US20020055229A1 - Split gate flash memory with virtual ground array structure and method of fabricating the same - Google Patents
Split gate flash memory with virtual ground array structure and method of fabricating the same Download PDFInfo
- Publication number
- US20020055229A1 US20020055229A1 US10/029,275 US2927501A US2002055229A1 US 20020055229 A1 US20020055229 A1 US 20020055229A1 US 2927501 A US2927501 A US 2927501A US 2002055229 A1 US2002055229 A1 US 2002055229A1
- Authority
- US
- United States
- Prior art keywords
- region
- mask
- flash memory
- floating gate
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/681—Floating-gate IGFETs having only two programming levels
- H10D30/684—Floating-gate IGFETs having only two programming levels programmed by hot carrier injection
- H10D30/685—Floating-gate IGFETs having only two programming levels programmed by hot carrier injection from the channel
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/6891—Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/914—Doping
- Y10S438/919—Compensation doping
Definitions
- the present invention relates to a non-volatile semiconductor memory device, and more particularly to a split gate flash memory with a virtual ground array, wherein impurity diffusion layers are used as bit lines, and a method of fabricating the same.
- FIG. 1A is a fragmentary plane view illustrative of a first conventional split gate flash memory with the virtual ground array.
- FIG. 1B is a fragmentary cross sectional elevation view illustrative of a first conventional split gate flash memory with the virtual ground array taken along an A-A′ line of FIG. 1A.
- Field oxide layers 125 are provided on a surface of a semiconductor substrate 111 so that the field oxide layers 125 extend in parallel to each other and to a first direction.
- n-type impurity diffusion layers 123 d and 123 s are provided commonly to a plurality of memory cells so that the retype impurity diffusion layers 123 d and 123 s as buried diffusion layers are used for bit lines and source lines.
- the buried diffusion layer 123 d forms a drain region.
- the buried diffusion layer 123 s forms a source region.
- a channel region is defined between the buried diffusion layer 123 d as the drain region and the buried diffusion layer 123 s as the source region.
- a gate insulation film is provided, which extends over a half region of the channel region closer to the drain region.
- a floating gate 115 is provided which extends on the gate insulation film so that the floating gate 115 is positioned over the half region of the channel region and over a part of the field oxide film 125 .
- An insulation film is provided which extends over a source side half region 114 of the channel region and over the floating gate 115 .
- a control gate 129 is provided which extends on the insulation film so that the control gate 129 is positioned over the floating gate electrode 115 and the source side half region 114 .
- the control gate electrode 129 is stripe-shaped.
- the control gate electrode 129 is used as a word line.
- Data writing operation is made by injection of hot electrons into the floating gate electrode 115 .
- Data erasing operation is made by drawing electrons from the floating gate electrode 115 by F-N tunnel current from the floating gate electrode 115 to an erasing gate electrode 141 .
- boron doped high impurity regions 127 are provided under a half of the drain region 123 d and a half of the source region 123 c, so that edges of the boron doped high impurity regions 127 are adjacent to the bottoms of the gate insulation film under the floating gate electrode 115 .
- the boron doped high impurity regions 127 causes a source-drain electric field concentration in the boron doped high impurity regions 127 in order to increase the efficiency of hot electron injection.
- FIGS. 2A through 2E are fragmentary cross sectional elevation views illustrative of sequential steps of fabricating the conventional flash memory shown in FIGS. 1A and 1B.
- a nitride layer 151 and a photo-resist mask 166 are formed over a surface of a semiconductor substrate 111 before boron is ion-implanted through stripe-shaped openings 154 into surface regions of the semiconductor substrate 111 so as to form p+-type regions 161 .
- the nitride layer 151 is used as a mask for carrying out an ion-implantation of arsenic through stripe-shaped openings 153 to form n+-type regions 157 .
- field oxide films 125 are formed in the openings 153 , whereby concurrently diffusions and activation of impurities in the p+-type regions 161 and the n+-type regions 157 are caused thereby to form buried diffusion layers 123 as the n-type source and drain regions and p+-type diffusion regions 127
- a surface of the substrate is subjected to an oxidation to form a gate oxide film 117 .
- a polysilicon film is entirely deposited for subsequent patterning the polysilicon film to form a floating gate 115 before an inter-layer insulator is then formed.
- a polysilicon film is entirely deposited for subsequent patterning the polysilicon film to form a control gate 129 and then further an erasing gate not illustrated is formed to complete the flash memory.
- FIG. 3 is a fragmentary cross sectional elevation view illustrative of the flash memory structure, where the p+-type diffusion layers are extensively diffused.
- FIGS. 4A through 4G are fragmentary cross sectional elevation views illustrative of another conventional method of fabricating a flash memory which is suitable for scaling down requirement.
- field oxide regions not illustrated are formed on a p-type silicon substrate 21 before a silicon oxide layer 22 having a thickness of 300 nanometers is formed by a chemical vapor deposition method.
- a photo-lithography method and a subsequent dry etching method are used to form stripe-shaped openings 23 in the silicon oxide layer 22 .
- a silicon oxide film is deposited by a chemical vapor deposition for subsequent etch-back process to form side wall oxide films 24 on vertical walls of the stripe-shaped openings 23 .
- the silicon oxide layer 22 and the side wall oxide films 24 are used as a mask to carry out an ion-implantation of arsenic at an acceleration energy of 40 keV and a dose of 4E15 cm ⁇ 2 .
- the side wall oxide films 24 allow further size down the wide of the stripe-shaped openings beyond the limitation of the photo-lithography technique.
- an anneal is carried out in a nitrogen atmosphere at a temperature of 950° C. for 20 minutes for activation of the arsenic ions to form impurity diffusion layers 28 s and 28 d.
- Those impurity diffusion layers serve as bit line and source line which arc common to a plurality of memory cells.
- the silicon oxide film 22 and he side wall oxide films 24 are removed, and then a gate oxide film 26 is formed.
- a photo-resist not illustrated and having openings only memory cell regions is formed before an ion-implantation of boron is carried out at an acceleration energy of 50 keV and a dose of 3E13 cm ⁇ 2 .
- a polysilicon is deposited and then the polysilicon is patterned to form floating gates 30 .
- Those floating gates 30 are used as masks for carrying out an ion-implantation of arsenic at an acceleration energy of 100 keV and a dose of 4E13 cm ⁇ 2 .
- a polysilicon film is deposited before patterning the same to form a control gate 32 . Further, an erasing gate not illustrated is formed to complete the another conventional flash memory.
- Boron ion-implantation was carried out to increase a surface resistance of the channel region. Further, arsenic ion-implantation into the portions not covered by the floating gates causes drop in resistance of the channel half region closer to the source side 28 s, so that the resistance of the channel region only under the floating gate is increased to cause a field concentration at this region for causing an efficient hot electron injection under the floating gate.
- the above ion-implantation. is carried out by using the floating gates as masks in self-alignment technique. This method is suitable for scaling down the memory device.
- the hot electron injection appears only at a drain side region closer to the drain region in the channel region under the floating gate electrode, for which reason even if the resistance of the entire to channel region under the floating gate is increased, the efficiency of data writing operation through the hot electron injection is not so increased.
- the channel resistance is increased and a read out current is decreased, whereby it is difficult to keep a sufficient margin between the data writing state and the data erasing state.
- the read out current is decreased, this means that it takes may time to discharge pre-charged bit line whereby the reading speed is reduced. Furthermore, a difference in read out current between a memory cell storing “1” and a memory cell storing “0” is made small, whereby in the memory device storing multiple values, an allowable range in reading out current responsive to individual value is made narrower, whereby an erroneous reading our operation and a leakage of charge accumulated in the floating gate may be caused, resulting in reduction in reliability of the memory device.
- the present invention provides a flash memory having a split gate structure and a virtual ground array structure, wherein a high impurity concentration region of a first conductivity type is provided in a drain adjacent region of a channel region under a floating gate electrode, and the high impurity concentration region has a highest impurity concentration in the channel region, and wherein a low impurity concentration region of a first conductivity type is provided in the channel region but at a part not covered by the floating gate.
- FIG. 1A is a fragmentary plane view illustrative of a first conventional split gate flash memory with the virtual ground array.
- FIG. 1B is a fragmentary cross sectional elevation view illustrative of a first conventional split gate flash memory with the virtual ground array taken along an A-A′ line of FIG. 1A.
- FIGS. 2A through 2E are fragmentary cross sectional elevation views illustrative of sequential steps of fabricating the conventional flash memory shown in FIGS. 1A and 1B.
- FIG. 3 is a fragmentary cross sectional elevation view illustrative of the flash memory structure, where the p+-type diffusion layers are extensively diffused in FIG. 1B.
- FIGS. 4A through 4G are fragmentary cross sectional elevation views illustrative of another conventional method of fabricating a flash memory which is suitable for scaling down requirement.
- FIG. 5 is a fragmentary plane view illustrative of a novel flash memory of a first embodiment in accordance with the present invention.
- FIG. 6 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along an A-A′ line of FIG. 5.
- FIG. 7 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along a B-B′ line of FIG. 5.
- FIGS. 8A through 8G are fragmentary cross sectional elevation views illustrative of a novel method of fabricating a novel flash memory shown in FIGS. 5, 6 and 7 .
- FIG. 9 is a diagram illustrative of variations in impurity concentration and field intensity over position in a channel length direction of the novel and conventional flash memory devices.
- the present invention provides a flash memory having a split gate structure and a virtual ground array structure, wherein a high impurity concentration region of a first conductivity type is provided in a drain in l adjacent region of a channel region under a floating gate electrode, and the high impurity concentration region has a highest impurity concentration in the channel region, and wherein a low impurity concentration region of a first conductivity type is provided in the channel region but at a part not covered by the floating gate.
- the channel region under the floating gate has a first conductivity type impurity concentration profile that the concentration is simply decreased from the highest impurity concentration toward a source side.
- the high impurity concentration region surrounds a second conductivity type impurity diffusion layer to separate the second conductivity type impurity diffusion layer from a substrate, except for a region in which the low impurity concentration region is formed.
- a field intensity has a sharp-pointed peak adjacent to he drain region.
- the present invention provides a method of forming a flash memory having a split gate structure and a virtual ground array structure, The method comprises the steps of: carrying out a first ion-implantation of a first conductivity type impurity by use of a fist mask having a first stripe-shaped opening with a center corresponding to a center line of a region for formation of an impurity diffusion layer for bit line or source line; carrying out a second ion-implantation of a second conductivity type impurity by use of a second mask having a second stripe-shaped opening with a center corresponding to the center line and the second opening being narrower than the first opening; forming a floating gate; and carrying out a third ion-implantation of a second conductivity type impurity by use of the floating gate as a mask.
- the second mask comprises the first mask and side wall oxide films on side walls of the first mask.
- the third present invention provides a method of forming a flash memory comprising the steps of: forming a silicon oxide film having a first stripe-shaped opening with a center corresponding to a centerline of a region for formation of an impurity diffusion layer for bit line or source line; carrying out a first ion-implantation process of a first conductivity type impurity into a semiconductor substrate surface by use of the silicon oxide film as a mask; forming side wall oxide films on side walls of the silicon oxide film; carrying out a second ion-implantation process of a second conductivity type impurity into the semiconductor substrate surface by use of the silicon oxide film and the side wall oxide films as a mask; carrying out an anneal to form a second conductivity type diffusion region i and a first conductivity type diffusion region surrounding the second conductivity type diffusion region; forming a floating gate; carrying out a third ion-implantation of a second conductivity type impurity by use of the floating gate as a mask.
- FIG. 5 is a fragmentary plane view illustrative of a novel flash memory of a first embodiment in accordance with the present invention.
- FIG. 6 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along an A-A′ line of FIG. 5.
- FIG. 7 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along a B-B′ line of FIG. 5.
- N-type impurity diffusion layers 5 d and 5 s are provided which extend over a surface of a p-type semiconductor substrate 1 in a first direction, The n-type impurity diffusion layers 5 d and 5 s are stripe-shaped.
- the n-type impurity diffusion layers 5 d and 5 s are used as a bit line and a source line respectively. Parts of the n-type impurity diffusion layers 5 d and 5 s are used as a drain and a source.
- the structure is a contact-less structure, wherein the bit line is used as both the source and drain, for which reason this structure is so called to as a virtual ground array structure.
- the impurity diffusion layer 5 s serves as a drain and a bit line.
- An impurity diffusion layer not illustrated and positioned in left side of the left floating gate 9 b serves as a source and a ground line or source line.
- the floating gate 9 a is not selected and thus the impurity diffusion layer 5 d has a ground potential.
- a floating gate 9 is provided on a gate insulation film 8 over a drain side half region of the channel region defined between the impurity diffusion layers 5 s and 5 d.
- a control gate 12 is provided on an insulator over the floating gates 9 .
- the channel region not covered by the floating gates are overlaid by the insulator over which the control gate 12 also extends, so as to allow the control gate 12 to control the channel region.
- This structure is so called to as a split gate structure.
- high impurity p+-type regions 6 are provided adjacent to the drain side impurity diffusion layer 5 d in the channel region under the floating gate.
- the high impurity p+-type regions 6 has a high impurity concentration, for which reason a channel resistance in this region is high.
- the high impurity p+-type regions 6 are selectively formed only adjacent to the drain so that a field concentration is caused adjacent to the drain, whereby a highly efficient hot electron injection is obtained and an efficient data write operation is improved.
- the high impurity p+-type region 6 extends in an adjacent channel region to the drain region 5 d. However, it is preferable for the fabrication process that the high impurity p+-type region 6 surrounds the drain region 5 d. The high impurity p+-type regions 6 extend along the impurity diffusion regions 5 and in the first direction.
- a low impurity concentration p-type region 10 is provided in the channel region but only a part not covered by the floating gate. Since the low impurity concentration p-type region 10 has a low impurity concentration, the low impurity concentration p-type region 10 reduces a channel resistance. As described above, the high impurity p+-type region 6 surrounds the drain region 5 d. The low impurity concentration p-type region 10 prevents the high impurity p+-type region 6 from reaching the channel region.
- the low impurity concentration p-type region 10 allows a better structure that the high impurity p+-type region 6 surrounds the drain region 5 d. It is sufficient that the low impurity concentration p-type region 10 extends in the channel region only.
- FIG. 7 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along a B-B′ line of FIG. 5.
- Field oxide films 14 are provided over a surface of the semiconductor substrate 1 .
- Strip-shaped erasing gates 13 are provided over the field oxide films 14 , so that the stripe-shaped erasing gates 13 extend in parallel to each other. Data erasing operation is carried out by drawing electrons from the top corner of the floating gate 9 .
- the silicon substrate is used as the semiconductor substrate 1 .
- Memory cells are formed either in the semiconductor substrate or in p-type or n-type well region in the semiconductor substrate.
- the floating gate and the control gate comprise polysilicon.
- Arsenic or antimony are preferable as being short diffusion distance.
- FIGS. 8A through 8G are fragmentary cross sectional elevation views illustrative of a novel method of fabricating a novel flash memory shown in FIGS. 5, 6 and 7 .
- field oxide legions not illustrated are formed on a p-type silicon substrate 1 before a silicon oxide layer 2 having a thickness of 300 nanometers is formed by a chemical vapor deposition method.
- a photo-lithography method and a subsequent dry etching method are used to form.
- stripe-shaped openings 3 in the silicon oxide layer 22 so that centers of the stripe-shaped openings 3 are aligned corresponding to centers of impurity diffusion layers serving as bit and source lines.
- An opening width may be set in the range of 0.18-0.5 micrometers and usually at 0.48 micrometers.
- an ion-implantation of boron is carried out at an acceleration energy of 50 keV and a dose of 3E13 cm ⁇ 2 .
- a silicon oxide film is deposited by a chemical vapor deposition for subsequent etch-back process to form side wall oxide films 4 on vertical walls of the stripe-shaped openings 3 .
- An opening width may be set in the range of 0.1-0.2 micrometers and usually at 0.4 micrometers.
- the silicon oxide layer 2 and the side wall oxide films 4 are used as a mask to carry out an ion-implantation of arsenic at an acceleration energy of 40 keV and a dose of 4E15 cm ⁇ 2 .
- the side wall A oxide films 4 allow further size down the wide of the stripe-shaped openings beyond the limitation of the photo-lithography technique.
- an anneal is carried out in a nitrogen atmosphere at a temperature of 950° C. for 20 minutes for activation of the arsenic ions to form impurity diffusion layers 5 and 6 . Thereafter, the silicon oxide film 22 and the side wall oxide films 24 are removed, and then a gate oxide film 8 is formed.
- a silicon layer is deposited by a chemical vapor deposition method which has a thickness of 250 nanometers. Thereafter the silicon layer is patterned to form floating gates 9 . Those floating gates 9 are used as masks for carrying out an ion-implantation of arsenic at an acceleration energy of 100 keV and a dose of 4E13 cm ⁇ 2 .
- an inter-layer insulator 1 is formed on the floating gate and then a polysilicon film having a thickness of 250 nanometers is deposited before patterning the same to form a control gate 12 . Further, an erasing gate 13 is formed to complete the another conventional flash memory.
- boron ion-implantation is carried out in an intermediate step of the mask formation for arsenic ion-implantation to form the impurity diffusion layers in the it line and the source line. Since the openings are provided on the bit i line region and the source line region only, it is unnecessary to cover the other regions than the memory cells by photo-resist when the boron ion-implantation is carried out. The photo-resist process can be omitted to improve the productivity.
- a thick silicon oxide film as described in the prior art may be formed on surfaces of the impurity diffusion layers. It is also possible to form the field oxide films 14 in an adequate process.
- FIG. 9 is a diagram illustrative of variations in impurity concentration and field intensity over position in a channel length direction of the novel and conventional flash memory devices.
- the impurity concentration is represented to be an effective impurity concentration defined between p-type and n-type impurity concentrations.
- the channel region is p-type.
- the level of the p-type impurity concentration of the channel region corresponds to the resistance of the channel region.
- the channel region is considered to be divide-d-into four regions (I), (II), (III), (IV). In the first and second regions (I), and (II), the impurity concentration is not constant.
- the impurity concentration of the first region (I) is higher than the impurity concentration of the second region (II).
- the first region (I) corresponds to the p+-type high impurity concentration region 6 .
- a flat portion of the second region (II) corresponds to the background impurity concentration. Depending upon condition, no flat portion may exist, but the second region (II) has the same impurity concentration as the substrate. Under the floating gate, the impurity concentration is simply decreased from the peak point in the first region (I) toward the source side.
- the third and fourth regions (II) and (IV) are not covered by the floating gate and thus correspond to the p-type low impurity concentration region 10 .
- the fourth region (IV) adjacent to the source has a higher impurity concentration than the third region (III). It is possible to reduce the impurity concentration of the fourth region (IV) but so as not to increase the resistance of the channel region.
- arsenic ion-implantation is carried out to reduce the n-type impurity concentration as the conventional one, but further reduction is also possible.
- the n-type impurity concentration is sufficiently reduced.
- the first and second regions (I) and (II) under the floating gate have the constant boron impurity concentration.
- the part not covered by the floating gate has reduced in p-type impurity concentration by the arsenic ion-implantation.
- the novel structure of the present invention has a sharp-pointed peak of the field distribution between the source and drain.
- the peak is adjacent to the drain and this the field concentration appears near the drain, whereby the efficient hot electron injection can be obtained.
- the highly efficient hot electron injection allows a reduction in i resistance of the channel region only by reducing a resistance of a part of the channel region. If the impurity concentration peak of the first region is made correspond to the conventional one, the impurity concentrations of the second, third and fourth regions (II), (III) and (IV) are further reduced, whereby not only the high field concentration but also the reduction in resistance of the channel region can be obtained.
- the reduction in resistance of the channel region causes a larger drain current under the same source-drain voltage application, for which reason it is possible to reduce the time necessary for discharging the pre-charged bit lines by the memory cells whereby a read out speed is increased. Furthermore, a difference in read out current between a memory cell storing “1” and a memory cell storing “0” is made larger, whereby in the memory device storing multiple values, an allowable range in reading out current responsive to individual value is made wider, whereby an accurate reading out operation and no leakage of charge accumulated in the floating gate may be caused, resulting in increase in reliability of the memory device.
Landscapes
- Non-Volatile Memory (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
- The present invention relates to a non-volatile semiconductor memory device, and more particularly to a split gate flash memory with a virtual ground array, wherein impurity diffusion layers are used as bit lines, and a method of fabricating the same.
- In Japanese laid-open patent publication No. 2-292870, one conventional structure of the split gate flash memory is disclosed, which will be described in detail with reference to FIGS. 1A and 1B. FIG. 1A is a fragmentary plane view illustrative of a first conventional split gate flash memory with the virtual ground array. FIG. 1B is a fragmentary cross sectional elevation view illustrative of a first conventional split gate flash memory with the virtual ground array taken along an A-A′ line of FIG. 1A.
-
Field oxide layers 125 are provided on a surface of asemiconductor substrate 111 so that thefield oxide layers 125 extend in parallel to each other and to a first direction. Under thefield oxide films 125, n-typeimpurity diffusion layers impurity diffusion layers diffusion layer 123 d forms a drain region. The burieddiffusion layer 123 s forms a source region. A channel region is defined between the burieddiffusion layer 123 d as the drain region and the burieddiffusion layer 123 s as the source region. A gate insulation film is provided, which extends over a half region of the channel region closer to the drain region. Afloating gate 115 is provided which extends on the gate insulation film so that thefloating gate 115 is positioned over the half region of the channel region and over a part of thefield oxide film 125. An insulation film is provided which extends over a sourceside half region 114 of the channel region and over thefloating gate 115. Acontrol gate 129 is provided which extends on the insulation film so that thecontrol gate 129 is positioned over thefloating gate electrode 115 and the sourceside half region 114. Thecontrol gate electrode 129 is stripe-shaped. Thecontrol gate electrode 129 is used as a word line. Data writing operation is made by injection of hot electrons into thefloating gate electrode 115. Data erasing operation is made by drawing electrons from thefloating gate electrode 115 by F-N tunnel current from thefloating gate electrode 115 to anerasing gate electrode 141. - In the above structure, boron doped
high impurity regions 127 are provided under a half of thedrain region 123 d and a half of the source region 123 c, so that edges of the boron dopedhigh impurity regions 127 are adjacent to the bottoms of the gate insulation film under thefloating gate electrode 115. The boron dopedhigh impurity regions 127 causes a source-drain electric field concentration in the boron dopedhigh impurity regions 127 in order to increase the efficiency of hot electron injection. - FIGS. 2A through 2E are fragmentary cross sectional elevation views illustrative of sequential steps of fabricating the conventional flash memory shown in FIGS. 1A and 1B.
- With reference to FIG. 2A, a
nitride layer 151 and a photo-resist mask 166 are formed over a surface of asemiconductor substrate 111 before boron is ion-implanted through stripe-shaped openings 154 into surface regions of thesemiconductor substrate 111 so as to form p+-type regions 161. - With reference to FIG. 2, after the photo-
resist mask 166 has been removed, thenitride layer 151 is used as a mask for carrying out an ion-implantation of arsenic through stripe-shaped openings 153 to form n+-type regions 157. - With reference to FIG. 2C,
field oxide films 125 are formed in theopenings 153, whereby concurrently diffusions and activation of impurities in the p+-type regions 161 and the n+-type regions 157 are caused thereby to form buried diffusion layers 123 as the n-type source and drain regions and p+-type diffusion regions 127 After thenitride layer 151 to is removed, then a surface of the substrate is subjected to an oxidation to form agate oxide film 117. - With reference to FIG. 2D, a polysilicon film is entirely deposited for subsequent patterning the polysilicon film to form a
floating gate 115 before an inter-layer insulator is then formed. - With reference to FIG. 2E, a polysilicon film is entirely deposited for subsequent patterning the polysilicon film to form a
control gate 129 and then further an erasing gate not illustrated is formed to complete the flash memory. - In accordance with the above structure of the flash memory, if a degree of integration of the memory is low, then the p+-
type region 127 is formed only under the floating gate side of the buried diffusion layer, thereby allowing an efficient hot electron injection. However, if the integration degree is increased and a scaling down of individual elements of the memory is required, then the width of the burieddiffusion layers type diffusion region 127 is likely to be diffused as compared to arsenic. For those reasons, p+-type diffusion regions may be formed under the other half side of the burieddiffusion layers - It is further required to use different masks for the boron ion-implantation and the arsenic ion-implantation whereby the number of the necessary steps are increased,
- FIGS. 4A through 4G are fragmentary cross sectional elevation views illustrative of another conventional method of fabricating a flash memory which is suitable for scaling down requirement.
- With reference to FIG. 4A, field oxide regions not illustrated are formed on a p-
type silicon substrate 21 before asilicon oxide layer 22 having a thickness of 300 nanometers is formed by a chemical vapor deposition method. - With reference to FIG. 4B, a photo-lithography method and a subsequent dry etching method are used to form stripe-
shaped openings 23 in thesilicon oxide layer 22. - With reference to FIG. 4C, a silicon oxide film is deposited by a chemical vapor deposition for subsequent etch-back process to form side
wall oxide films 24 on vertical walls of the stripe-shaped openings 23. Thesilicon oxide layer 22 and the sidewall oxide films 24 are used as a mask to carry out an ion-implantation of arsenic at an acceleration energy of 40 keV and a dose of 4E15 cm−2. The sidewall oxide films 24 allow further size down the wide of the stripe-shaped openings beyond the limitation of the photo-lithography technique. - With reference to FIG. 4D, an anneal is carried out in a nitrogen atmosphere at a temperature of 950° C. for 20 minutes for activation of the arsenic ions to form
impurity diffusion layers silicon oxide film 22 and he sidewall oxide films 24 are removed, and then agate oxide film 26 is formed. - With reference to FIG. 4E, a photo-resist not illustrated and having openings only memory cell regions is formed before an ion-implantation of boron is carried out at an acceleration energy of 50 keV and a dose of 3E13 cm−2.
- With reference to FIG. 4F, a polysilicon is deposited and then the polysilicon is patterned to form
floating gates 30. Those floatinggates 30 are used as masks for carrying out an ion-implantation of arsenic at an acceleration energy of 100 keV and a dose of 4E13 cm−2. - With reference to FIG. 4G, a polysilicon film is deposited before patterning the same to form a
control gate 32. Further, an erasing gate not illustrated is formed to complete the another conventional flash memory. - Boron ion-implantation was carried out to increase a surface resistance of the channel region. Further, arsenic ion-implantation into the portions not covered by the floating gates causes drop in resistance of the channel half region closer to the
source side 28 s, so that the resistance of the channel region only under the floating gate is increased to cause a field concentration at this region for causing an efficient hot electron injection under the floating gate. The above ion-implantation. is carried out by using the floating gates as masks in self-alignment technique. This method is suitable for scaling down the memory device. - Actually, however, the hot electron injection appears only at a drain side region closer to the drain region in the channel region under the floating gate electrode, for which reason even if the resistance of the entire to channel region under the floating gate is increased, the efficiency of data writing operation through the hot electron injection is not so increased. The channel resistance is increased and a read out current is decreased, whereby it is difficult to keep a sufficient margin between the data writing state and the data erasing state.
- Further, if the read out current is decreased, this means that it takes may time to discharge pre-charged bit line whereby the reading speed is reduced. Furthermore, a difference in read out current between a memory cell storing “1” and a memory cell storing “0” is made small, whereby in the memory device storing multiple values, an allowable range in reading out current responsive to individual value is made narrower, whereby an erroneous reading our operation and a leakage of charge accumulated in the floating gate may be caused, resulting in reduction in reliability of the memory device.
- In addition, in a region having a transistor for selecting memory cells, a high resistance of the channel region is not preferable, for which reason it is necessary to form a photo-resist film serving as a mask for preventing ion-implantation into other regions than the memory cells, for example, peripheral circuit regions. The fabrication processes are thus complicated.
- In the above circumstances, it had been required to develop a novel flash memory free from the above problem.
- Accordingly, it is an object of the present invention to provide a novel flash memory free from the above problems.
- It is a further object of the present invention to provide a novel flash memory suitable for scaling down the same.
- It is a still further object of the present invention to provide a novel flash memory suitable for high integration.
- It is yet a further object of the present invention to provide a novel flash memory capable of highly efficient data writing operation,
- It is further more object of the present invention to provide a novel flash memory superior in read out current characteristic,
- It is moreover object of the present invention to provide a novel method of forming a flash memory with reduced number of photo-resist processes.
- It is an additional object of the present invention to provide a novel method of forming a flash memory with a high productivity.
- The present invention provides a flash memory having a split gate structure and a virtual ground array structure, wherein a high impurity concentration region of a first conductivity type is provided in a drain adjacent region of a channel region under a floating gate electrode, and the high impurity concentration region has a highest impurity concentration in the channel region, and wherein a low impurity concentration region of a first conductivity type is provided in the channel region but at a part not covered by the floating gate.
- The above and other objects, features and advantages of the present invention will be apparent from the following descriptions,
- Preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings.
- FIG. 1A is a fragmentary plane view illustrative of a first conventional split gate flash memory with the virtual ground array.
- FIG. 1B is a fragmentary cross sectional elevation view illustrative of a first conventional split gate flash memory with the virtual ground array taken along an A-A′ line of FIG. 1A.
- FIGS. 2A through 2E are fragmentary cross sectional elevation views illustrative of sequential steps of fabricating the conventional flash memory shown in FIGS. 1A and 1B.
- FIG. 3 is a fragmentary cross sectional elevation view illustrative of the flash memory structure, where the p+-type diffusion layers are extensively diffused in FIG. 1B.
- FIGS. 4A through 4G are fragmentary cross sectional elevation views illustrative of another conventional method of fabricating a flash memory which is suitable for scaling down requirement.
- FIG. 5 is a fragmentary plane view illustrative of a novel flash memory of a first embodiment in accordance with the present invention.
- FIG. 6 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along an A-A′ line of FIG. 5.
- FIG. 7 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along a B-B′ line of FIG. 5.
- FIGS. 8A through 8G are fragmentary cross sectional elevation views illustrative of a novel method of fabricating a novel flash memory shown in FIGS. 5, 6 and7.
- FIG. 9 is a diagram illustrative of variations in impurity concentration and field intensity over position in a channel length direction of the novel and conventional flash memory devices.
- The present invention provides a flash memory having a split gate structure and a virtual ground array structure, wherein a high impurity concentration region of a first conductivity type is provided in a drain in l adjacent region of a channel region under a floating gate electrode, and the high impurity concentration region has a highest impurity concentration in the channel region, and wherein a low impurity concentration region of a first conductivity type is provided in the channel region but at a part not covered by the floating gate.
- It is preferable that the channel region under the floating gate has a first conductivity type impurity concentration profile that the concentration is simply decreased from the highest impurity concentration toward a source side.
- It is also preferable that the high impurity concentration region surrounds a second conductivity type impurity diffusion layer to separate the second conductivity type impurity diffusion layer from a substrate, except for a region in which the low impurity concentration region is formed.
- It is also preferable that a field intensity has a sharp-pointed peak adjacent to he drain region.
- The present invention provides a method of forming a flash memory having a split gate structure and a virtual ground array structure, The method comprises the steps of: carrying out a first ion-implantation of a first conductivity type impurity by use of a fist mask having a first stripe-shaped opening with a center corresponding to a center line of a region for formation of an impurity diffusion layer for bit line or source line; carrying out a second ion-implantation of a second conductivity type impurity by use of a second mask having a second stripe-shaped opening with a center corresponding to the center line and the second opening being narrower than the first opening; forming a floating gate; and carrying out a third ion-implantation of a second conductivity type impurity by use of the floating gate as a mask.
- It is preferable that the second mask comprises the first mask and side wall oxide films on side walls of the first mask.
- The third present invention provides a method of forming a flash memory comprising the steps of: forming a silicon oxide film having a first stripe-shaped opening with a center corresponding to a centerline of a region for formation of an impurity diffusion layer for bit line or source line; carrying out a first ion-implantation process of a first conductivity type impurity into a semiconductor substrate surface by use of the silicon oxide film as a mask; forming side wall oxide films on side walls of the silicon oxide film; carrying out a second ion-implantation process of a second conductivity type impurity into the semiconductor substrate surface by use of the silicon oxide film and the side wall oxide films as a mask; carrying out an anneal to form a second conductivity type diffusion region i and a first conductivity type diffusion region surrounding the second conductivity type diffusion region; forming a floating gate; carrying out a third ion-implantation of a second conductivity type impurity by use of the floating gate as a mask.
- A first embodiment according to the present invention will be described in detail with reference to the drawings. FIG. 5 is a fragmentary plane view illustrative of a novel flash memory of a first embodiment in accordance with the present invention. FIG. 6 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along an A-A′ line of FIG. 5. FIG. 7 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along a B-B′ line of FIG. 5. N-type impurity diffusion layers5 d and 5 s are provided which extend over a surface of a p-
type semiconductor substrate 1 in a first direction, The n-type impurity diffusion layers 5 d and 5 s are stripe-shaped. The n-type impurity diffusion layers 5 d and 5 s are used as a bit line and a source line respectively. Parts of the n-type impurity diffusion layers 5 d and 5 s are used as a drain and a source. The structure is a contact-less structure, wherein the bit line is used as both the source and drain, for which reason this structure is so called to as a virtual ground array structure. - In FIG. 6, if a left floating
gate 9 b is selected, then theimpurity diffusion layer 5 s serves as a drain and a bit line. An impurity diffusion layer not illustrated and positioned in left side of the left floatinggate 9 b serves as a source and a ground line or source line. The floatinggate 9 a is not selected and thus theimpurity diffusion layer 5 d has a ground potential. A floatinggate 9 is provided on agate insulation film 8 over a drain side half region of the channel region defined between the impurity diffusion layers 5 s and 5 d. Acontrol gate 12 is provided on an insulator over the floatinggates 9. The channel region not covered by the floating gates are overlaid by the insulator over which thecontrol gate 12 also extends, so as to allow thecontrol gate 12 to control the channel region. This structure is so called to as a split gate structure. - In accordance with the present invention, high impurity p+-
type regions 6 are provided adjacent to the drain sideimpurity diffusion layer 5 d in the channel region under the floating gate. The high impurity p+-type regions 6 has a high impurity concentration, for which reason a channel resistance in this region is high. The high impurity p+-type regions 6 are selectively formed only adjacent to the drain so that a field concentration is caused adjacent to the drain, whereby a highly efficient hot electron injection is obtained and an efficient data write operation is improved. - It is sufficient that the high impurity p+-
type region 6 extends in an adjacent channel region to thedrain region 5 d. However, it is preferable for the fabrication process that the high impurity p+-type region 6 surrounds thedrain region 5 d. The high impurity p+-type regions 6 extend along theimpurity diffusion regions 5 and in the first direction. - A low impurity concentration p-
type region 10 is provided in the channel region but only a part not covered by the floating gate. Since the low impurity concentration p-type region 10 has a low impurity concentration, the low impurity concentration p-type region 10 reduces a channel resistance. As described above, the high impurity p+-type region 6 surrounds thedrain region 5 d. The low impurity concentration p-type region 10 prevents the high impurity p+-type region 6 from reaching the channel region. - The low impurity concentration p-
type region 10 allows a better structure that the high impurity p+-type region 6 surrounds thedrain region 5 d. It is sufficient that the low impurity concentration p-type region 10 extends in the channel region only. - FIG. 7 is a fragmentary cross sectional elevation view illustrative of a novel flash memory taken along a B-B′ line of FIG. 5.
Field oxide films 14 are provided over a surface of thesemiconductor substrate 1. Strip-shaped erasinggates 13 are provided over thefield oxide films 14, so that the stripe-shaped erasinggates 13 extend in parallel to each other. Data erasing operation is carried out by drawing electrons from the top corner of the floatinggate 9. - It is preferable that the silicon substrate is used as the
semiconductor substrate 1. Memory cells are formed either in the semiconductor substrate or in p-type or n-type well region in the semiconductor substrate. - It is also preferable that the floating gate and the control gate comprise polysilicon.
- Arsenic or antimony are preferable as being short diffusion distance.
- There is no limit to methods of drawing electrons from the floating gate of the present flash memory.
- FIGS. 8A through 8G are fragmentary cross sectional elevation views illustrative of a novel method of fabricating a novel flash memory shown in FIGS. 5, 6 and7.
- With reference to FIG. 8A, field oxide legions not illustrated are formed on a p-
type silicon substrate 1 before asilicon oxide layer 2 having a thickness of 300 nanometers is formed by a chemical vapor deposition method. - With reference to FIG. 8B, a photo-lithography method and a subsequent dry etching method are used to form. stripe-shaped
openings 3 in thesilicon oxide layer 22, so that centers of the stripe-shapedopenings 3 are aligned corresponding to centers of impurity diffusion layers serving as bit and source lines. An opening width may be set in the range of 0.18-0.5 micrometers and usually at 0.48 micrometers. - With reference to FIG. 8C, an ion-implantation of boron is carried out at an acceleration energy of 50 keV and a dose of 3E13 cm−2.
- With reference to FIG. 8D, a silicon oxide film is deposited by a chemical vapor deposition for subsequent etch-back process to form side
wall oxide films 4 on vertical walls of the stripe-shapedopenings 3. An opening width may be set in the range of 0.1-0.2 micrometers and usually at 0.4 micrometers, Thesilicon oxide layer 2 and the sidewall oxide films 4 are used as a mask to carry out an ion-implantation of arsenic at an acceleration energy of 40 keV and a dose of 4E15 cm−2. The side wallA oxide films 4 allow further size down the wide of the stripe-shaped openings beyond the limitation of the photo-lithography technique. - With reference to FIG. 8E, an anneal is carried out in a nitrogen atmosphere at a temperature of 950° C. for 20 minutes for activation of the arsenic ions to form impurity diffusion layers5 and 6. Thereafter, the
silicon oxide film 22 and the sidewall oxide films 24 are removed, and then agate oxide film 8 is formed. - With reference to FIG. 8F, a silicon layer is deposited by a chemical vapor deposition method which has a thickness of 250 nanometers. Thereafter the silicon layer is patterned to form floating
gates 9. Those floatinggates 9 are used as masks for carrying out an ion-implantation of arsenic at an acceleration energy of 100 keV and a dose of 4E13 cm−2. - With reference to FIG. 8G, an
inter-layer insulator 1 is formed on the floating gate and then a polysilicon film having a thickness of 250 nanometers is deposited before patterning the same to form acontrol gate 12. Further, an erasinggate 13 is formed to complete the another conventional flash memory. - In accordance with the above novel fabrication method, boron ion-implantation is carried out in an intermediate step of the mask formation for arsenic ion-implantation to form the impurity diffusion layers in the it line and the source line. Since the openings are provided on the bit i line region and the source line region only, it is unnecessary to cover the other regions than the memory cells by photo-resist when the boron ion-implantation is carried out. The photo-resist process can be omitted to improve the productivity.
- It is possible that a thick silicon oxide film as described in the prior art may be formed on surfaces of the impurity diffusion layers. It is also possible to form the
field oxide films 14 in an adequate process. - FIG. 9 is a diagram illustrative of variations in impurity concentration and field intensity over position in a channel length direction of the novel and conventional flash memory devices. The impurity concentration is represented to be an effective impurity concentration defined between p-type and n-type impurity concentrations. In this example, the channel region is p-type. The level of the p-type impurity concentration of the channel region corresponds to the resistance of the channel region. In view of the impurity concentration profile of the present invention, the channel region is considered to be divide-d-into four regions (I), (II), (III), (IV). In the first and second regions (I), and (II), the impurity concentration is not constant. The impurity concentration of the first region (I) is higher than the impurity concentration of the second region (II). The first region (I) corresponds to the p+-type high
impurity concentration region 6. A flat portion of the second region (II) corresponds to the background impurity concentration. Depending upon condition, no flat portion may exist, but the second region (II) has the same impurity concentration as the substrate. Under the floating gate, the impurity concentration is simply decreased from the peak point in the first region (I) toward the source side. - The third and fourth regions (II) and (IV) are not covered by the floating gate and thus correspond to the p-type low
impurity concentration region 10. The fourth region (IV) adjacent to the source has a higher impurity concentration than the third region (III). It is possible to reduce the impurity concentration of the fourth region (IV) but so as not to increase the resistance of the channel region. In this example, arsenic ion-implantation is carried out to reduce the n-type impurity concentration as the conventional one, but further reduction is also possible. In the third region (III), the n-type impurity concentration is sufficiently reduced. - By contrast to the novel structure, in accordance with the conventional structure, the first and second regions (I) and (II) under the floating gate have the constant boron impurity concentration. On the other hand, the part not covered by the floating gate has reduced in p-type impurity concentration by the arsenic ion-implantation.
- The novel structure of the present invention has a sharp-pointed peak of the field distribution between the source and drain. The peak is adjacent to the drain and this the field concentration appears near the drain, whereby the efficient hot electron injection can be obtained.
- The highly efficient hot electron injection allows a reduction in i resistance of the channel region only by reducing a resistance of a part of the channel region. If the impurity concentration peak of the first region is made correspond to the conventional one, the impurity concentrations of the second, third and fourth regions (II), (III) and (IV) are further reduced, whereby not only the high field concentration but also the reduction in resistance of the channel region can be obtained.
- Further, the reduction in resistance of the channel region causes a larger drain current under the same source-drain voltage application, for which reason it is possible to reduce the time necessary for discharging the pre-charged bit lines by the memory cells whereby a read out speed is increased. Furthermore, a difference in read out current between a memory cell storing “1” and a memory cell storing “0” is made larger, whereby in the memory device storing multiple values, an allowable range in reading out current responsive to individual value is made wider, whereby an accurate reading out operation and no leakage of charge accumulated in the floating gate may be caused, resulting in increase in reliability of the memory device.
- Whereas modifications of the present invention will be apparent to a person having ordinary skill in the art, to which the invention pertains, it is to be understood that embodiments as shown and described by way of illustrations are by no means intended to be considered in a limiting sense. Accordingly, it is to be intended to cover by claims all modifications which fall within the spirit and scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/029,275 US6436769B1 (en) | 1998-10-08 | 2001-12-28 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28676998A JP3241330B2 (en) | 1998-10-08 | 1998-10-08 | Flash memory and manufacturing method thereof |
JP10-286769 | 1998-10-08 | ||
US09/414,605 US6359303B1 (en) | 1998-10-08 | 1999-10-08 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
US10/029,275 US6436769B1 (en) | 1998-10-08 | 2001-12-28 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/414,605 Division US6359303B1 (en) | 1998-10-08 | 1999-10-08 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020055229A1 true US20020055229A1 (en) | 2002-05-09 |
US6436769B1 US6436769B1 (en) | 2002-08-20 |
Family
ID=17708819
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/414,605 Expired - Lifetime US6359303B1 (en) | 1998-10-08 | 1999-10-08 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
US10/029,275 Expired - Fee Related US6436769B1 (en) | 1998-10-08 | 2001-12-28 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/414,605 Expired - Lifetime US6359303B1 (en) | 1998-10-08 | 1999-10-08 | Split gate flash memory with virtual ground array structure and method of fabricating the same |
Country Status (3)
Country | Link |
---|---|
US (2) | US6359303B1 (en) |
JP (1) | JP3241330B2 (en) |
KR (1) | KR100332170B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100172176A1 (en) * | 2009-01-07 | 2010-07-08 | Michael Bernhard Sommer | Semiconductor Device, a Method of Using a Semiconductor Device, a Programmable Memory Device, and Method of Producing a Semiconductor Device |
WO2020037241A1 (en) * | 2018-08-17 | 2020-02-20 | The Regents Of The University Of California | Field-effect bipolar transistor |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4637397B2 (en) * | 2001-04-16 | 2011-02-23 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
US20030047766A1 (en) * | 2001-08-30 | 2003-03-13 | Winbond Electronics Corporation | Split gate flash memory cell structure and method of manufacturing the same |
US7906418B2 (en) * | 2003-12-03 | 2011-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having substantially planar contacts and body |
US7153744B2 (en) * | 2003-12-03 | 2006-12-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming self-aligned poly for embedded flash |
US7327607B2 (en) * | 2004-09-09 | 2008-02-05 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory cells in a series arrangement |
US7345920B2 (en) | 2004-09-09 | 2008-03-18 | Macronix International Co., Ltd. | Method and apparatus for sensing in charge trapping non-volatile memory |
US7307888B2 (en) * | 2004-09-09 | 2007-12-11 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory in a parallel arrangement |
US7170785B2 (en) * | 2004-09-09 | 2007-01-30 | Macronix International Co., Ltd. | Method and apparatus for operating a string of charge trapping memory cells |
US7327611B2 (en) * | 2004-09-09 | 2008-02-05 | Macronix International Co., Ltd. | Method and apparatus for operating charge trapping nonvolatile memory |
US7324376B2 (en) * | 2004-09-09 | 2008-01-29 | Macronix International Co., Ltd. | Method and apparatus for operating nonvolatile memory cells in a series arrangement |
US7269062B2 (en) * | 2005-12-09 | 2007-09-11 | Macronix International Co., Ltd. | Gated diode nonvolatile memory cell |
US7272038B2 (en) * | 2005-12-09 | 2007-09-18 | Macronix International Co., Ltd. | Method for operating gated diode nonvolatile memory cell |
US7283389B2 (en) * | 2005-12-09 | 2007-10-16 | Macronix International Co., Ltd. | Gated diode nonvolatile memory cell array |
US7888707B2 (en) * | 2005-12-09 | 2011-02-15 | Macronix International Co., Ltd. | Gated diode nonvolatile memory process |
US7491599B2 (en) * | 2005-12-09 | 2009-02-17 | Macronix International Co., Ltd. | Gated diode nonvolatile memory process |
JP2009081202A (en) | 2007-09-25 | 2009-04-16 | Toshiba Corp | Semiconductor memory device and manufacturing method thereof |
US7995384B2 (en) * | 2008-08-15 | 2011-08-09 | Macronix International Co., Ltd. | Electrically isolated gated diode nonvolatile memory |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5042009A (en) * | 1988-12-09 | 1991-08-20 | Waferscale Integration, Inc. | Method for programming a floating gate memory device |
US5712180A (en) * | 1992-01-14 | 1998-01-27 | Sundisk Corporation | EEPROM with split gate source side injection |
EP0855101B1 (en) * | 1996-08-09 | 2005-09-07 | Koninklijke Philips Electronics N.V. | An amplifier and a method for detecting the presence of a load |
JP2924833B2 (en) * | 1996-12-13 | 1999-07-26 | 日本電気株式会社 | Nonvolatile semiconductor memory device and method of manufacturing the same |
-
1998
- 1998-10-08 JP JP28676998A patent/JP3241330B2/en not_active Expired - Fee Related
-
1999
- 1999-10-08 US US09/414,605 patent/US6359303B1/en not_active Expired - Lifetime
- 1999-10-08 KR KR1019990043331A patent/KR100332170B1/en not_active Expired - Fee Related
-
2001
- 2001-12-28 US US10/029,275 patent/US6436769B1/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100172176A1 (en) * | 2009-01-07 | 2010-07-08 | Michael Bernhard Sommer | Semiconductor Device, a Method of Using a Semiconductor Device, a Programmable Memory Device, and Method of Producing a Semiconductor Device |
US7961514B2 (en) * | 2009-01-07 | 2011-06-14 | Infineon Technologies Ag | Semiconductor device, a method of using a semiconductor device, a programmable memory device, and method of producing a semiconductor device |
WO2020037241A1 (en) * | 2018-08-17 | 2020-02-20 | The Regents Of The University Of California | Field-effect bipolar transistor |
Also Published As
Publication number | Publication date |
---|---|
KR100332170B1 (en) | 2002-04-10 |
JP2000114404A (en) | 2000-04-21 |
KR20000028912A (en) | 2000-05-25 |
US6436769B1 (en) | 2002-08-20 |
JP3241330B2 (en) | 2001-12-25 |
US6359303B1 (en) | 2002-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6197639B1 (en) | Method for manufacturing NOR-type flash memory device | |
US6642586B2 (en) | Semiconductor memory capable of being driven at low voltage and its manufacture method | |
US6359303B1 (en) | Split gate flash memory with virtual ground array structure and method of fabricating the same | |
US8288813B2 (en) | Integrated memory device having columns having multiple bit lines | |
US6734065B2 (en) | Method of forming a non-volatile memory device having a metal-oxide-nitride-oxide-semiconductor gate structure | |
KR100400528B1 (en) | Memory cell arrangement and method for its production | |
US7737508B2 (en) | Non-volatile semiconductor memory device and method of manufacturing the same | |
JP2978477B1 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
US6774430B2 (en) | Non-volatile semiconductor memory device having gate insulating film with thick end sections | |
US6368916B1 (en) | Method for fabricating nonvolatile semiconductor memory device | |
US5300804A (en) | Mask ROM device having highly integrated memory cell structure | |
US5960283A (en) | Nonvolatile semiconductor memory device and method of fabrication of the same | |
USRE37959E1 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
EP0609829A2 (en) | A non-volatile semiconductor memory device and a method for fabricating the same | |
JP4354596B2 (en) | Semiconductor memory device manufacturing method and semiconductor memory device | |
KR0183484B1 (en) | Nonvolatile Semiconductor Device with Sidewall Dividing Gate as Compensation for Over-Operation Operation | |
JP3075192B2 (en) | Method for manufacturing semiconductor device | |
US7271059B2 (en) | Semiconductor device and method of fabricating the same | |
US6150700A (en) | Advanced nor-type mask ROM | |
JP3093575B2 (en) | Semiconductor device and manufacturing method thereof | |
EP0021776B1 (en) | Semiconductor memory device and method of making same | |
JP3821611B2 (en) | Manufacturing method of semiconductor device | |
JP2882389B2 (en) | Nonvolatile semiconductor memory device and method of manufacturing the same | |
US6559010B1 (en) | Method for forming embedded non-volatile memory | |
JPH08186183A (en) | Non-volatile semiconductor memory device and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: NEC ELECTRONICS CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:013774/0295 Effective date: 20021101 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NEC ELECTRONICS CORPORATION;REEL/FRAME:025486/0592 Effective date: 20100401 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140820 |