Llc | Toilet cleaning apparatus and caddy |
US20080095959A1 (en) * | 2006-10-20 | 2008-04-24 | The Republic Of Tea | Infusion package |
US8894907B2 (en) * | 2008-09-29 | 2014-11-25 | The Clorox Company | Process of making a cleaning implement comprising functionally active fibers |
US20100080993A1 (en) * | 2008-09-29 | 2010-04-01 | Marc Privitera | Electrospun Functional Fibers |
US20140014284A1 (en) * | 2011-03-28 | 2014-01-16 | Uni-Charm Corporation | Manufacturing method for nonwoven fabric |
US8900411B2 (en) * | 2011-03-28 | 2014-12-02 | Unicharm Corporation | Manufacturing method for nonwoven fabric |
US20140246159A1 (en) * | 2011-09-29 | 2014-09-04 | Unicharm Corporation | Wet wipe and method for manufacturing the same |
US9074323B2 (en) * | 2011-09-29 | 2015-07-07 | Unicharm Corporation | Wet wipe and method for manufacturing the same |
US20150030811A1 (en) * | 2012-03-30 | 2015-01-29 | Unicharm Corporation | Nonwoven fabric and production method for nonwoven fabric |
US9487894B2 (en) * | 2012-03-30 | 2016-11-08 | Unicharm Corporation | Nonwoven fabric having a grooved surface and heat-expanded particles and production method for the nonwoven fabric |
CN106854793A (en) * | 2015-12-08 | 2017-06-16 | 东纶科技实业有限公司 | A kind of preparation method of self-bonded nonwoven cloth |
US20210251459A1 (en) * | 2018-06-15 | 2021-08-19 | McCormack Innovation Limited | Dissolvable Wet Wipe |
Also Published As
Publication number | Publication date |
---|---|
DE60045174D1 (en) | 2010-12-16 |
EP1046747A1 (en) | 2000-10-25 |
JP3594835B2 (en) | 2004-12-02 |
US6660334B2 (en) | 2003-12-09 |
EP1046747B1 (en) | 2010-11-03 |
JP2000300464A (en) | 2000-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6660334B2 (en) | Water-decomposable cleaning article and manufacturing method therefor | |
US6669878B2 (en) | Method of making a water disintegratable non-woven fabric | |
CN106687633B (en) | Dispersible nonwoven fabric and method of making same | |
CN101081309B (en) | Water-decomposable fiber sheet with high surface abrasion resistance and production method thereof | |
US6287419B1 (en) | Water-decomposable non-woven fabric of regenerated cellulose fibers of different lengths | |
US8673116B2 (en) | Water disintegratable fibrous sheet | |
US6258210B1 (en) | Multi-layered water-decomposable fibrous sheet | |
JPWO2003010384A1 (en) | Bulk pulp, method for producing the same, processed paper or multilayer paper using the bulky pulp | |
JP5599166B2 (en) | Method for producing water-degradable fiber sheet | |
JP4097583B2 (en) | Manufacturing method of water-disintegrating paper | |
JP2006181764A (en) | Water-degradable wipes | |
JP4619188B2 (en) | Manufacturing method of water-disintegrating paper | |
JP2001520333A (en) | Textured non-woven composite material and method for producing the same | |
JP4446542B2 (en) | Manufacturing method of water-disintegrating paper | |
JP3675666B2 (en) | Method and apparatus for producing water-degradable cleaning article | |
JP5479757B2 (en) | Method for producing water-degradable sheet | |
JP2022543882A (en) | Dispersible nonwoven material containing CMC binder | |
JP7436105B2 (en) | composite nonwoven fabric | |
JP5441490B2 (en) | Application method of high viscosity solution | |
EP4010523A1 (en) | Low-dust airlaid nonwoven materials | |
JPH0978434A (en) | Wiping cloth | |
JP2021021168A (en) | Water-disintegrable nonwoven fabric, wet water-disintegrable nonwoven fabric and method for producing water-disintegrable nonwoven fabric |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |