US20020058146A1 - Radiation-curable formulations based on aliphatic, urethane-functional prepolymers having ethylenically unsaturated double bonds - Google Patents
Radiation-curable formulations based on aliphatic, urethane-functional prepolymers having ethylenically unsaturated double bonds Download PDFInfo
- Publication number
- US20020058146A1 US20020058146A1 US09/149,662 US14966298A US2002058146A1 US 20020058146 A1 US20020058146 A1 US 20020058146A1 US 14966298 A US14966298 A US 14966298A US 2002058146 A1 US2002058146 A1 US 2002058146A1
- Authority
- US
- United States
- Prior art keywords
- component
- acrylate
- aliphatic
- formulation
- ethylenically unsaturated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 68
- 238000009472 formulation Methods 0.000 title claims abstract description 52
- 125000001931 aliphatic group Chemical group 0.000 title claims abstract description 21
- 150000002148 esters Chemical class 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 125000000623 heterocyclic group Chemical group 0.000 claims abstract description 11
- 229920005862 polyol Polymers 0.000 claims abstract description 10
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 9
- 150000003077 polyols Chemical class 0.000 claims abstract description 9
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 34
- 238000000576 coating method Methods 0.000 claims description 30
- -1 aliphatic diols Chemical class 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 18
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 11
- 230000005855 radiation Effects 0.000 claims description 11
- 150000001875 compounds Chemical group 0.000 claims description 10
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical group CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 6
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 claims description 6
- 239000005057 Hexamethylene diisocyanate Substances 0.000 claims description 5
- 150000007824 aliphatic compounds Chemical class 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 5
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 claims description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 4
- 125000001054 5 membered carbocyclic group Chemical group 0.000 claims description 4
- 125000004008 6 membered carbocyclic group Chemical group 0.000 claims description 4
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 claims description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 4
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 2
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 claims description 2
- FIMUXQLLGBMSAI-UHFFFAOYSA-N cyclohexylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CCCCC1 FIMUXQLLGBMSAI-UHFFFAOYSA-N 0.000 claims description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 2
- XCCIBUPPXHHGLZ-UHFFFAOYSA-N oxan-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CCCCO1 XCCIBUPPXHHGLZ-UHFFFAOYSA-N 0.000 claims description 2
- IFTNDZYKJSJJPS-UHFFFAOYSA-N oxan-4-yl prop-2-enoate Chemical compound C=CC(=O)OC1CCOCC1 IFTNDZYKJSJJPS-UHFFFAOYSA-N 0.000 claims description 2
- MUTNCGKQJGXKEM-UHFFFAOYSA-N tamibarotene Chemical compound C=1C=C2C(C)(C)CCC(C)(C)C2=CC=1NC(=O)C1=CC=C(C(O)=O)C=C1 MUTNCGKQJGXKEM-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims 1
- 125000004386 diacrylate group Chemical group 0.000 claims 1
- 125000002837 carbocyclic group Chemical group 0.000 abstract 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 235000019589 hardness Nutrition 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000009257 reactivity Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical class OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 244000028419 Styrax benzoin Species 0.000 description 3
- 235000000126 Styrax benzoin Nutrition 0.000 description 3
- 235000008411 Sumatra benzointree Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 229960002130 benzoin Drugs 0.000 description 3
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229920001002 functional polymer Polymers 0.000 description 3
- 235000019382 gum benzoic Nutrition 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- 0 *C(=C)C(=O)OC[Y] Chemical compound *C(=C)C(=O)OC[Y] 0.000 description 2
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 2
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 2
- RKMGAJGJIURJSJ-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidine Chemical compound CC1(C)CCCC(C)(C)N1 RKMGAJGJIURJSJ-UHFFFAOYSA-N 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 2
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L calcium carbonate Substances [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N caprylic alcohol Natural products CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 125000002993 cycloalkylene group Chemical group 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 239000012975 dibutyltin dilaurate Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- ZDHCZVWCTKTBRY-UHFFFAOYSA-N omega-Hydroxydodecanoic acid Natural products OCCCCCCCCCCCC(O)=O ZDHCZVWCTKTBRY-UHFFFAOYSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- QGZHYFIQDSBZCB-UHFFFAOYSA-N (2-ethylphenyl)-(2,4,6-trimethylbenzoyl)phosphinic acid Chemical compound CCC1=CC=CC=C1P(O)(=O)C(=O)C1=C(C)C=C(C)C=C1C QGZHYFIQDSBZCB-UHFFFAOYSA-N 0.000 description 1
- CYVMBANVYOZFIG-ZCFIWIBFSA-N (2r)-2-ethylbutane-1,4-diol Chemical compound CC[C@@H](CO)CCO CYVMBANVYOZFIG-ZCFIWIBFSA-N 0.000 description 1
- OAKFFVBGTSPYEG-UHFFFAOYSA-N (4-prop-2-enoyloxycyclohexyl) prop-2-enoate Chemical compound C=CC(=O)OC1CCC(OC(=O)C=C)CC1 OAKFFVBGTSPYEG-UHFFFAOYSA-N 0.000 description 1
- VNMOIBZLSJDQEO-UHFFFAOYSA-N 1,10-diisocyanatodecane Chemical compound O=C=NCCCCCCCCCCN=C=O VNMOIBZLSJDQEO-UHFFFAOYSA-N 0.000 description 1
- GFNDFCFPJQPVQL-UHFFFAOYSA-N 1,12-diisocyanatododecane Chemical compound O=C=NCCCCCCCCCCCCN=C=O GFNDFCFPJQPVQL-UHFFFAOYSA-N 0.000 description 1
- OHTRJOZKRSVAOX-UHFFFAOYSA-N 1,3-diisocyanato-2-methylcyclohexane Chemical compound CC1C(N=C=O)CCCC1N=C=O OHTRJOZKRSVAOX-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N 1,4-Benzenediol Natural products OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- VLVVSHOQIJBJAG-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4,4-tetramethylhexane Chemical compound O=C=NCCC(C)(C)CC(C)(C)CN=C=O VLVVSHOQIJBJAG-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- QUPKOUOXSNGVLB-UHFFFAOYSA-N 1,8-diisocyanatooctane Chemical compound O=C=NCCCCCCCCN=C=O QUPKOUOXSNGVLB-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical class CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- BGJQNPIOBWKQAW-UHFFFAOYSA-N 1-tert-butylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2C(C)(C)C BGJQNPIOBWKQAW-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical class CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- SKHBJDDIGYYYMJ-UHFFFAOYSA-N 2,6-ditert-butyl-6-methylcyclohexa-1,3-dien-1-ol Chemical compound CC(C)(C)C1=C(O)C(C)(C(C)(C)C)CC=C1 SKHBJDDIGYYYMJ-UHFFFAOYSA-N 0.000 description 1
- ZOYHTWUFFGGARK-UHFFFAOYSA-N 2,6-ditert-butylpiperidine Chemical compound CC(C)(C)C1CCCC(C(C)(C)C)N1 ZOYHTWUFFGGARK-UHFFFAOYSA-N 0.000 description 1
- SZSSMFVYZRQGIM-UHFFFAOYSA-N 2-(hydroxymethyl)-2-propylpropane-1,3-diol Chemical compound CCCC(CO)(CO)CO SZSSMFVYZRQGIM-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- NJWGQARXZDRHCD-UHFFFAOYSA-N 2-methylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3C(=O)C2=C1 NJWGQARXZDRHCD-UHFFFAOYSA-N 0.000 description 1
- AAAWJUMVTPNRDT-UHFFFAOYSA-N 2-methylpentane-1,5-diol Chemical compound OCC(C)CCCO AAAWJUMVTPNRDT-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- UGVRJVHOJNYEHR-UHFFFAOYSA-N 4-chlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=CC=C1 UGVRJVHOJNYEHR-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- XWEREZZDWYNIKD-UHFFFAOYSA-N OC(=O)C=C.OC(=O)C=C.OCC1CCC(CO)CC1 Chemical compound OC(=O)C=C.OC(=O)C=C.OCC1CCC(CO)CC1 XWEREZZDWYNIKD-UHFFFAOYSA-N 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000008062 acetophenones Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- XITRBUPOXXBIJN-UHFFFAOYSA-N bis(2,2,6,6-tetramethylpiperidin-4-yl) decanedioate Chemical compound C1C(C)(C)NC(C)(C)CC1OC(=O)CCCCCCCCC(=O)OC1CC(C)(C)NC(C)(C)C1 XITRBUPOXXBIJN-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- PMMYEEVYMWASQN-IMJSIDKUSA-N cis-4-Hydroxy-L-proline Chemical compound O[C@@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-IMJSIDKUSA-N 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- JQZRVMZHTADUSY-UHFFFAOYSA-L di(octanoyloxy)tin Chemical compound [Sn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O JQZRVMZHTADUSY-UHFFFAOYSA-L 0.000 description 1
- ZXDVQYBUEVYUCG-UHFFFAOYSA-N dibutyltin(2+);methanolate Chemical compound CCCC[Sn](OC)(OC)CCCC ZXDVQYBUEVYUCG-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001227 electron beam curing Methods 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- ZIFBQDDDTRMSDJ-UHFFFAOYSA-N furan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CO1 ZIFBQDDDTRMSDJ-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical class [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000005217 methyl ethers Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000004005 nitrosamines Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 125000001484 phenothiazinyl group Chemical class C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- LYXOWKPVTCPORE-UHFFFAOYSA-N phenyl-(4-phenylphenyl)methanone Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1C(=O)C1=CC=CC=C1 LYXOWKPVTCPORE-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 238000005829 trimerization reaction Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/80—Masked polyisocyanates
- C08G18/8061—Masked polyisocyanates masked with compounds having only one group containing active hydrogen
- C08G18/8064—Masked polyisocyanates masked with compounds having only one group containing active hydrogen with monohydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/14—Polymers provided for in subclass C08G
- C08F290/147—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
- C09D175/16—Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31605—Next to free metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
Definitions
- the present invention relates to radiation-curable formulations which comprise at least one aliphatic, urethane-functional prepolymer having at least two ethylenically unsaturated double bonds and at least one monofunctional ester of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid with a monofunctional alkanol, said prepolymer having as a structural element at least one saturated 5- or 6-membered carbocycle or one 5- or 6-membered heterocycle with one or two oxygens in the ring.
- Radiation-curable compositions have acquired widespread importance in the art, especially as high-grade surface coating materials.
- radiation-curable compositions are meant formulations which include ethylenically unsaturated polymers or prepolymers and which, directly or after a physical drying step, are cured by the action of high-energy radiation, for example by irradiation with UV light or by irradiation with high-energy electrons (electron beams).
- the radiation-curable composition employed comprises formulations that contain an ethylenically unsaturated, urethane-functional polymer or prepolymer.
- Ethylenically unsaturated urethane-functional polymers and prepolymers are known, for example, from P. K. T. Oldring (ed.), Chemistry and Technology of UV- and EB-Formulations for Coatings, Inks and Paints, Vol. II, SITA Technology, London 1991, pp. 73-123.
- compositions are often admixed with ethylenically unsaturated compounds of low molecular mass in order to reduce the viscosity.
- These compounds like the ethylenically unsaturated polymers and prepolymers, are polymerized in the course of curing and so incorporated into the coating. They are therefore referred to as reactive diluents.
- reactive diluents the properties of the resulting coatings are determined both by the ethylenically unsaturated polymer or prepolymer employed and by the reactive diluent.
- DE-A-27 260 41 discloses radiation-curable compositions comprising at least one polyetherurethane which is modified at the ends with acrylate and/or methacrylate groups, a low molecular mass polyfunctional acrylate with ether groups, and hydroxyalkyl acrylates. Radiation-curable compositions of this kind lead to coatings having increased flexibility.
- a fundamental problem with the radiation-curable compositions of the prior art is that, although it is possible by selecting and harmonizing the components (prepolymer and reactive diluent) to improve individual in-use properties such as coating hardness, flexibility and weathering resistance, this is always at the expense of other properties.
- a radiation-curable composition which comprises at least one aliphatic, urethane-functional prepolymer and at least one monofunctional ester of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid with a monofunctional alkanol which has as a structural element at least one saturated 5- or 6-membered carbocycle or one corresponding heterocycle having one or two oxygens in the ring.
- the present invention consequently provides radiation-curable formulations which comprise
- di- or polyfunctional esters of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol (component C).
- the aliphatic, urethane-functional prepolymer is free from aromatic structural elements such as phenylene or naphthylene or substituted derivatives thereof.
- Component B contains no nitrogens.
- compositions of the invention contain from 20 to 90% by weight, preferably from 30 to 80% by weight, and in particular from 40 to 70% by weight, of component A, from 10 to 80% by weight, preferably from 20 to 60% by weight, and in particular from 30 to 50% by weight, of component B, from 0 to 40% by weight and, preferably, from 0 to 30% by weight, of component C and up to 20% by weight, based on the overall weight of components A, B and C, of customary auxiliaries, with the proviso that the amounts by weight of components A, B and C add up to 100% by weight.
- the weight of components B and C is in the range from 10 to 80% by weight, preferably from 20 to 70% by weight and, in particular, from 30 to 60% by weight, based in each case on the overall weight A+B+C.
- compositions of the invention comprise component B and component C or exclusively component B.
- the formulation of the invention preferably comprises component B and component C. If instead greater value is placed on high flexibility, component C may be omitted.
- the viscosity of the formulations of the invention is improved.
- the ratio of component B to component C is preferably in the range from 20:1 to 1:1 and, in particular, in the range 10:1 to 1.5:1.
- component A is composed essentially of one or more aliphatic structural elements, urethane groups and at least two ethylenically unsaturated structural units.
- Aliphatic structural elements include both alkylene groups, preferably with 4 to 10 carbons, and cycloalkylene groups, preferably with 6 to 20 carbons. Both the alkylene and cycloalkylene groups can be substituted one or more times by C 1 -C 4 -alkyl, especially by methyl, and may include one or more nonadjacent oxygens.
- the aliphatic structural elements may be connected to one another by way of quaternary or tertiary carbons, by way of urea groups, biuret, uretdione, allophanate, cyanurate, urethane, ester or amide groups or by way of ether oxygen or amine nitrogen.
- Component A is preferably free from uretdione or allophanate groups and from amine nitrogen.
- component A in accordance with the invention has at least two ethylenically unsaturated structural elements.
- ethylenically unsaturated structural units are acryloyl and methacryloyl groups, such as acrylamido and methacrylamido and, in particular, acryloxy and methacryloxy.
- component A has at least three ethylenically unsaturated structural elements per molecule.
- components A in which the aliphatic structural elements are linked by way of cyanurate, biuret and/or urethane groups and whose ethylenically unsaturated structural elements are acryloxy groups.
- the number-average molecular weight M n of the urethane-functional prepolymers of component A is preferably ⁇ 2000 and is in particular in the range from 400 to 1500.
- the double bond density in such prepolymers is preferably above 1.5 mol/kg of prepolymer and, in particular, is in the range from 2 to 6 mol/kg of prepolymer.
- Ethylenically unsaturated, urethane-functional prepolymers of this kind are fundamentally known to the skilled worker.
- Preferred aliphatic urethanes that are free of urea groups are obtainable, for example, by reacting
- the ratio of the OH groups of components a2 and a3 to the NCO groups of component a1, OH/NCO, is ⁇ 1, so that the resulting prepolymer contains no NCO groups.
- Component a2 is preferably employed in an amount such that the OH groups it contains (OH a2 ) are in a ratio to the NCO groups of component a1, OH a2 /NCO, which is in the range from 0.4 to 0.95 and, preferably, from 0.6 to 0.9.
- Compounds suitable as component a1 are aliphatic diisocyanates, oligomeric adducts of aliphatic diisocyanates with polyfunctional alcohols having preferably 2 to 20 carbons, and the uretdiones, isocyanurates, biurets and allophanates of aliphatic diisocyanates.
- Suitable polyfunctional alcohols include aliphatic di- or polyols having preferably 2 to 20 carbons, such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-methyl-1,5-pentanediol, 2-ethyl-1,4-butanediol, dimethylolcyclohexane, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, ditrimethylolpropane, erythritol and sorbitol.
- ethylene glycol diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene
- Component a1 is preferably selected from the trimerization products of the abovementioned aliphatic diisocyanates, in other words the biurets and the isocyanurates, and the adducts of the abovementioned aliphatic diisocyanates with one of the abovementioned polyfunctional aliphatic alcohols having at least three reactive OH groups. It is particularly preferred to employ as component a1 the isocyanurate and/or the biuret of hexamethylene diisocyanate and, with very particular preference, its isocyanurate.
- suitable components a2 are the esters of ethylenically unsaturated carboxylic acids with one of the abovementioned aliphatic polyols and also the vinyl, allyl and methallyl ethers of these polyols, provided they also have one isocyanate-reactive OH group. It is also possible to employ the amides of ethylenically unsaturated carboxylic acids with amino alcohols.
- component a2 is given to the esters of acrylic and methacrylic acid, such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 1,4-butanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di- and -tri(meth)acrylate.
- component a2 is selected from hydroxypropyl acrylate and butanediol monoacrylate, and in particular a2 is 2-hydroxyethyl acrylate.
- suitable aliphatic compounds having at least one reactive OH group are alkanols having preferably 1 to 10 carbons, cycloalkanols having preferably 5 to 10 carbons, and monoalkyl ethers of polyalkylene glycols.
- suitable alkanols are methanol, ethanol, n- and isopropanol, n-, 2-, iso- and tert-butanol, amyl alcohol, isoamyl alcohol, n-hexanol, n-octanol, 2-ethylhexanol and decanol.
- Suitable cycloalkanols include, for example, cyclopentanol and cyclohexanol, which are unsubstituted or substituted one or more times by C 1 -C 4 -alkyl, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl, especially by methyl.
- Examples of monoalkyl ethers of polyalkylene glycols are the mono-C 1 -C 4 -alkyl ethers and, in particular, the methyl ethers of ethylene glycol, diethylene glycol or triethylene glycol.
- Component A is prepared in a known manner by reacting component a1 with components a2 and, if used, a3 at from 0 to 100° C. and, in particular, at from 20 to 70° C. It is preferred to react component a1 and a2 first of all. Component a3 is added subsequently under reaction conditions.
- Tin-containing catalysts are preferred, such as dibutyltin dilaurate, tin(II) octoate or dibutyltin dimethoxide.
- Such catalysts are generally employed in an amount of from 0.001 to 2.5% by weight, preferably from 0.005 to 1.5% by weight, based on the overall amount of the reactants.
- the free-radically polymerizable compounds (component a2) it is preferred to add to the reaction from 0.001 to 2% by weight, in particular from 0.005 to 1.0% by weight, of polymerization inhibitors.
- polymerization inhibitors are the usual compounds suitable for hindering free-radical polymerization, examples being hydroquinones or hydroquinone monoalkyl ethers, 2,6-di-tert-butylphenols, such as 2,6-di-tert-butylcresole, nitrosamines, phenothiazines or phosphorous esters.
- the reaction can be carried out either without solvent or with the addition of solvents.
- Suitable solvents are inert solvents such as acetone, methyl ethyl ketone, tetrahydrofuran, dichloromethane, toluene, C 1 -C 4 -alkyl esters of acetic acid, such as ethyl acetate or butyl acetate.
- the reaction is preferably carried out without solvent.
- component B it is possible in principle to employ all monofunctional esters of ⁇ , ⁇ -ethylenically unsaturated carboxylic acids with a monofunctional alcohol which has as a structural element at least one saturated 5- or 6-membered heterocycle with one or two oxygens in the ring.
- Component B is preferably derived from acrylic or methacrylic acid. Examples of suitable compounds of component B embrace compounds of the formula I
- R is H or CH 3 , especially H
- k is from 0 to 4, especially 0 or 1
- Y is a 5- or 6-membered saturated carbocycle or a 5- or 6-membered saturated heterocycle with one or two oxygens, the heterocycle being unsubstituted or substituted by C 1 -C 4 -alkyl, such as by methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl.
- the 5- or 6-membered saturated heterocycle is preferably derived from tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,3- or 1,4-dioxane.
- component B is selected from trimethylolpropane monoformal acrylate, glycerol monoformal acrylate, cyclohexylmethyl acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranylmethyl acrylate and tetrahydrofurfuryl acrylate.
- component B is selected from trimethylolpropane monoformal acrylate, glycerol monoformal acrylate, cyclohexylmethyl acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranylmethyl acrylate and tetrahydrofurfuryl acrylate.
- component B is selected from trimethylolpropane monoformal acrylate, glycerol monoformal acrylate, cyclohexylmethyl acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranylmethyl acrylate and tetrahydrofurfuryl acryl
- the radiation-curable formulations may comprise, in the amounts indicated above, a di- or polyfunctional ester of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol.
- a di- or polyfunctional ester of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol Suitable examples are the esterification products of the di- or polyols set out above in connection with component a1.
- the diols and/or polyols contain no heteroatoms other than in OH functions.
- suitable components B include ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, 1,4-cyclohexanediol di(meth)acrylate and 1,4-bis(hydroxymethyl)cyclohexane di(meth)acrylate, and also trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate and pentaerythritol tetra(meth)acrylate.
- Particularly preferred components B are butanediol diacrylate, hexanediol diacrylate, 1,4-cyclohexanediol diacrylate and 1,4-bis(hydroxymethyl)cyclohexane diacrylate.
- Hexanediol diacrylate is especially preferred.
- the radiation-curable formulations of the invention may also include, depending on their intended use, up to 20% by weight of customary auxiliaries, such as thickeners, leveling assistants, defoamers, UV stabilizers, lubricants and fillers.
- auxiliaries are sufficiently well known to the skilled worker from paints and coatings technology.
- Suitable fillers include silicates, for example silicates obtainable by hydrolysis of silicon tetrachloride such as Aerosil® from Degussa, silica, talc, aluminum silicates, magnesium silicates, calcium carbonates, etc.
- Suitable stabilizers include UV absorbers, such as oxanilides, triazines and benzotriazole (the latter obtainable as Tinuvin® grades from Ciba-Spezialitätenchemie) and benzophenones. These can be used alone or together with suitable free-radical scavengers, examples being sterically hindered amines, such as 2,2,6,6-tetramethylpiperidine, 2,6-di-tert-butylpiperidine or derivatives thereof, such as bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate.
- Stabilizers are normally employed in amounts of from 0.1 to 5.0% by weight and preferably from 0.5 to 3.5% by weight, based on the components A to C present in the formulation.
- the formulations of the invention comprise at least one photoinitiator which is able to initiate the polymerization of ethylenically unsaturated double bonds.
- photoinitiators include benzophenone and benzophenone derivatives such as 4-phenylbenzophenone and 4-chlorobenzophenone, Michler's ketone, anthrone, acetophenone derivatives, such as 1-benzoylcyclohexan-1-ol, 2-hydroxy-2,2-dimethylacetophenone and 2,2-dimethoxy-2-phenylacetophenone, benzoin and benzoin ethers, such as benzoin methyl, ethyl and butyl ethers, benzil ketals, such as benzil dimethyl ketal, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, anthraquinone and its derivatives, such as ⁇
- photoinitiators are, where necessary, employed in amounts of from 0.05 to 20% by weight, preferably from 0.1 to 10% by weight, and in particular from 0.1 to 5% by weight, based on the polymerizable components A, B and C of the formulations of the invention. If the formulation of the invention is cured by means of electron beams, the use of photoinitiators can be omitted. When electron beam curing is employed, the formulations of the invention may additionally contain colored pigments.
- the formulations of the invention contain no pigments or fillers.
- the formulations of the invention are preferably free from inert, nonpolymerizable solvents.
- the formulations of the invention are prepared by blending the components in a conventional manner. Blending may take place at room temperature or at up to 100° C. and is effected, for example, by means of customary mixing equipment such as stirring vessels or static mixers.
- the formulations of the invention are found to be particularly appropriate for the coating of substrates such as wood, paper, plastic surfaces, mineral construction materials, such as shaped cement blocks and cement fiber slabs, and especially for metals or coated metals.
- the present invention also provides a method of coating substrates, especially metals or coated metals, and the coated substrates obtainable by this method.
- the substrate is generally coated by applying at least one radiation-curable formulation of the invention in the desired thickness to the substrate which is to be coated, removing any solvent and then curing the coating by the action of high-energy radiation such as UV radiation or electron beams. This operation may, if desired, be repeated one or more times.
- the radiation-curable formulations are applied to the substrate conventionally, for example by spraying, brushing, rolling or flow-coating or by coating with a filler knife or doctor blade.
- the coating add-on is generally in the range from 3 to 500 g/m 2 and preferably from 10 to 200 g/m 2 , corresponding to wet film thicknesses of from about 3 to 500 ⁇ m, preferably from 10 to 200 ⁇ m.
- Application can be made either at room temperature or above, but preferably not above 100° C.
- the coatings are subsequently cured through the action of high-energy radiation, preferably UV radiation with a wavelength of from 250 to 400 nm, or by irradiation with high-energy electrons (electron beams; from 150 to 300 keV).
- high-energy radiation preferably UV radiation with a wavelength of from 250 to 400 nm, or by irradiation with high-energy electrons (electron beams; from 150 to 300 keV).
- UV sources used are high-pressure mercury vapor lamps, for example the CK or CK1 lamps from IST.
- the radiation dose which is usually sufficient for crosslinking is within the range from 80 to 3000 mJ/c
- curing takes place continuously by passing the substrate that has been treated with the formulation of the invention at a constant speed in front of a radiation source. This requires the curing rate of the formulation of the invention to be sufficiently high.
- the formulations of the invention feature low viscosity, preferably ⁇ 10 Pas (determined at 23° C. using an ICI cone-plate viscometer) and high reactivity, represented by a value of ⁇ 10 m/min (corresponding to the rate at which the substrate, treated with a radiation-curable formulation in a wet film thickness of 100 ⁇ m, can be passed at a distance of 10 cm in front of a UV source having an output of 120 W/cm so that full cure still takes place).
- the coatings obtainable from the formulations of the invention feature enhanced weathering resistance as can be determined, for example, by sun tests.
- a stirred vessel was charged with 1000 parts 1 ) of the cyanurate of hexamethylene diisocyanate, 1.44 parts of 2,6-di-tert-butyl-4-methylphenol and 0.72 part of hydroquinone monomethyl ether.
- This initial charge was heated to 50° C., 0.3 part of dibutyltin dilaurate was added, and then, at a temperature of 50 to 60° C., x parts of hydroxyethyl acrylate (ATA, see Table 1) were added dropwise. The mixture was subsequently heated to 70° C. and this temperature was maintained for 3 hours.
- a urethane acrylate was prepared from 1000 parts by weight of the isocyanurate of hexamethylene diisocyanate, 453 parts of hydroxyethyl acrylate and 50.8 parts of methanol. 70 parts of the urethane acrylate thus prepared were then blended with 30 parts of the monoacrylate indicated in Table 2 (component B) and 4 parts of the photoinitiator Darocure® 1173.
- the coating hardness was characterized by determining the pendulum attenuation in analogy to DIN 53157.
- the radation-curable compositions of the Examples and Comparative Examples were applied with a wet film thickness of 100 ⁇ m to glass.
- the resulting sample was cured by being passed at a belt speed of 10 m/min and at a distance of 10 cm twice in front of a high-pressure mercury vapor lamp (120 W/cm).
- the pendulum attenuation was then determined using a pendulum device in accordance with DIN 53157 (König). The results are stated in seconds and are summarized in Table 3.
- the flexibility of the coating was determined by measuring the Erichsen indentation in analogy to DIN 53156. To this end, the respective formulation was applied using a spiral-wound coating bar in a wet film thickness of 50 ⁇ m to a BONDER 132 metal panel. Curing was carried out in the manner described above by exposure with a high-pressure mercury vapor lamp (120 W/cm). The Erichsen indentation was then measured by pressing a metal ball into the uncoated side of the panel (DIN 53156). The results are summarized in Table 3.
- test systems used were formulations of 70 parts by weight of urethane acrylate from Example 2, 30 parts of reactive diluent as per Table 4 and the photoinitiator Darocure® 1173 (Example 16, Comparative Example V3 and V4).
- the formulations were then applied to a glass plate with a wet film thickness of 100 ⁇ m using a box-type coating bar, the films were cured by UV radiation in the manner described for the pendulum test, and then the coatings were irradiated in a Heraeus Sun Test apparatus CPS+ with an output of 750 W/m 2 at 37° C.
- the increase in the b values corresponds to increasing yellowing.
- the increase in yellowing is least pronounced for the formulation of Example 16 according to the invention.
- Example 16 and of the Comparative Examples V3 and V4 were determined by measuring the b value after thermal conditioning at 100° C. for 24 hours.
- a formulation was examined in which the HDDA from Example V3 had been replaced by N-vinylcaprolactam (Comparative Example V5).
- Example 15 and Comparative Examples V3 and V4 no notable increase in the b value was observed.
- the b value for the sample from V5 shows a dramatic increase, corresponding to marked yellowing under thermal exposure.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Radiation-curable formulations comprising
i) at least one aliphatic, urethane-functional prepolymer which on average has at least two ethylenically unsaturated double bonds,
ii) at least one monofunctional ester of an α,β-ethylenically unsaturated carboxylic acid with a monofunctional alkanol which has a saturated, carbocyclic or heterocyclic structural element, and
iii) if desired, a di- or polyfunctional ester of an α,β-ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol
are used to coat substrates.
Description
- The present invention relates to radiation-curable formulations which comprise at least one aliphatic, urethane-functional prepolymer having at least two ethylenically unsaturated double bonds and at least one monofunctional ester of an α,β-ethylenically unsaturated carboxylic acid with a monofunctional alkanol, said prepolymer having as a structural element at least one saturated 5- or 6-membered carbocycle or one 5- or 6-membered heterocycle with one or two oxygens in the ring.
- Radiation-curable compositions have acquired widespread importance in the art, especially as high-grade surface coating materials. By radiation-curable compositions are meant formulations which include ethylenically unsaturated polymers or prepolymers and which, directly or after a physical drying step, are cured by the action of high-energy radiation, for example by irradiation with UV light or by irradiation with high-energy electrons (electron beams).
- Particularly high-grade coatings are obtained if the radiation-curable composition employed comprises formulations that contain an ethylenically unsaturated, urethane-functional polymer or prepolymer. Ethylenically unsaturated urethane-functional polymers and prepolymers are known, for example, from P. K. T. Oldring (ed.), Chemistry and Technology of UV- and EB-Formulations for Coatings, Inks and Paints, Vol. II, SITA Technology, London 1991, pp. 73-123. Because of the high viscosity of ethylenically unsaturated, urethane-functional polymers and prepolymers, such compositions are often admixed with ethylenically unsaturated compounds of low molecular mass in order to reduce the viscosity. These compounds, like the ethylenically unsaturated polymers and prepolymers, are polymerized in the course of curing and so incorporated into the coating. They are therefore referred to as reactive diluents. Hence the properties of the resulting coatings are determined both by the ethylenically unsaturated polymer or prepolymer employed and by the reactive diluent. For optimum coating properties, furthermore, it is necessary to harmonize the ethylenically unsaturated polymers or prepolymers with the reactive diluents.
- DE-A-27 260 41 discloses radiation-curable compositions comprising at least one polyetherurethane which is modified at the ends with acrylate and/or methacrylate groups, a low molecular mass polyfunctional acrylate with ether groups, and hydroxyalkyl acrylates. Radiation-curable compositions of this kind lead to coatings having increased flexibility.
- EP-A-508 409 discloses radiation-curable compositions which comprise at least one ethylenically unsaturated polyesterurethane and at least one nonaromatic, low molecular mass substance having at least one, preferably at least two, (meth)acryloyl groups, as crosslinker (=reactive diluent). Radiation-curable compositions of this kind lead to coatings having improved weathering stability.
- A fundamental problem with the radiation-curable compositions of the prior art is that, although it is possible by selecting and harmonizing the components (prepolymer and reactive diluent) to improve individual in-use properties such as coating hardness, flexibility and weathering resistance, this is always at the expense of other properties.
- It is an object of the present invention to provide radiation-curable compositions which lead to coatings having balanced profiles of properties, with great hardness, high flexibility and high weathering resistance, and which at the same time feature low application viscosity and a high curing rate.
- We have found that this object is achieved, surprisingly, by a radiation-curable composition which comprises at least one aliphatic, urethane-functional prepolymer and at least one monofunctional ester of an α,β-ethylenically unsaturated carboxylic acid with a monofunctional alkanol which has as a structural element at least one saturated 5- or 6-membered carbocycle or one corresponding heterocycle having one or two oxygens in the ring.
- The present invention consequently provides radiation-curable formulations which comprise
- i) at least one aliphatic, urethane-functional prepolymer which on average has at least two ethylenically unsaturated double bonds per molecule (=component A),
- ii) at least one monofunctional ester of an α,β-ethylenically unsaturated carboxylic acid with a monofunctional alkanol which has as a structural element at least one saturated 5- or 6-membered carbocycle or one saturated 5- or 6-membered heterocycle with one or two oxygens in the ring (=component B), and
- iii) if desired, di- or polyfunctional esters of an α,β-ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol (=component C).
- In accordance with the invention, the aliphatic, urethane-functional prepolymer is free from aromatic structural elements such as phenylene or naphthylene or substituted derivatives thereof. Component B contains no nitrogens.
- In general, the compositions of the invention contain from 20 to 90% by weight, preferably from 30 to 80% by weight, and in particular from 40 to 70% by weight, of component A, from 10 to 80% by weight, preferably from 20 to 60% by weight, and in particular from 30 to 50% by weight, of component B, from 0 to 40% by weight and, preferably, from 0 to 30% by weight, of component C and up to 20% by weight, based on the overall weight of components A, B and C, of customary auxiliaries, with the proviso that the amounts by weight of components A, B and C add up to 100% by weight. In general, the weight of components B and C is in the range from 10 to 80% by weight, preferably from 20 to 70% by weight and, in particular, from 30 to 60% by weight, based in each case on the overall weight A+B+C.
- Depending on the desired profile of properties the compositions of the invention comprise component B and component C or exclusively component B. Where high coating hardness is desired the formulation of the invention preferably comprises component B and component C. If instead greater value is placed on high flexibility, component C may be omitted. In addition, as the amount of component C increases, the viscosity of the formulations of the invention is improved. In the first case the ratio of component B to component C is preferably in the range from 20:1 to 1:1 and, in particular, in the range 10:1 to 1.5:1.
- In general, component A is composed essentially of one or more aliphatic structural elements, urethane groups and at least two ethylenically unsaturated structural units. Aliphatic structural elements include both alkylene groups, preferably with 4 to 10 carbons, and cycloalkylene groups, preferably with 6 to 20 carbons. Both the alkylene and cycloalkylene groups can be substituted one or more times by C1-C4-alkyl, especially by methyl, and may include one or more nonadjacent oxygens. The aliphatic structural elements may be connected to one another by way of quaternary or tertiary carbons, by way of urea groups, biuret, uretdione, allophanate, cyanurate, urethane, ester or amide groups or by way of ether oxygen or amine nitrogen. Component A is preferably free from uretdione or allophanate groups and from amine nitrogen. Furthermore, component A in accordance with the invention has at least two ethylenically unsaturated structural elements. These are preferably vinyl or allyl groups, which can also be substituted by C1-C4-alkyl, especially methyl, and which are derived in particular from α,β-ethylenically unsaturated carboxylic acids and/or their amides. Particularly preferred ethylenically unsaturated structural units are acryloyl and methacryloyl groups, such as acrylamido and methacrylamido and, in particular, acryloxy and methacryloxy. With particular preference, component A has at least three ethylenically unsaturated structural elements per molecule.
- Very particular preference is given to components A in which the aliphatic structural elements are linked by way of cyanurate, biuret and/or urethane groups and whose ethylenically unsaturated structural elements are acryloxy groups.
- The number-average molecular weight Mn of the urethane-functional prepolymers of component A is preferably ≦2000 and is in particular in the range from 400 to 1500. The double bond density in such prepolymers is preferably above 1.5 mol/kg of prepolymer and, in particular, is in the range from 2 to 6 mol/kg of prepolymer.
- Ethylenically unsaturated, urethane-functional prepolymers of this kind are fundamentally known to the skilled worker. Preferred aliphatic urethanes that are free of urea groups are obtainable, for example, by reacting
- i) at least one aliphatic compound or one aliphatic prepolymer having at least two and preferably three or 4 isocyanate groups (component a1) with
- ii) at least one compound which has at least one reactive OH group and at least one ethylenically unsaturated double bond (component a2) and, if desired,
- iii) one or more aliphatic compounds having at least one reactive OH group (component a3).
- In this case the ratio of the OH groups of components a2 and a3 to the NCO groups of component a1, OH/NCO, is ≧1, so that the resulting prepolymer contains no NCO groups. Component a2 is preferably employed in an amount such that the OH groups it contains (OHa2) are in a ratio to the NCO groups of component a1, OHa2/NCO, which is in the range from 0.4 to 0.95 and, preferably, from 0.6 to 0.9.
- Compounds suitable as component a1 are aliphatic diisocyanates, oligomeric adducts of aliphatic diisocyanates with polyfunctional alcohols having preferably 2 to 20 carbons, and the uretdiones, isocyanurates, biurets and allophanates of aliphatic diisocyanates. Examples of suitable aliphatic diisocyanates are tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, 1,6-diisocyanato-2,2,4-trimethylhexane, 1,6-diisocyanato-2,2,4,4-tetramethylhexane, 1,2-, 1,3- or 1,4-diisocyanatocyclohexane, 4,4′-di(isocyanatocyclohexyl)methane, 1-isocyanato-3,3,5-trimethyl-5-(isocyanatomethyl)cyclohexane (=isophorone diisocyanate) and 2,4- or 2,6-diisocyanato-1-methylcyclohexane. Suitable polyfunctional alcohols include aliphatic di- or polyols having preferably 2 to 20 carbons, such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, dipropylene glycol, tripropylene glycol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 2-methyl-1,5-pentanediol, 2-ethyl-1,4-butanediol, dimethylolcyclohexane, glycerol, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol, ditrimethylolpropane, erythritol and sorbitol. Component a1 is preferably selected from the trimerization products of the abovementioned aliphatic diisocyanates, in other words the biurets and the isocyanurates, and the adducts of the abovementioned aliphatic diisocyanates with one of the abovementioned polyfunctional aliphatic alcohols having at least three reactive OH groups. It is particularly preferred to employ as component a1 the isocyanurate and/or the biuret of hexamethylene diisocyanate and, with very particular preference, its isocyanurate.
- Examples of suitable components a2 are the esters of ethylenically unsaturated carboxylic acids with one of the abovementioned aliphatic polyols and also the vinyl, allyl and methallyl ethers of these polyols, provided they also have one isocyanate-reactive OH group. It is also possible to employ the amides of ethylenically unsaturated carboxylic acids with amino alcohols. Preference as component a2 is given to the esters of acrylic and methacrylic acid, such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 1,4-butanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol di- and -tri(meth)acrylate. With particular preference component a2 is selected from hydroxypropyl acrylate and butanediol monoacrylate, and in particular a2 is 2-hydroxyethyl acrylate.
- Examples of suitable aliphatic compounds having at least one reactive OH group (component a3) are alkanols having preferably 1 to 10 carbons, cycloalkanols having preferably 5 to 10 carbons, and monoalkyl ethers of polyalkylene glycols. Examples of suitable alkanols are methanol, ethanol, n- and isopropanol, n-, 2-, iso- and tert-butanol, amyl alcohol, isoamyl alcohol, n-hexanol, n-octanol, 2-ethylhexanol and decanol. Suitable cycloalkanols include, for example, cyclopentanol and cyclohexanol, which are unsubstituted or substituted one or more times by C1-C4-alkyl, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl, especially by methyl. Examples of monoalkyl ethers of polyalkylene glycols are the mono-C1-C4-alkyl ethers and, in particular, the methyl ethers of ethylene glycol, diethylene glycol or triethylene glycol.
- Component A is prepared in a known manner by reacting component a1 with components a2 and, if used, a3 at from 0 to 100° C. and, in particular, at from 20 to 70° C. It is preferred to react component a1 and a2 first of all. Component a3 is added subsequently under reaction conditions.
- To accelerate the reaction it is possible to employ catalysts as are described, for example, in Houben-Weyl, Methoden der Organischen Chemie, Vol. XIV/2, Thieme-Verlag, Stuttgart 1963, p. 60f. and Ullmanns Enzyklopädie der Technischen Chemie, 4th ed., Vol. 19 (1981), p. 306. Tin-containing catalysts are preferred, such as dibutyltin dilaurate, tin(II) octoate or dibutyltin dimethoxide. Such catalysts are generally employed in an amount of from 0.001 to 2.5% by weight, preferably from 0.005 to 1.5% by weight, based on the overall amount of the reactants.
- To stabilize the free-radically polymerizable compounds (component a2) it is preferred to add to the reaction from 0.001 to 2% by weight, in particular from 0.005 to 1.0% by weight, of polymerization inhibitors. These are the usual compounds suitable for hindering free-radical polymerization, examples being hydroquinones or hydroquinone monoalkyl ethers, 2,6-di-tert-butylphenols, such as 2,6-di-tert-butylcresole, nitrosamines, phenothiazines or phosphorous esters. The reaction can be carried out either without solvent or with the addition of solvents. Suitable solvents are inert solvents such as acetone, methyl ethyl ketone, tetrahydrofuran, dichloromethane, toluene, C1-C4-alkyl esters of acetic acid, such as ethyl acetate or butyl acetate. The reaction is preferably carried out without solvent.
- As component B it is possible in principle to employ all monofunctional esters of α,β-ethylenically unsaturated carboxylic acids with a monofunctional alcohol which has as a structural element at least one saturated 5- or 6-membered heterocycle with one or two oxygens in the ring. Component B is preferably derived from acrylic or methacrylic acid. Examples of suitable compounds of component B embrace compounds of the formula I
- where
- R is H or CH3, especially H,
- k is from 0 to 4, especially 0 or 1, and
- Y is a 5- or 6-membered saturated carbocycle or a 5- or 6-membered saturated heterocycle with one or two oxygens, the heterocycle being unsubstituted or substituted by C1-C4-alkyl, such as by methyl, ethyl, n-propyl, isopropyl, n-butyl, 2-butyl, isobutyl or tert-butyl.
- The 5- or 6-membered saturated heterocycle is preferably derived from tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,3- or 1,4-dioxane.
- With particular preference, component B is selected from trimethylolpropane monoformal acrylate, glycerol monoformal acrylate, cyclohexylmethyl acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranylmethyl acrylate and tetrahydrofurfuryl acrylate. Very particular preference is given to the use as component B of trimethylolpropane monoformal acrylate.
- In addition, the radiation-curable formulations may comprise, in the amounts indicated above, a di- or polyfunctional ester of an α,β-ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol. Suitable examples are the esterification products of the di- or polyols set out above in connection with component a1. Preference is given to the esters of acrylic and methacrylic acid, especially the diesters of diols. Preferably, the diols and/or polyols contain no heteroatoms other than in OH functions. Examples of suitable components B include ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, 1,4-cyclohexanediol di(meth)acrylate and 1,4-bis(hydroxymethyl)cyclohexane di(meth)acrylate, and also trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate and pentaerythritol tetra(meth)acrylate. Particularly preferred components B are butanediol diacrylate, hexanediol diacrylate, 1,4-cyclohexanediol diacrylate and 1,4-bis(hydroxymethyl)cyclohexane diacrylate. Hexanediol diacrylate is especially preferred.
- The radiation-curable formulations of the invention may also include, depending on their intended use, up to 20% by weight of customary auxiliaries, such as thickeners, leveling assistants, defoamers, UV stabilizers, lubricants and fillers. Suitable auxiliaries are sufficiently well known to the skilled worker from paints and coatings technology. Suitable fillers include silicates, for example silicates obtainable by hydrolysis of silicon tetrachloride such as Aerosil® from Degussa, silica, talc, aluminum silicates, magnesium silicates, calcium carbonates, etc. Suitable stabilizers include UV absorbers, such as oxanilides, triazines and benzotriazole (the latter obtainable as Tinuvin® grades from Ciba-Spezialitätenchemie) and benzophenones. These can be used alone or together with suitable free-radical scavengers, examples being sterically hindered amines, such as 2,2,6,6-tetramethylpiperidine, 2,6-di-tert-butylpiperidine or derivatives thereof, such as bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate. Stabilizers are normally employed in amounts of from 0.1 to 5.0% by weight and preferably from 0.5 to 3.5% by weight, based on the components A to C present in the formulation.
- Insofar as curing takes place by means of UV radiation, the formulations of the invention comprise at least one photoinitiator which is able to initiate the polymerization of ethylenically unsaturated double bonds. Such photoinitiators include benzophenone and benzophenone derivatives such as 4-phenylbenzophenone and 4-chlorobenzophenone, Michler's ketone, anthrone, acetophenone derivatives, such as 1-benzoylcyclohexan-1-ol, 2-hydroxy-2,2-dimethylacetophenone and 2,2-dimethoxy-2-phenylacetophenone, benzoin and benzoin ethers, such as benzoin methyl, ethyl and butyl ethers, benzil ketals, such as benzil dimethyl ketal, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, anthraquinone and its derivatives, such as β-methylanthraquinone and tert-butylanthraquinone, acylphosphine oxides, such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl-2,4,6-trimethylbenzoylphenylphosphinate and bisacylphosphine oxides. These photoinitiators are, where necessary, employed in amounts of from 0.05 to 20% by weight, preferably from 0.1 to 10% by weight, and in particular from 0.1 to 5% by weight, based on the polymerizable components A, B and C of the formulations of the invention. If the formulation of the invention is cured by means of electron beams, the use of photoinitiators can be omitted. When electron beam curing is employed, the formulations of the invention may additionally contain colored pigments.
- Preferably, the formulations of the invention contain no pigments or fillers. In addition, the formulations of the invention are preferably free from inert, nonpolymerizable solvents.
- The formulations of the invention are prepared by blending the components in a conventional manner. Blending may take place at room temperature or at up to 100° C. and is effected, for example, by means of customary mixing equipment such as stirring vessels or static mixers.
- The formulations of the invention are found to be particularly appropriate for the coating of substrates such as wood, paper, plastic surfaces, mineral construction materials, such as shaped cement blocks and cement fiber slabs, and especially for metals or coated metals.
- Accordingly, the present invention also provides a method of coating substrates, especially metals or coated metals, and the coated substrates obtainable by this method. The substrate is generally coated by applying at least one radiation-curable formulation of the invention in the desired thickness to the substrate which is to be coated, removing any solvent and then curing the coating by the action of high-energy radiation such as UV radiation or electron beams. This operation may, if desired, be repeated one or more times. The radiation-curable formulations are applied to the substrate conventionally, for example by spraying, brushing, rolling or flow-coating or by coating with a filler knife or doctor blade. The coating add-on is generally in the range from 3 to 500 g/m2 and preferably from 10 to 200 g/m2, corresponding to wet film thicknesses of from about 3 to 500 μm, preferably from 10 to 200 μm. Application can be made either at room temperature or above, but preferably not above 100° C. The coatings are subsequently cured through the action of high-energy radiation, preferably UV radiation with a wavelength of from 250 to 400 nm, or by irradiation with high-energy electrons (electron beams; from 150 to 300 keV). Examples of UV sources used are high-pressure mercury vapor lamps, for example the CK or CK1 lamps from IST. The radiation dose which is usually sufficient for crosslinking is within the range from 80 to 3000 mJ/cm2.
- In one preferred procedure curing takes place continuously by passing the substrate that has been treated with the formulation of the invention at a constant speed in front of a radiation source. This requires the curing rate of the formulation of the invention to be sufficiently high.
- The formulations of the invention feature low viscosity, preferably ≦10 Pas (determined at 23° C. using an ICI cone-plate viscometer) and high reactivity, represented by a value of ≧10 m/min (corresponding to the rate at which the substrate, treated with a radiation-curable formulation in a wet film thickness of 100 μm, can be passed at a distance of 10 cm in front of a UV source having an output of 120 W/cm so that full cure still takes place). It is possible at the same time to realize high hardnesses, characterized by a pendulum attenuation (in analogy to DIN 53157, see below) ≧80 sec., and high flexibilities, characterized by Erichsen indentations ≧5 mm (see below), without the systems receiving low grades for viscosity and reactivity. Moreover, the coatings obtainable from the formulations of the invention feature enhanced weathering resistance as can be determined, for example, by sun tests.
- The examples below are intended to illustrate the present invention without, however, limiting it.
- A stirred vessel was charged with 1000 parts1) of the cyanurate of hexamethylene diisocyanate, 1.44 parts of 2,6-di-tert-butyl-4-methylphenol and 0.72 part of hydroquinone monomethyl ether. This initial charge was heated to 50° C., 0.3 part of dibutyltin dilaurate was added, and then, at a temperature of 50 to 60° C., x parts of hydroxyethyl acrylate (ATA, see Table 1) were added dropwise. The mixture was subsequently heated to 70° C. and this temperature was maintained for 3 hours. Then, while still retaining the temperature, y parts of methanol (MeOH, see Table 1) were added and the temperature was maintained for 2 hours more until the NCO value had fallen to 0.05%. The mixture was then cooled and the colorless product was discharged at 60° C.
- 1) All amounts (parts) hereinbelow are to be understood as parts by weight.
- Subsequently, the resulting urethane acrylates were blended in the amounts indicated in Table 1 with trimethylolpropane monoformal acrylate (TMPMFA), with or without 1,6-hexanediol diacrylate and 4% by weight of photoinitiator (2-hydroxy-2-methyl-1-phenylpropan-1-one=Darocure® 1173 from Ciba-Spezialitätenchemie), based on the overall weight of components A to C. Table 1 indicates the viscosities and reactivities found for the formulations of Examples 1 to 10.
TABLE 1 Urethane prepolymer HDDA TMPMFA Viscosity3) Reactivity4) Ex. x HEA1 y MeOH1 [% by wt.]2 [% by wt.]2 [% by wt.]2 [Pas] m/min 1 362 76.3 70 0 30 9.9 20 2 453 50.8 62.5 0 37.5 6.0 20 3 453 50.8 60 5 35 2.6 20 4 453 50.8 60 6 34 2.5 20 5 453 50.8 60 0 40 3.1 20 6 513 33.9 61.4 0 38.6 3.8 20 7 513 33.9 60 5 35 4.0 20 8 513 33.9 60 6 34 4.0 25 9 513 33.9 60 0 40 6.0 25 10 453 50.8 40 20 40 0.33 20 - Following the procedure of Examples 1 to 10, a urethane acrylate was prepared from 1000 parts by weight of the isocyanurate of hexamethylene diisocyanate, 453 parts of hydroxyethyl acrylate and 50.8 parts of methanol. 70 parts of the urethane acrylate thus prepared were then blended with 30 parts of the monoacrylate indicated in Table 2 (component B) and 4 parts of the photoinitiator Darocure® 1173.
- The viscosity and reactivity of the resulting formulations are indicated in Table 2.
TABLE 2 Examples 11 to 15, Comparative Examples V1, V2 Reactivity Example Component B Viscosity [Pas] [m/min] 11 Glycerol mono- 4.6 15 formal acrylate 12 Tetrahydrofur- 1.8 15 furyl acrylate 13 Tetrahydro- 3.6 15 pyran-4-yl acrylate 14 Cyclohexyl- 2.8 15 methyl acrylate 15 Tetrahydropyra- 3.6 15 nyl-2-methyl acrylate V1 Tripropylene 3.6 20 glycol mono- methyl ether acrylate V2 Dipropylene 2.4 30 glycol mono- methyl ether acrylate - 1. Coating Hardness
- The coating hardness was characterized by determining the pendulum attenuation in analogy to DIN 53157. To this end the radation-curable compositions of the Examples and Comparative Examples were applied with a wet film thickness of 100 μm to glass. The resulting sample was cured by being passed at a belt speed of 10 m/min and at a distance of 10 cm twice in front of a high-pressure mercury vapor lamp (120 W/cm). The pendulum attenuation was then determined using a pendulum device in accordance with DIN 53157 (König). The results are stated in seconds and are summarized in Table 3.
- 2. Flexibility
- The flexibility of the coating was determined by measuring the Erichsen indentation in analogy to DIN 53156. To this end, the respective formulation was applied using a spiral-wound coating bar in a wet film thickness of 50 μm to a BONDER 132 metal panel. Curing was carried out in the manner described above by exposure with a high-pressure mercury vapor lamp (120 W/cm). The Erichsen indentation was then measured by pressing a metal ball into the uncoated side of the panel (DIN 53156). The results are summarized in Table 3.
TABLE 3 Pendulum attenuation Erichsen indentation Example [sec] [mm] 1 80 7.0 2 98 6.5 3 86 6.8 4 89 6.6 5 88 6.9 6 85 5.7 7 102 5.3 8 122 5.7 9 130 5.5 10 105 5.5 11 120 6.3 12 90 6.6 13 130 5.8 14 110 6.0 15 80 6.3 V1 21 7.0 V2 25 7.0 - The test systems used were formulations of 70 parts by weight of urethane acrylate from Example 2, 30 parts of reactive diluent as per Table 4 and the photoinitiator Darocure® 1173 (Example 16, Comparative Example V3 and V4). The formulations were then applied to a glass plate with a wet film thickness of 100 μm using a box-type coating bar, the films were cured by UV radiation in the manner described for the pendulum test, and then the coatings were irradiated in a Heraeus Sun Test apparatus CPS+ with an output of 750 W/m2 at 37° C. After various periods the yellowing—as b values of the L*a*b system (determined using a Minolta Remission Colorimeter), and the degree of gloss, in accordance with DIN 67530 at 60° geometry, were recorded. The b values are summarized in Table 4 for different times. The gloss values of all formulations were within the range from 170 to 178 and remain at approximately the same level throughout the 1000-hour exposure time.
TABLE 4 b values Example Reactive diluent 0 h 160 h 700 h 1000 h V3 HDDA1) 0.45 0.7 0.7 0.82 16 TMPMFA2) 0.29 0.47 0.5 0.55 V4 LR89453) 0.3 1.79 3.0 3.6 - The increase in the b values corresponds to increasing yellowing. The increase in yellowing is least pronounced for the formulation of Example 16 according to the invention.
- In addition, the thermal stability of the formulations of Example 16 and of the Comparative Examples V3 and V4 were determined by measuring the b value after thermal conditioning at 100° C. for 24 hours. In parallel with this a formulation was examined in which the HDDA from Example V3 had been replaced by N-vinylcaprolactam (Comparative Example V5). For Example 15 and Comparative Examples V3 and V4, no notable increase in the b value was observed. In contrast, the b value for the sample from V5 shows a dramatic increase, corresponding to marked yellowing under thermal exposure.
Claims (17)
1. A radiation-curable formulation comprising
i) at least one aliphatic, urethane-functional prepolymer which on average has at least two ethylenically unsaturated double bonds per molecule (=component A),
ii) at least one monofunctional ester of an α, β-ethylenically unsaturated carboxylic acid with a monofunctional alkanol which has as a structural element at least one saturated 5- or 6-membered carbocycle or one saturated 5- or 6-membered heterocycle with one or two oxygens in the ring (=component B), and
iii) if desired, di- or polyfunctional esters of an α,β-ethylenically unsaturated carboxylic acid with an aliphatic di- or polyol (=component C).
2. A formulation as claimed in claim 1 , containing from 20 to 90% by weight of component A, from 10 to 80% by weight of component B, from 0 to 40% by weight of component C and up to 20% by weight, based on the overall weight of components A, B and C, of customary auxiliaries, with the proviso that the amounts by weight of components A, B and C add up to 100% by weight.
3. A formulation as claimed in claim 1 , in which the weight ratio of components B and C is in the range from 20:1 to 1:1.
4. A formulation as claimed in claim 1 , in which component B is a compound of the formula I
where
R is H or CH3,
k is from 0 to 4, and
Y is a 5- or 6-membered saturated carbocycle or a 5- or 6-membered saturated heterocycle with one or two oxygens, the heterocycle being unsubstituted or substituted by C1-C4-alkyl.
5. A formulation as claimed in claim 4 , in which component B is selected from trimethylolpropane monoformal acrylate, glycerol monoformal acrylate, cyclohexylmethyl acrylate, 4-tetrahydropyranyl acrylate, 2-tetrahydropyranylmethyl acrylate and tetrahydrofurfuryl acrylate.
6. A formulation as claimed in claim 1 , in which component C is selected from the diacrylates and dimethacrylates of aliphatic diols.
7. A formulation as claimed in claim 6 , comprising as component C 1,6-hexanediol diacrylate and/or 1,4-butanediol diacrylate.
8. A formulation as claimed in claim 1 , in which the ethylenically unsaturated double bonds of the aliphatic, urethane-functional prepolymer are in the form of acrylate and/or methacrylate groups.
9. A formulation as claimed in claim 1 , in which the aliphatic, urethane-functional prepolymer is obtainable by reacting
i) at least one aliphatic compound or one aliphatic prepolymer having at least two isocyanate groups (component a1),
ii) at least one compound which has at least one reactive OH group and at least one ethylenically unsaturated double bond (component a2) and, if desired,
iii) one or more aliphatic compounds having at least one reactive OH group (component a3).
10. A formulation as claimed in claim 9 , where component a1 is selected from the biurets and the isocyanurates of aliphatic diisocyanates and from the adducts of aliphatic diisocyanates with polyfunctional, aliphatic alcohols having at least 3 reactive OH groups.
11. A formulation as claimed in claim 10 , where component a1 is the isocyanurate of hexamethylene diisocyanate.
12. A formulation as claimed in claim 9 , where component a2 is selected from the esters of acrylic acid and/or methacrylic acid with at least one aliphatic di- or polyol, where the residue still has at least one free OH group.
13. A formulation as claimed in claim 12 , where component a2 is selected from 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, 1,4-butanediol mono(meth)acrylate, trimethylolpropane mono- and di(meth)acrylate and pentaerythritol tri(meth)acrylate.
14. A formulation as claimed in claim 9 , where component a3 is a monofunctional alkanol having 1 to 10 carbons.
15. A method of coating substrates, which comprises applying a formulation as claimed in claim 1 to the substrate which is to be coated, removing any solvent and then curing the coating by radiation with UV radiation or electron beams.
16. The method as claimed in claim 15 , where the substrate is a metal or a coated metal.
17. A coated substrate obtained by a method as claimed in claim 15.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19739970 | 1997-09-11 | ||
DE19739970.3 | 1997-09-11 | ||
DE19739970A DE19739970A1 (en) | 1997-09-11 | 1997-09-11 | Radiation-curable preparations based on aliphatic prepolymers containing urethane groups with ethylenically unsaturated double bonds |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020058146A1 true US20020058146A1 (en) | 2002-05-16 |
US6458459B1 US6458459B1 (en) | 2002-10-01 |
Family
ID=7842031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/149,662 Expired - Lifetime US6458459B1 (en) | 1997-09-11 | 1998-09-09 | Radiation-curable formulations based on aliphatic, urethane-functional prepolymers having ethylenically unsaturated double bonds |
Country Status (4)
Country | Link |
---|---|
US (1) | US6458459B1 (en) |
EP (1) | EP0902040B1 (en) |
JP (1) | JPH11140146A (en) |
DE (2) | DE19739970A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020161154A1 (en) * | 2001-01-12 | 2002-10-31 | Cattron Wendell W. | Urethane-acrylic coatings for optical fiber |
US20040044122A1 (en) * | 2002-08-29 | 2004-03-04 | Boldt Brent R. | Ultraviolet radiation curable coating for MLS head gasket applications |
US20040152799A1 (en) * | 2003-01-31 | 2004-08-05 | Miller Christopher Wayne | Flexible radiation curable compositions |
WO2005035460A1 (en) * | 2003-10-06 | 2005-04-21 | Basf Aktiengesellschaft | Radiation-hardenable coating agent containing aliphatic urethane(meth)acrylate |
US20090035595A1 (en) * | 2004-10-12 | 2009-02-05 | Degussa Gmbh | Radiation curable modified, unsaturated, amorphous polyesters |
US20100168320A1 (en) * | 2007-06-21 | 2010-07-01 | Basf Se | Flexible, radiation-curable coating compositions |
US20140128536A1 (en) * | 2011-08-02 | 2014-05-08 | Evonik Roehm Gmbh | Low-odour (meth)acrylic reaction resins |
US20150083317A1 (en) * | 2012-06-01 | 2015-03-26 | Henkel (China) Company Limited | Triply curable optically clear adhesive |
WO2020193604A1 (en) * | 2019-03-28 | 2020-10-01 | Bostik Sa | Methacrylate monomer-based composition |
CN114430770A (en) * | 2020-03-24 | 2022-05-03 | 株式会社Lg化学 | Surface protective film |
CN115895424A (en) * | 2022-12-05 | 2023-04-04 | 澳达树熊涂料(惠州)有限公司 | Solvent-free UV-LED curing transparent adhesive coating and preparation method thereof |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19924674C2 (en) * | 1999-05-29 | 2001-06-28 | Basf Coatings Ag | Coating material curable thermally and with actinic radiation and its use |
WO2001023453A1 (en) * | 1999-09-30 | 2001-04-05 | Basf Aktiengesellschaft | Aqueous polyurethane dispersions which can be hardened with mit uv-radiation and thermally, and use thereof |
US7220786B1 (en) | 2000-08-23 | 2007-05-22 | Dana Corporation | Ultraviolet radiation curable coating for MLS head gasket applications |
US6824874B1 (en) | 2000-08-23 | 2004-11-30 | Dana Corporation | Insulator and seal for fuel cell assemblies |
AU2001285160A1 (en) * | 2000-08-23 | 2002-03-04 | Dana Corporation | Epoxy nitrile insulator and seal for fuel cell assemblies |
KR20030024905A (en) * | 2000-08-23 | 2003-03-26 | 데이나코포레이션 | Insulating and sealing composition |
DE10054933A1 (en) | 2000-11-06 | 2002-05-08 | Bayer Ag | Process for coating substrates |
FR2838738B1 (en) * | 2002-04-17 | 2006-02-17 | Corning Inc | SYNTHESIS OF UNSATURATED, STABLE, (FREE) POLYURETHANES, EXEMPT FROM REAGENTS USED |
DE102004012903A1 (en) * | 2004-03-17 | 2005-10-06 | Bayer Materialscience Ag | Low-viscosity allophanates with actinically curable groups |
DE102005015309A1 (en) * | 2005-04-01 | 2006-10-05 | Basf Ag | Radiation-curable compounds |
EP1933774A4 (en) * | 2005-10-10 | 2012-07-11 | Donna Jean Carver | Artificial spinal disc replacement system and method |
DE102006045041A1 (en) | 2006-09-25 | 2008-03-27 | Evonik Degussa Gmbh | Radiation curable formulation that results in flexible coatings with enhanced corrosion protection on metal substrates |
DE102006061380A1 (en) | 2006-12-23 | 2008-06-26 | Evonik Degussa Gmbh | Silica and dispersant-containing radiation-curable formulations with increased corrosion protection on metal substrates |
DE102006061379A1 (en) | 2006-12-23 | 2008-06-26 | Evonik Degussa Gmbh | Silica-containing radiation-curable formulations with increased corrosion protection on metal substrates |
DE102007040246A1 (en) | 2007-08-25 | 2009-02-26 | Evonik Degussa Gmbh | Radiation-curable formulations |
US20100227942A1 (en) | 2007-12-18 | 2010-09-09 | Emmanouil Spyrou | Dual-cure formulations with components containing uretdione groups |
DE102008000721A1 (en) | 2008-03-18 | 2009-09-24 | Evonik Degussa Gmbh | Radiation-curable formulations |
WO2010121978A1 (en) * | 2009-04-22 | 2010-10-28 | Basf Se | Radiation curable coating compositions |
EP2828348B1 (en) * | 2012-03-19 | 2016-04-20 | Basf Se | Radiation-curable coating compositions |
EP3034569B1 (en) | 2014-12-19 | 2016-11-30 | Evonik Degussa GmbH | Crosslinking systems which harden thermally by means of actinic radiation |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023428A (en) * | 1973-06-26 | 1975-03-13 | ||
US4072770A (en) | 1976-05-11 | 1978-02-07 | Scm Corporation | U.V. curable poly(ester-urethane) polyacrylate polymers and wet look coatings therefrom |
CA1109580A (en) * | 1977-11-03 | 1981-09-22 | Kohtaro Nagasawa | Radiation curable resin composition |
DE3030554A1 (en) * | 1980-08-13 | 1982-03-25 | Chemische Werke Hüls AG, 4370 Marl | BURNING PAINTS |
DE3689963T2 (en) * | 1985-05-28 | 1994-11-03 | Nippon Paint Co Ltd | Polymerization process using compounds with polymerizable acyl urethane structures. |
US5149592A (en) | 1990-05-09 | 1992-09-22 | Avery Dennison Corporation | Ultraviolet radiation curable clearcoat |
JPH05140254A (en) * | 1991-11-19 | 1993-06-08 | Dainippon Ink & Chem Inc | UV curable resin composition |
US5212210A (en) * | 1992-03-18 | 1993-05-18 | Minnesota Mining And Manufacturing Company | Energy curable compositions having improved cure speeds |
US5475038A (en) | 1993-08-11 | 1995-12-12 | National Starch And Chemical Investment Holding Corporation | U.V. curable laminating adhesive composition |
DE4343246A1 (en) | 1993-12-17 | 1995-06-22 | Thera Ges Fuer Patente | Prepolymers, free-radically polymerizable compositions prepared therefrom and their use |
-
1997
- 1997-09-11 DE DE19739970A patent/DE19739970A1/en not_active Withdrawn
-
1998
- 1998-09-08 JP JP10253624A patent/JPH11140146A/en not_active Withdrawn
- 1998-09-09 US US09/149,662 patent/US6458459B1/en not_active Expired - Lifetime
- 1998-09-10 DE DE59812973T patent/DE59812973D1/en not_active Expired - Lifetime
- 1998-09-10 EP EP98117140A patent/EP0902040B1/en not_active Expired - Lifetime
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7226958B2 (en) * | 2001-01-12 | 2007-06-05 | Dsm Ip Assets B.V. | Urethane-acrylic coatings for optical fiber |
US20070203321A1 (en) * | 2001-01-12 | 2007-08-30 | Dsm N.V. | Urethane-acrylic coatings for optical fiber |
US20020161154A1 (en) * | 2001-01-12 | 2002-10-31 | Cattron Wendell W. | Urethane-acrylic coatings for optical fiber |
US20040044122A1 (en) * | 2002-08-29 | 2004-03-04 | Boldt Brent R. | Ultraviolet radiation curable coating for MLS head gasket applications |
US7196120B2 (en) | 2002-08-29 | 2007-03-27 | Dana Corporation | Ultraviolet radiation curable coating for MLS head gasket applications |
US20040152799A1 (en) * | 2003-01-31 | 2004-08-05 | Miller Christopher Wayne | Flexible radiation curable compositions |
US20060154082A1 (en) * | 2003-01-31 | 2006-07-13 | Miller Christopher W | Flexible radiation curable compositions |
WO2005035460A1 (en) * | 2003-10-06 | 2005-04-21 | Basf Aktiengesellschaft | Radiation-hardenable coating agent containing aliphatic urethane(meth)acrylate |
US20070066704A1 (en) * | 2003-10-06 | 2007-03-22 | Basf Aktiengesellschaft | Radiation-hardenable coating agent containing aliphatic urethane (meth) acrylate |
US7759424B2 (en) * | 2004-10-12 | 2010-07-20 | Evonik Degussa Gmbh | Radiation curable modified, unsaturated, amorphous polyesters |
US20090035595A1 (en) * | 2004-10-12 | 2009-02-05 | Degussa Gmbh | Radiation curable modified, unsaturated, amorphous polyesters |
US20100168320A1 (en) * | 2007-06-21 | 2010-07-01 | Basf Se | Flexible, radiation-curable coating compositions |
US8193279B2 (en) | 2007-06-21 | 2012-06-05 | Basf Se | Flexible, radiation-curable coating compositions |
US20140128536A1 (en) * | 2011-08-02 | 2014-05-08 | Evonik Roehm Gmbh | Low-odour (meth)acrylic reaction resins |
EP2739677B1 (en) | 2011-08-02 | 2015-05-27 | Evonik Röhm GmbH | Low odor (meth)acrylate reactive resin |
US9862788B2 (en) * | 2011-08-02 | 2018-01-09 | Evonik Roehm Gmbh | Low-odour (meth)acrylic reaction resins |
US20150083317A1 (en) * | 2012-06-01 | 2015-03-26 | Henkel (China) Company Limited | Triply curable optically clear adhesive |
US9783710B2 (en) * | 2012-06-01 | 2017-10-10 | Henkel Ag & Co. Kgaa | Triply curable optically clear adhesive |
WO2020193604A1 (en) * | 2019-03-28 | 2020-10-01 | Bostik Sa | Methacrylate monomer-based composition |
FR3094375A1 (en) * | 2019-03-28 | 2020-10-02 | Bostik Sa | Composition based on methacrylate monomer |
CN113631609A (en) * | 2019-03-28 | 2021-11-09 | 博斯蒂克股份公司 | Compositions based on methacrylate monomers |
CN114430770A (en) * | 2020-03-24 | 2022-05-03 | 株式会社Lg化学 | Surface protective film |
CN115895424A (en) * | 2022-12-05 | 2023-04-04 | 澳达树熊涂料(惠州)有限公司 | Solvent-free UV-LED curing transparent adhesive coating and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP0902040B1 (en) | 2005-08-03 |
DE59812973D1 (en) | 2005-09-08 |
EP0902040A1 (en) | 1999-03-17 |
JPH11140146A (en) | 1999-05-25 |
DE19739970A1 (en) | 1999-03-18 |
US6458459B1 (en) | 2002-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6458459B1 (en) | Radiation-curable formulations based on aliphatic, urethane-functional prepolymers having ethylenically unsaturated double bonds | |
JP5466658B2 (en) | Compounds derived from polyisocyanates and alcohol A containing activated double bonds | |
US6177535B1 (en) | Preparing radiation-curable, urethane-functional prepolymers | |
US6500876B2 (en) | Coating composition containing UV-curable urethane (meth)acrylates containing isocyanate groups and urethane (meth)acrylates containing hydroxyl groups | |
AU752939B2 (en) | New urethane acrylates and their use in coating compositions background of the invention | |
US7169841B2 (en) | Curable aqueous polyurethane dispersions | |
KR100640129B1 (en) | UV-curable and thermosetting aqueous polyurethane dispersions and uses thereof | |
US7294656B2 (en) | UV curable coating composition | |
US20070066704A1 (en) | Radiation-hardenable coating agent containing aliphatic urethane (meth) acrylate | |
US20080207793A1 (en) | Coatings Reparable by Introduction of Energy | |
JP4841905B2 (en) | Low viscosity allophanate containing actinic radiation curable groups | |
JP4841906B2 (en) | Low viscosity allophanate containing actinic radiation curable groups | |
CA2106650A1 (en) | Polyurethanes containing acryloyl groups, a process for their preparation and their use as binders for coating compositions | |
KR20050056150A (en) | Hardeners | |
EP1736492A1 (en) | Low viscosity, ethylenically-unsaturated polyurethanes | |
US6479564B1 (en) | Isocyanate-based hardenable preparations | |
EP1712600B1 (en) | Coating compositions containing ethylenically unsaturated polyurethanes as binders | |
DE19741781A1 (en) | Production of stable, radiation-curable urethane prepolymer for coating substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWALM, REINHOLD;VOELLINGER, FRANK;BECK, ERICH;AND OTHERS;REEL/FRAME:009504/0946 Effective date: 19980604 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |