US20020053657A1 - Preparation and use of biocidal solutions - Google Patents
Preparation and use of biocidal solutions Download PDFInfo
- Publication number
- US20020053657A1 US20020053657A1 US09/981,447 US98144701A US2002053657A1 US 20020053657 A1 US20020053657 A1 US 20020053657A1 US 98144701 A US98144701 A US 98144701A US 2002053657 A1 US2002053657 A1 US 2002053657A1
- Authority
- US
- United States
- Prior art keywords
- solution
- chlorite
- chlorine dioxide
- chlorine
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B11/00—Oxides or oxyacids of halogens; Salts thereof
- C01B11/02—Oxides of chlorine
- C01B11/022—Chlorine dioxide (ClO2)
- C01B11/023—Preparation from chlorites or chlorates
- C01B11/024—Preparation from chlorites or chlorates from chlorites
Definitions
- the present invention relates to a method for the preparation of chlorine dioxide, to a solution capable of releasing chlorine dioxide and to a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other benefits derived from the oxidising effect of chlorine dioxide such as, for example, odour control.
- Chlorine dioxide is an unstable gas which is explosive at pressures greater than 40 kPa (3000 mmHg). It has been found impossible to compress and store chlorine dioxide gas either alone or in combination with other gases. Chlorine dioxide is therefore manufactured at its point of use. The equipment used to produce chlorine dioxide is costly and has to take account of the hazardous nature of the chemical. Large consumers of the chemical, e.g. those involved in the bleaching of wood pulp, have used somewhat complicated processes based on the reduction of sodium chlorate. For use in smaller applications oxidation of chlorite is favoured. However all these processes require considerable capital expenditure, an understanding of the chemistry involved and skilled personnel to operate the units efficiently and safely.
- the rate of activation can be increased using a stronger acid. For example adding 30 to 35% hydrochloric acid to bring the pH down to 1.5 activates 15% of the potential chlorine dioxide in 1 hour; 25% in 2 hours and 50% in 24 hours.
- OCS Dioxide produced by Odour Control Systems Limited, is stated to be a combination of oxygen and chlorine joined as chlorine dioxide in aqueous solution.
- Chlorine dioxide is generated from these solutions by reacting them with acids, particularly strong acids if a significant release of chlorine dioxide is required in a reasonable period of time.
- a common approach with these products is to dilute the product in a mixing tank with water to give a solution which contains a theoretical concentration of about 2-3000 ppm chlorine dioxide and then add sufficient strong acid, hydrochloric acid or phosphoric acid most commonly, to reduce the pH to within the specified pH range.
- the chlorine dioxide is then released from the complex into solution over a period of time which can vary from a few minutes to many hours depending primarily on the pH and the strength of the solutions.
- the solution is then proportionately dosed to the system to provide the required reserve of chlorine dioxide.
- the “stabilised” chlorine dioxide is never fully released from the complex and conversion rates to “free” chlorine dioxide are quoted as varying from 15% to 75% depending upon pH, concentrations and time.
- a stable solution for the production of chlorine dioxide comprising:
- chlorite and chlorine donor being present in a molar ratio of from 1.0:0.1 to 1.0:15.0 chlorite to chlorine donor,
- the alkali being present in an amount sufficient to ensure a pH of above 10 and the water being present in an amount to give a theoretical minimum concentration of 0.5 ppm chlorine dioxide.
- the water is present in an amount to give a theoretical minimum concentration of 0.05% (500 ppm) chlorine dioxide before dilution.
- the chlorite and chlorine donor are respectively an alkali metal chlorite and an alkali metal hypochlorite such as, for example, those derived from sodium or potassium or an alkaline earth metal chlorite or an alkaline earth metal hypochlorite, such as, for example, those derived from magnesium or calcium.
- Alternative chlorine donors such as, for example, chloroisocyanurate could however be used.
- chlorite is sodium chlorite and the chlorine donor is the hypochlorite, sodium hypochlorite.
- the more preferred molar ratio of chlorite to the chlorine donor, preferably a hypochlorite, is from 1.0:0.3 to 1.0:5.0 and more preferably still about 1.0:2.0.
- the preferred theoretical concentration of chlorine dioxide derivable from the composition before dilution is from 20,000 to 50,000 ppm and after dilution is from 0.5 to 50 ppm.
- composition of the invention may also be advantageously combined with other chemicals known to be useful in providing biocidal properties in water systems such as:
- a method of manufacturing the composition of the first aspect of the invention comprising sequentially adding the alkali, chlorine donor and chlorite to water in that order whilst maintaining the pH at 10 or above and the temperature at or below 30° C.
- the chlorine donor is a hypochlorite.
- the pH is maintained at 12 or above.
- the temperature is maintained at or below 20° C.
- the acid is a weak acid i.e. one which does not readily ionise such as, for example, citric acid or acetic acid.
- a strong acid such as, for example, hydrochloric acid can be used.
- the solution of the present invention comprising a mixture of chlorite ions (ClO 2 ⁇ ) and a chlorine donor, for example, hypochlorite ions (OCl ⁇ ), overcomes many of the problems of the prior art solutions and when mixed with a weak acid such as citric acid produces almost instant quantitative conversion to chlorine dioxide.
- the mixed solution can then be dosed proportionately to the system, for example an industrial or potable water system to be treated, without the need for any holding or reaction vessels or sophisticated mixing apparatus to provide the required biocidal level of chlorine dioxide.
- the invention thus provides a composition which when mixed with an acid which reduces the pH below 6, preferably below 5 and most preferably below 4 produces chlorine dioxide which can be dosed directly into the system to be treated. It also provides a process by which the solutions can be mixed and added to the system.
- chlorine dioxide may be produced in situ.
- a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other beneficial effects e.g. odour control comprising reacting a chlorite, a hypochlorite and an acid to generate chlorine dioxide in situ.
- a dosing apparatus 8 comprises two metering pumps (Prominent gamma G/4a 0215) 10,12 delivering respectively a composition according to the invention and an acid.
- the metering pumps 10 , 12 were connected via a mixing block 14 into a water line 16 through which water to be treated was continuously flowing.
- a water meter 18 in the line delivered a signal for each 0.25 litre of water passing. The signal was fed to each of the pumps 10 , 12 which then delivered a nominal 0.15 ml. for each signal received.
- Pump 12 delivered a 16% solution of citric acid and pump 10 a solution of Example 1.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Geology (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Detergent Compositions (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
A solution for genenting chlorine dioxide is disclosed. Th solution comprises a chlorlte, a chlorite donor, an alkali and water. The chlorine dioxide is released by adding an acid to the solution. Also disclosed are methods for preparing and using the solution.
Description
- The present invention relates to a method for the preparation of chlorine dioxide, to a solution capable of releasing chlorine dioxide and to a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other benefits derived from the oxidising effect of chlorine dioxide such as, for example, odour control.
- The use of chlorine dioxide as a bleaching agent and disinfectant is well known. In particular, the use of chlorine dioxide as a disinfectant in both industrial and potable water systems has become increasingly important in recent years because in contrast to chlorine, the most widely used oxidising biocide, its use does not give rise to the significant production of trihalomethanes. However the adoption of chlorine dioxide has been restricted because of the hazardous nature of the chemical.
- Chlorine dioxide is an unstable gas which is explosive at pressures greater than 40 kPa (3000 mmHg). It has been found impossible to compress and store chlorine dioxide gas either alone or in combination with other gases. Chlorine dioxide is therefore manufactured at its point of use. The equipment used to produce chlorine dioxide is costly and has to take account of the hazardous nature of the chemical. Large consumers of the chemical, e.g. those involved in the bleaching of wood pulp, have used somewhat complicated processes based on the reduction of sodium chlorate. For use in smaller applications oxidation of chlorite is favoured. However all these processes require considerable capital expenditure, an understanding of the chemistry involved and skilled personnel to operate the units efficiently and safely.
- There is therefore a need to be able to produce chlorine dioxide safely and cost effectively in relatively small quantities that will allow a greater number of industrial and potable water systems to take advantage of the superior disinfection and stability properties of the chemical without the need for large capital investments and specially trained personnel.
- To an extent this need has been satisfied by the introduction in recent years of “stabilised” solutions of chlorine dioxide sold under a variety of trade names. These products claim to be solutions of chlorine dioxide stabilized in solution through the formation of a variety of complexes.
- Thus for example, the producers of Purogene claim to have produced a stable aqueous solution whose active ingredient is chlorine dioxide. They state that during water treatment 50-70% of the chlorine dioxide reacted will immediately appear as chlorite and the remainder as chloride. The chlorite, it is stated, will continue to react with remaining oxidisable material reducing entirely to chloride. The reactions occurring being as follows:
- (1) ClO2+e−→ClO2 −(chlorite)
- (2) ClO2 −+4H++4e−→Cl−+2H2O (chloride)
- Viscona limited claim to have a 5% (50,000 ppm) aqueous stabilised chlorine dioxide solution chemically buffered at a pH of 9 which releases chlorine dioxide in around 20 minutes when activated. Release of chlorine dioxide is achieved by lowering the pH of the solution to approximately 2 using a suitable acid (with a chlorine donor for rapid results). Activation with citric acid converts only approximately 10% of the available chlorine dioxide to free chlorine dioxide, in aqueous solution, after about 15 minutes. It is stated subsequent activation would continue at a very slow rate. Such a method is not sufficiently rapid for use in disinfection where a need for an activation rate of 50% or more is required.
- The rate of activation can be increased using a stronger acid. For example adding 30 to 35% hydrochloric acid to bring the pH down to 1.5 activates 15% of the potential chlorine dioxide in 1 hour; 25% in 2 hours and 50% in 24 hours.
- By adding a chlorine donor, e.g. hypochlorite, around a 70 to 80% release in about 15 minutes can be achieved.
- Another product, OCS Dioxide produced by Odour Control Systems Limited, is stated to be a combination of oxygen and chlorine joined as chlorine dioxide in aqueous solution.
- Chlorine dioxide is generated from these solutions by reacting them with acids, particularly strong acids if a significant release of chlorine dioxide is required in a reasonable period of time. A common approach with these products is to dilute the product in a mixing tank with water to give a solution which contains a theoretical concentration of about 2-3000 ppm chlorine dioxide and then add sufficient strong acid, hydrochloric acid or phosphoric acid most commonly, to reduce the pH to within the specified pH range. The chlorine dioxide is then released from the complex into solution over a period of time which can vary from a few minutes to many hours depending primarily on the pH and the strength of the solutions. The solution is then proportionately dosed to the system to provide the required reserve of chlorine dioxide. The “stabilised” chlorine dioxide is never fully released from the complex and conversion rates to “free” chlorine dioxide are quoted as varying from 15% to 75% depending upon pH, concentrations and time.
- It is clear that while the introduction of these “stabilised” solutions has provided a means of utilising chlorine dioxide without the need for complex and costly capital equipment they have not fully addressed many problems associated with utilising chlorine dioxide safely and effectively. In particular strong acids have to be used to produce disinfecting amounts of chlorine dioxide, the concentrations and reaction times of the various ingredients have to be carefully controlled to maximise the production of chlorine dioxide and finally the solution has to be dosed proportionately to the system to achieve the biocidal concentration of chlorine dioxide.
- In addition the preparation of these solutions is expensive as the chlorine dioxide has to be first generated, dissolved into water and then finally stabilised.
- It is an object of the present invention to provide a source of chlorine dioxide which is simple to use, produces effective amounts of chloride dioxide quickly and safely and is cost effective to produce and use.
- According to a first aspect of the present invention there is provided a stable solution for the production of chlorine dioxide comprising:
- a chlorite,
- a chlorine donor,
- an alkali, and
- water,
- the chlorite and chlorine donor being present in a molar ratio of from 1.0:0.1 to 1.0:15.0 chlorite to chlorine donor,
- the alkali being present in an amount sufficient to ensure a pH of above 10 and the water being present in an amount to give a theoretical minimum concentration of 0.5 ppm chlorine dioxide.
- Preferably the water is present in an amount to give a theoretical minimum concentration of 0.05% (500 ppm) chlorine dioxide before dilution.
- Preferably the chlorite and chlorine donor are respectively an alkali metal chlorite and an alkali metal hypochlorite such as, for example, those derived from sodium or potassium or an alkaline earth metal chlorite or an alkaline earth metal hypochlorite, such as, for example, those derived from magnesium or calcium. Alternative chlorine donors, such as, for example, chloroisocyanurate could however be used.
- More preferably the chlorite is sodium chlorite and the chlorine donor is the hypochlorite, sodium hypochlorite.
- The more preferred molar ratio of chlorite to the chlorine donor, preferably a hypochlorite, is from 1.0:0.3 to 1.0:5.0 and more preferably still about 1.0:2.0.
- The more preferred pH is a pH above 11, more preferably still a pH above 12.
- The preferred theoretical concentration of chlorine dioxide derivable from the composition before dilution is from 20,000 to 50,000 ppm and after dilution is from 0.5 to 50 ppm.
- The composition of the invention may also be advantageously combined with other chemicals known to be useful in providing biocidal properties in water systems such as:
- quaternary ammonium and phosphonium compounds amines, iso-thiazolone mixtures and thiocyanates;
- and chemicals which are known to provide cleaning and penetration when combined with biocides such as surfactants particularly non-ionic surfactants.
- In accordance with a second aspect of the present invention there is provided a method of manufacturing the composition of the first aspect of the invention, the method comprising sequentially adding the alkali, chlorine donor and chlorite to water in that order whilst maintaining the pH at 10 or above and the temperature at or below 30° C.
- Preferably the chlorine donor is a hypochlorite.
- More preferably the pH is maintained at 12 or above.
- More preferably the temperature is maintained at or below 20° C.
- According to a third aspect of the present invention there is provided a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other beneficial effects e.g. odour control, the method comprising reacting the composition of the first aspect of the invention with an acid to generate chlorine dioxide.
- Preferably the acid is a weak acid i.e. one which does not readily ionise such as, for example, citric acid or acetic acid.
- Alternatively a strong acid, such as, for example, hydrochloric acid can be used.
- Whilst any acid which reduces the pH to within the range pH 2 to 4 can be used particular benefits accrue from the use of weak acids such as, for example, citric acid since they are much less hazardous to handle than strong acids, for example, hydrochloric acid.
- The solution of the present invention, comprising a mixture of chlorite ions (ClO2 −) and a chlorine donor, for example, hypochlorite ions (OCl−), overcomes many of the problems of the prior art solutions and when mixed with a weak acid such as citric acid produces almost instant quantitative conversion to chlorine dioxide. The mixed solution can then be dosed proportionately to the system, for example an industrial or potable water system to be treated, without the need for any holding or reaction vessels or sophisticated mixing apparatus to provide the required biocidal level of chlorine dioxide.
- The invention thus provides a composition which when mixed with an acid which reduces the pH below 6, preferably below 5 and most preferably below 4 produces chlorine dioxide which can be dosed directly into the system to be treated. It also provides a process by which the solutions can be mixed and added to the system.
- Alternatively the chlorine dioxide may be produced in situ.
- According to a forth aspect of the present invention there is provided a method of introducing chlorine dioxide to a system requiring bleaching and/or disinfection and/or other beneficial effects e.g. odour control, the method comprising reacting a chlorite, a hypochlorite and an acid to generate chlorine dioxide in situ.
- The invention will be further described, by way of example only, with reference to the following examples and methodology.
-
Proportion by weight Sodium chlorite solution (28%) 96 Sodium hypochlorite solution (12%) 134 Sodium hydroxide solution (30%) 14 Water 756 ClO2 −:OCl− ratio 1.0:0.7 -
Proportion by weight Sodium chlorite solution (28%) 96 sodium hypochlorite solution (12%) 93 Sodium hydroxide solution (30%) 14 Water 797 ClO2 −:OCl− ratio 1.0:0.5 - To 3.78Kg of deionised water was added 0.07Kg of 30% sodium hydroxide solution. The solution was continuously stirred with a magnetic stirrer. 0.67Kg of a 12% (available chlorine) solution of sodium hypochlorite was added. Finally 0.48Kg of a 28% solution of sodium chlorite was added. The final pH of the solution was 13.0.
- Based on the concentration of Sodium Chlorite the product contains the potential to produce 20,000 ppm of Chlorine Dioxide.
- 5 mls of solution prepared in Example 3 was added to 90 mls of deionised water. To this solution was added 5 mls of a 16% citric acid solution. The solution immediately turned a yellow colour. The solution was analysed using the standard DPD test procedure developed by Palintest, to determine concentration of chlorine dioxide, free chlorine, combined chlorine, and chlorite.
- Concentrations determined were: 798 pp Chlorine dioxide
- 20 ppm free chlorine
- 0 ppm combined chlorine
- 0 ppm chlorite
- Indicating that all the chlorite had been converted to Chlorine Dioxide.
- Referring to FIG. 1, a method of dosing a composition according to the invention into a system is illustrated. A
dosing apparatus 8 is used it comprises two metering pumps (Prominent gamma G/4a 0215) 10,12 delivering respectively a composition according to the invention and an acid. The metering pumps 10, 12 were connected via amixing block 14 into a water line 16 through which water to be treated was continuously flowing. Awater meter 18 in the line delivered a signal for each 0.25 litre of water passing. The signal was fed to each of thepumps Pump 12 delivered a 16% solution of citric acid and pump 10 a solution of Example 1. - After a period of operation during which the flow of water and treatment chemicals were allowed to stabilise samples of treated water were collected from the water line and analysed, by the DPD method, for chlorine dioxide, free chlorine, combined chlorine and chlorite. The results obtained were:
Chlorine dioxide 12.5 ppm as C102 Free chlorine 0.3 ppm as C12 Combined Chlorine 0.0 ppm Chlorite 0.0 ppm - In a second experiment the delivery of the pumps was halved by reducing the stroke to 50% of the previous setting. Samples were again collected and analysed with the following results:
Chlorine dioxide 5.9 ppm as C10 Free chlorine 0.36 ppm as C12 Combined chlorine 0.08 ppm as C12 Chlorite 0.0 ppm
Claims (28)
1. A stable solution for the production of chlorine dioxide comprising:
a chlorite,
a chlorine donor,
an alkali, and
water,
the chlorite and chlorine donor being present in a molar ratio from 10:0.1 to 1.0:15.0 chlorite to chlorine donor, the alkali being present in an amount sufficient to ensure a pH of at or above 10 and the water being present in an amount to give a theoretical minimum concentration of 0.5 ppm chlorine dioxide.
2. A solution as claimed in claim 1 , in which the water is present in an amount to give a theoretical minimum concentration of 500 ppm chlorine dioxide.
3. A solution as claimed in claim 1 or 2, wherein the chlorite is an alkali metal chlorite.
4. A solution as claimed in claim 3 , wherein the alkali metal chlorite is sodium or potassium chlorite.
5. A solution as claimed in any of the previous claims wherein the chlorine donor is an alkali metal hypochlorite.
6. A solution as claimed in claim 5 wherein the alkali metal hypochlorite is magnesium or calcium hypochlorite.
7. A solution as claimed in any of claims 1 to 4 wherein the chlorine donor is a chloroisocyanurate.
8. A solution as claimed in any of claims 1 to 7 wherein the chlorite is sodium chlorite and the chlorine donor is sodium hypochlorite.
9. A solution as claimed in any of the preceding claims in which the molar ratio of chlorite to chlorine donor is from 1.0:0.3 to 1.0:5.0.
10. A solution as claimed in claim 9 in which the molar ratio of chlorite to chlorine donor is from 1.0:0.3 to 1.0:2.0.
11. A solution as claimed in any of the previous claims wherein the pH is above 11.
12. A solution as claimed in any of the previous claims wherein the pH is above 12.
13. A solution as claimed in any of the preceding claims wherein the theoretical concentration of chlorine dioxide is from 20,000 to 50,000 ppm.
14. A solution as claimed in any of the preceding claims which further comprises a biocide.
15. A solution as claimed in claim 14 wherein the biocide is selected from the group consisting of quaternary ammonium and phosphonium compounds, amines, iso-thiazolone mixtures and thiocyanates.
16. A solution as claimed in any of the preceding claims which further comprises a penetrating agent.
17. A solution as claimed in claim 16 wherein the penetrating agent is a surfactant.
18. A method of manufacturing the solution of any of claims 1 to 17 , the method comprising sequentially adding the alkali, chlorine donor and chlorite to water, in that order, whilst maintaining the pH at or above 10 and the temperature at or below 30° C.
19. A method as claimed in claim 18 wherein the pH is maintained at or above 12.
20. A method as claimed in claims 18 or 19 wherein the temperature is maintained at or below 20° C.
21. A method of introducing chlorine dioxide to a system for bleaching or disinfection, the method comprising reacting a solution as claimed in any of claims 1 to 17 with an acid to generate chlorine dioxide.
22. A method as claimed in claim 21 wherein the acid is a weak acid.
23. A method as claimed in claim 22 wherein the weak acid is citric acid or acetic acid.
24. A method as claimed in any of claims 21 to 23 wherein the pH of the solution is reduced to below 6.
25. A method as claimed in claim 24 wherein the pH of the solution is reduced to between 2 and 4.
26. A method as claimed in any of claims 21 to 25 wherein the reaction is conducted in situ in the system.
27. A method as claimed in any of claims 21 to 25 wherein the reaction is carried out and then the resulting solution is dosed into the system.
28. A method of introducing chlorine dioxide to a system for bleaching or disinfection, the method comprising reacting a chlorite, a hypochlorite and an acid to generate chlorine dioxide in situ.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/981,447 US20020053657A1 (en) | 1995-09-01 | 2001-10-16 | Preparation and use of biocidal solutions |
US10/255,501 US20030039581A1 (en) | 1995-09-01 | 2002-09-25 | Preparation and use of biocidal solutions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9517885A GB2304706B (en) | 1995-09-01 | 1995-09-01 | Preparation and use of novel biocidal solutions |
GB9517885.1 | 1995-09-01 | ||
US09/575,819 US6325970B1 (en) | 1995-09-01 | 2000-05-22 | Preparation and use of biocidal solutions |
US09/981,447 US20020053657A1 (en) | 1995-09-01 | 2001-10-16 | Preparation and use of biocidal solutions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/575,819 Continuation US6325970B1 (en) | 1995-09-01 | 2000-05-22 | Preparation and use of biocidal solutions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/255,501 Division US20030039581A1 (en) | 1995-09-01 | 2002-09-25 | Preparation and use of biocidal solutions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020053657A1 true US20020053657A1 (en) | 2002-05-09 |
Family
ID=10780067
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/029,150 Expired - Fee Related US6083457A (en) | 1995-09-01 | 1996-09-02 | Preparation and use of biocidal solutions |
US09/575,819 Expired - Fee Related US6325970B1 (en) | 1995-09-01 | 2000-05-22 | Preparation and use of biocidal solutions |
US09/981,447 Abandoned US20020053657A1 (en) | 1995-09-01 | 2001-10-16 | Preparation and use of biocidal solutions |
US10/255,501 Abandoned US20030039581A1 (en) | 1995-09-01 | 2002-09-25 | Preparation and use of biocidal solutions |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/029,150 Expired - Fee Related US6083457A (en) | 1995-09-01 | 1996-09-02 | Preparation and use of biocidal solutions |
US09/575,819 Expired - Fee Related US6325970B1 (en) | 1995-09-01 | 2000-05-22 | Preparation and use of biocidal solutions |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/255,501 Abandoned US20030039581A1 (en) | 1995-09-01 | 2002-09-25 | Preparation and use of biocidal solutions |
Country Status (12)
Country | Link |
---|---|
US (4) | US6083457A (en) |
EP (2) | EP0847371B1 (en) |
JP (1) | JP4062636B2 (en) |
AT (1) | ATE254577T1 (en) |
AU (1) | AU720557B2 (en) |
CA (1) | CA2230782C (en) |
DE (1) | DE69630794T2 (en) |
DK (1) | DK0847371T3 (en) |
ES (1) | ES2211969T3 (en) |
GB (1) | GB2304706B (en) |
PT (1) | PT847371E (en) |
WO (1) | WO1997009267A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050013763A1 (en) * | 2003-05-12 | 2005-01-20 | Johnsondiversey, Inc. | System for producing and dispensing chlorine dioxide |
US20050079122A1 (en) * | 2003-10-10 | 2005-04-14 | Dimascio Felice | Systems and methods for generating chlorine dioxide |
US20050079121A1 (en) * | 2003-10-10 | 2005-04-14 | Dimascio Felice | Systems and methods for generating chlorine dioxide |
WO2014152572A3 (en) * | 2013-03-15 | 2015-01-29 | Solenis Technologies Cayman, L.P. | Synergistic antimicrobial combinations containing chlorine dioxide and organic acid useful for controlling microorganisms in industrial processes |
US10251971B2 (en) | 2015-09-03 | 2019-04-09 | The Administrators Of The Tulane Educational Fund | Compositions and methods for multipurpose disinfection and sterilization solutions |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2304706B (en) * | 1995-09-01 | 1999-06-30 | Feedwater Treatment Services L | Preparation and use of novel biocidal solutions |
US6197215B1 (en) * | 1999-02-25 | 2001-03-06 | Vulcan Chemicals | Composition for generating chlorine dioxide |
US6602442B1 (en) * | 1999-02-25 | 2003-08-05 | Vulcan Chemicals | Composition for generating chlorine dioxide |
GB0001439D0 (en) * | 2000-01-21 | 2000-03-08 | R P Adam Limited | Method of controlling microbiological activity in water storage tanks and apparatus for use in such method |
US7186376B2 (en) * | 2001-03-07 | 2007-03-06 | Iverson Carl E | Slow release production of chlorine dioxide from acidified sodium chlorite |
DE10127729C2 (en) * | 2001-06-07 | 2003-05-28 | P & W Invest Vermoegensverwalt | Stable aqueous chlorine-oxygen solution which is essentially free of chlorite, process for its preparation and its use |
US20060153766A1 (en) * | 2002-03-07 | 2006-07-13 | Iverson Carl E | Slow release production of chlorine dioxide from acidified sodium chlorite |
US7435380B2 (en) | 2002-09-30 | 2008-10-14 | Church & Dwight Co., Inc. | Pseudo-plastic or thixotropic liquid deodorant product for ostomy pouches |
US20040062742A1 (en) * | 2002-09-30 | 2004-04-01 | Winston Anthony E. | Deodorant product containing chlorinating agents and buffered alkaline salts |
DE50212482D1 (en) * | 2002-11-04 | 2008-08-21 | Zimmer Gmbh | The bone fixation system |
US7087190B2 (en) * | 2003-03-20 | 2006-08-08 | Ecolab Inc. | Composition for the production of chlorine dioxide using non-iodo interhalides or polyhalides and methods of making and using the same |
TW200510245A (en) * | 2003-07-11 | 2005-03-16 | Du Pont | Apparatus and process therewith |
EP1750502A4 (en) * | 2004-05-17 | 2011-09-07 | John Y Mason | Method of treating with chlorine dioxide |
GB0414244D0 (en) * | 2004-06-25 | 2004-07-28 | Ebiox Ltd | Composition |
US8642054B2 (en) | 2004-09-07 | 2014-02-04 | Tristel Plc | Sterilant system |
US7807118B2 (en) | 2004-09-07 | 2010-10-05 | Tristel Plc | Decontamination system |
US8513176B2 (en) * | 2006-08-02 | 2013-08-20 | Ch2O Incorporated | Disinfecting and mineral deposit eliminating composition and methods |
WO2008070446A1 (en) * | 2006-12-08 | 2008-06-12 | Johnsondiversey, Inc. | Method of disinfecting carcasses |
DE102006060578A1 (en) * | 2006-12-19 | 2008-06-26 | Bwt Wassertechnik Gmbh | Production and final dosing of chlorine dioxide in a drinking water line comprises conveying an aqueous chlorine dioxide solution into the drinking water line from a reaction container via a dosing line under the action of an overpressure |
DE102006060575B4 (en) * | 2006-12-19 | 2011-06-16 | Bwt Wassertechnik Gmbh | Method for the production and metering of chlorine dioxide, use of an aqueous solution here and apparatus for carrying out the method |
CN101687638A (en) * | 2007-06-26 | 2010-03-31 | 大幸药品株式会社 | Method for producing chlorine dioxide and alkali composition for chlorine dioxide production which is used in the method |
WO2009077213A1 (en) * | 2007-12-19 | 2009-06-25 | Infracor Gmbh | Method for the treatment of water with chorine dioxide |
BRPI0916418A2 (en) * | 2008-07-15 | 2017-08-29 | Basf Corp | COMPOSITION, AND, METHOD OF PRODUCING A SUBSTANTIALLY NON-CYTOTOXIC THICKENED FLUID COMPOSITION |
DE102008055016A1 (en) | 2008-12-19 | 2010-07-01 | Infracor Gmbh | Process for treating water and aqueous systems in pipelines with chlorine dioxide |
US8311625B2 (en) | 2009-02-04 | 2012-11-13 | Basf Corporation | Chlorine dioxide treatment for biological tissue |
US8394253B2 (en) * | 2010-11-16 | 2013-03-12 | Strategic Resource Optimization, Inc. | Electrolytic system and method for generating biocides having an electron deficient carrier fluid and chlorine dioxide |
US8691154B2 (en) | 2012-02-17 | 2014-04-08 | Diversey, Inc. | Apparatus for the generation of cleaning and/or sanitizing solutions |
US8962534B2 (en) | 2012-09-07 | 2015-02-24 | Bosque Systems, Llc | Systems and methods of treating water used for hydraulic fracturing |
DE102012109758B3 (en) * | 2012-10-12 | 2014-03-06 | Khs Gmbh | Method for cleaning, disinfecting and / or sterilizing packaging materials and / or components of container treatment plants |
US9238587B2 (en) | 2013-03-15 | 2016-01-19 | Sabre Intellectual Property Holdings Llc | Method and system for the treatment of water and fluids with chlorine dioxide |
US10442711B2 (en) | 2013-03-15 | 2019-10-15 | Sabre Intellectual Property Holdings Llc | Method and system for the treatment of produced water and fluids with chlorine dioxide for reuse |
DE102013021893A1 (en) * | 2013-12-23 | 2015-06-25 | Bk Giulini Gmbh | Process for the treatment of industrial water cycles |
US20150218022A1 (en) * | 2014-01-31 | 2015-08-06 | Chemtreat, Inc. | Liquid CIO2 |
US20180044180A1 (en) | 2015-03-02 | 2018-02-15 | International Dioxcide, Inc. | Method for treating water with chlorine dioxide |
KR101752477B1 (en) | 2015-12-15 | 2017-07-11 | 문성철 | Palatal expansion appliance |
US10743535B2 (en) | 2017-08-18 | 2020-08-18 | H&K Solutions Llc | Insecticide for flight-capable pests |
JP6366802B1 (en) * | 2017-09-20 | 2018-08-01 | 株式会社CLO2 Lab | Chlorine dioxide gas generation method, liquid composition, gel composition, and chlorine dioxide gas generation kit |
CN107681834A (en) * | 2017-10-20 | 2018-02-09 | 神华集团有限责任公司 | Generator stator cooling device |
EP3777537A4 (en) * | 2018-04-03 | 2022-01-05 | Honbusankei Co., Ltd. | Manufacturing method for obtaining novel chlorine oxide composition from degraded hypochlorite |
US11944097B2 (en) * | 2019-07-01 | 2024-04-02 | Aseptic Health, LLC | Antimicrobial composition |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2730883C3 (en) * | 1977-07-08 | 1981-11-05 | Lehmann, Wilfried, 3203 Sarstedt | Process for the preparation of aqueous chlorine dioxide solutions |
DE2728170C2 (en) * | 1977-06-23 | 1982-12-09 | Lehmann, Wilfried, 3203 Sarstedt | Process for the preparation of an aqueous solution of chlorine dioxide |
US4247531A (en) * | 1979-08-13 | 1981-01-27 | Rio Linda Chemical | Chlorine dioxide generation apparatus and process |
US4234446A (en) * | 1979-10-09 | 1980-11-18 | Kenneth T. Place | Method and apparatus for producing chlorine dioxide |
US4296103A (en) * | 1980-08-08 | 1981-10-20 | Felipe Laso | Stabilized solution of chlorine oxides |
US4499077A (en) * | 1981-02-03 | 1985-02-12 | Stockel Richard F | Anti-microbial compositions and associated methods for preparing the same and for the disinfecting of various objects |
US4889654A (en) * | 1984-07-31 | 1989-12-26 | Rio Linda Chemical Company, Inc. | Aqueous foam disinfectant containing chlorine dixoide and preparation and use thereof |
JPS63246304A (en) * | 1987-04-01 | 1988-10-13 | Herusu Kosan:Kk | Composition for generating chlorine dioxide gas |
JP2638611B2 (en) * | 1988-06-17 | 1997-08-06 | 紀久雄 及川 | Method for producing stabilized chlorine dioxide aqueous solution |
US5451398A (en) * | 1990-01-05 | 1995-09-19 | Allergan, Inc. | Ophthalmic and disinfecting compositions and methods for preserving and using same |
KR930003658B1 (en) * | 1990-11-05 | 1993-05-08 | 동양화학공업 주식회사 | Process for manufacturing stable chlorine dioxide acqueous solution |
GB9420201D0 (en) * | 1994-10-06 | 1994-11-23 | Green Bruce P | Cold sterilant solution |
DE19529504C2 (en) * | 1995-08-10 | 1998-03-26 | Manfred Prof Dr Rer Na Rimpler | Process for the preparation of aqueous chlorine dioxide solutions |
GB2304706B (en) * | 1995-09-01 | 1999-06-30 | Feedwater Treatment Services L | Preparation and use of novel biocidal solutions |
-
1995
- 1995-09-01 GB GB9517885A patent/GB2304706B/en not_active Expired - Lifetime
-
1996
- 1996-09-02 US US09/029,150 patent/US6083457A/en not_active Expired - Fee Related
- 1996-09-02 WO PCT/GB1996/002130 patent/WO1997009267A1/en active IP Right Grant
- 1996-09-02 ES ES96928614T patent/ES2211969T3/en not_active Expired - Lifetime
- 1996-09-02 EP EP96928614A patent/EP0847371B1/en not_active Expired - Lifetime
- 1996-09-02 PT PT96928614T patent/PT847371E/en unknown
- 1996-09-02 EP EP03077420A patent/EP1408005A2/en not_active Withdrawn
- 1996-09-02 JP JP51093797A patent/JP4062636B2/en not_active Expired - Fee Related
- 1996-09-02 AT AT96928614T patent/ATE254577T1/en not_active IP Right Cessation
- 1996-09-02 DE DE69630794T patent/DE69630794T2/en not_active Expired - Fee Related
- 1996-09-02 AU AU68333/96A patent/AU720557B2/en not_active Ceased
- 1996-09-02 CA CA002230782A patent/CA2230782C/en not_active Expired - Fee Related
- 1996-09-02 DK DK96928614T patent/DK0847371T3/en active
-
2000
- 2000-05-22 US US09/575,819 patent/US6325970B1/en not_active Expired - Fee Related
-
2001
- 2001-10-16 US US09/981,447 patent/US20020053657A1/en not_active Abandoned
-
2002
- 2002-09-25 US US10/255,501 patent/US20030039581A1/en not_active Abandoned
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050013763A1 (en) * | 2003-05-12 | 2005-01-20 | Johnsondiversey, Inc. | System for producing and dispensing chlorine dioxide |
US20050079122A1 (en) * | 2003-10-10 | 2005-04-14 | Dimascio Felice | Systems and methods for generating chlorine dioxide |
US20050079121A1 (en) * | 2003-10-10 | 2005-04-14 | Dimascio Felice | Systems and methods for generating chlorine dioxide |
US7476307B2 (en) | 2003-10-10 | 2009-01-13 | Halox Technologies, Inc. | Systems and methods for generating chlorine dioxide |
US7488457B2 (en) | 2003-10-10 | 2009-02-10 | Halox Technologies, Inc. | Systems and methods for generating chlorine dioxide |
WO2014152572A3 (en) * | 2013-03-15 | 2015-01-29 | Solenis Technologies Cayman, L.P. | Synergistic antimicrobial combinations containing chlorine dioxide and organic acid useful for controlling microorganisms in industrial processes |
CN105050399A (en) * | 2013-03-15 | 2015-11-11 | 索理思科技开曼公司 | Synergistic antimicrobial combinations containing chlorine dioxide and organic acid useful for controlling microorganisms in industrial processes |
US10251971B2 (en) | 2015-09-03 | 2019-04-09 | The Administrators Of The Tulane Educational Fund | Compositions and methods for multipurpose disinfection and sterilization solutions |
Also Published As
Publication number | Publication date |
---|---|
WO1997009267A1 (en) | 1997-03-13 |
EP0847371B1 (en) | 2003-11-19 |
PT847371E (en) | 2004-03-31 |
AU6833396A (en) | 1997-03-27 |
AU720557B2 (en) | 2000-06-01 |
JP4062636B2 (en) | 2008-03-19 |
JPH11513010A (en) | 1999-11-09 |
EP1408005A2 (en) | 2004-04-14 |
US6083457A (en) | 2000-07-04 |
DE69630794D1 (en) | 2003-12-24 |
GB9517885D0 (en) | 1995-11-01 |
CA2230782A1 (en) | 1997-03-13 |
CA2230782C (en) | 2008-12-16 |
GB2304706A (en) | 1997-03-26 |
EP0847371A1 (en) | 1998-06-17 |
US20030039581A1 (en) | 2003-02-27 |
ATE254577T1 (en) | 2003-12-15 |
ES2211969T3 (en) | 2004-07-16 |
DE69630794T2 (en) | 2004-09-30 |
US6325970B1 (en) | 2001-12-04 |
DK0847371T3 (en) | 2004-03-29 |
GB2304706B (en) | 1999-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6083457A (en) | Preparation and use of biocidal solutions | |
EP1259459B1 (en) | Massive bodies for producing highly converted solutions of chlorine dioxide | |
US6428696B2 (en) | Process for preparing a chlorine-dioxide-containing disinfectant solution for water treatment | |
US6306441B1 (en) | Concentrated aqueous bromine solutions and their preparation | |
US5380518A (en) | Method for the production of chlorine dioxide | |
MX2008011037A (en) | Chlorine dioxide based cleaner/sanitizer. | |
EP1628911B1 (en) | Preparation of and dispensing chlorine dioxide | |
US6602442B1 (en) | Composition for generating chlorine dioxide | |
MXPA04010987A (en) | Process for the preparation of concentrated solutions of stabilized hypobromites. | |
EP0482811B1 (en) | Chlorous acid solutions | |
EP1786266B1 (en) | Concentrated aqueous bromine solutions and their preparation | |
AU2003204430B2 (en) | Preparation and use of biocidal solutions | |
US11523608B2 (en) | Devices, systems and methods of making and using chlorine dioxide based formulation with improved stability | |
CA2131390A1 (en) | Method for the production of chlorine dioxide | |
EP1456338B1 (en) | Cleaning agent and disinfectant | |
KR100743116B1 (en) | Apparatus and method for producing chlorine dioxide using inorganic acid persulfate and hypochlorite in seawater for ship ballast water treatment | |
CA3185170A1 (en) | Devices, systems, and methods of making and using chlorine dioxide based formulation with improved stability | |
JPS5953206B2 (en) | Continuous generation method of chlorine dioxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |