+

US20020053745A1 - Method of making chip scale package - Google Patents

Method of making chip scale package Download PDF

Info

Publication number
US20020053745A1
US20020053745A1 US10/024,007 US2400701A US2002053745A1 US 20020053745 A1 US20020053745 A1 US 20020053745A1 US 2400701 A US2400701 A US 2400701A US 2002053745 A1 US2002053745 A1 US 2002053745A1
Authority
US
United States
Prior art keywords
chip
metal plate
flip
metal
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/024,007
Inventor
Chun Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Semiconductor Engineering Inc
Original Assignee
Advanced Semiconductor Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Engineering Inc filed Critical Advanced Semiconductor Engineering Inc
Priority to US10/024,007 priority Critical patent/US20020053745A1/en
Assigned to ADVANCED SEMICONDUCTOR ENGINEERING, INC. reassignment ADVANCED SEMICONDUCTOR ENGINEERING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, CHUN HUNG
Publication of US20020053745A1 publication Critical patent/US20020053745A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05008Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body, e.g.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05022Disposition the internal layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05184Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05569Disposition the external layer being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Definitions

  • This invention relates to a method of making chip scale package, and more specifically to a method of making a molded chip scale package with a flip-chip configuration.
  • CSP chip scale packages
  • TSOP thin small outline package
  • a CSP is 20 percent larger than the chip itself.
  • the most obvious advantage of CSP is the size of the package; that is, the package is slightly larger than the chip.
  • Another advantage of CSP is that the package facilitates test and bum-in before assembly as an alternative to known good die (KGD) testing.
  • CSP can combine many of the benefits of surface mount technology (SMT), such as standardization, encapsulation, surface mount, and reworkability, with the benefits of flip chip technology, such as low inductance, high I/O count, and direct thermal path.
  • SMT surface mount technology
  • flip chip technology such as low inductance, high I/O count, and direct thermal path.
  • CSP has at least one disadvantage compared to conventional BGA and TSOP, namely, high cost per unit.
  • this problem could be eliminated if chip-sized packages could be mass produced more easily. Therefore, there is a need in the semiconductor packaging industry for CSP using mass production techniques at the wafer-level, as is illustrated in U.S. Pat. No. 5,323,051, U.S. Pat. No. 5,925,936 and U.S. Pat. No. 6,004,867.
  • the IC chip 10 has a plurality of rerouted under bump metallurgy (UBM) 12 electrically connected to bonding pads on its active surface.
  • UBM under bump metallurgy
  • copper lands 22 and inner solder bumps 24 are formed on a base frame 20 made of ferroalloy.
  • the copper lands 22 are formed by plating and the inner solder bumps 24 are formed onto the copper lands 22 by stencil printing.
  • the chip 10 is attached onto the inner solder bumps 24 of the base frame 20 , using flip chip bonding technology.
  • the bonded chip 10 and portions of the frame 20 are encapsulated with a package body 30 by a molding process identical to that used in conventional molding of IC packages.
  • the base frame 20 is separated from the encapsulated chip 10 in a way that transfers the copper lands 22 and the inner solder bumps 24 from the base frame 20 to the chip 10 .
  • solder balls 40 are attached to the exposed surfaces of the transferred copper lands 22 .
  • FIG. 5 shows in greater detail the chip 10 with an external solder ball 40 .
  • the chip 10 has a bonding pad 12 formed on its active surface.
  • the bonding pad 12 and the external solder ball 40 are connected through wiring conductor pattern 50 , UBM 12 , inner solder bump 24 and transferred copper land 22 .
  • the package body 30 is capable of providing stress relief in the solder joints due to CTE mismatch between chip and substrate.
  • the CSP shown in FIGS. 4 has advantages of compact package size, good electrical performance, and high reliability. However, as can be appreciated from the above prior art processes, the method of making CSP 100 is rather complex and costly.
  • the method of making a chip scale package in accordance with the present invention comprising the following steps: (a) providing a semiconductor chip having a plurality of metal bumps formed on the active surface thereof; (b) providing a metal plate having a plurality of flip-chip pads formed on a surface thereof; (c) positioning the semiconductor chip on the surface of the metal plate with the metal bumps on the chip aligned with the flip-chip pads on the metal plate; (d) connecting the metal bumps on the active surface of the semiconductor chip to the flip-chip pads on the surface of the metal plate; (e) encapsulating the semiconductor chip against a portion of the surface of the metal plate; (f) removing the metal plate while leaving the flip-chip pads intact; and (g) forming a plurality of solder balls on the flip-chip pads.
  • FIGS. 1 - 4 illustrate a conventional method of making a molded chip scale package (CSP);
  • FIG. 5 is a detailed cross sectional view of the CSP shown in FIG. 4.
  • FIGS. 6 - 10 show a method of making a molded CSP according to a preferred embodiment of the present invention.
  • FIGS. 6 - 10 disclose a method of making a molded CSP according to a preferred embodiment of the present invention.
  • FIG. 6 shows a semiconductor chip 110 having a plurality of metal bumps 112 formed on the active surface thereof and a metal plate 120 having a plurality of flip-chip pads 122 formed on a surface thereof.
  • Flip-chip bumping technology typically comprises (a) forming an under bump metallurgy (UBM) on bonding pads of the chip, and (b) forming metal bumps on the UBM.
  • UBM is consisted of three metal layers, including: (a) adhesion layer (formed of Ti, Cr or TiW) for purposes of providing a good adhesion to Al pad and passivation layer; (b) wetting layer (formed of Ni, Cu, Mo or Pt) wherein that kind of metals provide a higher wetting power to solder thereby allowing for proper wetting of solder during solder-reflow process; (c) protective layer formed of Au for purposes of preventing oxidation of the wetting layer thereby maintaining good wetting ability of the wetting layer to solder.
  • UBM 34 Conventional ways to form a multi-layer under bump metallurgy (UBM) 34 mainly comprises chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), or physical vapor deposition (PVD) (sputtering or evaporation).
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • PVD physical vapor deposition
  • metal compositions used to form the metal bump. They includes (a) high melting point solder alloys such as 5Sn/95Pb or 3Sn/97Pb and (b) lower melting point solder alloys such as 63Sn/37Pb or 40Sn/60Pb.
  • the metal bumps 112 of the present invention are preferably formed of the high melting point solder alloys. Bumping process is typically accomplished by vapor deposition, electroplating or printing.
  • the concepts of the technique comprise forming the UBM by electroless nickel/copper plating and then flip-chip bumping by printing. It could be understood that the UBM may be directly formed on the bonding pad of the chip, and then the metal bumps are formed on the UBM. Alternatively, when a single- or multi-layer metallization is employed to route the center or peripheral chip bonding pads to the desired package I/O pattern, the UBM is formed on the new I/O pattern, and then the metal bumps are formed on the UBM.
  • the metal plate 120 of the present invention may be formed from the following steps. Firstly, a solder mask 124 such as photoimagable solder mask or dry film solder mask is applied over the surface of the metal plate 120 , then imaged and developed. Preferably, the solder mask 124 is formed with a thickness of about 4 to 6 mils. A photomask is used to image only certain area of the solder mask 124 which, when developed, are removed to leave predetermined areas exposed. Secondly, by using conventional plating techniques, a metal coating is formed on the exposed areas on the metal plate 120 thereby forming a plurality of flip-chip pads 122 on the surface of the metal plate 120 . Preferably, the metal plate 120 is made of copper, and the metal coating is formed from gold (or palladium).
  • a solder mask 124 such as photoimagable solder mask or dry film solder mask is applied over the surface of the metal plate 120 , then imaged and developed.
  • the solder mask 124 is formed with a thickness of about 4 to 6 mil
  • the semiconductor chips 110 are positioned on the surface of the metal plate 120 with the metal bumps 112 on the chip 110 aligned with the flip-chip pads 122 on the metal plate 120 .
  • both the chip 110 and the metal plate 120 undergo a thermal operation to reflow the metal bumps 112 to the flip-chip pads 122 on the metal plate 120 .
  • the solder mask 124 helps to prevent the bridging of fine-pitch solder bumps 112 .
  • both physical and electrical connection is made between the semiconductor chip 110 and the metal plate 120 .
  • a common method for solder reflowing is to put the object in a hot-air furnace or in an infrared heating reflow furnace.
  • the semiconductor chips 110 and portions of metal plate 120 are encapsulated in package bodies 130 by a molding process identical to that used in conventional molding of IC packages. This is accomplished by placing the semiconductor chip 110 in a mold having cavities and thereafter pouring molding compound into the mold to fill the mold cavities.
  • a separation step is performed to remove the metal plate 120 .
  • the separation step typically comprises selectively etching the metal plate 120 with the flip-chip pads 124 remaining intact by an etching agent.
  • the solder balls 140 can be formed on the exposed lower surfaces of flip-chip pads 122 by solder ball placing technique or stencil printing process.
  • the solder balls 140 act as external I/O electrodes of the chip scale package in accordance with the present invention.
  • the package body 130 is capable of providing stress relief in the solder joints due to CTE mismatch between chip and substrate.
  • the metal bumps 112 of the chip 110 are connected to the external solder balls 140 through the flip-chip pads 122 . It should be understood that the metal bumps 122 may be directly disposed on the bonding pads of the chip 110 (as shown in FIG. 10) through an under bump metallurgy (UBM). Alternatively, the metal bumps 122 may be connected to the center or peripheral chip bonding pads on a chip through a single- or multi-layer metallization (not shown).
  • UBM under bump metallurgy
  • the method of making a chip scale package of the present invention allows the manufacture of a molded chip scale package to be relatively simplified and economical, yet highly reliable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

A method of making a chip scale package comprises the following steps: providing a semiconductor chip having a plurality of metal bumps formed on the active surface thereof; providing a metal plate having a plurality of flip-chip pads formed on a surface thereof; positioning the semiconductor chip on the surface of the metal plate with the metal bumps on the chip aligned with the flip-chip pads on the metal plate; connecting the metal bumps on the active surface of the semiconductor chip to the flip-chip pads on the surface of the metal plate; encapsulating the semiconductor chip against a portion of the surface of the metal plate; removing the metal plate while leaving the flip-chip pads intact; and forming a plurality of solder balls on the flip-chip pads. Using the technique of the present invention, it becomes possible that the manufacture of a molded chip scale package can be relatively simplified and economical, yet highly reliable.

Description

    BACKROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • This invention relates to a method of making chip scale package, and more specifically to a method of making a molded chip scale package with a flip-chip configuration. [0002]
  • 2. Description of the Related Art [0003]
  • As electronic devices have become more smaller and thinner, the velocity and the complexity of IC chip become more and more higher. Accordingly, a need has arisen for higher package efficiency. Demand for miniaturization is the primary catalyst driving the usage of advanced packages such as chip scale packages (CSP) and flip chips. Both of them greatly reduce the amount of board real estate required when compared to the alternative ball grid array (BGA) and thin small outline package (TSOP). Typically, a CSP is 20 percent larger than the chip itself. The most obvious advantage of CSP is the size of the package; that is, the package is slightly larger than the chip. Another advantage of CSP is that the package facilitates test and bum-in before assembly as an alternative to known good die (KGD) testing. In addition, CSP can combine many of the benefits of surface mount technology (SMT), such as standardization, encapsulation, surface mount, and reworkability, with the benefits of flip chip technology, such as low inductance, high I/O count, and direct thermal path. [0004]
  • However, CSP has at least one disadvantage compared to conventional BGA and TSOP, namely, high cost per unit. However, this problem could be eliminated if chip-sized packages could be mass produced more easily. Therefore, there is a need in the semiconductor packaging industry for CSP using mass production techniques at the wafer-level, as is illustrated in U.S. Pat. No. 5,323,051, U.S. Pat. No. 5,925,936 and U.S. Pat. No. 6,004,867. [0005]
  • Disclosed in the technical article by Baba et al. titled, “Molded Chip Scale Package for High Pin Count,” Proceedings of the 46th ECTC, Orlando, Fla., 1996, pp. 1251-1257, is a process for making a CSP [0006] 100 (see FIG. 4) which is shown in greater detail in FIG. 5. As shown in FIG. 1, the IC chip 10 has a plurality of rerouted under bump metallurgy (UBM) 12 electrically connected to bonding pads on its active surface. First, copper lands 22 and inner solder bumps 24 are formed on a base frame 20 made of ferroalloy. The copper lands 22 are formed by plating and the inner solder bumps 24 are formed onto the copper lands 22 by stencil printing. Then, the chip 10 is attached onto the inner solder bumps 24 of the base frame 20, using flip chip bonding technology. Second as shown in FIG. 2, the bonded chip 10 and portions of the frame 20 are encapsulated with a package body 30 by a molding process identical to that used in conventional molding of IC packages. Thirds as shown in FIG. 3, the base frame 20 is separated from the encapsulated chip 10 in a way that transfers the copper lands 22 and the inner solder bumps 24 from the base frame 20 to the chip 10. Finally, as shown in FIG. 4, solder balls 40 are attached to the exposed surfaces of the transferred copper lands 22.
  • FIG. 5 shows in greater detail the [0007] chip 10 with an external solder ball 40. The chip 10 has a bonding pad 12 formed on its active surface. The bonding pad 12 and the external solder ball 40 are connected through wiring conductor pattern 50, UBM 12, inner solder bump 24 and transferred copper land 22. The package body 30 is capable of providing stress relief in the solder joints due to CTE mismatch between chip and substrate. The CSP shown in FIGS. 4 has advantages of compact package size, good electrical performance, and high reliability. However, as can be appreciated from the above prior art processes, the method of making CSP 100 is rather complex and costly.
  • SUMMARY OF THE INVENTION
  • It is therefore an object of the present invention to overcome, or at least reduce the problems and disadvantages associated with the above-described technique for fabricating a molded chip scale package. [0008]
  • It is a further objective of the present invention to provide a simplified method which can be used to produce a molded chip scale package. [0009]
  • The method of making a chip scale package in accordance with the present invention comprising the following steps: (a) providing a semiconductor chip having a plurality of metal bumps formed on the active surface thereof; (b) providing a metal plate having a plurality of flip-chip pads formed on a surface thereof; (c) positioning the semiconductor chip on the surface of the metal plate with the metal bumps on the chip aligned with the flip-chip pads on the metal plate; (d) connecting the metal bumps on the active surface of the semiconductor chip to the flip-chip pads on the surface of the metal plate; (e) encapsulating the semiconductor chip against a portion of the surface of the metal plate; (f) removing the metal plate while leaving the flip-chip pads intact; and (g) forming a plurality of solder balls on the flip-chip pads. [0010]
  • Using the technique of the present invention, it becomes possible that the manufacture of a molded chip scale package can be relatively simplified and economical, yet highly reliable.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, advantages, and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings. [0012]
  • FIGS. [0013] 1-4 illustrate a conventional method of making a molded chip scale package (CSP);
  • FIG. 5 is a detailed cross sectional view of the CSP shown in FIG. 4; and [0014]
  • FIGS. [0015] 6-10 show a method of making a molded CSP according to a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIGS. [0016] 6-10 disclose a method of making a molded CSP according to a preferred embodiment of the present invention.
  • FIG. 6 shows a [0017] semiconductor chip 110 having a plurality of metal bumps 112 formed on the active surface thereof and a metal plate 120 having a plurality of flip-chip pads 122 formed on a surface thereof.
  • Flip-chip bumping technology typically comprises (a) forming an under bump metallurgy (UBM) on bonding pads of the chip, and (b) forming metal bumps on the UBM. Typically, UBM is consisted of three metal layers, including: (a) adhesion layer (formed of Ti, Cr or TiW) for purposes of providing a good adhesion to Al pad and passivation layer; (b) wetting layer (formed of Ni, Cu, Mo or Pt) wherein that kind of metals provide a higher wetting power to solder thereby allowing for proper wetting of solder during solder-reflow process; (c) protective layer formed of Au for purposes of preventing oxidation of the wetting layer thereby maintaining good wetting ability of the wetting layer to solder. Conventional ways to form a multi-layer under bump metallurgy (UBM) [0018] 34 mainly comprises chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), or physical vapor deposition (PVD) (sputtering or evaporation). Typically, there are two kinds of metal compositions used to form the metal bump. They includes (a) high melting point solder alloys such as 5Sn/95Pb or 3Sn/97Pb and (b) lower melting point solder alloys such as 63Sn/37Pb or 40Sn/60Pb. The metal bumps 112 of the present invention are preferably formed of the high melting point solder alloys. Bumping process is typically accomplished by vapor deposition, electroplating or printing. Recently, under cost consideration, a technique called “low cost bumping technology” is developed wherein the concepts of the technique comprise forming the UBM by electroless nickel/copper plating and then flip-chip bumping by printing. It could be understood that the UBM may be directly formed on the bonding pad of the chip, and then the metal bumps are formed on the UBM. Alternatively, when a single- or multi-layer metallization is employed to route the center or peripheral chip bonding pads to the desired package I/O pattern, the UBM is formed on the new I/O pattern, and then the metal bumps are formed on the UBM.
  • The [0019] metal plate 120 of the present invention may be formed from the following steps. Firstly, a solder mask 124 such as photoimagable solder mask or dry film solder mask is applied over the surface of the metal plate 120, then imaged and developed. Preferably, the solder mask 124 is formed with a thickness of about 4 to 6 mils. A photomask is used to image only certain area of the solder mask 124 which, when developed, are removed to leave predetermined areas exposed. Secondly, by using conventional plating techniques, a metal coating is formed on the exposed areas on the metal plate 120 thereby forming a plurality of flip-chip pads 122 on the surface of the metal plate 120. Preferably, the metal plate 120 is made of copper, and the metal coating is formed from gold (or palladium).
  • Referring to FIG. 6, the [0020] semiconductor chips 110 are positioned on the surface of the metal plate 120 with the metal bumps 112 on the chip 110 aligned with the flip-chip pads 122 on the metal plate 120.
  • Referring to FIG. 7, after placement of the [0021] semiconductor chip 110 on the metal plate 120, both the chip 110 and the metal plate 120 undergo a thermal operation to reflow the metal bumps 112 to the flip-chip pads 122 on the metal plate 120. In the soldering, the solder mask 124 helps to prevent the bridging of fine-pitch solder bumps 112. Upon reflowing, both physical and electrical connection is made between the semiconductor chip 110 and the metal plate 120. A common method for solder reflowing is to put the object in a hot-air furnace or in an infrared heating reflow furnace.
  • Referring to FIG. 8, the [0022] semiconductor chips 110 and portions of metal plate 120 are encapsulated in package bodies 130 by a molding process identical to that used in conventional molding of IC packages. This is accomplished by placing the semiconductor chip 110 in a mold having cavities and thereafter pouring molding compound into the mold to fill the mold cavities.
  • Finally, a separation step is performed to remove the [0023] metal plate 120. As shown in FIG. 9, the separation step typically comprises selectively etching the metal plate 120 with the flip-chip pads 124 remaining intact by an etching agent.
  • Referring to FIG. 10, the [0024] solder balls 140 can be formed on the exposed lower surfaces of flip-chip pads 122 by solder ball placing technique or stencil printing process. The solder balls 140 act as external I/O electrodes of the chip scale package in accordance with the present invention. When the CSP of the present invention is installed on an external substrate, the package body 130 is capable of providing stress relief in the solder joints due to CTE mismatch between chip and substrate.
  • The metal bumps [0025] 112 of the chip 110 are connected to the external solder balls 140 through the flip-chip pads 122. It should be understood that the metal bumps 122 may be directly disposed on the bonding pads of the chip 110 (as shown in FIG. 10) through an under bump metallurgy (UBM). Alternatively, the metal bumps 122 may be connected to the center or peripheral chip bonding pads on a chip through a single- or multi-layer metallization (not shown).
  • The method of making a chip scale package of the present invention allows the manufacture of a molded chip scale package to be relatively simplified and economical, yet highly reliable. [0026]
  • Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed. [0027]

Claims (5)

What is claimed is:
1. A chip scale package comprising:
a semiconductor chip having a plurality of metal bumps formed on the active surface thereof, the semiconductor chip and the metal bumps are encapsulated with a package body such that each metal bump has at least a portion exposed from the package body;
a plurality of flip-chip pads having opposing upper and lower surfaces, the upper surfaces of the flip-chip pads are exposed from the solder mask.
2. The chip scale package as claimed in claim 1, further comprising a plurality of solder balls mounted on the flip-chip pads.
3. The chip scale package as claimed in claim 1, wherein the flip-chip pads are made of metal selected from the group consisted of gold and palladium.
4. A chip scale package, wherein the chip scale package is formed from
a metal plate having a plurality of flip-chip pads formed on a surface thereof,
the semiconductor chip being positioned on the surface of the metal plate with the metal bumps on the chip aligned with the flip-chip pads on the metal plate;
the metal bumps on the active surface of the semiconductor chip being connected to the flip-chip pads on the surface of the metal plate;
the semiconductor chip being encapsulated against a portion of the surface of the metal plate; and
the metal plate being removed so as to leave the flip-chip pads intact.
5. A chip scale package, wherein the chip scale package is formed from
a solder mask on a surface of a metal plate with predetermined areas on the surface of the metal plate exposed from the solder mask;
a metal coating on the exposed areas of the metal plate that form a plurality of flip-chip pads on the surface of the metal plate;
the semiconductor chip being positioned on the surface of the metal plate with the metal bumps on the chip aligned with the flip-chip pads on the metal plate;
the metal bumps on the active surface of the semiconductor chip being connected to the flip-chip pads on the surface of the metal plate;
the semiconductor chip being encapsulated against a portion of the surface of the metal plate; and
the metal plate being removed so as to leave the flip-chip pads intact.
US10/024,007 2000-07-06 2001-12-21 Method of making chip scale package Abandoned US20020053745A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/024,007 US20020053745A1 (en) 2000-07-06 2001-12-21 Method of making chip scale package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/610,857 US6348399B1 (en) 2000-07-06 2000-07-06 Method of making chip scale package
US10/024,007 US20020053745A1 (en) 2000-07-06 2001-12-21 Method of making chip scale package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/610,857 Division US6348399B1 (en) 2000-07-06 2000-07-06 Method of making chip scale package

Publications (1)

Publication Number Publication Date
US20020053745A1 true US20020053745A1 (en) 2002-05-09

Family

ID=24446697

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/610,857 Expired - Lifetime US6348399B1 (en) 2000-07-06 2000-07-06 Method of making chip scale package
US10/024,007 Abandoned US20020053745A1 (en) 2000-07-06 2001-12-21 Method of making chip scale package

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/610,857 Expired - Lifetime US6348399B1 (en) 2000-07-06 2000-07-06 Method of making chip scale package

Country Status (1)

Country Link
US (2) US6348399B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040058478A1 (en) * 2002-09-25 2004-03-25 Shafidul Islam Taped lead frames and methods of making and using the same in semiconductor packaging
US20050006737A1 (en) * 2002-04-29 2005-01-13 Shafidul Islam Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20070052076A1 (en) * 2002-04-29 2007-03-08 Ramos Mary J Partially Patterned Lead Frames and Methods of Making and Using the Same in Semiconductor Packaging
US20080258278A1 (en) * 2002-04-29 2008-10-23 Mary Jean Ramos Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20110111562A1 (en) * 2002-04-29 2011-05-12 San Antonio Romarico S Partially Patterned Lead Frames and Methods of Making and Using the Same in Semiconductor Packaging
US8440503B1 (en) * 2011-11-16 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for performing reflow in bonding processes
US8853002B2 (en) 2013-01-04 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for metal bump die assembly
US9209149B2 (en) 2013-11-14 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace structures with high assembly yield

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450236B2 (en) * 1999-09-22 2003-09-22 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US6828220B2 (en) * 2000-03-10 2004-12-07 Chippac, Inc. Flip chip-in-leadframe package and process
JP2001338947A (en) * 2000-05-26 2001-12-07 Nec Corp Flip chip type semiconductor device and its manufacturing method
JP2002261262A (en) 2001-03-01 2002-09-13 Mitsubishi Heavy Ind Ltd Image sensor and method of manufacturing the same
US6689680B2 (en) * 2001-07-14 2004-02-10 Motorola, Inc. Semiconductor device and method of formation
TW508987B (en) * 2001-07-27 2002-11-01 Phoenix Prec Technology Corp Method of forming electroplated solder on organic printed circuit board
US6877653B2 (en) * 2002-02-27 2005-04-12 Advanced Semiconductor Engineering, Inc. Method of modifying tin to lead ratio in tin-lead bump
US20040245648A1 (en) * 2002-09-18 2004-12-09 Hiroshi Nagasawa Bonding material and bonding method
TW565011U (en) * 2003-04-09 2003-12-01 Via Tech Inc Flip-chip package substrate
DE10333841B4 (en) * 2003-07-24 2007-05-10 Infineon Technologies Ag A method of producing a benefit having semiconductor device locations arranged in rows and columns and methods of making a semiconductor device
TWI231578B (en) * 2003-12-01 2005-04-21 Advanced Semiconductor Eng Anti-warpage package and method for making the same
EP1704592A1 (en) * 2004-01-13 2006-09-27 Infineon Technologies AG Chip-sized filp-chip semiconductor package and method for making the same
TWI303870B (en) * 2005-12-30 2008-12-01 Advanced Semiconductor Eng Structure and mtehod for packaging a chip
US7727813B2 (en) * 2007-11-26 2010-06-01 Infineon Technologies Ag Method for making a device including placing a semiconductor chip on a substrate
US8378485B2 (en) * 2009-07-13 2013-02-19 Lsi Corporation Solder interconnect by addition of copper
JP6015240B2 (en) 2012-08-24 2016-10-26 Tdk株式会社 Terminal structure and semiconductor device
JP6326723B2 (en) * 2012-08-24 2018-05-23 Tdk株式会社 Terminal structure and semiconductor device
JP6155571B2 (en) 2012-08-24 2017-07-05 Tdk株式会社 Terminal structure, and semiconductor element and module substrate having the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323051A (en) 1991-12-16 1994-06-21 Motorola, Inc. Semiconductor wafer level package
US5656550A (en) * 1994-08-24 1997-08-12 Fujitsu Limited Method of producing a semicondutor device having a lead portion with outer connecting terminal
US5620928A (en) * 1995-05-11 1997-04-15 National Semiconductor Corporation Ultra thin ball grid array using a flex tape or printed wiring board substrate and method
JP3376203B2 (en) 1996-02-28 2003-02-10 株式会社東芝 Semiconductor device, method of manufacturing the same, mounting structure using the semiconductor device, and method of manufacturing the same
JPH10163368A (en) * 1996-12-02 1998-06-19 Fujitsu Ltd Semiconductor device manufacturing method and semiconductor device
KR100222299B1 (en) 1996-12-16 1999-10-01 윤종용 Wafer level chip scale package and method of manufacturing the same
US5830800A (en) * 1997-04-11 1998-11-03 Compeq Manufacturing Company Ltd. Packaging method for a ball grid array integrated circuit without utilizing a base plate
US6204559B1 (en) * 1999-11-22 2001-03-20 Advanced Semiconductor Engineering, Inc. Ball grid assembly type semiconductor package having improved chip edge support to prevent chip cracking
US6238952B1 (en) * 2000-02-29 2001-05-29 Advanced Semiconductor Engineering, Inc. Low-pin-count chip package and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111562A1 (en) * 2002-04-29 2011-05-12 San Antonio Romarico S Partially Patterned Lead Frames and Methods of Making and Using the Same in Semiconductor Packaging
US7790500B2 (en) 2002-04-29 2010-09-07 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20050006737A1 (en) * 2002-04-29 2005-01-13 Shafidul Islam Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US7622332B2 (en) 2002-04-29 2009-11-24 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US8236612B2 (en) 2002-04-29 2012-08-07 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US7129116B2 (en) 2002-04-29 2006-10-31 Advanced Interconnect Technologies Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20070052076A1 (en) * 2002-04-29 2007-03-08 Ramos Mary J Partially Patterned Lead Frames and Methods of Making and Using the Same in Semiconductor Packaging
US7799611B2 (en) 2002-04-29 2010-09-21 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20050263864A1 (en) * 2002-04-29 2005-12-01 Shafidul Islam Partially patterned lead frames and methods of making and using the same in semiconductor packaging
US20080258278A1 (en) * 2002-04-29 2008-10-23 Mary Jean Ramos Partially patterned lead frames and methods of making and using the same in semiconductor packaging
WO2004030030A3 (en) * 2002-09-25 2004-06-03 Advanced Interconnect Tech Ltd Taped lead frames and methods of making and using the same in semiconductor packaging
US7439097B2 (en) 2002-09-25 2008-10-21 Unisem (Mauritius) Holdings Limited Taped lead frames and methods of making and using the same in semiconductor packaging
US20040058478A1 (en) * 2002-09-25 2004-03-25 Shafidul Islam Taped lead frames and methods of making and using the same in semiconductor packaging
US20060001130A1 (en) * 2002-09-25 2006-01-05 Shafidul Islam Taped lead frames and methods of making and using the same in semiconductor packaging
US8440503B1 (en) * 2011-11-16 2013-05-14 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for performing reflow in bonding processes
US8853002B2 (en) 2013-01-04 2014-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for metal bump die assembly
US9209149B2 (en) 2013-11-14 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace structures with high assembly yield
US9472525B2 (en) 2013-11-14 2016-10-18 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace structures with high assembly yield
US10050000B2 (en) 2013-11-14 2018-08-14 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-trace structures with high assembly yield

Also Published As

Publication number Publication date
US6348399B1 (en) 2002-02-19

Similar Documents

Publication Publication Date Title
US6348399B1 (en) Method of making chip scale package
US20240266189A1 (en) Semiconductor device and manufacturing method thereof
US6787903B2 (en) Semiconductor device with under bump metallurgy and method for fabricating the same
US6555921B2 (en) Semiconductor package
TWI431701B (en) Fusible I/O interconnection system and flip chip packaging method involving columnar bumps for substrate mounting
US8772921B2 (en) Interposer for semiconductor package
US6743660B2 (en) Method of making a wafer level chip scale package
US6459150B1 (en) Electronic substrate having an aperture position through a substrate, conductive pads, and an insulating layer
US7125745B2 (en) Multi-chip package substrate for flip-chip and wire bonding
US20180047708A1 (en) Semiconductor Packaging Structure and Method
US20060286791A1 (en) Semiconductor wafer package and manufacturing method thereof
US20100297842A1 (en) Conductive bump structure for semiconductor device and fabrication method thereof
US20040087057A1 (en) Method for fabricating a flip chip package with pillar bump and no flow underfill
US20080001271A1 (en) Flipped, stacked-chip IC packaging for high bandwidth data transfer buses
US20020086520A1 (en) Semiconductor device having bump electrode
US20080054461A1 (en) Reliable wafer-level chip-scale package solder bump structure in a packaged semiconductor device
US20080230925A1 (en) Solder-bumping structures produced by a solder bumping method
US20090174069A1 (en) I/o pad structure for enhancing solder joint reliability in integrated circuit devices
KR101011840B1 (en) Semiconductor package and manufacturing method thereof
US6841884B2 (en) Semiconductor device
US20100309641A1 (en) Interposer substrate, lsi chip and information terminal device using the interposer substrate, manufacturing method of interposer substrate, and manufacturing method of lsi chip
US20050151268A1 (en) Wafer-level assembly method for chip-size devices having flipped chips
US20070120268A1 (en) Intermediate connection for flip chip in packages
US20060022320A1 (en) Semiconductor device and manufacturing method thereof
US20050035451A1 (en) Semiconductor chip with bumps and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADVANCED SEMICONDUCTOR ENGINEERING, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LIN, CHUN HUNG;REEL/FRAME:012400/0353

Effective date: 20000529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载