US20020042501A1 - Pyrazole compounds - Google Patents
Pyrazole compounds Download PDFInfo
- Publication number
- US20020042501A1 US20020042501A1 US09/747,563 US74756300A US2002042501A1 US 20020042501 A1 US20020042501 A1 US 20020042501A1 US 74756300 A US74756300 A US 74756300A US 2002042501 A1 US2002042501 A1 US 2002042501A1
- Authority
- US
- United States
- Prior art keywords
- diamino
- hydrazono
- pyrazole
- composition
- mmol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000003217 pyrazoles Chemical class 0.000 title abstract description 3
- 150000001875 compounds Chemical class 0.000 claims abstract description 185
- 239000000203 mixture Substances 0.000 claims abstract description 50
- -1 3-ethylphenyl Chemical group 0.000 claims description 70
- 125000003118 aryl group Chemical group 0.000 claims description 37
- 125000001072 heteroaryl group Chemical group 0.000 claims description 32
- 125000005842 heteroatom Chemical group 0.000 claims description 31
- 125000000217 alkyl group Chemical group 0.000 claims description 25
- 125000004404 heteroalkyl group Chemical group 0.000 claims description 19
- 125000000623 heterocyclic group Chemical group 0.000 claims description 18
- 150000003839 salts Chemical class 0.000 claims description 17
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 16
- 125000002837 carbocyclic group Chemical group 0.000 claims description 15
- 125000002950 monocyclic group Chemical group 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 125000001624 naphthyl group Chemical group 0.000 claims description 11
- 125000001424 substituent group Chemical group 0.000 claims description 10
- 239000003085 diluting agent Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 7
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 6
- VLDGPLKMTUJZMF-UHFFFAOYSA-N 4-(naphthalen-2-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(C=CC=C2)C2=C1 VLDGPLKMTUJZMF-UHFFFAOYSA-N 0.000 claims description 5
- 239000012453 solvate Substances 0.000 claims description 5
- 229910052717 sulfur Chemical group 0.000 claims description 5
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 5
- IFGLKCAHWDTUSU-UHFFFAOYSA-N (3,5-diamino-4-phenyldiazenylpyrazol-1-yl)-phenylmethanone Chemical compound NC1=C(N=NC=2C=CC=CC=2)C(N)=NN1C(=O)C1=CC=CC=C1 IFGLKCAHWDTUSU-UHFFFAOYSA-N 0.000 claims description 4
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 4
- OZKUUFRMPGKVGB-UHFFFAOYSA-N 4-(2,3-dihydro-1,4-benzodioxin-6-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(OCCO2)C2=C1 OZKUUFRMPGKVGB-UHFFFAOYSA-N 0.000 claims description 4
- UHKWZJPIWZBMBQ-UHFFFAOYSA-N 4-[(2,6-difluorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=C(F)C=CC=C1F UHKWZJPIWZBMBQ-UHFFFAOYSA-N 0.000 claims description 4
- ZUAKKGRBCCBNST-UHFFFAOYSA-N 4-[(2-bromophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC=C1Br ZUAKKGRBCCBNST-UHFFFAOYSA-N 0.000 claims description 4
- FYYYUNUZVBAITO-UHFFFAOYSA-N 4-[(2-phenylphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC=C1C1=CC=CC=C1 FYYYUNUZVBAITO-UHFFFAOYSA-N 0.000 claims description 4
- RLJNJAWAAPGXLH-UHFFFAOYSA-N 4-[(2-propan-2-ylphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound CC(C)C1=CC=CC=C1NN=C1C(N)=NN=C1N RLJNJAWAAPGXLH-UHFFFAOYSA-N 0.000 claims description 4
- LFHCKFDGKBZVTA-UHFFFAOYSA-N 4-[(3,4-dichlorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(Cl)C(Cl)=C1 LFHCKFDGKBZVTA-UHFFFAOYSA-N 0.000 claims description 4
- PWEAHERYYKPSFD-UHFFFAOYSA-N 4-[(3,4-difluorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(F)C(F)=C1 PWEAHERYYKPSFD-UHFFFAOYSA-N 0.000 claims description 4
- KLEFDCUJYZYHSA-UHFFFAOYSA-N 4-[(3,4-dimethoxyphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=C(OC)C(OC)=CC=C1NN=C1C(N)=NN=C1N KLEFDCUJYZYHSA-UHFFFAOYSA-N 0.000 claims description 4
- GLBXAOTUZCTMKS-UHFFFAOYSA-N 4-[(3,5-dichlorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC(Cl)=CC(Cl)=C1 GLBXAOTUZCTMKS-UHFFFAOYSA-N 0.000 claims description 4
- BITQYWJQUDAZDZ-UHFFFAOYSA-N 4-[(3-bromophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(Br)=C1 BITQYWJQUDAZDZ-UHFFFAOYSA-N 0.000 claims description 4
- NRJOBBUFSUBINP-UHFFFAOYSA-N 4-[(3-chloro-4-methoxyphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=C(Cl)C(OC)=CC=C1NN=C1C(N)=NN=C1N NRJOBBUFSUBINP-UHFFFAOYSA-N 0.000 claims description 4
- ZUHNSFRXVSRTDR-UHFFFAOYSA-N 4-[(3-fluoro-4-methoxyphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=C(F)C(OC)=CC=C1NN=C1C(N)=NN=C1N ZUHNSFRXVSRTDR-UHFFFAOYSA-N 0.000 claims description 4
- OSOIRDCVQFNKBI-UHFFFAOYSA-N 4-[(3-iodophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(I)=C1 OSOIRDCVQFNKBI-UHFFFAOYSA-N 0.000 claims description 4
- MAXOECZSANDDDP-UHFFFAOYSA-N 4-[(3-methoxyphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound COC1=CC=CC(NN=C2C(=NN=C2N)N)=C1 MAXOECZSANDDDP-UHFFFAOYSA-N 0.000 claims description 4
- HNFHHGGCNGLDDX-UHFFFAOYSA-N 4-[(4-bromonaphthalen-1-yl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(Br)C2=CC=CC=C12 HNFHHGGCNGLDDX-UHFFFAOYSA-N 0.000 claims description 4
- HEXGYJPHYGRRER-UHFFFAOYSA-N 4-[(4-fluorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(F)C=C1 HEXGYJPHYGRRER-UHFFFAOYSA-N 0.000 claims description 4
- AGBHWUBSXNFLGS-UHFFFAOYSA-N 4-[(4-iodophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(I)C=C1 AGBHWUBSXNFLGS-UHFFFAOYSA-N 0.000 claims description 4
- VFJGWZNENMTFCI-UHFFFAOYSA-N 4-[(4-methylsulfanylphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=CC(SC)=CC=C1NN=C1C(N)=NN=C1N VFJGWZNENMTFCI-UHFFFAOYSA-N 0.000 claims description 4
- NZKMCRKXUOELFN-UHFFFAOYSA-N 4-[(4-phenoxyphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC(C=C1)=CC=C1OC1=CC=CC=C1 NZKMCRKXUOELFN-UHFFFAOYSA-N 0.000 claims description 4
- VEUAEELGXHDJTG-UHFFFAOYSA-N 4-[[2-(benzenesulfonyl)phenyl]hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1 VEUAEELGXHDJTG-UHFFFAOYSA-N 0.000 claims description 4
- BZKUNPLVLZNWBZ-UHFFFAOYSA-N 4-[[3-methoxy-5-(trifluoromethyl)phenyl]hydrazinylidene]pyrazole-3,5-diamine Chemical compound FC(F)(F)C1=CC(OC)=CC(NN=C2C(=NN=C2N)N)=C1 BZKUNPLVLZNWBZ-UHFFFAOYSA-N 0.000 claims description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 4
- AWHVVANWFJRSKV-UHFFFAOYSA-N ClOCC(=O)OCC=C=O Chemical compound ClOCC(=O)OCC=C=O AWHVVANWFJRSKV-UHFFFAOYSA-N 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- WELGNMVJTNYIRH-UHFFFAOYSA-N chembl214475 Chemical compound NC1=NNC(N)=C1N=NC1=CC=CC(O)=C1 WELGNMVJTNYIRH-UHFFFAOYSA-N 0.000 claims description 4
- 125000000597 dioxinyl group Chemical group 0.000 claims description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 claims description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 claims description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000006413 ring segment Chemical group 0.000 claims description 4
- 239000011593 sulfur Chemical group 0.000 claims description 4
- SGZFATQLQDJYMN-UHFFFAOYSA-N 2,4-diphenyl-5-(1H-pyrazol-5-yldiazenyl)-1H-pyrazole-3,5-diamine Chemical compound NC1(NN(C(=C1C1=CC=CC=C1)N)C1=CC=CC=C1)N=NC1=NNC=C1 SGZFATQLQDJYMN-UHFFFAOYSA-N 0.000 claims description 3
- ZXJMJRFICCHDAN-UHFFFAOYSA-N 2-(4-bromophenyl)-4-phenyl-5-(1H-pyrazol-5-yldiazenyl)-1H-pyrazole-3,5-diamine Chemical compound NC1(NN(C(=C1C1=CC=CC=C1)N)C1=CC=C(C=C1)Br)N=NC1=NNC=C1 ZXJMJRFICCHDAN-UHFFFAOYSA-N 0.000 claims description 3
- RLCRALUVGZHYBB-UHFFFAOYSA-N 2-(4-fluorophenyl)-4-phenyl-5-(1H-pyrazol-5-yldiazenyl)-1H-pyrazole-3,5-diamine Chemical compound NC1(NN(C(=C1C1=CC=CC=C1)N)C1=CC=C(C=C1)F)N=NC1=NNC=C1 RLCRALUVGZHYBB-UHFFFAOYSA-N 0.000 claims description 3
- DHQMBKOKKHMEIQ-UHFFFAOYSA-N 2-methyl-4-phenyl-5-(1H-pyrazol-5-yldiazenyl)-1H-pyrazole-3,5-diamine Chemical compound NC1(NN(C(=C1C1=CC=CC=C1)N)C)N=NC1=NNC=C1 DHQMBKOKKHMEIQ-UHFFFAOYSA-N 0.000 claims description 3
- NXJZUVHTAYOUTL-UHFFFAOYSA-N 3-phenoxy-n-(pyrazol-4-ylideneamino)aniline Chemical compound C=1C=CC(OC=2C=CC=CC=2)=CC=1NN=C1C=NN=C1 NXJZUVHTAYOUTL-UHFFFAOYSA-N 0.000 claims description 3
- VZOGFSORINPSIG-UHFFFAOYSA-N 4-(1,3-benzothiazol-2-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=NC2=CC=CC=C2S1 VZOGFSORINPSIG-UHFFFAOYSA-N 0.000 claims description 3
- VQTDROFMWROHTG-UHFFFAOYSA-N 4-(3,5-diamino-4-phenyldiazenylpyrazol-1-yl)benzoic acid Chemical compound NC1=NN(C=2C=CC(=CC=2)C(O)=O)C(N)=C1N=NC1=CC=CC=C1 VQTDROFMWROHTG-UHFFFAOYSA-N 0.000 claims description 3
- RYBDYKTYLCTOPG-UHFFFAOYSA-N 4-[(2-chlorophenyl)diazenyl]-1H-pyrazole-3,5-diamine Chemical compound Nc1n[nH]c(N)c1N=Nc1ccccc1Cl RYBDYKTYLCTOPG-UHFFFAOYSA-N 0.000 claims description 3
- PFILEHJRVJXGIF-UHFFFAOYSA-N 4-[(3-chlorophenyl)diazenyl]-1H-pyrazole-3,5-diamine Chemical compound Nc1n[nH]c(N)c1N=Nc1cccc(Cl)c1 PFILEHJRVJXGIF-UHFFFAOYSA-N 0.000 claims description 3
- XESXQAOHYMNIFG-UHFFFAOYSA-N 4-[(3-ethylphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound CCC1=CC=CC(NN=C2C(=NN=C2N)N)=C1 XESXQAOHYMNIFG-UHFFFAOYSA-N 0.000 claims description 3
- RSBGVXCEYFJUAX-UHFFFAOYSA-N 4-[(4-bromophenyl)diazenyl]-1H-pyrazole-3,5-diamine Chemical compound Nc1n[nH]c(N)c1N=Nc1ccc(Br)cc1 RSBGVXCEYFJUAX-UHFFFAOYSA-N 0.000 claims description 3
- VAAUYDWUHKXQLY-UHFFFAOYSA-N 4-[(9-ethylcarbazol-3-yl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C=1C=C2N(CC)C3=CC=CC=C3C2=CC=1NN=C1C(N)=NN=C1N VAAUYDWUHKXQLY-UHFFFAOYSA-N 0.000 claims description 3
- HZSGEKAWGQFQOA-UHFFFAOYSA-N 4-[[4-(trifluoromethyl)phenyl]diazenyl]-1H-pyrazole-3,5-diamine Chemical compound NC1=NNC(=C1N=NC1=CC=C(C=C1)C(F)(F)F)N HZSGEKAWGQFQOA-UHFFFAOYSA-N 0.000 claims description 3
- 125000003545 alkoxy group Chemical group 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- IIMNZOCCIUNMSH-UHFFFAOYSA-N chembl1401643 Chemical compound NC1=NNC(N)=C1N=NC1=CC=CC(F)=C1 IIMNZOCCIUNMSH-UHFFFAOYSA-N 0.000 claims description 3
- HQNMHDJCGMVDTP-UHFFFAOYSA-N chembl1440687 Chemical compound NC1=NNC(N)=C1N=NC1=CC=C(OCO2)C2=C1 HQNMHDJCGMVDTP-UHFFFAOYSA-N 0.000 claims description 3
- FYQUIQIJAHNRDC-UHFFFAOYSA-N chembl1516511 Chemical compound NC1=NNC(N)=C1N=NC1=CC=CC(C(F)(F)F)=C1 FYQUIQIJAHNRDC-UHFFFAOYSA-N 0.000 claims description 3
- BHSCLHDQTNDXDV-UHFFFAOYSA-N chembl1589011 Chemical compound CC1=CC=CC=C1N=NC1=C(N)NN=C1N BHSCLHDQTNDXDV-UHFFFAOYSA-N 0.000 claims description 3
- NUKZIEYXCIOJBZ-UHFFFAOYSA-N ethyl 3-[2-(3,5-diaminopyrazol-4-ylidene)hydrazinyl]benzoate Chemical compound CCOC(=O)C1=CC=CC(NN=C2C(=NN=C2N)N)=C1 NUKZIEYXCIOJBZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000006276 2-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 claims description 2
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 claims description 2
- 125000004189 3,4-dichlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(Cl)C([H])=C1* 0.000 claims description 2
- 125000003762 3,4-dimethoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C(OC([H])([H])[H])C([H])=C1* 0.000 claims description 2
- 125000004211 3,5-difluorophenyl group Chemical group [H]C1=C(F)C([H])=C(*)C([H])=C1F 0.000 claims description 2
- 125000006275 3-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C([H])C(*)=C1[H] 0.000 claims description 2
- 125000004179 3-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(Cl)=C1[H] 0.000 claims description 2
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 claims description 2
- 125000006305 3-iodophenyl group Chemical group [H]C1=C([H])C(I)=C([H])C(*)=C1[H] 0.000 claims description 2
- 125000004207 3-methoxyphenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(OC([H])([H])[H])=C1[H] 0.000 claims description 2
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 claims description 2
- LPMZXOZBJJUFGG-UHFFFAOYSA-N 4-(pyridin-3-yldiazenyl)-1H-pyrazole-3,5-diamine Chemical compound NC1=NNC(N)=C1N=NC1=CC=CN=C1 LPMZXOZBJJUFGG-UHFFFAOYSA-N 0.000 claims description 2
- WSWAMSGBXJKGKI-UHFFFAOYSA-N 4-[(6-methoxy-1,3-benzothiazol-2-yl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound S1C2=CC(OC)=CC=C2N=C1NN=C1C(N)=NN=C1N WSWAMSGBXJKGKI-UHFFFAOYSA-N 0.000 claims description 2
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 claims description 2
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims description 2
- 125000006306 4-iodophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1I 0.000 claims description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 claims description 2
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 claims description 2
- 125000006269 biphenyl-2-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C(*)C([H])=C([H])C([H])=C1[H] 0.000 claims description 2
- NUNTZDFVKYQQHW-UHFFFAOYSA-N ethyl 4-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]benzoate Chemical compound CCOC(=O)C1=CC=C(C=C1)N=NC2=C(NN=C2N)N NUNTZDFVKYQQHW-UHFFFAOYSA-N 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 claims description 2
- 125000004289 pyrazol-3-yl group Chemical group [H]N1N=C(*)C([H])=C1[H] 0.000 claims description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 23
- 230000033115 angiogenesis Effects 0.000 abstract description 8
- 230000006907 apoptotic process Effects 0.000 abstract description 7
- 230000003463 hyperproliferative effect Effects 0.000 abstract description 6
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 6
- 238000009472 formulation Methods 0.000 abstract description 5
- 230000004614 tumor growth Effects 0.000 abstract description 5
- 208000030289 Lymphoproliferative disease Diseases 0.000 abstract description 4
- 150000003219 pyrazolines Chemical class 0.000 abstract description 2
- 230000022983 regulation of cell cycle Effects 0.000 abstract description 2
- 230000001028 anti-proliverative effect Effects 0.000 abstract 1
- 230000020129 regulation of cell death Effects 0.000 abstract 1
- 239000007787 solid Substances 0.000 description 122
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 94
- 239000000243 solution Substances 0.000 description 78
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 74
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 74
- 238000006243 chemical reaction Methods 0.000 description 57
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 57
- 238000003786 synthesis reaction Methods 0.000 description 57
- 230000015572 biosynthetic process Effects 0.000 description 54
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 44
- 238000001914 filtration Methods 0.000 description 44
- 210000004027 cell Anatomy 0.000 description 30
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 30
- 239000002244 precipitate Substances 0.000 description 30
- 239000007858 starting material Substances 0.000 description 26
- 238000000034 method Methods 0.000 description 23
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 22
- 230000000694 effects Effects 0.000 description 20
- 102100020944 Integrin-linked protein kinase Human genes 0.000 description 19
- 108010059517 integrin-linked kinase Proteins 0.000 description 18
- 238000004809 thin layer chromatography Methods 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 16
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 235000019439 ethyl acetate Nutrition 0.000 description 15
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 125000004122 cyclic group Chemical group 0.000 description 14
- 125000003367 polycyclic group Chemical group 0.000 description 14
- 206010028980 Neoplasm Diseases 0.000 description 13
- 201000010099 disease Diseases 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 12
- 125000002619 bicyclic group Chemical group 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 239000003112 inhibitor Substances 0.000 description 10
- 102000006495 integrins Human genes 0.000 description 10
- 108010044426 integrins Proteins 0.000 description 10
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 10
- 102000001253 Protein Kinase Human genes 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 9
- 108060006633 protein kinase Proteins 0.000 description 9
- 230000019491 signal transduction Effects 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 208000035475 disorder Diseases 0.000 description 8
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 229910052736 halogen Inorganic materials 0.000 description 7
- 150000002367 halogens Chemical class 0.000 description 7
- 201000001441 melanoma Diseases 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229910001868 water Inorganic materials 0.000 description 7
- HDRKIIGABIAXGC-UHFFFAOYSA-N 1H-pyrazol-5-yldiazene Chemical compound N=NC1=CC=NN1 HDRKIIGABIAXGC-UHFFFAOYSA-N 0.000 description 6
- MENUYOGJCXAFFU-UHFFFAOYSA-N 2-(phenylhydrazinylidene)propanedinitrile Chemical compound N#CC(C#N)=NNC1=CC=CC=C1 MENUYOGJCXAFFU-UHFFFAOYSA-N 0.000 description 6
- 0 CC.CC(C)C1=NC=CN1.CC(C)C1=NC=CS1.CC(C)C1=NCC=C1.CC(C)C1~C~C~C~C~C~1.CC(C)N1CCCCC1 Chemical compound CC.CC(C)C1=NC=CN1.CC(C)C1=NC=CS1.CC(C)C1=NCC=C1.CC(C)C1~C~C~C~C~C~1.CC(C)N1CCCCC1 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000030833 cell death Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000701447 unidentified baculovirus Species 0.000 description 6
- 241000219198 Brassica Species 0.000 description 5
- 235000003351 Brassica cretica Nutrition 0.000 description 5
- 235000003343 Brassica rupestris Nutrition 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 241000238631 Hexapoda Species 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 125000000732 arylene group Chemical group 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 235000010460 mustard Nutrition 0.000 description 5
- 230000035755 proliferation Effects 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- XTONCZCIDRYXDH-UHFFFAOYSA-N 4-[(4-chlorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(Cl)C=C1 XTONCZCIDRYXDH-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 201000009273 Endometriosis Diseases 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 4
- 239000013543 active substance Substances 0.000 description 4
- 230000025164 anoikis Effects 0.000 description 4
- PXXJHWLDUBFPOL-UHFFFAOYSA-N benzamidine Chemical compound NC(=N)C1=CC=CC=C1 PXXJHWLDUBFPOL-UHFFFAOYSA-N 0.000 description 4
- 230000032823 cell division Effects 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 125000005549 heteroarylene group Chemical group 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000007943 implant Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 230000009545 invasion Effects 0.000 description 4
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 4
- AYQRNZDLRDLAHE-UHFFFAOYSA-N 4-(1,2,4-triazin-3-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=NC=CN=N1 AYQRNZDLRDLAHE-UHFFFAOYSA-N 0.000 description 3
- GDWQBNAUUYCWIC-UHFFFAOYSA-N 4-(1,3-thiazol-2-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=NC=CS1 GDWQBNAUUYCWIC-UHFFFAOYSA-N 0.000 description 3
- SYDRIGRFPHLLIL-UHFFFAOYSA-N 4-(1h-pyrazol-5-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=NNC=C1 SYDRIGRFPHLLIL-UHFFFAOYSA-N 0.000 description 3
- SOUFDUGXFLPISS-UHFFFAOYSA-N 4-(morpholin-4-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNN1CCOCC1 SOUFDUGXFLPISS-UHFFFAOYSA-N 0.000 description 3
- OKZNBFAXFGTZRH-UHFFFAOYSA-N 4-(phenylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC=C1 OKZNBFAXFGTZRH-UHFFFAOYSA-N 0.000 description 3
- ZSCSYYNXIRMMFM-UHFFFAOYSA-N 4-(phenylhydrazinylidene)pyrazolidine-3,5-dione Chemical compound O=C1NNC(=O)C1=NNC1=CC=CC=C1 ZSCSYYNXIRMMFM-UHFFFAOYSA-N 0.000 description 3
- IXEQOVHLFNHQLQ-UHFFFAOYSA-N 4-[(4-methoxyphenyl)hydrazinylidene]pyrazolidine-3,5-dione Chemical compound C1=CC(OC)=CC=C1NN=C1C(=O)NNC1=O IXEQOVHLFNHQLQ-UHFFFAOYSA-N 0.000 description 3
- LTXPTEHDYDGWHR-UHFFFAOYSA-N 4-[(4-methylphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=CC(C)=CC=C1NN=C1C(N)=NN=C1N LTXPTEHDYDGWHR-UHFFFAOYSA-N 0.000 description 3
- HOGHAIYOTKJPSG-UHFFFAOYSA-N 4-[(4-methylphenyl)hydrazinylidene]pyrazolidine-3,5-dione Chemical compound C1=CC(C)=CC=C1NN=C1C(=O)NNC1=O HOGHAIYOTKJPSG-UHFFFAOYSA-N 0.000 description 3
- ZNHPTFLPMBFEHP-UHFFFAOYSA-N 4-[2-(3,5-diaminopyrazol-4-ylidene)hydrazinyl]benzenesulfonic acid Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(S(O)(=O)=O)C=C1 ZNHPTFLPMBFEHP-UHFFFAOYSA-N 0.000 description 3
- YBZULGHRMLTAFP-UHFFFAOYSA-N 4-[2-(3,5-diaminopyrazol-4-ylidene)hydrazinyl]naphthalene-1-sulfonic acid Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(S(O)(=O)=O)C2=CC=CC=C12 YBZULGHRMLTAFP-UHFFFAOYSA-N 0.000 description 3
- GLBPVQBOYDAZDS-UHFFFAOYSA-N 5-[2-(3,5-diaminopyrazol-4-ylidene)hydrazinyl]-2-methoxyphenol Chemical compound C1=C(O)C(OC)=CC=C1NN=C1C(N)=NN=C1N GLBPVQBOYDAZDS-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- VINKYPNHTTWBRB-UHFFFAOYSA-N CCN=NC1C(C)N(C)N(C)C1C Chemical compound CCN=NC1C(C)N(C)N(C)C1C VINKYPNHTTWBRB-UHFFFAOYSA-N 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 3
- KUGUHVNYSQJOGA-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=C(O)C=CC2=CC=CC=C12 Chemical compound NC1=NN=C(N)C1=NNC1=C(O)C=CC2=CC=CC=C12 KUGUHVNYSQJOGA-UHFFFAOYSA-N 0.000 description 3
- JCZBPZDLHVQJAD-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=C(O)C=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(O)C=C1 JCZBPZDLHVQJAD-UHFFFAOYSA-N 0.000 description 3
- GIAQFFDPSYQXKO-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=NC=CN1 Chemical compound NC1=NN=C(N)C1=NNC1=NC=CN1 GIAQFFDPSYQXKO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 208000009956 adenocarcinoma Diseases 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 3
- NCWCSLXGDWIAIT-UHFFFAOYSA-N chembl383939 Chemical compound NC1=NNC(N)=C1N=NC1=CC=C(C(O)=O)C=C1 NCWCSLXGDWIAIT-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000008482 dysregulation Effects 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 125000005638 hydrazono group Chemical group 0.000 description 3
- 206010020718 hyperplasia Diseases 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 238000004393 prognosis Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 208000037803 restenosis Diseases 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 235000010288 sodium nitrite Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- ZWKLFIGKZZGTCS-UHFFFAOYSA-N 2-[(3-fluorophenyl)hydrazinylidene]propanedinitrile Chemical compound FC1=CC=CC(NN=C(C#N)C#N)=C1 ZWKLFIGKZZGTCS-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- VZOUEESLSXWXTI-UHFFFAOYSA-N 3-amino-4-[(4-methoxyphenyl)diazenyl]-1,4-dihydropyrazol-5-one Chemical compound C1=CC(OC)=CC=C1N=NC1C(N)=NNC1=O VZOUEESLSXWXTI-UHFFFAOYSA-N 0.000 description 2
- SHURAYKKNKIJBQ-UHFFFAOYSA-N 3-amino-4-[(4-methylphenyl)diazenyl]-1,4-dihydropyrazol-5-one Chemical compound C1=CC(C)=CC=C1N=NC1C(N)=NNC1=O SHURAYKKNKIJBQ-UHFFFAOYSA-N 0.000 description 2
- KARWINWPVZJLQK-UHFFFAOYSA-N 3-amino-4-phenyldiazenyl-1,4-dihydropyrazol-5-one Chemical compound NC1=NNC(=O)C1N=NC1=CC=CC=C1 KARWINWPVZJLQK-UHFFFAOYSA-N 0.000 description 2
- CUYKNJBYIJFRCU-UHFFFAOYSA-N 3-aminopyridine Chemical compound NC1=CC=CN=C1 CUYKNJBYIJFRCU-UHFFFAOYSA-N 0.000 description 2
- QZVQQUVWFIZUBQ-UHFFFAOYSA-N 3-fluoroaniline Chemical compound NC1=CC=CC(F)=C1 QZVQQUVWFIZUBQ-UHFFFAOYSA-N 0.000 description 2
- KAHCKSWFRSBZRG-UHFFFAOYSA-N 4-(2-morpholin-4-ylethylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNCCN1CCOCC1 KAHCKSWFRSBZRG-UHFFFAOYSA-N 0.000 description 2
- CYEPDOGFHJWUFH-UHFFFAOYSA-N 4-(piperidin-4-ylmethylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNCC1CCNCC1 CYEPDOGFHJWUFH-UHFFFAOYSA-N 0.000 description 2
- KAYRKOVMJPWDNO-UHFFFAOYSA-N 4-(pyridin-4-ylhydrazinylidene)pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=NC=C1 KAYRKOVMJPWDNO-UHFFFAOYSA-N 0.000 description 2
- ZCEIXBFAYDUGHP-UHFFFAOYSA-N 4-[(2,3,4,5,6-pentafluorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=C(F)C(F)=C(F)C(F)=C1F ZCEIXBFAYDUGHP-UHFFFAOYSA-N 0.000 description 2
- LEVNSQBSJWGBPB-UHFFFAOYSA-N 4-[(2,3,4-trifluorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(F)C(F)=C1F LEVNSQBSJWGBPB-UHFFFAOYSA-N 0.000 description 2
- SJGTVWJCHMOQAW-UHFFFAOYSA-N 4-[(3,5-difluorophenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound NC1=NN=C(N)C1=NNC1=CC(F)=CC(F)=C1 SJGTVWJCHMOQAW-UHFFFAOYSA-N 0.000 description 2
- CYYROHZWNLFOKL-UHFFFAOYSA-N 4-[(4-methoxyphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=CC(OC)=CC=C1NN=C1C(N)=NN=C1N CYYROHZWNLFOKL-UHFFFAOYSA-N 0.000 description 2
- IKXWHWNQGUMNSK-UHFFFAOYSA-N 4-[(4-propylphenyl)hydrazinylidene]pyrazole-3,5-diamine Chemical compound C1=CC(CCC)=CC=C1NN=C1C(N)=NN=C1N IKXWHWNQGUMNSK-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- QBDONYIBIGWFBT-UHFFFAOYSA-N CC1C(N=NC[Ar])C(C)N(C)N1C Chemical compound CC1C(N=NC[Ar])C(C)N(C)N1C QBDONYIBIGWFBT-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- RVUOKTLTKFSHGS-UHFFFAOYSA-N N-[4-[(3,5-diamino-1H-pyrazol-4-yl)diazenyl]phenyl]acetamide Chemical compound NC1=NNC(=C1N=NC1=CC=C(C=C1)NC(C)=O)N RVUOKTLTKFSHGS-UHFFFAOYSA-N 0.000 description 2
- KMWCSUSQXFMDHO-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CN=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CN=C1 KMWCSUSQXFMDHO-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 229910006069 SO3H Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000012820 cell cycle checkpoint Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000002254 cytotoxic agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- ZIUSEGSNTOUIPT-UHFFFAOYSA-N ethyl 2-cyanoacetate Chemical compound CCOC(=O)CC#N ZIUSEGSNTOUIPT-UHFFFAOYSA-N 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 208000015768 polyposis Diseases 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000003345 scintillation counting Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 125000003003 spiro group Chemical group 0.000 description 2
- 206010041823 squamous cell carcinoma Diseases 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 2
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- QBYIENPQHBMVBV-HFEGYEGKSA-N (2R)-2-hydroxy-2-phenylacetic acid Chemical compound O[C@@H](C(O)=O)c1ccccc1.O[C@@H](C(O)=O)c1ccccc1 QBYIENPQHBMVBV-HFEGYEGKSA-N 0.000 description 1
- RGGOWBBBHWTTRE-UHFFFAOYSA-N (4-bromophenyl)hydrazine;hydron;chloride Chemical compound Cl.NNC1=CC=C(Br)C=C1 RGGOWBBBHWTTRE-UHFFFAOYSA-N 0.000 description 1
- FEKUXLUOKFSMRO-UHFFFAOYSA-N (4-fluorophenyl)hydrazine;hydron;chloride Chemical compound Cl.NNC1=CC=C(F)C=C1 FEKUXLUOKFSMRO-UHFFFAOYSA-N 0.000 description 1
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- ZSZXYWFCIKKZBT-IVYVYLGESA-N 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5-trisphosphate) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O ZSZXYWFCIKKZBT-IVYVYLGESA-N 0.000 description 1
- XGNXYCFREOZBOL-UHFFFAOYSA-N 1,3-benzodioxol-5-amine Chemical compound NC1=CC=C2OCOC2=C1 XGNXYCFREOZBOL-UHFFFAOYSA-N 0.000 description 1
- 125000006018 1-methyl-ethenyl group Chemical group 0.000 description 1
- 125000006017 1-propenyl group Chemical group 0.000 description 1
- 125000000530 1-propynyl group Chemical group [H]C([H])([H])C#C* 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- JVVRJMXHNUAPHW-UHFFFAOYSA-N 1h-pyrazol-5-amine Chemical compound NC=1C=CNN=1 JVVRJMXHNUAPHW-UHFFFAOYSA-N 0.000 description 1
- NOXLGCOSAFGMDV-UHFFFAOYSA-N 2,3,4,5,6-pentafluoroaniline Chemical compound NC1=C(F)C(F)=C(F)C(F)=C1F NOXLGCOSAFGMDV-UHFFFAOYSA-N 0.000 description 1
- WRDGNXCXTDDYBZ-UHFFFAOYSA-N 2,3,4-trifluoroaniline Chemical compound NC1=CC=C(F)C(F)=C1F WRDGNXCXTDDYBZ-UHFFFAOYSA-N 0.000 description 1
- ODUZJBKKYBQIBX-UHFFFAOYSA-N 2,6-difluoroaniline Chemical compound NC1=C(F)C=CC=C1F ODUZJBKKYBQIBX-UHFFFAOYSA-N 0.000 description 1
- LGPDHWRELWJWHP-UHFFFAOYSA-N 2-(1,3-benzodioxol-5-ylhydrazinylidene)propanedinitrile Chemical compound N#CC(C#N)=NNC1=CC=C2OCOC2=C1 LGPDHWRELWJWHP-UHFFFAOYSA-N 0.000 description 1
- PFCPQIUIQKEVIV-UHFFFAOYSA-N 2-(2,3-dihydro-1,4-benzodioxin-6-ylhydrazinylidene)propanedinitrile Chemical compound O1CCOC2=CC(NN=C(C#N)C#N)=CC=C21 PFCPQIUIQKEVIV-UHFFFAOYSA-N 0.000 description 1
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 description 1
- JBCUKQQIWSWEOK-UHFFFAOYSA-N 2-(benzenesulfonyl)aniline Chemical compound NC1=CC=CC=C1S(=O)(=O)C1=CC=CC=C1 JBCUKQQIWSWEOK-UHFFFAOYSA-N 0.000 description 1
- XJMIDWRIJZXPHW-UHFFFAOYSA-N 2-(naphthalen-2-ylhydrazinylidene)propanedinitrile Chemical compound C1=CC=CC2=CC(NN=C(C#N)C#N)=CC=C21 XJMIDWRIJZXPHW-UHFFFAOYSA-N 0.000 description 1
- HHZAIEGFTSQCRW-UHFFFAOYSA-N 2-(pyridin-3-ylhydrazinylidene)propanedinitrile Chemical compound N#CC(C#N)=NNC1=CC=CN=C1 HHZAIEGFTSQCRW-UHFFFAOYSA-N 0.000 description 1
- YKOLZVXSPGIIBJ-UHFFFAOYSA-N 2-Isopropylaniline Chemical compound CC(C)C1=CC=CC=C1N YKOLZVXSPGIIBJ-UHFFFAOYSA-N 0.000 description 1
- LJMMVIIQWPAZJA-UHFFFAOYSA-N 2-[(2,6-difluorophenyl)hydrazinylidene]propanedinitrile Chemical compound FC1=CC=CC(F)=C1NN=C(C#N)C#N LJMMVIIQWPAZJA-UHFFFAOYSA-N 0.000 description 1
- FGGIUVZITPUMMQ-UHFFFAOYSA-N 2-[(2-bromophenyl)hydrazinylidene]propanedinitrile Chemical compound BrC1=CC=CC=C1NN=C(C#N)C#N FGGIUVZITPUMMQ-UHFFFAOYSA-N 0.000 description 1
- WJLRKYSNJJCEPP-UHFFFAOYSA-N 2-[(2-chlorophenyl)hydrazinylidene]propanedinitrile Chemical compound ClC1=CC=CC=C1NN=C(C#N)C#N WJLRKYSNJJCEPP-UHFFFAOYSA-N 0.000 description 1
- GARUNYYLNCCBTO-UHFFFAOYSA-N 2-[(2-methylphenyl)hydrazinylidene]propanedinitrile Chemical compound CC1=CC=CC=C1NN=C(C#N)C#N GARUNYYLNCCBTO-UHFFFAOYSA-N 0.000 description 1
- HALMTGNEUNUAMO-UHFFFAOYSA-N 2-[(2-phenylphenyl)hydrazinylidene]propanedinitrile Chemical compound N#CC(C#N)=NNC1=CC=CC=C1C1=CC=CC=C1 HALMTGNEUNUAMO-UHFFFAOYSA-N 0.000 description 1
- NKLLHAJZPMKPCU-UHFFFAOYSA-N 2-[(2-propan-2-ylphenyl)hydrazinylidene]propanedinitrile Chemical compound CC(C)C1=CC=CC=C1NN=C(C#N)C#N NKLLHAJZPMKPCU-UHFFFAOYSA-N 0.000 description 1
- GTVGGHQLKNCAMB-UHFFFAOYSA-N 2-[(3,4-dichlorophenyl)hydrazinylidene]propanedinitrile Chemical compound ClC1=CC=C(NN=C(C#N)C#N)C=C1Cl GTVGGHQLKNCAMB-UHFFFAOYSA-N 0.000 description 1
- NSZQYRFLYOLWGM-UHFFFAOYSA-N 2-[(3,4-difluorophenyl)hydrazinylidene]propanedinitrile Chemical compound FC1=CC=C(NN=C(C#N)C#N)C=C1F NSZQYRFLYOLWGM-UHFFFAOYSA-N 0.000 description 1
- QSPPKFSXMWSMTG-UHFFFAOYSA-N 2-[(3,4-dimethoxyphenyl)hydrazinylidene]propanedinitrile Chemical compound COC1=CC=C(NN=C(C#N)C#N)C=C1OC QSPPKFSXMWSMTG-UHFFFAOYSA-N 0.000 description 1
- PMBDYEGXPRAQBK-UHFFFAOYSA-N 2-[(3,5-dichlorophenyl)hydrazinylidene]propanedinitrile Chemical compound ClC1=CC(Cl)=CC(NN=C(C#N)C#N)=C1 PMBDYEGXPRAQBK-UHFFFAOYSA-N 0.000 description 1
- UHSPMWWBUAYGQI-UHFFFAOYSA-N 2-[(3-bromophenyl)hydrazinylidene]propanedinitrile Chemical compound BrC1=CC=CC(NN=C(C#N)C#N)=C1 UHSPMWWBUAYGQI-UHFFFAOYSA-N 0.000 description 1
- QAQDWMMJRXIJIY-UHFFFAOYSA-N 2-[(3-chloro-4-methoxyphenyl)hydrazinylidene]propanedinitrile Chemical compound COC1=CC=C(NN=C(C#N)C#N)C=C1Cl QAQDWMMJRXIJIY-UHFFFAOYSA-N 0.000 description 1
- FMDBRCCIHPBRBJ-UHFFFAOYSA-N 2-[(3-ethylphenyl)hydrazinylidene]propanedinitrile Chemical compound CCC1=CC=CC(NN=C(C#N)C#N)=C1 FMDBRCCIHPBRBJ-UHFFFAOYSA-N 0.000 description 1
- GSNHUMXNONIPHU-UHFFFAOYSA-N 2-[(3-fluoro-4-methoxyphenyl)hydrazinylidene]propanedinitrile Chemical compound COC1=CC=C(NN=C(C#N)C#N)C=C1F GSNHUMXNONIPHU-UHFFFAOYSA-N 0.000 description 1
- XPHHWVZARKXKST-UHFFFAOYSA-N 2-[(3-hydroxyphenyl)hydrazinylidene]propanedinitrile Chemical compound OC1=CC=CC(NN=C(C#N)C#N)=C1 XPHHWVZARKXKST-UHFFFAOYSA-N 0.000 description 1
- GCAZZHFRWGZJND-UHFFFAOYSA-N 2-[(3-iodophenyl)hydrazinylidene]propanedinitrile Chemical compound IC1=CC=CC(NN=C(C#N)C#N)=C1 GCAZZHFRWGZJND-UHFFFAOYSA-N 0.000 description 1
- FQOMUIUFPHDVGP-UHFFFAOYSA-N 2-[(3-methoxyphenyl)hydrazinylidene]propanedinitrile Chemical compound COC1=CC=CC(NN=C(C#N)C#N)=C1 FQOMUIUFPHDVGP-UHFFFAOYSA-N 0.000 description 1
- GQROBIKAQWAGMI-UHFFFAOYSA-N 2-[(3-phenoxyphenyl)hydrazinylidene]propanedinitrile Chemical compound N#CC(C#N)=NNC1=CC=CC(OC=2C=CC=CC=2)=C1 GQROBIKAQWAGMI-UHFFFAOYSA-N 0.000 description 1
- JJDIGWXKILXPDT-UHFFFAOYSA-N 2-[(4-bromophenyl)hydrazinylidene]propanedinitrile Chemical compound BrC1=CC=C(NN=C(C#N)C#N)C=C1 JJDIGWXKILXPDT-UHFFFAOYSA-N 0.000 description 1
- KTGLAUQDVTYHBP-UHFFFAOYSA-N 2-[(4-iodophenyl)hydrazinylidene]propanedinitrile Chemical compound IC1=CC=C(NN=C(C#N)C#N)C=C1 KTGLAUQDVTYHBP-UHFFFAOYSA-N 0.000 description 1
- LFNURSLKYJLPOH-UHFFFAOYSA-N 2-[(4-methylsulfanylphenyl)hydrazinylidene]propanedinitrile Chemical compound CSC1=CC=C(NN=C(C#N)C#N)C=C1 LFNURSLKYJLPOH-UHFFFAOYSA-N 0.000 description 1
- XAYYDHQLURSMJT-UHFFFAOYSA-N 2-[(4-phenoxyphenyl)hydrazinylidene]propanedinitrile Chemical compound C1=CC(NN=C(C#N)C#N)=CC=C1OC1=CC=CC=C1 XAYYDHQLURSMJT-UHFFFAOYSA-N 0.000 description 1
- JORZIVYWRDKLHD-UHFFFAOYSA-N 2-[(6-methoxy-1,3-benzothiazol-2-yl)hydrazinylidene]propanedinitrile Chemical compound COC1=CC=C2N=C(NN=C(C#N)C#N)SC2=C1 JORZIVYWRDKLHD-UHFFFAOYSA-N 0.000 description 1
- KJYJZGKBGAAITE-UHFFFAOYSA-N 2-[(9-ethylcarbazol-3-yl)hydrazinylidene]propanedinitrile Chemical compound N#CC(C#N)=NNC1=CC=C2N(CC)C3=CC=CC=C3C2=C1 KJYJZGKBGAAITE-UHFFFAOYSA-N 0.000 description 1
- LARIWECJXIBNDO-UHFFFAOYSA-N 2-[[2-(benzenesulfonyl)phenyl]hydrazinylidene]propanedinitrile Chemical compound C=1C=CC=C(NN=C(C#N)C#N)C=1S(=O)(=O)C1=CC=CC=C1 LARIWECJXIBNDO-UHFFFAOYSA-N 0.000 description 1
- CFVQWSSWYUKQAR-UHFFFAOYSA-N 2-[[3-(trifluoromethyl)phenyl]hydrazinylidene]propanedinitrile Chemical compound FC(F)(F)C1=CC=CC(NN=C(C#N)C#N)=C1 CFVQWSSWYUKQAR-UHFFFAOYSA-N 0.000 description 1
- GXUIZHKZKBRBBL-UHFFFAOYSA-N 2-[[3-methoxy-5-(trifluoromethyl)phenyl]hydrazinylidene]propanedinitrile Chemical compound COC1=CC(NN=C(C#N)C#N)=CC(C(F)(F)F)=C1 GXUIZHKZKBRBBL-UHFFFAOYSA-N 0.000 description 1
- VFGZASZXLDMQJH-UHFFFAOYSA-N 2-[[4-(trifluoromethyl)phenyl]hydrazinylidene]propanedinitrile Chemical compound FC(F)(F)C1=CC=C(NN=C(C#N)C#N)C=C1 VFGZASZXLDMQJH-UHFFFAOYSA-N 0.000 description 1
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 1
- AOPBDRUWRLBSDB-UHFFFAOYSA-N 2-bromoaniline Chemical compound NC1=CC=CC=C1Br AOPBDRUWRLBSDB-UHFFFAOYSA-N 0.000 description 1
- LNEVUNYUJNORRV-UHFFFAOYSA-N 2-chloro-4-methoxyaniline Chemical compound COC1=CC=C(N)C(Cl)=C1 LNEVUNYUJNORRV-UHFFFAOYSA-N 0.000 description 1
- AKCRQHGQIJBRMN-UHFFFAOYSA-N 2-chloroaniline Chemical compound NC1=CC=CC=C1Cl AKCRQHGQIJBRMN-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- 229940013085 2-diethylaminoethanol Drugs 0.000 description 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical compound C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 description 1
- TWBPWBPGNQWFSJ-UHFFFAOYSA-N 2-phenylaniline Chemical group NC1=CC=CC=C1C1=CC=CC=C1 TWBPWBPGNQWFSJ-UHFFFAOYSA-N 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- SDYWXFYBZPNOFX-UHFFFAOYSA-N 3,4-dichloroaniline Chemical compound NC1=CC=C(Cl)C(Cl)=C1 SDYWXFYBZPNOFX-UHFFFAOYSA-N 0.000 description 1
- AXNUZKSSQHTNPZ-UHFFFAOYSA-N 3,4-difluoroaniline Chemical compound NC1=CC=C(F)C(F)=C1 AXNUZKSSQHTNPZ-UHFFFAOYSA-N 0.000 description 1
- LGDHZCLREKIGKJ-UHFFFAOYSA-N 3,4-dimethoxyaniline Chemical compound COC1=CC=C(N)C=C1OC LGDHZCLREKIGKJ-UHFFFAOYSA-N 0.000 description 1
- UQRLKWGPEVNVHT-UHFFFAOYSA-N 3,5-dichloroaniline Chemical compound NC1=CC(Cl)=CC(Cl)=C1 UQRLKWGPEVNVHT-UHFFFAOYSA-N 0.000 description 1
- KQOIBXZRCYFZSO-UHFFFAOYSA-N 3,5-difluoroaniline Chemical compound NC1=CC(F)=CC(F)=C1 KQOIBXZRCYFZSO-UHFFFAOYSA-N 0.000 description 1
- VIUDTWATMPPKEL-UHFFFAOYSA-N 3-(trifluoromethyl)aniline Chemical compound NC1=CC=CC(C(F)(F)F)=C1 VIUDTWATMPPKEL-UHFFFAOYSA-N 0.000 description 1
- XFDUHJPVQKIXHO-UHFFFAOYSA-M 3-aminobenzoate Chemical compound NC1=CC=CC(C([O-])=O)=C1 XFDUHJPVQKIXHO-UHFFFAOYSA-M 0.000 description 1
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 1
- 229940018563 3-aminophenol Drugs 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- DHYHYLGCQVVLOQ-UHFFFAOYSA-N 3-bromoaniline Chemical compound NC1=CC=CC(Br)=C1 DHYHYLGCQVVLOQ-UHFFFAOYSA-N 0.000 description 1
- PNPCRKVUWYDDST-UHFFFAOYSA-N 3-chloroaniline Chemical compound NC1=CC=CC(Cl)=C1 PNPCRKVUWYDDST-UHFFFAOYSA-N 0.000 description 1
- AMKPQMFZCBTTAT-UHFFFAOYSA-N 3-ethylaniline Chemical compound CCC1=CC=CC(N)=C1 AMKPQMFZCBTTAT-UHFFFAOYSA-N 0.000 description 1
- LJWAPDSCYTZUJU-UHFFFAOYSA-N 3-fluoro-4-methoxyaniline Chemical compound COC1=CC=C(N)C=C1F LJWAPDSCYTZUJU-UHFFFAOYSA-N 0.000 description 1
- FFCSRWGYGMRBGD-UHFFFAOYSA-N 3-iodoaniline Chemical compound NC1=CC=CC(I)=C1 FFCSRWGYGMRBGD-UHFFFAOYSA-N 0.000 description 1
- VTFGJEYZCUWSAM-UHFFFAOYSA-N 3-methoxy-5-(trifluoromethyl)aniline Chemical compound COC1=CC(N)=CC(C(F)(F)F)=C1 VTFGJEYZCUWSAM-UHFFFAOYSA-N 0.000 description 1
- UCSYVYFGMFODMY-UHFFFAOYSA-N 3-phenoxyaniline Chemical compound NC1=CC=CC(OC=2C=CC=CC=2)=C1 UCSYVYFGMFODMY-UHFFFAOYSA-N 0.000 description 1
- YKFROQCFVXOUPW-UHFFFAOYSA-N 4-(methylthio) aniline Chemical compound CSC1=CC=C(N)C=C1 YKFROQCFVXOUPW-UHFFFAOYSA-N 0.000 description 1
- NUKYPUAOHBNCPY-UHFFFAOYSA-N 4-aminopyridine Chemical compound NC1=CC=NC=C1 NUKYPUAOHBNCPY-UHFFFAOYSA-N 0.000 description 1
- WDFQBORIUYODSI-UHFFFAOYSA-N 4-bromoaniline Chemical compound NC1=CC=C(Br)C=C1 WDFQBORIUYODSI-UHFFFAOYSA-N 0.000 description 1
- LIUKLAQDPKYBCP-UHFFFAOYSA-N 4-bromonaphthalen-1-amine Chemical compound C1=CC=C2C(N)=CC=C(Br)C2=C1 LIUKLAQDPKYBCP-UHFFFAOYSA-N 0.000 description 1
- KRZCOLNOCZKSDF-UHFFFAOYSA-N 4-fluoroaniline Chemical compound NC1=CC=C(F)C=C1 KRZCOLNOCZKSDF-UHFFFAOYSA-N 0.000 description 1
- PCNFLKVWBDNNOW-UHFFFAOYSA-N 4-hydrazinylbenzoic acid Chemical compound NNC1=CC=C(C(O)=O)C=C1 PCNFLKVWBDNNOW-UHFFFAOYSA-N 0.000 description 1
- VLVCDUSVTXIWGW-UHFFFAOYSA-N 4-iodoaniline Chemical compound NC1=CC=C(I)C=C1 VLVCDUSVTXIWGW-UHFFFAOYSA-N 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- WOYZXEVUWXQVNV-UHFFFAOYSA-N 4-phenoxyaniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC=C1 WOYZXEVUWXQVNV-UHFFFAOYSA-N 0.000 description 1
- ODGIMMLDVSWADK-UHFFFAOYSA-N 4-trifluoromethylaniline Chemical compound NC1=CC=C(C(F)(F)F)C=C1 ODGIMMLDVSWADK-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- OXEUETBFKVCRNP-UHFFFAOYSA-N 9-ethyl-3-carbazolamine Chemical compound NC1=CC=C2N(CC)C3=CC=CC=C3C2=C1 OXEUETBFKVCRNP-UHFFFAOYSA-N 0.000 description 1
- 206010000830 Acute leukaemia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 101100125899 Arabidopsis thaliana ILK1 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 208000000659 Autoimmune lymphoproliferative syndrome Diseases 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- KBPSTMQCPYHBQD-UHFFFAOYSA-N C=C.NC1=NN=C(N)C1=NNN1CCOCC1 Chemical compound C=C.NC1=NN=C(N)C1=NNN1CCOCC1 KBPSTMQCPYHBQD-UHFFFAOYSA-N 0.000 description 1
- IFOMYBSYOOSWMY-UHFFFAOYSA-N C=N(N=C1C(N)=NN=C1N)C1CCNCC1 Chemical compound C=N(N=C1C(N)=NN=C1N)C1CCNCC1 IFOMYBSYOOSWMY-UHFFFAOYSA-N 0.000 description 1
- IHAMPPARILYWJA-UHFFFAOYSA-N CC(=O)NC1=CC=C(NN=C2C(N)=NN=C2N)C=C1 Chemical compound CC(=O)NC1=CC=C(NN=C2C(N)=NN=C2N)C=C1 IHAMPPARILYWJA-UHFFFAOYSA-N 0.000 description 1
- IFNMGKVLLMBXPR-UHFFFAOYSA-N CC(C)C1=CC=CC=C1.CC1CCNCC1 Chemical compound CC(C)C1=CC=CC=C1.CC1CCNCC1 IFNMGKVLLMBXPR-UHFFFAOYSA-N 0.000 description 1
- DSTUCFQKEYWILA-UHFFFAOYSA-N CC(C)C1=NC=CN=N1 Chemical compound CC(C)C1=NC=CN=N1 DSTUCFQKEYWILA-UHFFFAOYSA-N 0.000 description 1
- SJVOMPKFKDJMQB-UHFFFAOYSA-N CC(C)N=NC1=C(N)NN=C1N.CC(C)N=NC1=C(N)NNC1=N.CC(C)NN=C1C(N)=NN=C1N.[H]C1(N)N=NC(N)=C1N=NC(C)C.[H]C1(N=NC(C)C)C(=N)NN=C1N.[H]C1(N=NC(C)C)C(N)=NN=C1N Chemical compound CC(C)N=NC1=C(N)NN=C1N.CC(C)N=NC1=C(N)NNC1=N.CC(C)NN=C1C(N)=NN=C1N.[H]C1(N)N=NC(N)=C1N=NC(C)C.[H]C1(N=NC(C)C)C(=N)NN=C1N.[H]C1(N=NC(C)C)C(N)=NN=C1N SJVOMPKFKDJMQB-UHFFFAOYSA-N 0.000 description 1
- JYGDENTTXCQEJB-UHFFFAOYSA-N CC(C)N=NC1C(C)N(C)N(C)C1C Chemical compound CC(C)N=NC1C(C)N(C)N(C)C1C JYGDENTTXCQEJB-UHFFFAOYSA-N 0.000 description 1
- FTAXESLLZQDVBF-UHFFFAOYSA-N CC1=CC(NN=C2C(N)=NN=C2N)=CC=C1 Chemical compound CC1=CC(NN=C2C(N)=NN=C2N)=CC=C1 FTAXESLLZQDVBF-UHFFFAOYSA-N 0.000 description 1
- SHURAYKKNKIJBQ-OUKQBFOZSA-N CC1=CC=C(/N=N/C2C(=O)NN=C2N)C=C1 Chemical compound CC1=CC=C(/N=N/C2C(=O)NN=C2N)C=C1 SHURAYKKNKIJBQ-OUKQBFOZSA-N 0.000 description 1
- WLPJCEYEXJPKOP-UHFFFAOYSA-N CC1=CC=CC=C1NN=C1C(N)=NN=C1N Chemical compound CC1=CC=CC=C1NN=C1C(N)=NN=C1N WLPJCEYEXJPKOP-UHFFFAOYSA-N 0.000 description 1
- KTRURCMSXBBQDM-UHFFFAOYSA-N CCCCC1=CC=C(NN=C2C(N)=NN=C2N)C=C1 Chemical compound CCCCC1=CC=C(NN=C2C(N)=NN=C2N)C=C1 KTRURCMSXBBQDM-UHFFFAOYSA-N 0.000 description 1
- ODJMGAMTPSAOJI-BUHFOSPRSA-N CN1N=C(N)C(/N=N/C2=CC=CC=C2)=C1N Chemical compound CN1N=C(N)C(/N=N/C2=CC=CC=C2)=C1N ODJMGAMTPSAOJI-BUHFOSPRSA-N 0.000 description 1
- VZOUEESLSXWXTI-OUKQBFOZSA-N COC1=CC=C(/N=N/C2C(=O)NN=C2N)C=C1 Chemical compound COC1=CC=C(/N=N/C2C(=O)NN=C2N)C=C1 VZOUEESLSXWXTI-OUKQBFOZSA-N 0.000 description 1
- AFYYXHFYYXBMSQ-UHFFFAOYSA-N COC1=CC=C(NN=C2C(=O)NNC2=O)C=C1O Chemical compound COC1=CC=C(NN=C2C(=O)NNC2=O)C=C1O AFYYXHFYYXBMSQ-UHFFFAOYSA-N 0.000 description 1
- HVZWAAAFEPOTLQ-OVCLIPMQSA-N COC1=CC=C2/N=C(/N/N=C3/C(N)=NNC3N)SC2=C1 Chemical compound COC1=CC=C2/N=C(/N/N=C3/C(N)=NNC3N)SC2=C1 HVZWAAAFEPOTLQ-OVCLIPMQSA-N 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGTJLJZQQFGTJD-UHFFFAOYSA-N Carbonylcyanide-3-chlorophenylhydrazone Chemical compound ClC1=CC=CC(NN=C(C#N)C#N)=C1 UGTJLJZQQFGTJD-UHFFFAOYSA-N 0.000 description 1
- 101800005309 Carboxy-terminal peptide Proteins 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000011727 Caspases Human genes 0.000 description 1
- 108010076667 Caspases Proteins 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 201000004624 Dermatitis Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 208000006926 Discoid Lupus Erythematosus Diseases 0.000 description 1
- 208000006402 Ductal Carcinoma Diseases 0.000 description 1
- 102400001047 Endostatin Human genes 0.000 description 1
- 108010079505 Endostatins Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 206010015866 Extravasation Diseases 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101150050155 ILK gene Proteins 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010073094 Intraductal proliferative breast lesion Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 208000006552 Lewis Lung Carcinoma Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 208000000265 Lobular Carcinoma Diseases 0.000 description 1
- 208000007433 Lymphatic Metastasis Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027459 Metastases to lymph nodes Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 208000003445 Mouth Neoplasms Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- BSNLVDJNPAAEPL-UHFFFAOYSA-N NC1=NN(C2=CC=C(Br)C=C2)C(N)=C1N=NC1=CC=CC=C1 Chemical compound NC1=NN(C2=CC=C(Br)C=C2)C(N)=C1N=NC1=CC=CC=C1 BSNLVDJNPAAEPL-UHFFFAOYSA-N 0.000 description 1
- VQTDROFMWROHTG-FMQUCBEESA-N NC1=NN(C2=CC=C(C(=O)O)C=C2)C(N)=C1/N=N/C1=CC=CC=C1 Chemical compound NC1=NN(C2=CC=C(C(=O)O)C=C2)C(N)=C1/N=N/C1=CC=CC=C1 VQTDROFMWROHTG-FMQUCBEESA-N 0.000 description 1
- FJFLZSHCDMVTJZ-UHFFFAOYSA-N NC1=NN(C2=CC=C(F)C=C2)C(N)=C1N=NC1=CC=CC=C1 Chemical compound NC1=NN(C2=CC=C(F)C=C2)C(N)=C1N=NC1=CC=CC=C1 FJFLZSHCDMVTJZ-UHFFFAOYSA-N 0.000 description 1
- JDBSGKGTKLQVEM-UHFFFAOYSA-N NC1=NN(C2=CC=CC=C2)C(N)=C1N=NC1=CC=CC=C1 Chemical compound NC1=NN(C2=CC=CC=C2)C(N)=C1N=NC1=CC=CC=C1 JDBSGKGTKLQVEM-UHFFFAOYSA-N 0.000 description 1
- JVLDZZVOEWYZKA-UHFFFAOYSA-N NC1=NN=C(N)C1=CNC1=NNC=N1 Chemical compound NC1=NN=C(N)C1=CNC1=NNC=N1 JVLDZZVOEWYZKA-UHFFFAOYSA-N 0.000 description 1
- JIDFGDSHAARCNC-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=C(Br)C=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(Br)C=C1 JIDFGDSHAARCNC-UHFFFAOYSA-N 0.000 description 1
- YEKLVLGWHCLILT-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=C(C(=O)O)C=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(C(=O)O)C=C1 YEKLVLGWHCLILT-UHFFFAOYSA-N 0.000 description 1
- GVPKOGFYNBXJIQ-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=C(C(F)(F)F)C=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=C(C(F)(F)F)C=C1 GVPKOGFYNBXJIQ-UHFFFAOYSA-N 0.000 description 1
- TVJXVUSGFKUFNL-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=C2OCOC2=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=C2OCOC2=C1 TVJXVUSGFKUFNL-UHFFFAOYSA-N 0.000 description 1
- CLBMOLKGDVBIAC-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC(C(F)(F)F)=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(C(F)(F)F)=C1 CLBMOLKGDVBIAC-UHFFFAOYSA-N 0.000 description 1
- MYUZNJWOZSWDHY-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC(Cl)=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(Cl)=C1 MYUZNJWOZSWDHY-UHFFFAOYSA-N 0.000 description 1
- STGCPPGWZZDGKI-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC(F)=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(F)=C1 STGCPPGWZZDGKI-UHFFFAOYSA-N 0.000 description 1
- LCQNXRGFMXJDJJ-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC(O)=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(O)=C1 LCQNXRGFMXJDJJ-UHFFFAOYSA-N 0.000 description 1
- JDBCFQBKQVPUGW-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC(OC2=CC=CC=C2)=C1 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC(OC2=CC=CC=C2)=C1 JDBCFQBKQVPUGW-UHFFFAOYSA-N 0.000 description 1
- POPCVBLPZKHRCX-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC2=C1C=CC=C2 Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC2=C1C=CC=C2 POPCVBLPZKHRCX-UHFFFAOYSA-N 0.000 description 1
- JKACLBIIPVXTHA-UHFFFAOYSA-N NC1=NN=C(N)C1=NNC1=CC=CC=C1Cl Chemical compound NC1=NN=C(N)C1=NNC1=CC=CC=C1Cl JKACLBIIPVXTHA-UHFFFAOYSA-N 0.000 description 1
- ACBPEQRSUDLAQN-UHFFFAOYSA-N NC1=NNC(=O)/C1=N/NC1=CC=CC(F)=C1 Chemical compound NC1=NNC(=O)/C1=N/NC1=CC=CC(F)=C1 ACBPEQRSUDLAQN-UHFFFAOYSA-N 0.000 description 1
- KARWINWPVZJLQK-VAWYXSNFSA-N NC1=NNC(=O)C1/N=N/C1=CC=CC=C1 Chemical compound NC1=NNC(=O)C1/N=N/C1=CC=CC=C1 KARWINWPVZJLQK-VAWYXSNFSA-N 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 206010034277 Pemphigoid Diseases 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 101710182846 Polyhedrin Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- IWYDHOAUDWTVEP-UHFFFAOYSA-N R-2-phenyl-2-hydroxyacetic acid Natural products OC(=O)C(O)C1=CC=CC=C1 IWYDHOAUDWTVEP-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 206010042658 Sweat gland tumour Diseases 0.000 description 1
- 208000018359 Systemic autoimmune disease Diseases 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 208000018234 adnexal spiradenoma/cylindroma of a sweat gland Diseases 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 229940098174 alkeran Drugs 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 230000000964 angiostatic effect Effects 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000002001 anti-metastasis Effects 0.000 description 1
- 239000002257 antimetastatic agent Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000005756 apoptotic signaling Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 1
- 238000013320 baculovirus expression vector system Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical group CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- WARCRYXKINZHGQ-UHFFFAOYSA-N benzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1 WARCRYXKINZHGQ-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229940108502 bicnu Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 201000003714 breast lobular carcinoma Diseases 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 208000000594 bullous pemphigoid Diseases 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 208000002458 carcinoid tumor Diseases 0.000 description 1
- 238000013130 cardiovascular surgery Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 208000004921 cutaneous lupus erythematosus Diseases 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 125000004855 decalinyl group Chemical group C1(CCCC2CCCCC12)* 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 150000008049 diazo compounds Chemical class 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- RKGLUDFWIKNKMX-UHFFFAOYSA-L dilithium;sulfate;hydrate Chemical compound [Li+].[Li+].O.[O-]S([O-])(=O)=O RKGLUDFWIKNKMX-UHFFFAOYSA-L 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 201000007273 ductal carcinoma in situ Diseases 0.000 description 1
- 230000002183 duodenal effect Effects 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000005175 epidermal keratinocyte Anatomy 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- FSWKMOXRWZOVHO-UHFFFAOYSA-N ethyl 3-[2-(dicyanomethylidene)hydrazinyl]benzoate Chemical compound CCOC(=O)C1=CC=CC(NN=C(C#N)C#N)=C1 FSWKMOXRWZOVHO-UHFFFAOYSA-N 0.000 description 1
- FSJDMZWOBVIXBE-UHFFFAOYSA-N ethyl 4-[2-(dicyanomethylidene)hydrazinyl]benzoate Chemical compound CCOC(=O)C1=CC=C(NN=C(C#N)C#N)C=C1 FSJDMZWOBVIXBE-UHFFFAOYSA-N 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 230000036251 extravasation Effects 0.000 description 1
- 229960004979 fampridine Drugs 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960000390 fludarabine Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 229960002442 glucosamine Drugs 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000013210 hematogenous Diseases 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 125000004474 heteroalkylene group Chemical group 0.000 description 1
- 239000012145 high-salt buffer Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- XGIHQYAWBCFNPY-AZOCGYLKSA-N hydrabamine Chemical compound C([C@@H]12)CC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC[C@@]1(C)CNCCNC[C@@]1(C)[C@@H]2CCC3=CC(C(C)C)=CC=C3[C@@]2(C)CCC1 XGIHQYAWBCFNPY-AZOCGYLKSA-N 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 229940096120 hydrea Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- KJDJPXUIZYHXEZ-UHFFFAOYSA-N hydrogen sulfate;methylaminoazanium Chemical compound CN[NH3+].OS([O-])(=O)=O KJDJPXUIZYHXEZ-UHFFFAOYSA-N 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 208000030776 invasive breast carcinoma Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 208000003849 large cell carcinoma Diseases 0.000 description 1
- 238000013493 large scale plasmid preparation Methods 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 201000011486 lichen planus Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000005427 lymphocyte apoptotic process Effects 0.000 description 1
- 208000007282 lymphomatoid papulosis Diseases 0.000 description 1
- 230000001589 lymphoproliferative effect Effects 0.000 description 1
- 201000001268 lymphoproliferative syndrome Diseases 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- NCBZRJODKRCREW-UHFFFAOYSA-N m-anisidine Chemical compound COC1=CC=CC(N)=C1 NCBZRJODKRCREW-UHFFFAOYSA-N 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 208000006178 malignant mesothelioma Diseases 0.000 description 1
- 230000027739 mammary gland involution Effects 0.000 description 1
- 229960002510 mandelic acid Drugs 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical class ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 230000006510 metastatic growth Effects 0.000 description 1
- 206010061289 metastatic neoplasm Diseases 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 229940086322 navelbine Drugs 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 210000001982 neural crest cell Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- BHAAPTBBJKJZER-UHFFFAOYSA-N p-anisidine Chemical compound COC1=CC=C(N)C=C1 BHAAPTBBJKJZER-UHFFFAOYSA-N 0.000 description 1
- RZXMPPFPUUCRFN-UHFFFAOYSA-N p-toluidine Chemical compound CC1=CC=C(N)C=C1 RZXMPPFPUUCRFN-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 125000006238 prop-1-en-1-yl group Chemical group [H]\C(*)=C(/[H])C([H])([H])[H] 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 201000007416 salivary gland adenoid cystic carcinoma Diseases 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 229940087562 sodium acetate trihydrate Drugs 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- BZWKPZBXAMTXNQ-UHFFFAOYSA-N sulfurocyanidic acid Chemical compound OS(=O)(=O)C#N BZWKPZBXAMTXNQ-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229940063683 taxotere Drugs 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 210000003171 tumor-infiltrating lymphocyte Anatomy 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 230000004222 uncontrolled growth Effects 0.000 description 1
- 125000004417 unsaturated alkyl group Chemical group 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- CILBMBUYJCWATM-PYGJLNRPSA-N vinorelbine ditartrate Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC CILBMBUYJCWATM-PYGJLNRPSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/38—Nitrogen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
- A61K31/4152—1,2-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. antipyrine, phenylbutazone, sulfinpyrazone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/415—1,2-Diazoles
- A61K31/4155—1,2-Diazoles non condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/427—Thiazoles not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
- A61K31/4523—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
- A61K31/454—Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/53—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with three nitrogens as the only ring hetero atoms, e.g. chlorazanil, melamine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/44—Oxygen and nitrogen or sulfur and nitrogen atoms
- C07D231/46—Oxygen atom in position 3 or 5 and nitrogen atom in position 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/44—Oxygen and nitrogen or sulfur and nitrogen atoms
- C07D231/52—Oxygen atom in position 3 and nitrogen atom in position 5, or vice versa
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/12—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
Definitions
- Dysregulation of cell proliferation, or a lack of appropriate cell death, has wide ranging clinical implications.
- a number of diseases associated with such dysregulation involve hyperproliferation, inflammation, tissue remodelling and repair. Familiar indications in this category include cancers, restenosis, neointimal hyperplasia, angiogenesis, endometriosis, lymphoproliferative disorders, graft-rejection, polyposis, loss of neural function in the case of tissue remodelling, and the like.
- Such cells may lose the normal regulatory control of cell division, and may also fail to undergo appropriate cell death.
- epithelial cells, endothelial cells, muscle cells, and others undergo apoptosis when they lose contact with extracellular matrix, or bind through an inappropriate integrin.
- This phenomenon which has been termed “anoikis” (the Greek word for “homelessness”), prevents shed epithelial cells from colonizing elsewhere, thus protecting against neoplasia, endometriosis, and the like. It is also an important mechanism in the initial cavitation step of embryonic development, in mammary gland involution, and has been exploited to prevent tumor angiogenesis.
- Epithelial cells may become resistant to anoikis through overactivation of integrin signaling.
- Anoikis resistance can also arise from the loss of apoptotic signaling, for example, by overexpression of Bcl-2 or inhibition of caspase activity.
- An aspect of hyperproliferation that is often linked to tumor growth is angiogenesis.
- the growth of new blood vessels is essential for the later stages of solid tumor growth.
- Angiogenesis is caused by the migration and proliferation of the endothelial cells that form blood vessels.
- a major group of systemic autoimmune diseases is associated with abnormal lymphoproliferation, as a result of defects in the termination of lymphocyte activation and growth.
- diseases are associated with inflammation, for example with rheumatoid arthritis, insulin dependent diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, and the like.
- inflammation for example with rheumatoid arthritis, insulin dependent diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, and the like.
- Recent progress has been made in understanding the causes and consequences of these abnormalities.
- multiple defects may occur, which result in a failure to set up a functional apoptotic machinery.
- compositions and compounds are provided.
- the compounds of the invention are substituted pyrazoles and pyrazolines.
- formulations of the compounds in combination with a physiologically acceptable carrier are provided.
- the pharmaceutical formulations are useful in the treatment of disorders associated with hyperproliferation and tissue remodelling or repair.
- the compounds are also active in the inhibition of specific protein kinases.
- FIG. 1 is a graph illustrating the anti-tumor activity of KP-15792 in a murine model using Lewis Lung Carcinoma cells.
- Alkyl is a monovalent, saturated or unsaturated, straight, branched or cyclic, aliphatic (i.e., not aromatic) hydrocarbon group.
- the alkyl group has 1-20 carbon atoms, i.e., is a C1-C20 (or C 1 -C 20 ) group, or is a C1-C18 group, a C1-C12 group, a C1-C6 group, or a C1-C4 group.
- the alkyl group has zero branches (i.e., is a straight chain), one branch, two branches, or more than two branches; is saturated; is unsaturated (where an unsaturated alkyl group may have one double bond, two double bonds, more than two double bonds, and/or one triple bond, two triple bonds, or more than three triple bonds); is, or includes, a cyclic structure; is acyclic.
- Exemplary alkyl groups include C 1 alkyl (i.e., —CH 3 (methyl)), C 2 alkyl (i.e., —CH 2 CH 3 (ethyl), —CH ⁇ CH 2 (ethenyl) and —C ⁇ CH (ethynyl)) and C 3 alkyl (i.e., —CH 2 CH 2 CH 3 (n-propyl), —CH(CH 3 ) 2 (i-propyl), —CH ⁇ CH—CH 3 (1-propenyl), —C ⁇ C—CH 3 (1-propynyl), —CH 2 —CH ⁇ CH 2 (2-propenyl), —CH 2 —C ⁇ CH (2-propynyl), —C(CH 3 ) ⁇ CH 2 (1-methylethenyl), and —CH(CH 2 ) 2 (cyclopropyl)).
- C 1 alkyl i.e., —CH 3 (methyl)
- C 2 alkyl i.e
- “Ar” indicates a carbocyclic aryl group selected from phenyl, substituted phenyl, naphthyl, and substituted naphthyl. Suitable substituents on a phenyl or naphthyl ring include C 1 -C 6 alkyl, C 1 -C 6 alkoxy, carboxyl, carbonyl(C 1 -C 6 )alkoxy, halogen, hydroxyl, nitro, —SO 3 H, and amino.
- Aryl is a monovalent, aromatic, hydrocarbon, ring system.
- the ring system may be monocyclic or fused polycyclic (e.g., bicyclic, tricyclic, etc.).
- the monocyclic aryl ring is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system.
- a C6 ring system i.e., a phenyl ring, is a preferred aryl group.
- the polycyclic ring is a bicyclic aryl group, where preferred bicyclic aryl groups are C8-C12, or C9-C10.
- a naphthyl ring, which has 10 carbon atoms, is a preferred polycyclic aryl group.
- Arylene is a polyvalent, aromatic hydrocarbon, ring system.
- the ring system may be monocyclic or fused polycyclic (e.g., bicyclic, tricyclic, etc.).
- the monocyclic arylene group is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system.
- a C6 ring system i.e., a phenylene ring, is a preferred aryl group.
- the polycyclic ring is a bicyclic arylene group, where preferred bicyclic arylene groups are C8-C12, or C9-C10.
- a naphthylene ring which has 10 carbon atoms, is a preferred polycyclic aryl group.
- the arylene group may be divalent, i.e., it has two open sites that each bond to another group; or trivalent, i.e., it has three open sites that each bond to another group; or it may have more than three open sites.
- Carbocycle refers to a ring formed exclusively from carbon, which may be saturated or unsaturated, including aromatic.
- the ring may be monocyclic (e.g., cyclohexyl, phenyl), bicyclic (e.g., norbornyl), polycyclic (e.g., adamantyl) or contain a fused ring system (e.g., decalinyl, naphthyl).
- the ring is monocyclic and formed from 5, 6 or 7 carbons.
- the ring is bicyclic and formed from 7, 8 or 9 carbons.
- the ring is polycyclic and formed from 9, 10 or 11 carbons.
- the ring includes a fused ring system and is formed from 8-12 carbons.
- the carbocycle is formed from 5-12 ring carbons.
- Heteroalkyl is an alkyl group (as defined herein) wherein at least one of the carbon atoms is replaced with a heteroatom.
- Preferred heteroatoms are nitrogen, oxygen, sulfur, and halogen.
- a heteroatom may, but typically does not, have the same number of valence sites as carbon. Accordingly, when a carbon is replaced with a heteroatom, the number of hydrogens bonded to the heteroatom may need to be increased or decreased to match the number of valence sites of the heteroatom. For instance, if carbon (valence of four) is replaced with nitrogen (valence of three), then one of the hydrogens formerly attached to the replaced carbon must be deleted.
- trifluoromethyl is a heteroalkyl group wherein the three methyl groups of a t-butyl group are replaced by fluorine.
- Heteroalkylene is an alkylene group (as defined herein) wherein at least one of the carbon atoms is replaced with a heteroatom.
- Preferred heteroatoms are nitrogen, oxygen, sulfur, and halogen.
- a heteroatom may, but typically does not, have the same number of valence sites as carbon. Accordingly, when a carbon is replaced with a heteroatom, the number of hydrogens bonded to the heteroatom may need to be increased or decreased to match the number of valence sites of the heteroatom, as explained elsewhere herein.
- Heteroaryl is a monovalent aromatic ring system containing carbon and at least one heteroatom in the ring.
- the heteroaryl group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms in the ring.
- Heteroaryl rings may be monocyclic or polycyclic, where the polycyclic ring may contained fused, spiro or bridged ring junctions.
- the heteroaryl is selected from monocyclic and bicyclic.
- Monocyclic heteroaryl rings may contain from about 5 to about 10 member atoms (carbon and heteroatoms), preferably from 5-7, and most preferably from 5-6 member atoms in the ring.
- Bicyclic heteroaryl rings may contain from about 8-12 member atoms, or 9-10 member atoms in the ring.
- the heteroaryl ring may be unsubstituted or substituted. In one embodiment, the heteroaryl ring is unsubstituted. In another embodiment, the heteroaryl ring is substituted.
- Exemplary heteroaryl groups include benzofuran, benzothiophene, furan, imidazole, indole, isothiazole, oxazole, piperazine, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, thiazole and thiophene.
- Heteroarylene is a polyvalent aromatic ring system containing carbon and at least one heteroatom in the ring.
- a heteroarylene group is a heteroaryl group that has more than one open site for bonding to other groups.
- the heteroarylene group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms in the ring.
- Heteroarylene rings may be monocyclic or polycyclic, where the polycyclic ring may contained fused, spiro or bridged ring junctions.
- the heteroaryl is selected from monocyclic and bicyclic.
- Monocyclic heteroarylene rings may contain from about 5 to about 10 member atoms (carbon and heteroatoms), preferably from 5-7, and most preferably from 5-6 member atoms in the ring.
- Bicyclic heteroarylene rings may contain from about 8-12 member atoms, or 9-10 member atoms in the ring.
- Heteroatom is a halogen, nitrogen, oxygen, silicon or sulfur atom. Groups containing more than one heteroatom may contain different heteroatoms.
- Heterocycle refers to a ring containing at least one carbon and at least one heteroatom.
- the ring may be monocyclic (e.g., morpholinyl, pyridyl), bicyclic (e.g., bicyclo[2.2.2]octyl with a nitrogen at one bridgehead position), polycyclic, or contain a fused ring system.
- the ring is monocyclic and formed from 5, 6 or 7 atoms.
- the ring is bicyclic and formed from 7, 8 or 9 atoms.
- the ring is polycyclic and formed from 9, 10 or 11 atoms.
- the ring includes a fused ring system and is formed from 8-12 atoms.
- the heterocycle is formed from 5-12 ring atoms.
- the heteroatom is selected from oxygen, nitrogen and sulfur.
- the heterocycle contains 1, 2 or 3 heteroatoms.
- carbocyclic and heterocyclic encompass both substituted and unsubstituted carbocyclic and heterocyclic groups.
- the substitution present on a carbocyclic or heterocyclic group is selected from alkyl, heteroalkyl, aryl, and heteroaryl, preferably alkyl and heteroalkyl.
- the alkyl and heteroalkyl substitution present on a carbocyclic or heterocyclic group is selected from C 1 -C 6 alkyl, C 1 -C 6 alkoxy, halogen, nitro, hydroxyl, cyano, sulfonic acid (i.e., —SO 3 H), carboxylic acid, carboxylate ester (i.e., —CO 2 R where R is, e.g., C 1 -C 10 alkyl), amino, alkylamino, dialkylamino, acyl (i.e., R—C( ⁇ O)—), and acylamino (i.e., R—C( ⁇ O)—NH— where R is, e.g., C 1 -C 10 alkyl).
- the terms cyclohexyl and phenyl refer to both substituted and unsubstituted cyclohexyl and phenyl.
- “Pharmaceutically acceptable salt” and “salts thereof” in the compounds of the present invention refers to acid addition salts and base addition salts.
- Acid addition salts refer to those salts formed from compounds of the present invention and inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and/or organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
- inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like
- organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid,
- Base addition salts refer to those salts formed from compounds of the present invention and inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like.
- Suitable salts include the ammonium, potassium, sodium, calcium and magnesium salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, trimethamine, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaines, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, the
- the present invention provides compounds of formula (1), as set forth below.
- compositions comprising a compound of formula (1)
- R 1 and R 2 are selected from direct bond, H, and alkyl
- R 3 and R 4 are selected from —NH 2 , NHC( ⁇ O)R 5 , and ⁇ O;
- R 5 is selected from R 6 , R 7 , and R 8 , where R 6 is selected from alkyl, heteroalkyl, aryl and heteroaryl; R 7 is selected from (R 6 ) k -alkylene, (R 6 ) k -heteroalkylene, (R 6 ) k -arylene and (R 6 ) k -heteroarylene; R 8 is selected from (R 7 ) k -alkylene, (R 7 ) k -heteroalkylene, (R 7 ) k -arylene, and (R 7 ) k -heteroarylene; and k is selected from 0, 1, 2, 3, 4 and 5; and
- n is selected from 0, 1, 2, 3, 4 or 5.
- the present invention provides compounds of formula (1) and compositions comprising compounds of formula (1) as drawn above, wherein R 1 is selected from alkyl, aryl and heteroaryl, wherein each of alkyl, aryl and heteroaryl may be substituted with one or more groups selected from C 1 -C 20 alkyl, C 6 -C 10 aryl, heteroalkyl and heteroaryl; R 2 is selected from H and direct bond; R 1 and R 1 are selected from —NH 2 and NHC( ⁇ O)R 5 ; R 5 is selected from R 6 , R 7 , and R 8 , where R 6 is selected from alkyl, heteroalkyl, aryl and heteroaryl; RF is selected from (R 6 ) k -3alkylene, (R 6 ) k -heteroalkylene, (R 6 ) k -arylene and (R 6 ) k -heteroarylene; R 8 is selected from (R 7 ) k -alkylene
- R 1 is C 1 -C 20 alkyl; or R 1 is C 1 -C 6 alkyl and each of R 3 and R 4 are —NH 2 ; or R 1 is aryl; or R 1 is aryl selected from phenyl and naphthyl, the phenyl and napthyl substituted with at least one heteroalkyl selected from alkoxy, carboxy and halide; and/or each of R 3 and R 4 are —NH 2 ; and/or R 5 is selected from carbocyclic and heterocyclic groups, wherein the carbocyclic and heterocyclic groups may optionally contain 5-12 ring atoms.
- R 5 is a carbocyclic group selected from monocyclic and fused ring groups, or R 5 is a heterocyclic group containing from 1-3 nitrogens; or R 5 is selected from R 6 and R 7 , where R 6 is selected from alkyl, heteroalkyl, aryl and heteroaryl; R 7 is selected from (R 6 ) k -alkylene, (R 6 ) k -heteroalkylene, (R 6 ) k -arylene and (R 6 ) k -heteroarylene; and k is selected from 0, 1, 2, 3, 4 and 5.
- R 5 is selected from 4-fluorophenyl, 3-ethylphenyl, 3-methoxyphenyl, 3-chlorophenyl, 3-fluorophenyl, 3-fluoro-4-methoxyphenyl, naphthalen-2-yl, 4-trifluoromethylphenyl, 3-phenoxyphenyl, biphenyl-2-yl, 2-Bromophenyl, 3-Bromophenyl, 4-Bromophenyl, 4-phenoxyphenyl, 4-iodophenyl, 4-bromonaphthalen-1-yl, o-tolyl, 2,6-difluorophenyl, 3,4-difluorophenyl, benzo[1,3]dioxol-5-yl, 4-methylsulfanylphenyl, 2,3-dihydrobenzo[1,4]dioxin-6-yl, 3-chloro-4-methoxyphenyl, 3,4-dichloroph
- the present invention provides a compound of formula (1) selected from (3,5-diamino-4-phenylazo-pyrazol-1-yl)phenylmethanone; 4-(3,5-diamino-4-phenylazopyrazol-1-yl)benzoic acid; 3,5-diamino-1-phenyl-4-phenylazopyrazole; 3,5-diamino-1-(4-Bromophenyl)-4-phenylazopyrazole; 3,5-diamino-1-(4-fluorophenyl)-4-phenylazopyrazole; and 3,5-diamino-1-methyl-4-phenylazopyrazole.
- the present invention provides compounds of formula (2), and compositions comprising a compound of formula (2)
- R 1 and R 2 are selected from H and direct bond
- R 3 and R 4 are selected from —NH 2 , NHC( ⁇ O)R 5 and ⁇ O
- Ar is an aryl group.
- Ar is phenyl having one or more substituents selected from alkyl, aryl, heteroalkyl and heteroaryl, where optionally the substituents are selected from benzenesulfonyl, bromide, carbonylethoxy, carbonylmethoxy, chloride, dioxolyl, dioxinyl, ethyl, fluoride, hydroxyl, iodide, isopropyl, methoxy, methyl, methylthio, phenoxy, phenyl, propyl, and trifluoromethyl.
- the present invention provides compounds of formula (2) wherein Ar is naphthyl optionally having one or more substituents selected from alkyl, aryl, heteroalkyl and heteroaryl, where suitable substituents are benzenesulfonyl, bromide, carbonylethoxy, carbonylmethoxy, chloride, dioxolyl, dioxinyl, ethyl, fluoride, hydroxyl, iodide, iso-propyl, methoxy, methyl, methylthio, phenoxy, phenyl, propyl, and trifluoromethyl; and specific compounds of the invention are: 3,5-diamino-4-[(naphthalen-2-yl)hydrazono]pyrazole; and 3,5-diamino-4-[(4-bromonaphthalen-1-yl)hydrazono]pyrazole.
- [0045] is used to represent a family of tautomeric structures.
- the particular tautomeric structure(s) encompassed by formula (1) depend on the selected of R 3 and R 4 .
- R 3 and R 4 are each —NH 2
- R 1 and R 2 are —H and/or direct bonds, as shown in the Scheme below.
- R 5 is selected from carbocyclic and heterocyclic groups, where the carbocyclic and heterocyclic groups preferably contain from 5 to 12 ring atoms. In one embodiment, R 5 is a carbocyclic group. In one embodiment, R 5 is a heterocyclic group.
- R 5 is selected from the carbocyclic groups phenyl and naphthyl.
- a carbocyclic group may be substituted or unsubstituted.
- the phenyl or naphthyl group may be substituted with one or more of, for example, alkyl, alkoxy, hydroxyl, sulfonic acid, carboxylic acid, halogen, amino and acetylamino.
- R 5 is selected from a heterocyclic group of the formula
- [0050] represents a six-membered ring that optionally contains unsaturation and necessarily includes 1, 2 or 3 ring nitrogens. Examples include
- R 3 and R 4 are each amino (—NH 2 ) groups. In another embodiment, one of R 3 and R 4 is an amino group while the other of R 3 and R 4 is a carbonyl ( ⁇ O) group. In one embodiment, both of R 3 and R 4 are carbonyl groups. In one embodiment, n is 0. In another embodiment, n is selected from 0, 1 and 2. In another embodiment, n is selected from 1, 2, 3 and 4.
- a primary amine of the formula H 2 N—R 9 (where R 9 has been selected to represent —(CH 2 ) n —R 5 of formula (1)) is diazotised by treatment sodium nitrite and hydrochloric acid.
- the intermediate diazo compound (enclosed by a box in Scheme 1) will, in the presence of base (e.g., sodium acetate as shown in Scheme 1) react with compounds containing an active methylene group, i.e., a compound including a methylene group (—CH 2 —) flanked by electron withdrawing groups such as cyano (—CN) and/or ester (—COOR), to provide an azo compound.
- This azo compound may be reacted with a hydrazine derivative to provide compounds of the present invention.
- R 1 and R 2 are each preferably hydrogen. However, either or both of R 1 and R 2 may be an alkyl group.
- the compounds of this invention can be incorporated into a variety of formulations for therapeutic administration. More particularly, the compounds of the present invention can be formulated into pharmaceutical compositions by combination with appropriate pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration.
- the active agent may be systemic after administration or may be localized by the use of regional administration, intramural administration, or use of an implant that acts to retain the active dose at the site of implantation.
- the compounds may be administered in the form of their pharmaceutically acceptable salts. They may also be used in appropriate association with other pharmaceutically active compounds.
- the following methods and excipients are merely exemplary and are in no way limiting.
- the compounds can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- conventional additives such as lactose, mannitol, corn starch or potato starch
- binders such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins
- disintegrators such as corn starch, potato starch or sodium carboxymethylcellulose
- lubricants such as talc or magnesium stearate
- the compounds can be formulated into preparations for injections by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- the compounds can be utilized in aerosol formulation to be administered via inhalation.
- the compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- the compounds can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- bases such as emulsifying bases or water-soluble bases.
- the compounds of the present invention can be administered rectally via a suppository.
- the suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more compounds of the present invention.
- unit dosage forms for injection or intravenous administration may comprise the compound of the present invention in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- Implants for sustained release formulations are well known in the art. Implants are formulated as microspheres, slabs, etc. with biodegradable or non-biodegradable polymers. For example, polymers of lactic acid and/or glycolic acid form an erodible polymer that is well tolerated by the host. The implant containing the inhibitory compounds is placed in proximity to the site of the tumor, so that the local concentration of active agent is increased relative to the rest of the body.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
- the specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- the pharmaceutically acceptable excipients such as vehicles, adjuvants, carriers or diluents, are readily available to the public.
- pharmaceutically acceptable auxiliary substances such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- the combined use of the provided inhibitory compounds and other cytotoxic agents has the advantages that the required dosages for the individual drugs is lower, and the effect of the different drugs complementary.
- the subject inhibitory compounds may be administered in dosages of 0.1 ⁇ g to 10 mg/kg body weight per day.
- the range is broad, since in general the efficacy of a therapeutic effect for different mammals varies widely with doses typically being 20, 30 or even 40 times smaller (per unit body weight) in man than in the rat.
- the mode of administration can have a large effect on dosage.
- oral dosages in the rat may be ten times the injection dose. Higher doses may be used for localized routes of delivery.
- a typical dosage may be a solution suitable for intravenous administration; a tablet taken from two to six times daily, or one time-release capsule or tablet taken once a day and containing a proportionally higher content of active ingredient, etc.
- the time-release effect may be obtained by capsule materials that dissolve at different pH values, by capsules that release slowly by osmotic pressure, or by any other known means of controlled release.
- dose levels can vary as a function of the specific compound, the severity of the symptoms and the susceptibility of the subject to side effects. Some of the specific compounds are more potent than others. Preferred dosages for-a given compound are readily determinable by those of skill in the art by a variety of means. A preferred means is to measure the physiological potency of a given compound.
- the subject compounds may be formulated with other pharmaceutically active agents, particularly other anti-metastatic, anti-tumor or anti-angiogenic agents.
- Angiostatic compounds of interest include angiostatin, endostatin, carboxy terminal peptides of collagen alpha (XV), etc.
- Cytotoxic and cytostatic agents of interest include adriamycin, alkeran, Ara-C, BICNU, busulfan, CNNU, cisplatinum, cytoxan, daunorubicin, DTIC, 5-FU, hydrea, ifosfamide, methotrexate, mithramycin, mitomycin, mitoxantrone, nitrogen mustard, velban, vincristine, vinblastine, VP-16, carboplatinum, fludarabine, gemcitabine, idarubicin, irinotecan, leustatin, navelbine, taxol, taxotere, topotecan, etc.
- the subject compounds are administered to a subject having a hyperproliferative disorders, e.g. to inhibit tumor growth, to inhibit angiogenesis, to decrease inflammation associated with a lymphoproliferative disorder, to inhibit graft rejection, or neurological damage due to tissue repair, etc.
- the present compounds are useful for prophylactic or therapeutic purposes.
- the term “treating” is used to refer to both prevention of disease, and treatment of pre-existing conditions.
- the prevention of proliferation is accomplished by administration of the subject compounds prior to development of overt disease, e.g. to prevent the regrowth of tumors, prevent metastatic growth, diminish restenosis associated with cardiovascular surgery, etc.
- the compounds are used to treat ongoing disease, by stabilizing or improving the clinical symptoms of the patient.
- the host, or patient may be from any mammalian species, e.g. primate sp., particularly humans; rodents, including mice, rats and hamsters; rabbits; equines, bovines, canines, felines; etc. Animal models are of interest for experimental investigations, providing a model for treatment of human disease.
- mammalian species e.g. primate sp., particularly humans; rodents, including mice, rats and hamsters; rabbits; equines, bovines, canines, felines; etc.
- Animal models are of interest for experimental investigations, providing a model for treatment of human disease.
- the susceptibility of a particular cell to treatment with the subject compounds may be determined by in vitro testing. Typically a culture of the cell is combined with a subject compound at varying concentrations for a period of time sufficient to allow the active agents to induce cell death or inhibit migration, usually between about one h and one week. For in vitro testing, cultured cells from a biopsy sample may be used. The viable cells left after treatment are then counted.
- the dose will vary depending on the specific compound utilized, specific disorder, patient status, etc. Typically a therapeutic dose will be sufficient to substantially decrease the undesirable cell population in the targeted tissue, while maintaining patient viability. Treatment will generally be continued until there is a substantial reduction, e.g. at least about 50%, decrease in the cell burden, and may be continued until there are essentially none of the undesirable cells detected in the body.
- the compounds also find use in the specific inhibition of signaling pathway mediated by protein kinases.
- Protein kinases are involved in signaling pathways for such important cellular activities as responses to extracellular signals and cell cycle checkpoints. Inhibition of specific protein kinases provides a means of intervening in these signaling pathways, for example to block the effect of an extracellular signal, to release a cell from cell cycle checkpoint, etc.
- Defects in the activity of protein kinases are associated with a variety of pathological or clinical conditions, where there is a defect in signaling mediated by protein kinases. Such conditions include those associated with defects in cell cycle regulation or in response to extracellular signals, e.g.
- hyperglycemia and diabetes Type I and Type II immunological disorders, e.g. autoimmune and immunodeficiency diseases; hyperproliferative disorders, which may include psoriasis, arthritis, inflammation, angiogenesis, endometriosis, scarring, cancer, etc.
- the compounds of the present invention are active in inhibiting purified kinase proteins, i.e. there is a decrease in the phosphorylation of a specific substrate in the presence of the compound.
- ILK is a serine threonine kinase. The DNA and predicted amino acid sequence may be accessed at Genbank, no. U40282, or as published in Hannigan et al. (1996) Nature 379:91-96.
- ILK regulates integrin extracellular activity (ECM interactions) from inside the cell via its direct interaction with the integrin subunit.
- Interfering with ILK activity allows the specific targeting of integrin function, while leaving other essential signaling pathways intact. Increased levels of cellular ILK activity short circuits the normal requirement for adhesion to extracellular membrane in regulating cell growth. Thus, inhibiting ILK activity may inhibit anchorage-independent cell growth.
- the compounds of the present invention bind to protein kinases at a high affinity, and find use as affinity reagents for the isolation and/or purification of such kinases.
- Affinity chromatography is used as a method of separating and purifying protein kinases and phosphatases using the biochemical affinity of the enzyme for inhibitors that act on it.
- the compounds are coupled to a matrix or gel. Preferably a microsphere or matrix is used as the support. Such supports are known in the art and commercially available.
- the inhibitor coupled support is used to separate an enzyme that binds to the inhibitor from a complex mixture, e.g. a cell lysate, that may optionally be partially purified.
- the sample mixture is contacted with the inhibitor coupled support under conditions that minimize non-specific binding.
- Methods known in the art include columns, gels, capillaries, etc.
- the unbound compounds are washed free of the resin, and the bound proteins are then eluted in a suitable buffer.
- the compounds of the invention may also be useful as reagents for studying signal transduction or any of the clinical disorders listed throughout this application.
- the conditions of interest include, but are not limited to, the following conditions.
- the subject methods are applied to the treatment of a variety of conditions where there is proliferation and/or migration of smooth muscle cells, and/or inflammatory cells into the intimal layer of a vessel, resulting in restricted blood flow through that vessel, i.e. neointimal occlusive lesions.
- Occlusive vascular conditions of interest include atherosclerosis, graft coronary vascular disease after transplantation, vein graft stenosis, peri-anastomatic prosthetic graft stenosis, restenosis after angioplasty or stent placement, and the like.
- Tumor cells are characterized by uncontrolled growth, invasion to surrounding tissues, and metastatic spread to distant sites. Growth and expansion requires an ability not only to proliferate, but also to down-modulate cell death (apoptosis) and activate angiogenesis to produce a tumor neovasculature.
- Angiogenesis may be inhibited by affecting the cellular ability to interact with the extracellular environment and to migrate, which is an integrin-specific function, or by regulating apoptosis of the endothelial cells.
- Integrins function in cell-to-cell and cell-to-extracellular matrix (ECM) adhesive interactions and transduce signals from the ECM to the cell interior and vice versa. Since these properties implicate integrin involvement in cell migration, invasion, intra- and extra-vasation, and platelet interaction, a role for integrins in tumor growth and metastasis is obvious.
- Tumors of interest for treatment include carcinomas, e.g. colon, duodenal, prostate, breast, melanoma, ductal, hepatic, pancreatic, renal, endometrial, stomach, dysplastic oral mucosa, polyposis, invasive oral cancer, non-small cell lung carcinoma, transitional and squamous cell urinary carcinoma etc.; neurological malignancies, e.g. neuroblastoma, gliomas, etc.; hematological malignancies, e.g.
- Some cancers of particular interest include breast cancers, which are primarily adenocarcinoma subtypes.
- Ductal carcinoma in situ is the most common type of noninvasive breast cancer.
- the malignant cells have not metastasized through the walls of the ducts into the fatty tissue of the breast.
- Infiltrating (or invasive) ductal carcinoma (IDC) has metastasized through the wall of the duct and invaded the fatty tissue of the breast.
- IDC Infiltrating (or invasive) lobular carcinoma
- IDC Infiltrating (or invasive) lobular carcinoma
- Non-small cell lung carcinoma is made up of three general subtypes of lung cancer.
- Epidermoid carcinoma also called squamous cell carcinoma
- Adenocarcinoma starts growing near the outside surface of the lung and may vary in both size and growth rate.
- Some slowly growing adenocarcinomas are described as alveolar cell cancer.
- Large cell carcinoma starts near the surface of the lung, grows rapidly, and the growth is usually fairly large when diagnosed.
- Other less common forms of lung cancer are carcinoid, cylindroma, mucoepidermoid, and malignant mesothelioma.
- Melanoma is a malignant tumor of melanocytes. Although most melanomas arise in the skin, they also may arise from mucosal surfaces or at other sites to which neural crest cells migrate. Melanoma occurs predominantly in adults, and more than half of the cases arise in apparently normal areas of the skin. Prognosis is affected by clinical and histological factors and by anatomic location of the lesion. Thickness and/or level of invasion of the melanoma, mitotic index, tumor infiltrating lymphocytes, and ulceration or bleeding at the primary site affect the prognosis. Clinical staging is based on whether the tumor has spread to regional lymph nodes or distant sites.
- melanoma For disease clinically confined to the primary site, the greater the thickness and depth of local invasion of the melanoma, the higher the chance of lymph node metastases and the worse the prognosis.
- Melanoma can spread by local extension (through lymphatics) and/or by hematogenous routes to distant sites. Any organ may be involved by metastases, but lungs and liver are common sites.
- hyperproliferative diseases of interest relate to epidermal hyperproliferation, tissue remodelling and repair.
- chronic skin inflammation of psoriasis is associated with hyperplastic epidermal keratinocytes as well as infiltrating mononuclear cells, including CD4+ memory T cells, neutrophils and macrophages.
- the proliferation of immune cells is associated with a number of autoimmune and lymphoproliferative disorders.
- Diseases of interest include multiple sclerosis, rheumatoid arthritis and insulin dependent diabetes mellitus.
- Evidence suggests that abnormalities in apoptosis play a part in the pathogenesis of systemic lupus erythematosus (SLE).
- SLE systemic lupus erythematosus
- Other lymphoproliferative conditions the inherited disorder of lymphocyte apoptosis, which is an autoimmune lymphoproliferative syndrome, as well as a number of leukemias and lymphomas. Symptoms of allergies to environmental and food agents, as well as inflammatory bowel disease, may also be alleviated by the compounds of the invention.
- Inhibition of the targets is measured by scintillation counting; the incorporation of radioactive phosphate onto a specific substrate which is immobilized onto a filter paper at the end of the assay.
- the assays are performed both in the absence and presence of specific and known inhibitors, and the amount of incorporated radioactivity is compared to provide a baseline measurement.
- the baseline activity is the amount of radioactivity incorporated in the absence of inhibitor.
- the amount of radioactivity incorporated in the presence of an inhibitor is called the ‘sample activity’, and the % inhibition is expressed by the following formula:
- the IC 50 of an inhibitor is estimated (i.e. the concentration at which enzymatic activity is reduced by 50%).
- the IC 50 of various compounds against a particular target can be compared, where a lower IC 50 indicates a more potent compound.
- the target integrin linked kinase is a full-length recombinant protein expressed in sF9 insect cells by baculovirus infection.
- the ILK1 substrate is CKRRRLASLR-amide.
- Recombinant ILK protein was expressed using cultured insect cells and a baculovirus expression system. Standard techniques for DNA manipulation were used to produce recombinant DNA molecules and baculoviruses (Sambrook. J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning, a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press. NY; Crossen, R. and Gruenwald, S. 1998. Baculovirus expression Vector System Manual. 5 th Edition. Pharmingen, San Diego, Calif.) but the isolation of active ILK required some ingenuity.
- the ILK open reading frame (Hannigan et al., supra.), excluding the 5′ and 3′ untranslated regions, was inserted into the baculovirus transfer vector pAcG2T (Pharmingen) to produce a GST fusion protein under the control of the strong AcNPV polyhedrin promoter.
- a large scale plasmid preparation of the resulting transfer construct was made using a Qiagen Plasmid Midi Kit.
- This ILK transfer construct was then co-transfected with BaculoGold DNA (Pharmingen) into Sf9 insect cells (Invitrogen) and a high titre preparation of GST-ILK recombinant baculovirus was produced by amplification in Sf9 cells.
- HLB High Salt Buffer
- the pellet was then resuspended in DNAse-ATP Buffer (“DAB”; 10 mM MgCl 2 , 1 mM MnCl 2 , ⁇ -methyl aspartic acid, 2 mM NaF, 0.55 mg/ml ATP, lug/ml DNAse 1, 1% NP-40, 10 mM imidazole, 5 mM EDTA, 0.1% ⁇ -mercaptoethanol, 10 ug/ml PMSF, 1 mM benzamidine) and stirred for 30 min at room temperature, and then centrifuged at 10,000 ⁇ g for 20 min.
- DAB DNAse-ATP Buffer
- the pellet was resuspended in High Salt Detergent buffer (“HDB”; 1% NP-40, 1% Triton X-100, 500 mM NaCl, 10 mM imidazole, 5 mM EDTA, 0.1% ⁇ -mercaptoethanol, 10 ug/ml PMSF, 1 mM benzamidine), stirred for 30 min at room temperature, and then centrufuged at 10,000 g for 20 min. The pellet was then washed once in each of HDB, HSB, and HLB, centrifuging at 10,000 g each time. Finally, the pellet was resuspended in HLB.
- HDB High Salt Detergent buffer
- the recombinant ILK expressed in insect cells with a baculovirus system was solubilized by treating the insoluble ILK protein with DNAse I and detergents. This produced an ILK protein preparation in the form of a microparticle suspension. This preparation had a high specific activity and was amenable to automated kinase assays.
- the title compound was prepared using 100 mg (0.5 mmol) of 2-[(3-methoxyphenyl)-hydrazono]malononitrile, which was derived from m-anisidine (112 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, recrystallized from ethanol, and dried to yield 25 mg (22%) of the title compound as a brownish orange solid.
- This compound was prepared using 102 mg (0.5 mmol) of 2-[(3-chlorophenyl)-hydrazono]malononitrile, which was derived from 3-chloroaniline (106 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 17 mg (14%) of the title compound as a yellow solid.
- This compound was prepared using 109 mg (0.5 mmol) of 2-[(3-fluoro-4-methoxyphenyl)hydrazono]malononitrile, which was derived from 3-fluoro-p-anisidine (141 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 85 mg (68%) of the title compound as a mustard coloured solid.
- the title compound was prepared using 110 mg (0.5 mmol) of 2-[(naphthalen-2-yl)hydrazono]malononitrile, which was derived from 2-aminonaphthalene (143 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 86 mg (67%) of the title compound as a tan coloured solid.
- This compound was prepared using 119 mg (0.5 mmol) of 2-[(4-trifluoromethylphenyl)-hydrazono]malononitrile, which was derived from 4-(trifluoromethyl)aniline (126 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. No precipitate had formed after heating at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes.
- the title compound was prepared using 131 mg (0.5 mmol) of 2-[(3-phenoxyphenyl)-hydrazono]malononitrile, which was derived from 3-phenoxyaniline (185 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, recrystallized from ethanol, and dried to yield 87 mg (59%) of the title compound as a mustard coloured solid.
- This compound was prepared using 121 mg (0.5 mmol) of 4-(N′-dicyanomethylene-hydrazino)benzoic acid ethyl ester, which was derived from ethyl 4-aminobenzoate (165 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 45 mg (33%) of the title compound as a yellow solid.
- This compound was prepared using 123 mg (0.5 mmol) of 2-[(biphenyl-2-yl)hydrazono]-malononitrile, which was derived from 2-aminobiphenyl (169 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of the hydrazine hydrate then the solution cleared. Very little solid remained after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 85 mg (61%) of the title compound as an orange solid.
- This compound was prepared using 125 mg (0.5 mmol) of 2-[(2-Bromophenyl)-hydrazono]malononitrile, which was derived from 2-bromoaniline (172 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 102 mg (73%) of the title compound as an orange solid.
- This compound was prepared using 125 mg (0.5 mmol) of 2-[(3-Bromophenyl)-hydrazono]malononitrile, which was derived from 3-bromoaniline (172 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 93 mg (66%) of the title compound as an orange solid.
- This compound was prepared using 125 mg (0.5 mmol) of 2-[(4-Bromophenyl)-hydrazono]malononitrile, which was derived from 4-bromoaniline (172 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 109 mg (78%) of the title compound as a yellow solid.
- 1 H NMR (ppm, DMSO-d 6 ): 6.15 (br s, 4H), 7.52 (d, 2H), 7.61 (d, 2H), 10.71 (s, 1H).
- This compound was prepared using 131 mg (0.5 mmol) of 2-[(4-phenoxyphenyl)-hydrazono]malononitrile, which was derived from 4-phenoxyaniline (185 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 90 mg (61%) of the title compound as an orange solid.
- This compound was prepared using 148 mg (0.5 mmol) of 2-[(4-iodophenyl)hydrazono]-malononitrile, which was derived from 4-iodoaniline (219 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 114 mg (70%) of the title compound as a yellow solid.
- This compound was prepared using 149 mg (0.5 mmol) of 2-[(4-bomonaphthalen-1-yl)-hydrazono]malononitrile, which was derived from 1-amino-4-bromonaphthalene (222 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained.
- the solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in methanol and then precipitated by the addition of water. The resulting solid was isolated by filtration and dried to yield 42 mg (26%) of the title compound as a brown solid.
- This compound was prepared using 92 mg (0.5 mmol) of 2-(o-tolylhydrazono)-malononitrile, which was derived from 4-toluidine (107 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 43 mg (40%) of the title compound as a yellow solid.
- This compound was prepared using 103 mg (0.5 mmol) of 2-[(2,6-difluorophenyl)-hydrazono]malononitrile, which was derived from 2,6-difluoroaniline (108 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 44 mg (37%) of the title compound as an orange solid.
- This compound was prepared using 107 mg (0.5 mmol) of 2-(benzo[1,3]dioxol-5-yl-hydrazono)malononitrile, which was derived from 3,4-methylenedioxyaniline (137 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting black solid was isolated by filtration, dissolved in acetone, and hexanes was added to precipitate a small amount of black solid. The solid was removed by filtration and the filtrate was concentrated to yield 1.0 mg (1% yield) of the title compound as a black solid.
- This compound was prepared using 108 mg (0.5 mmol) of 2-[(4-methylsulfanylphenyl)-hydrazono]malononitrile, which was derived from 4-methylthioaniline (117 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 95 mg (77%) of the title compound as an orange solid.
- This compound was prepared using 114 mg (0.5 mmol) of 2-[(2,3-dihydro-benzo[1,4]dioxin-6-yl)hydrazono]malononitrile, which was derived from 1,4-benzodiozan-6-amine (151 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained.
- This compound was prepared using 117 mg (0.5 mmol) of 2-[(3-chloro-4-methoxy-phenyl)hydrazono]malononitrile, which was derived from 3-chloro-4-anisidine (157 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 93 mg (70%) of the title compound as a yellow solid.
- This compound was prepared using 120 mg (0.5 mmol) of 2-[(3,4-dichlorophenyl)-hydrazono]malononitrile, which was derived from 3,4-dichloroaniline (162 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 53 mg (39%) of the title compound as a yellow solid.
- 1 H NMR (ppm, DMSO-d 6 ): 6.30 (br, s, 4H), 7.55-7.79 (m, 2H), 7.95 (s, 1 H), 10.80 (s, 1 H).
- This compound was prepared using 120 mg (0.5 mmol) of 2-[(3,5-dichlorophenyl)-hydrazono]malononitrile, which was derived from 3,5-dichloroaniline (162 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 25 mg (18%) of the title compound as a yellow solid.
- This compound was prepared using 106 mg (0.5 mmol) of 2-[(2-isopropylphenyl)-hydrazono]malononitrile, which was derived from 2-isopropylaniline (142 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 90 mg (73%) of the title compound as a greenish yellow solid.
- This compound was prepared using 115 mg (0.5 mmol) of 2-[(3,4-dimethoxyphenyl)-hydrazono]malononitrile, which was derived from 4-aminoveratrole (153 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained.
- the solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 46 mg (35%) of the title compound as a mustard coloured solid.
- This compound was prepared using 119 mg (0.5 mmol) of 2-[(3-trifluoromethylphenyl)-hydrazono]malononitrile, which was derived from 3-(trifluoromethyl)aniline (125 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 43 mg (31%) of the title compound as a yellow solid.
- the title compound was prepared using 121 mg (0.5 mmol) of 3-(N′-dicyanomethylene-hydrazino)benzoic acid ethyl ester, which was derived from 3-aminobenzoate (149 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 58 mg (42%) of the title compound as a light brown solid.
- This compound was prepared using 134 mg (0.5 mmol) of 2-[(3-methoxy-5-trifluoromethylphenyl)hydrazono]malononitrile, which was derived from 3-methoxy-5-trifluoromethylaniline (191 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 10 mg (7%) of the title compound as a yellow solid.
- This compound was prepared using 102 mg (0.5 mmol) of 2-[(2-chlorophenyl)-hydrazono]malononitrile, which was derived from 2-chloroaniline (105 ⁇ L, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 34 mg (29%) of the title compound as a yellow solid.
- This compound was prepared using 148 mg (0.5 mmol) of 2-[(3-iodophenyl)hydrazono]-malononitrile, which was derived from 3-iodoaniline (219 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate.
- the hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 122 mg (74%) of the title compound as a mustard coloured solid.
- This compound was prepared using 143 mg (0.5 mmol) of 2-[(9-ethyl-9H-carbazol-3-yl)-hydrazono]malononitrile, which was derived from 3-amino-9-ethylcarbazole (210 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Solids had not formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 46 mg (29%) of the title compound as a black solid.
- This compound was prepared using 94 mg (0.5 mmol) of 2-[(2-benzenesulfonylphenyl)-hydrazono]malononitrile, which was derived from 2-(phenylsulfonyl)aniline (233 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 20 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 68 mg (20%) of the title compound as an orange coloured solid.
- This compound was prepared using 200 mg (1.2 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and phenylhydrazine (767 mg, 7.1 mmol). Solids had not formed after heating the reaction at 75° C. for 3 hrs, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 77 mg (23%) of the title compound as an orange coloured solid.
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and benzoic hydrazide (68 mg, 0.5 mmol). Solids had not formed after heating the reaction at 75° C. for 3 hrs, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in methanol and then precipitated by the addition of water. The resulting solid was isolated by filtration and dried to yield 20 mg (13%) of the title compound as an orange coloured solid.
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono) malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and 4-bromophenylhydrazine hydrochloride (112 mg, 0.5 mmol) with the addition of 0.5 mL of 5% sodium hydroxide solution. Solids had not formed after heating the reaction at 75° C. for 3 hrs, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in methanol and then precipitated by the addition of water. The resulting solid was isolated by filtration and dried to yield 49 mg (27%) of the title compound as a brown solid.
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and 4-hydrazinobenzoic acid (76 mg, 0.5 mmol). After reacting for 4 hrs, the reaction remained as a slurry; however, analysis of the reaction solution by TLC indicated that no starting material remained. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 22 mg (14%) of the title compound as a brown solid.
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and 4-fluorophenylhydrazine hydrochloride (81 mg, 0.5 mmol) with the addition of 0.5 mL of 5% sodium hydroxide solution. After reacting for 4 hrs, very little solid had formed; however, analysis of the reaction solution by TLC indicated that no starting material remained. The resulting solid was removed by filtration and the solvent was evaporated from the filtrate to yield 29 mg (20%) of the title compound as a brown solid.
- This compound was prepared using 2-[(pyridin-3-yl)hydrazono]malononitrile (342 mg, 2 mmole), which was derived from 3-aminopyridine (940 mg, 10 mmole)) and malononitrile (858 mg, 13 mmol) as described in Example 8, and hydrazine hydrate (110 mg, 2.2 mmole) in ethanol. Solids had not formed after heating the reaction at 80° C. for 40 minutes, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The product was obtained after upon re-crystallization from ethanol as a yellow solid (150 mg).
- This compound was prepared using 2-[(3-fluorophenyl)hydrazono]malononitrile (145 mg, 0.5 mmole), which was derived from 3-fluoroaniline (111 mg, 1 mmole)) and cyclohexyl cyanoacetate (217 mg, 1.3 mmole) as described in Example 8, and hydrazine hydrate (25 mg, 0.5 mmole) in ethanol. Solids had not formed after heating the reaction at 80° C. for 40 minutes, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and concentrated. The product was obtained after filtration as a yellow solid (73 mg).
- This compound was prepared using 2-[(6-methoxybenzothiazol-2-yl)hydrazono]-malononitrile (200 mg), which was derived from 2-amino-6-methoxybensothiazole (1.17 g) and malononitrile (0.82 g) as described in Example 8, and hydrazine hydrate (0.2 mL) in ethanol. Solids had not formed after heating the reaction at 40° C. for 2 hrs. The solution was allowed to cool to room temperature and concentrated. The product was obtained after column chromatography purification (80 mg, 35%).
- This compound was prepared using 2-[(6-benzothiazol-2-yl)hydrazono]malononitrile (80 mg), which was derived from 2-aminobensothiazole (925 mg) and malononitrile (0.65 g) as described in Example 8, and hydrazine hydrate (0.1 mL) in ethanol. Solids had not formed after heating the reaction at 60° C. for 3 hrs. The solution was allowed to cool to room temperature and concentrated. The product was obtained after thin layer chromatography purification (47 mg, 50%).
- This compound was prepared using 3-aminopyrazole (0.5 g), malononitrile (1.8 g), and hydrazine hydrate (0.3 g) as described in Example 1. The product was obtained after column chromatography purification (157 mg, 14%).
- Pentafluoroaniline 1.0 g dissolved in 12 mL of CH 3 COOH was added into a solution of NaNO 2 (0.41 g) in concentrated H 2 SO 4 at 5° C. The reaction mixture was kept stirring at 5° C. for 1 hr and then slowly added into a solution of malononitrile (1.0 g) mixed with 37 g of NaOAc in 50 mL of H 2 0 at 5-10° C. The reaction mixture was extracted with EtOAc (3 ⁇ 150 mL) ah hour later. The combined organic phase was washed with brine, dried with anhydrous MgSO 4 and then evaporated.
- This compound was prepared using the method as described in Example 1 using 2-phenylhydrazonomalononitrile (425 mg) and methylhydrazine sulfate (720 mg). The product was purified by column chromatography and afforded a yellow solid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application in a continuation-in-part of U.S. patent application Ser. No. 09/544,908, filed Apr. 7, 2000.
- It has become increasingly clear in recent years that cell death is as important to the health of a multicellular organism as cell division: where proliferation exists, so must a means of regulating its cellular progeny. By repeated cell division and differentiation throughout development or tissue repair, surplus or even harmful cells are generated, and they must be removed or killed. In adults, senescent cells are removed and replaced by newly generated cells to maintain homeostasis.
- The delicate interplay between growth and cell death in an organism is mirrored in the complex molecular balance that determines whether an individual cell undergoes division; arrests in the cell cycle; or commits to programmed cell death. Signal transduction is the term describing the process of conversion of extracellular signals, such as hormones, growth factors, neurotransmitters, cytokines, and others, to a specific intracellular response such as gene expression, cell division, or apoptosis. This process begins at the cell membrane where an external stimulus initiates a cascade of enzymatic reactions inside the cell that typically include phosphorylation of proteins as mediators of downstream processes which most often end in an event in the cell nucleus. The checks and balances of these signal transduction pathways can be thought of as overlapping networks of interacting molecules that control “go-no go” control points. Since almost all known diseases exhibit dysfunctional aspects in these networks, there has been a great deal of enthusiasm for research that provides targets and therapeutic agents based on signal transduction components linked to disease.
- Dysregulation of cell proliferation, or a lack of appropriate cell death, has wide ranging clinical implications. A number of diseases associated with such dysregulation involve hyperproliferation, inflammation, tissue remodelling and repair. Familiar indications in this category include cancers, restenosis, neointimal hyperplasia, angiogenesis, endometriosis, lymphoproliferative disorders, graft-rejection, polyposis, loss of neural function in the case of tissue remodelling, and the like. Such cells may lose the normal regulatory control of cell division, and may also fail to undergo appropriate cell death.
- In one example, epithelial cells, endothelial cells, muscle cells, and others undergo apoptosis when they lose contact with extracellular matrix, or bind through an inappropriate integrin. This phenomenon, which has been termed “anoikis” (the Greek word for “homelessness”), prevents shed epithelial cells from colonizing elsewhere, thus protecting against neoplasia, endometriosis, and the like. It is also an important mechanism in the initial cavitation step of embryonic development, in mammary gland involution, and has been exploited to prevent tumor angiogenesis. Epithelial cells may become resistant to anoikis through overactivation of integrin signaling. Anoikis resistance can also arise from the loss of apoptotic signaling, for example, by overexpression of Bcl-2 or inhibition of caspase activity.
- An aspect of hyperproliferation that is often linked to tumor growth is angiogenesis. The growth of new blood vessels is essential for the later stages of solid tumor growth. Angiogenesis is caused by the migration and proliferation of the endothelial cells that form blood vessels.
- In another example, a major group of systemic autoimmune diseases is associated with abnormal lymphoproliferation, as a result of defects in the termination of lymphocyte activation and growth. Often such diseases are associated with inflammation, for example with rheumatoid arthritis, insulin dependent diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, and the like. Recent progress has been made in understanding the causes and consequences of these abnormalities. At the molecular level, multiple defects may occur, which result in a failure to set up a functional apoptotic machinery.
- The development of compounds that inhibit hyperproliferative diseases, particularly where undesirable cells are selectively targeted, is of great medical and commercial interest.
- Relevant literature:
- The regulation of integrin linked kinase by phosphatidylinositol (3,4,5) trisphosphate is described by Delcommenne et al. (1998)Proc Natl Acad Sci 95:11211-6. Activated nitrites in heterocyclic synthesis are discussed in Kandeel et al. (1985) J. Chem. Soc. Perkin. Trans 1499.
- Pharmaceutical compositions and compounds are provided. The compounds of the invention are substituted pyrazoles and pyrazolines. In one embodiment of the invention, formulations of the compounds in combination with a physiologically acceptable carrier are provided. The pharmaceutical formulations are useful in the treatment of disorders associated with hyperproliferation and tissue remodelling or repair. The compounds are also active in the inhibition of specific protein kinases.
- FIG. 1 is a graph illustrating the anti-tumor activity of KP-15792 in a murine model using Lewis Lung Carcinoma cells.
- The present invention provides novel compounds, compositions and methods as set forth within this specification. In general, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs, unless clearly indicated otherwise. For clarification, listed below are definitions for certain terms used herein to describe the present invention. These definitions apply to the terms as they are used throughout this specification, unless otherwise clearly indicated.
- As used herein the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. For example, “a compound” refers to one or more of such compounds, while “the enzyme” includes a particular enzyme as well as other family members and equivalents thereof as known to those skilled in the art.
- “Alkyl” is a monovalent, saturated or unsaturated, straight, branched or cyclic, aliphatic (i.e., not aromatic) hydrocarbon group. In various embodiments, the alkyl group has 1-20 carbon atoms, i.e., is a C1-C20 (or C1-C20) group, or is a C1-C18 group, a C1-C12 group, a C1-C6 group, or a C1-C4 group. Independently, in various embodiments, the alkyl group: has zero branches (i.e., is a straight chain), one branch, two branches, or more than two branches; is saturated; is unsaturated (where an unsaturated alkyl group may have one double bond, two double bonds, more than two double bonds, and/or one triple bond, two triple bonds, or more than three triple bonds); is, or includes, a cyclic structure; is acyclic. Exemplary alkyl groups include C1alkyl (i.e., —CH3 (methyl)), C2alkyl (i.e., —CH2CH3 (ethyl), —CH═CH2 (ethenyl) and —C═CH (ethynyl)) and C3alkyl (i.e., —CH2CH2CH3 (n-propyl), —CH(CH3)2 (i-propyl), —CH═CH—CH3 (1-propenyl), —C═−C—CH3 (1-propynyl), —CH2—CH═CH2 (2-propenyl), —CH2—C═−CH (2-propynyl), —C(CH3)═CH2 (1-methylethenyl), and —CH(CH2)2 (cyclopropyl)).
- “Ar” indicates a carbocyclic aryl group selected from phenyl, substituted phenyl, naphthyl, and substituted naphthyl. Suitable substituents on a phenyl or naphthyl ring include C1-C6alkyl, C1-C6alkoxy, carboxyl, carbonyl(C1-C6)alkoxy, halogen, hydroxyl, nitro, —SO3H, and amino.
- “Aryl” is a monovalent, aromatic, hydrocarbon, ring system. The ring system may be monocyclic or fused polycyclic (e.g., bicyclic, tricyclic, etc.). In various embodiments, the monocyclic aryl ring is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system. A C6 ring system, i.e., a phenyl ring, is a preferred aryl group. In various embodiments, the polycyclic ring is a bicyclic aryl group, where preferred bicyclic aryl groups are C8-C12, or C9-C10. A naphthyl ring, which has 10 carbon atoms, is a preferred polycyclic aryl group.
- “Arylene” is a polyvalent, aromatic hydrocarbon, ring system. The ring system may be monocyclic or fused polycyclic (e.g., bicyclic, tricyclic, etc.). In various embodiments, the monocyclic arylene group is C5-C10, or C5-C7, or C5-C6, where these carbon numbers refer to the number of carbon atoms that form the ring system. A C6 ring system, i.e., a phenylene ring, is a preferred aryl group. In various embodiments, the polycyclic ring is a bicyclic arylene group, where preferred bicyclic arylene groups are C8-C12, or C9-C10. A naphthylene ring, which has 10 carbon atoms, is a preferred polycyclic aryl group. The arylene group may be divalent, i.e., it has two open sites that each bond to another group; or trivalent, i.e., it has three open sites that each bond to another group; or it may have more than three open sites.
- “Carbocycle” refers to a ring formed exclusively from carbon, which may be saturated or unsaturated, including aromatic. The ring may be monocyclic (e.g., cyclohexyl, phenyl), bicyclic (e.g., norbornyl), polycyclic (e.g., adamantyl) or contain a fused ring system (e.g., decalinyl, naphthyl). In one embodiment, the ring is monocyclic and formed from 5, 6 or 7 carbons. In one embodiment, the ring is bicyclic and formed from 7, 8 or 9 carbons. In one embodiment, the ring is polycyclic and formed from 9, 10 or 11 carbons. In one embodiment, the ring includes a fused ring system and is formed from 8-12 carbons. Thus, in one embodiment, the carbocycle is formed from 5-12 ring carbons.
- “Heteroalkyl” is an alkyl group (as defined herein) wherein at least one of the carbon atoms is replaced with a heteroatom. Preferred heteroatoms are nitrogen, oxygen, sulfur, and halogen. A heteroatom may, but typically does not, have the same number of valence sites as carbon. Accordingly, when a carbon is replaced with a heteroatom, the number of hydrogens bonded to the heteroatom may need to be increased or decreased to match the number of valence sites of the heteroatom. For instance, if carbon (valence of four) is replaced with nitrogen (valence of three), then one of the hydrogens formerly attached to the replaced carbon must be deleted. Likewise, if carbon is replaced with halogen (valence of one), then three (i.e., all) of the hydrogens formerly bonded to the replaced carbon must be deleted. As another example, trifluoromethyl is a heteroalkyl group wherein the three methyl groups of a t-butyl group are replaced by fluorine.
- “Heteroalkylene” is an alkylene group (as defined herein) wherein at least one of the carbon atoms is replaced with a heteroatom. Preferred heteroatoms are nitrogen, oxygen, sulfur, and halogen. A heteroatom may, but typically does not, have the same number of valence sites as carbon. Accordingly, when a carbon is replaced with a heteroatom, the number of hydrogens bonded to the heteroatom may need to be increased or decreased to match the number of valence sites of the heteroatom, as explained elsewhere herein.
- “Heteroaryl” is a monovalent aromatic ring system containing carbon and at least one heteroatom in the ring. The heteroaryl group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms in the ring. Heteroaryl rings may be monocyclic or polycyclic, where the polycyclic ring may contained fused, spiro or bridged ring junctions. In one embodiment, the heteroaryl is selected from monocyclic and bicyclic. Monocyclic heteroaryl rings may contain from about 5 to about 10 member atoms (carbon and heteroatoms), preferably from 5-7, and most preferably from 5-6 member atoms in the ring. Bicyclic heteroaryl rings may contain from about 8-12 member atoms, or 9-10 member atoms in the ring. The heteroaryl ring may be unsubstituted or substituted. In one embodiment, the heteroaryl ring is unsubstituted. In another embodiment, the heteroaryl ring is substituted. Exemplary heteroaryl groups include benzofuran, benzothiophene, furan, imidazole, indole, isothiazole, oxazole, piperazine, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, quinoline, thiazole and thiophene.
- “Heteroarylene” is a polyvalent aromatic ring system containing carbon and at least one heteroatom in the ring. In other words, a heteroarylene group is a heteroaryl group that has more than one open site for bonding to other groups. The heteroarylene group may, in various embodiments, have one heteroatom, or 1-2 heteroatoms, or 1-3 heteroatoms, or 1-4 heteroatoms in the ring. Heteroarylene rings may be monocyclic or polycyclic, where the polycyclic ring may contained fused, spiro or bridged ring junctions. In one embodiment, the heteroaryl is selected from monocyclic and bicyclic. Monocyclic heteroarylene rings may contain from about 5 to about 10 member atoms (carbon and heteroatoms), preferably from 5-7, and most preferably from 5-6 member atoms in the ring. Bicyclic heteroarylene rings may contain from about 8-12 member atoms, or 9-10 member atoms in the ring.
- “Heteroatom” is a halogen, nitrogen, oxygen, silicon or sulfur atom. Groups containing more than one heteroatom may contain different heteroatoms.
- “Heterocycle” refers to a ring containing at least one carbon and at least one heteroatom. The ring may be monocyclic (e.g., morpholinyl, pyridyl), bicyclic (e.g., bicyclo[2.2.2]octyl with a nitrogen at one bridgehead position), polycyclic, or contain a fused ring system. In one embodiment, the ring is monocyclic and formed from 5, 6 or 7 atoms. In one embodiment, the ring is bicyclic and formed from 7, 8 or 9 atoms. In one embodiment, the ring is polycyclic and formed from 9, 10 or 11 atoms. In one embodiment, the ring includes a fused ring system and is formed from 8-12 atoms. Thus, in one embodiment, the heterocycle is formed from 5-12 ring atoms. In one embodiment, the heteroatom is selected from oxygen, nitrogen and sulfur. In one embodiment, the heterocycle contains 1, 2 or 3 heteroatoms.
- As used herein, and unless otherwise specified, the terms carbocyclic and heterocyclic encompass both substituted and unsubstituted carbocyclic and heterocyclic groups. In one embodiment, the substitution present on a carbocyclic or heterocyclic group is selected from alkyl, heteroalkyl, aryl, and heteroaryl, preferably alkyl and heteroalkyl. In one embodiment, the alkyl and heteroalkyl substitution present on a carbocyclic or heterocyclic group is selected from C1-C6alkyl, C1-C6alkoxy, halogen, nitro, hydroxyl, cyano, sulfonic acid (i.e., —SO3H), carboxylic acid, carboxylate ester (i.e., —CO2R where R is, e.g., C1-C10alkyl), amino, alkylamino, dialkylamino, acyl (i.e., R—C(═O)—), and acylamino (i.e., R—C(═O)—NH— where R is, e.g., C1-C10alkyl). For example, and unless otherwise specified, the terms cyclohexyl and phenyl refer to both substituted and unsubstituted cyclohexyl and phenyl.
- “Pharmaceutically acceptable salt” and “salts thereof” in the compounds of the present invention refers to acid addition salts and base addition salts.
- Acid addition salts refer to those salts formed from compounds of the present invention and inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and/or organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like.
- Base addition salts refer to those salts formed from compounds of the present invention and inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Suitable salts include the ammonium, potassium, sodium, calcium and magnesium salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, trimethamine, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaines, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, and the like.
- In one aspect the present invention provides compounds of formula (1), as set forth below.
-
- and stereoisomers, solvates, and pharmaceutically acceptable salts thereof, and a pharmaceutically acceptable carrier, diluent or excipient, where
- R1 and R2 are selected from direct bond, H, and alkyl;
- R3 and R4 are selected from —NH2, NHC(═O)R5, and ═O;
- R5 is selected from R6, R7, and R8, where R6 is selected from alkyl, heteroalkyl, aryl and heteroaryl; R7 is selected from (R6)k-alkylene, (R6)k-heteroalkylene, (R6)k-arylene and (R6)k-heteroarylene; R8 is selected from (R7)k-alkylene, (R7)k-heteroalkylene, (R7)k-arylene, and (R7)k-heteroarylene; and k is selected from 0, 1, 2, 3, 4 and 5; and
- n is selected from 0, 1, 2, 3, 4 or 5.
- In another aspect, the present invention provides compounds of formula (1) and compositions comprising compounds of formula (1) as drawn above, wherein R1 is selected from alkyl, aryl and heteroaryl, wherein each of alkyl, aryl and heteroaryl may be substituted with one or more groups selected from C1-C20alkyl, C6-C10aryl, heteroalkyl and heteroaryl; R2 is selected from H and direct bond; R1 and R1 are selected from —NH2 and NHC(═O)R5; R5 is selected from R6, R7, and R8, where R6 is selected from alkyl, heteroalkyl, aryl and heteroaryl; RF is selected from (R6)k-3alkylene, (R6)k-heteroalkylene, (R6)k-arylene and (R6)k-heteroarylene; R8 is selected from (R7)k-alkylene, (R7)k-heteroalkylene, (R7)k-arylene, and (R7)k-heteroarylene; and k is selected from 0, 1, 2, 3, 4 and 5; and n is selected from 0, 1, 2, 3, 4 or 5.
- In various embodiments, R1 is C1-C20alkyl; or R1 is C1-C6alkyl and each of R3 and R4 are —NH2; or R1 is aryl; or R1 is aryl selected from phenyl and naphthyl, the phenyl and napthyl substituted with at least one heteroalkyl selected from alkoxy, carboxy and halide; and/or each of R3 and R4 are —NH2; and/or R5 is selected from carbocyclic and heterocyclic groups, wherein the carbocyclic and heterocyclic groups may optionally contain 5-12 ring atoms. In other embodiments, wherein R5 is a carbocyclic group selected from monocyclic and fused ring groups, or R5 is a heterocyclic group containing from 1-3 nitrogens; or R5 is selected from R6 and R7, where R6 is selected from alkyl, heteroalkyl, aryl and heteroaryl; R7 is selected from (R6)k-alkylene, (R6)k-heteroalkylene, (R6)k-arylene and (R6)k-heteroarylene; and k is selected from 0, 1, 2, 3, 4 and 5.
- In another embodiment, R5 is selected from 4-fluorophenyl, 3-ethylphenyl, 3-methoxyphenyl, 3-chlorophenyl, 3-fluorophenyl, 3-fluoro-4-methoxyphenyl, naphthalen-2-yl, 4-trifluoromethylphenyl, 3-phenoxyphenyl, biphenyl-2-yl, 2-Bromophenyl, 3-Bromophenyl, 4-Bromophenyl, 4-phenoxyphenyl, 4-iodophenyl, 4-bromonaphthalen-1-yl, o-tolyl, 2,6-difluorophenyl, 3,4-difluorophenyl, benzo[1,3]dioxol-5-yl, 4-methylsulfanylphenyl, 2,3-dihydrobenzo[1,4]dioxin-6-yl, 3-chloro-4-methoxyphenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 2-isopropylphenyl, 3,4-dimethoxyphenyl, 3-trifluoromethylphenyl, 3-methoxy-5-trifluoromethylphenyl, 2-chlorophenyl, 3-iodophenyl, 9-ethyl-9H-carbazol-3-yl, 2-benzenesulfonylphenyl, phenyl, pyridin-3-yl, 6-methoxybenzothiazol-2-yl, benzotiazol-2-yl, pyrazol-3-yl, pyridin-4-yl, 2,3,4,5,6-pentafluorophenyl, 3-[1 H]-1,2,4-triazolo, 3,5-difluorophenyl, and 2,3,4-trifluorophenyl, where each of R3 and R4 may be —NH2; and where R1 may be C1-C20alkyl, and/or aryl; and/or heteroaryl.
- In one aspect, the present invention provides a compound of formula (1) selected from (3,5-diamino-4-phenylazo-pyrazol-1-yl)phenylmethanone; 4-(3,5-diamino-4-phenylazopyrazol-1-yl)benzoic acid; 3,5-diamino-1-phenyl-4-phenylazopyrazole; 3,5-diamino-1-(4-Bromophenyl)-4-phenylazopyrazole; 3,5-diamino-1-(4-fluorophenyl)-4-phenylazopyrazole; and 3,5-diamino-1-methyl-4-phenylazopyrazole.
-
- and stereoisomers, solvates, and pharmaceutically acceptable salts thereof, and a pharmaceutically acceptable carrier, diluent or excipient, where R1 and R2 are selected from H and direct bond; R3 and R4 are selected from —NH2, NHC(═O)R5 and ═O; and Ar is an aryl group. In one aspect, Ar is phenyl having one or more substituents selected from alkyl, aryl, heteroalkyl and heteroaryl, where optionally the substituents are selected from benzenesulfonyl, bromide, carbonylethoxy, carbonylmethoxy, chloride, dioxolyl, dioxinyl, ethyl, fluoride, hydroxyl, iodide, isopropyl, methoxy, methyl, methylthio, phenoxy, phenyl, propyl, and trifluoromethyl. Specific compounds of the invention are 3,5-diamino-4-[(4-fluorophenyl)hydrazono]pyrazole; 3-[N′-(3,5-diaminopyrazol-4-ylidene)hydrazino]-phenol; 3,5-diamino-4-[(3-ethylphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3-methoxyphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3-chlorophenyl)hydrazono]-pyrazole; 3,5-diamino-4-[(3-fluorophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3-fluoro-4-methoxyphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(4-trifluoromethylphenyl)hydrazono]pyrazole; 4-[(3-phenoxyphenyl)hydrazono]pyrazole; 4-[N′-(3,5-diaminopyrazol-4-ylidene)hydrazino]benzoic acid ethyl ester; 3,5-diamino-4-[(biphenyl-2-yl)hydrazono]pyrazole; 3,5-diamino-4-[(2-Bromophenyl)hydrazono]-pyrazole; 3,5-diamino-4-[(3-Bromophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(4-Bromophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(4-phenoxyphenyl)hydrazono]-pyrazole; 3,5-diamino-4-[(4-iodophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(o-tolyl)hydrazono]pyrazole; 3,5-diamino-4-[(2,6-difluorophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3,4-difluorophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(benzo[1,3]dioxol-5-yl)hydrazono]pyrazole; 3,5-diamino-4-[(4-methylsulfanylphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(2,3-dihydrobenzo[1,4]dioxin-6-yl)-hydrazono]pyrazole; 3,5-diamino-4-[(3-chloro-4-methoxyphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3,4-dichlorophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3,5-dichlorophenyl)hydrazono]-pyrazole; 3,5-diamino-4-[(2-isopropylphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3,4-dimethoxyphenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3-trifluoromethylphenyl)hydrazono]pyrazole; 3-[N′-(3,5-diaminopyrazol4-ylidene)hydrazino]benzoic acid ethyl ester; 3,5-diamino-4-[(3-methoxy-5-trifluoromethylphenyl)-hydrazono]pyrazole; 3,5-diamino-4-[(2-chlorophenyl)hydrazono]pyrazole; 3,5-diamino-4-[(3-iodophenyl)hydrazono]pyrazole; and 3,5-diamino-4-[(2-benzenesulfonylphenyl)hydrazono]-pyrazole.
- In another aspect, the present invention provides compounds of formula (2) wherein Ar is naphthyl optionally having one or more substituents selected from alkyl, aryl, heteroalkyl and heteroaryl, where suitable substituents are benzenesulfonyl, bromide, carbonylethoxy, carbonylmethoxy, chloride, dioxolyl, dioxinyl, ethyl, fluoride, hydroxyl, iodide, iso-propyl, methoxy, methyl, methylthio, phenoxy, phenyl, propyl, and trifluoromethyl; and specific compounds of the invention are: 3,5-diamino-4-[(naphthalen-2-yl)hydrazono]pyrazole; and 3,5-diamino-4-[(4-bromonaphthalen-1-yl)hydrazono]pyrazole.
-
-
- In one embodiment, R5 is selected from carbocyclic and heterocyclic groups, where the carbocyclic and heterocyclic groups preferably contain from 5 to 12 ring atoms. In one embodiment, R5 is a carbocyclic group. In one embodiment, R5 is a heterocyclic group.
- In one embodiment, R5 is selected from the carbocyclic groups phenyl and naphthyl. As noted previously, a carbocyclic group may be substituted or unsubstituted. Accordingly, in this embodiment, the phenyl or naphthyl group may be substituted with one or more of, for example, alkyl, alkoxy, hydroxyl, sulfonic acid, carboxylic acid, halogen, amino and acetylamino.
-
-
-
- In one embodiment, R3 and R4 are each amino (—NH2) groups. In another embodiment, one of R3 and R4 is an amino group while the other of R3 and R4 is a carbonyl (═O) group. In one embodiment, both of R3 and R4 are carbonyl groups. In one embodiment, n is 0. In another embodiment, n is selected from 0, 1 and 2. In another embodiment, n is selected from 1, 2, 3 and 4.
- In one embodiment, the compounds and/or compositions and/or methods of the present invention exclude a compound of formula (1) wherein R1=H, and/or R2=H, and/or R3=amino, and/or R4=amino, and/or n=0, and/or R5=4-methoxyphenyl.
-
- Thus, a primary amine of the formula H2N—R9 (where R9 has been selected to represent —(CH2)n—R5 of formula (1)) is diazotised by treatment sodium nitrite and hydrochloric acid. The intermediate diazo compound (enclosed by a box in Scheme 1) will, in the presence of base (e.g., sodium acetate as shown in Scheme 1) react with compounds containing an active methylene group, i.e., a compound including a methylene group (—CH2—) flanked by electron withdrawing groups such as cyano (—CN) and/or ester (—COOR), to provide an azo compound. This azo compound may be reacted with a hydrazine derivative to provide compounds of the present invention.
- In Scheme 1, R1 and R2 are each preferably hydrogen. However, either or both of R1 and R2 may be an alkyl group.
- The compounds of this invention can be incorporated into a variety of formulations for therapeutic administration. More particularly, the compounds of the present invention can be formulated into pharmaceutical compositions by combination with appropriate pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. As such, administration of the compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, etc., administration. The active agent may be systemic after administration or may be localized by the use of regional administration, intramural administration, or use of an implant that acts to retain the active dose at the site of implantation.
- In pharmaceutical dosage forms, the compounds may be administered in the form of their pharmaceutically acceptable salts. They may also be used in appropriate association with other pharmaceutically active compounds. The following methods and excipients are merely exemplary and are in no way limiting.
- For oral preparations, the compounds can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch or gelatins; with disintegrators, such as corn starch, potato starch or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives and flavoring agents.
- The compounds can be formulated into preparations for injections by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- The compounds can be utilized in aerosol formulation to be administered via inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.
- Furthermore, the compounds can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more compounds of the present invention. Similarly, unit dosage forms for injection or intravenous administration may comprise the compound of the present invention in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- Implants for sustained release formulations are well known in the art. Implants are formulated as microspheres, slabs, etc. with biodegradable or non-biodegradable polymers. For example, polymers of lactic acid and/or glycolic acid form an erodible polymer that is well tolerated by the host. The implant containing the inhibitory compounds is placed in proximity to the site of the tumor, so that the local concentration of active agent is increased relative to the rest of the body.
- The term “unit dosage form”, as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- The pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.
- The combined use of the provided inhibitory compounds and other cytotoxic agents has the advantages that the required dosages for the individual drugs is lower, and the effect of the different drugs complementary. Depending on the patient and condition being treated and on the administration route, the subject inhibitory compounds may be administered in dosages of 0.1 μg to 10 mg/kg body weight per day. The range is broad, since in general the efficacy of a therapeutic effect for different mammals varies widely with doses typically being 20, 30 or even 40 times smaller (per unit body weight) in man than in the rat. Similarly the mode of administration can have a large effect on dosage. Thus for example oral dosages in the rat may be ten times the injection dose. Higher doses may be used for localized routes of delivery.
- A typical dosage may be a solution suitable for intravenous administration; a tablet taken from two to six times daily, or one time-release capsule or tablet taken once a day and containing a proportionally higher content of active ingredient, etc. The time-release effect may be obtained by capsule materials that dissolve at different pH values, by capsules that release slowly by osmotic pressure, or by any other known means of controlled release.
- Those of skill will readily appreciate that dose levels can vary as a function of the specific compound, the severity of the symptoms and the susceptibility of the subject to side effects. Some of the specific compounds are more potent than others. Preferred dosages for-a given compound are readily determinable by those of skill in the art by a variety of means. A preferred means is to measure the physiological potency of a given compound.
- For use in the subject methods, the subject compounds may be formulated with other pharmaceutically active agents, particularly other anti-metastatic, anti-tumor or anti-angiogenic agents. Angiostatic compounds of interest include angiostatin, endostatin, carboxy terminal peptides of collagen alpha (XV), etc. Cytotoxic and cytostatic agents of interest include adriamycin, alkeran, Ara-C, BICNU, busulfan, CNNU, cisplatinum, cytoxan, daunorubicin, DTIC, 5-FU, hydrea, ifosfamide, methotrexate, mithramycin, mitomycin, mitoxantrone, nitrogen mustard, velban, vincristine, vinblastine, VP-16, carboplatinum, fludarabine, gemcitabine, idarubicin, irinotecan, leustatin, navelbine, taxol, taxotere, topotecan, etc.
- The subject compounds are administered to a subject having a hyperproliferative disorders, e.g. to inhibit tumor growth, to inhibit angiogenesis, to decrease inflammation associated with a lymphoproliferative disorder, to inhibit graft rejection, or neurological damage due to tissue repair, etc. The present compounds are useful for prophylactic or therapeutic purposes. As used herein, the term “treating” is used to refer to both prevention of disease, and treatment of pre-existing conditions. The prevention of proliferation is accomplished by administration of the subject compounds prior to development of overt disease, e.g. to prevent the regrowth of tumors, prevent metastatic growth, diminish restenosis associated with cardiovascular surgery, etc. Alternatively the compounds are used to treat ongoing disease, by stabilizing or improving the clinical symptoms of the patient.
- The host, or patient, may be from any mammalian species, e.g. primate sp., particularly humans; rodents, including mice, rats and hamsters; rabbits; equines, bovines, canines, felines; etc. Animal models are of interest for experimental investigations, providing a model for treatment of human disease.
- The susceptibility of a particular cell to treatment with the subject compounds may be determined by in vitro testing. Typically a culture of the cell is combined with a subject compound at varying concentrations for a period of time sufficient to allow the active agents to induce cell death or inhibit migration, usually between about one h and one week. For in vitro testing, cultured cells from a biopsy sample may be used. The viable cells left after treatment are then counted.
- The dose will vary depending on the specific compound utilized, specific disorder, patient status, etc. Typically a therapeutic dose will be sufficient to substantially decrease the undesirable cell population in the targeted tissue, while maintaining patient viability. Treatment will generally be continued until there is a substantial reduction, e.g. at least about 50%, decrease in the cell burden, and may be continued until there are essentially none of the undesirable cells detected in the body.
- The compounds also find use in the specific inhibition of signaling pathway mediated by protein kinases. Protein kinases are involved in signaling pathways for such important cellular activities as responses to extracellular signals and cell cycle checkpoints. Inhibition of specific protein kinases provides a means of intervening in these signaling pathways, for example to block the effect of an extracellular signal, to release a cell from cell cycle checkpoint, etc. Defects in the activity of protein kinases are associated with a variety of pathological or clinical conditions, where there is a defect in signaling mediated by protein kinases. Such conditions include those associated with defects in cell cycle regulation or in response to extracellular signals, e.g. hyperglycemia and diabetes Type I and Type II, immunological disorders, e.g. autoimmune and immunodeficiency diseases; hyperproliferative disorders, which may include psoriasis, arthritis, inflammation, angiogenesis, endometriosis, scarring, cancer, etc.
- The compounds of the present invention are active in inhibiting purified kinase proteins, i.e. there is a decrease in the phosphorylation of a specific substrate in the presence of the compound. A protein kinase of particular interest in integrin linked kinase (ILK). ILK is a serine threonine kinase. The DNA and predicted amino acid sequence may be accessed at Genbank, no. U40282, or as published in Hannigan et al. (1996)Nature 379:91-96. ILK regulates integrin extracellular activity (ECM interactions) from inside the cell via its direct interaction with the integrin subunit. Interfering with ILK activity allows the specific targeting of integrin function, while leaving other essential signaling pathways intact. Increased levels of cellular ILK activity short circuits the normal requirement for adhesion to extracellular membrane in regulating cell growth. Thus, inhibiting ILK activity may inhibit anchorage-independent cell growth.
- It is also known that many cell types undergo apoptosis if the appropriate contacts with extracellular matrix proteins are not maintained (anoikis). The induction of apoptosis by the subject compounds in such cells predicts an association with the ILK signaling pathway.
- The compounds of the present invention bind to protein kinases at a high affinity, and find use as affinity reagents for the isolation and/or purification of such kinases. Affinity chromatography is used as a method of separating and purifying protein kinases and phosphatases using the biochemical affinity of the enzyme for inhibitors that act on it. The compounds are coupled to a matrix or gel. Preferably a microsphere or matrix is used as the support. Such supports are known in the art and commercially available. The inhibitor coupled support is used to separate an enzyme that binds to the inhibitor from a complex mixture, e.g. a cell lysate, that may optionally be partially purified. The sample mixture is contacted with the inhibitor coupled support under conditions that minimize non-specific binding. Methods known in the art include columns, gels, capillaries, etc. The unbound compounds are washed free of the resin, and the bound proteins are then eluted in a suitable buffer.
- The compounds of the invention may also be useful as reagents for studying signal transduction or any of the clinical disorders listed throughout this application.
- There are many disorders associated with a dysregulation of cellular proliferation. The conditions of interest include, but are not limited to, the following conditions.
- The subject methods are applied to the treatment of a variety of conditions where there is proliferation and/or migration of smooth muscle cells, and/or inflammatory cells into the intimal layer of a vessel, resulting in restricted blood flow through that vessel, i.e. neointimal occlusive lesions. Occlusive vascular conditions of interest include atherosclerosis, graft coronary vascular disease after transplantation, vein graft stenosis, peri-anastomatic prosthetic graft stenosis, restenosis after angioplasty or stent placement, and the like.
- Diseases where there is hyperproliferation and tissue remodelling or repair of reproductive tissue, e.g. uterine, testicular and ovarian carcinomas, endometriosis, squamous and glandular epithelial carcinomas of the cervix, etc. are reduced in cell number by administration of the subject compounds.
- Tumor cells are characterized by uncontrolled growth, invasion to surrounding tissues, and metastatic spread to distant sites. Growth and expansion requires an ability not only to proliferate, but also to down-modulate cell death (apoptosis) and activate angiogenesis to produce a tumor neovasculature. Angiogenesis may be inhibited by affecting the cellular ability to interact with the extracellular environment and to migrate, which is an integrin-specific function, or by regulating apoptosis of the endothelial cells. Integrins function in cell-to-cell and cell-to-extracellular matrix (ECM) adhesive interactions and transduce signals from the ECM to the cell interior and vice versa. Since these properties implicate integrin involvement in cell migration, invasion, intra- and extra-vasation, and platelet interaction, a role for integrins in tumor growth and metastasis is obvious.
- Tumors of interest for treatment include carcinomas, e.g. colon, duodenal, prostate, breast, melanoma, ductal, hepatic, pancreatic, renal, endometrial, stomach, dysplastic oral mucosa, polyposis, invasive oral cancer, non-small cell lung carcinoma, transitional and squamous cell urinary carcinoma etc.; neurological malignancies, e.g. neuroblastoma, gliomas, etc.; hematological malignancies, e.g. childhood acute leukaemia, non-Hodgkin's lymphomas, chronic lymphocytic leukaemia, malignant cutaneous T-cells, mycosis fungoides, non-MF cutaneous T-cell lymphoma, lymphomatoid papulosis, T-cell rich cutaneous lymphoid hyperplasia, bullous pemphigoid, discoid lupus erythematosus, lichen planus, etc.; and the like.
- Some cancers of particular interest include breast cancers, which are primarily adenocarcinoma subtypes. Ductal carcinoma in situ is the most common type of noninvasive breast cancer. In DCIS, the malignant cells have not metastasized through the walls of the ducts into the fatty tissue of the breast. Infiltrating (or invasive) ductal carcinoma (IDC) has metastasized through the wall of the duct and invaded the fatty tissue of the breast. Infiltrating (or invasive) lobular carcinoma (ILC) is similar to IDC, in that it has the potential metastasize elsewhere in the body. About 10% to 15% of invasive breast cancers are invasive lobular carcinomas.
- Also of interest is non-small cell lung carcinoma. Non-small cell lung cancer (NSCLC) is made up of three general subtypes of lung cancer. Epidermoid carcinoma (also called squamous cell carcinoma) usually starts in one of the larger bronchial tubes and grows relatively slowly. The size of these tumors can range from very small to quite large. Adenocarcinoma starts growing near the outside surface of the lung and may vary in both size and growth rate. Some slowly growing adenocarcinomas are described as alveolar cell cancer. Large cell carcinoma starts near the surface of the lung, grows rapidly, and the growth is usually fairly large when diagnosed. Other less common forms of lung cancer are carcinoid, cylindroma, mucoepidermoid, and malignant mesothelioma.
- Melanoma is a malignant tumor of melanocytes. Although most melanomas arise in the skin, they also may arise from mucosal surfaces or at other sites to which neural crest cells migrate. Melanoma occurs predominantly in adults, and more than half of the cases arise in apparently normal areas of the skin. Prognosis is affected by clinical and histological factors and by anatomic location of the lesion. Thickness and/or level of invasion of the melanoma, mitotic index, tumor infiltrating lymphocytes, and ulceration or bleeding at the primary site affect the prognosis. Clinical staging is based on whether the tumor has spread to regional lymph nodes or distant sites. For disease clinically confined to the primary site, the greater the thickness and depth of local invasion of the melanoma, the higher the chance of lymph node metastases and the worse the prognosis. Melanoma can spread by local extension (through lymphatics) and/or by hematogenous routes to distant sites. Any organ may be involved by metastases, but lungs and liver are common sites.
- Other hyperproliferative diseases of interest relate to epidermal hyperproliferation, tissue remodelling and repair. For example, the chronic skin inflammation of psoriasis is associated with hyperplastic epidermal keratinocytes as well as infiltrating mononuclear cells, including CD4+ memory T cells, neutrophils and macrophages.
- The proliferation of immune cells is associated with a number of autoimmune and lymphoproliferative disorders. Diseases of interest include multiple sclerosis, rheumatoid arthritis and insulin dependent diabetes mellitus. Evidence suggests that abnormalities in apoptosis play a part in the pathogenesis of systemic lupus erythematosus (SLE). Other lymphoproliferative conditions the inherited disorder of lymphocyte apoptosis, which is an autoimmune lymphoproliferative syndrome, as well as a number of leukemias and lymphomas. Symptoms of allergies to environmental and food agents, as well as inflammatory bowel disease, may also be alleviated by the compounds of the invention.
- The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.
- Compounds were screened using a series of disease related kinase targets, such as integrin linked kinase-1. Synthesized libraries of compounds are tested against each of the targets to find compounds that inhibit one of the targets preferentially. The desired in vitro potency of the inhibitor is such that the compound is useful as a therapeutic agent, i.e. in the nanomolar or micromolar range.
- Inhibition of the targets is measured by scintillation counting; the incorporation of radioactive phosphate onto a specific substrate which is immobilized onto a filter paper at the end of the assay. To provide meaningful measurements of inhibition, the assays are performed both in the absence and presence of specific and known inhibitors, and the amount of incorporated radioactivity is compared to provide a baseline measurement.
- The baseline activity is the amount of radioactivity incorporated in the absence of inhibitor. The amount of radioactivity incorporated in the presence of an inhibitor is called the ‘sample activity’, and the % inhibition is expressed by the following formula:
- % inhibition=100−(sample activity/baseline activity*100)
- and is usually expressed in conjunction with the compound concentration. By using a range of inhibitor concentrations, the IC50 of an inhibitor is estimated (i.e. the concentration at which enzymatic activity is reduced by 50%). The IC50 of various compounds against a particular target can be compared, where a lower IC50 indicates a more potent compound.
- Materials and Methods
- Inhibition Assay:
- Compounds listed in Table 1 were lyophilized and stored at −20° C. Stock solutions were made by weighing out the compounds and dissolving them in dimethyl sulfoxide (DMSO) to a standard concentration, usually 20 mM, and stored at −20° C. The compounds were diluted to a starting intermediate concentration of 250 μM in 1% DMSO, then serially diluted across a row of a 96 well plate using serial 2 fold dilution steps. Diluted 100% DMSO was used as a negative control.
- 5 μl of each compound dilution were robotically pipetted to Costar serocluster plates maintaining the same plate format. All assays consisted of the following volumes:
- 5 μl diluted compound
- 10 μl enzyme preparation
- 5 μl substrate
- 5 μl assay ATP
- and were then incubated 15 min at room temperature.
- From each reaction, 10 μl of reaction mix was spotted onto Millipore Multiscreen-PH opaque plates and washed 2×10 min in 1% phosphoric acid. The plates were dried for at 40° C. for 30 min, then the substrate phosphate complexes were quantitated by scintillation counting. These Millipore plates are in a 96 well format with immobilized P81 phosphocellulose membranes. Both the phosphorylated and non-phosphorylated form of the substrate bind to the membrane while ATP (unincorporated phosphate) is removed in the subsequent wash steps. Results are shown in Table 1 below.
- Integrin Linked Kinase:
- The target integrin linked kinase is a full-length recombinant protein expressed in sF9 insect cells by baculovirus infection. The ILK1 substrate is CKRRRLASLR-amide.
- Recombinant ILK protein was expressed using cultured insect cells and a baculovirus expression system. Standard techniques for DNA manipulation were used to produce recombinant DNA molecules and baculoviruses (Sambrook. J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning, a laboratory manual. Second edition. Cold Spring Harbor Laboratory Press. NY; Crossen, R. and Gruenwald, S. 1998. Baculovirus expression Vector System Manual. 5th Edition. Pharmingen, San Diego, Calif.) but the isolation of active ILK required some ingenuity.
- The ILK open reading frame (Hannigan et al., supra.), excluding the 5′ and 3′ untranslated regions, was inserted into the baculovirus transfer vector pAcG2T (Pharmingen) to produce a GST fusion protein under the control of the strong AcNPV polyhedrin promoter. A large scale plasmid preparation of the resulting transfer construct was made using a Qiagen Plasmid Midi Kit. This ILK transfer construct was then co-transfected with BaculoGold DNA (Pharmingen) into Sf9 insect cells (Invitrogen) and a high titre preparation of GST-ILK recombinant baculovirus was produced by amplification in Sf9 cells. Liter scale expression of GST-ILK recombinant protein was done in 1000 ml spinner flasks (Bellco) by infection of Hi5 insect cells (Invitrogen) grown in Ex-Cell 400 Serum Free Media (JRH Biosciences) at a multiplicity of infection of approximately 5. The cells were harvested three days after infection and lysed in Hypotonic Lysis Buffer (HLB; 10 mM imidazole, 5 mM EDTA, 0.1% β-mercaptoethanol, 10 ug/ml PMSF, 1 mM benzamidine) by sonication. The lysate was centrifuged at 10,000 g for 20 min and the supernatant was discarded. The pellet was washed twice in HLB and then washed twice in High Salt Buffer (“HSB”; 500 mM NaCl, 10 mM imidazole, 5 mM EDTA, 0.1% β-mercaptoethanol, 10 ug/ml PMSF, 1 mM benzamidine). The pellet was then resuspended in DNAse-ATP Buffer (“DAB”; 10 mM MgCl2, 1 mM MnCl2, β-methyl aspartic acid, 2 mM NaF, 0.55 mg/ml ATP, lug/ml DNAse 1, 1% NP-40, 10 mM imidazole, 5 mM EDTA, 0.1% β-mercaptoethanol, 10 ug/ml PMSF, 1 mM benzamidine) and stirred for 30 min at room temperature, and then centrifuged at 10,000×g for 20 min. The pellet was resuspended in High Salt Detergent buffer (“HDB”; 1% NP-40, 1% Triton X-100, 500 mM NaCl, 10 mM imidazole, 5 mM EDTA, 0.1% β-mercaptoethanol, 10 ug/ml PMSF, 1 mM benzamidine), stirred for 30 min at room temperature, and then centrufuged at 10,000 g for 20 min. The pellet was then washed once in each of HDB, HSB, and HLB, centrifuging at 10,000 g each time. Finally, the pellet was resuspended in HLB.
- The recombinant ILK expressed in insect cells with a baculovirus system was solubilized by treating the insoluble ILK protein with DNAse I and detergents. This produced an ILK protein preparation in the form of a microparticle suspension. This preparation had a high specific activity and was amenable to automated kinase assays.
TABLE 1 Activity of Analogs of KP-15792 Codes Chemical Name Structure MW IC50 (μM) KP-15792 3,5-diamine-4-(p- methoxyphenyl)hydrazono- pyrazole 232.24 1 KP-23194 3,5-diamino-4- phenylhydrazonopyrazole 202.21 0.6 KP-23195 3,5-diamino-4-(p-methylphenyl) hydrazonopyrazole 216.24 5.3 KP-23197 3,5-diamino-4-(3-hydroxy-4- methoxyphenyl)hydrazonopyrazole 248.24 4 KP-23198 3-amino-4-phenylazo-2-pyrazolin-5- one 203.20 17.1 KP-23199 3-amino-4-(p-methylphenylazo)-2- pyrazolin-5-one 217.23 >20 KP-23200 3-amino-4-(p-methoxyphenylazo)-2- pyrazolin-5-one 233.22 >20 KP-23201 3-amino-4-(3-hydroxy-4- methyoxyphenylazo)-2-pyrazolin-5-one 249.22 18 KP-23202 4-phenylhydrazonopyrazolin-3,5-dione 204.18 >20 KP-23203 4-(p-methylphenyl)hydrazonopyrazolin- 3,5-dione 218.21 >20 KP-23204 4-(p- methoxyphenyl)hydrazonopyrazolin- 3,5-dione 234.21 >20 KP-23205 4-(3-hydroxy-4- methyoxyphenyl)hydrazonopyrazolin- 3,5-dione 250.21 >20 KP-27288 4-[N′-(3,5-diaminopyrazole-4- ylidene)hydrazino]benzenesulfonic acid 282.27 >20 KP-27289 3,5-diamino-4- morpholinylhydrazonopyrazole 211.22 9.6 KP-27290 3,5-diamino-4-(2- morpholinylethyl)hydrazonopyrazole 239.28 8.2 KP-27291 3,5-diamino-4-(2- imidazolyl)hydrazonopyrazole 192.18 28 KP-27292 3,5-diamino-4-(3-pyrazolyl) hydrazonopyrazole 192.18 8 KP-27293 3,5-diamino-4-(2- thiazolyl)hydrazonopyrazole 209.22 0.9 KP-27386 3,5-diamino-4-(4- piperidinylmethyl)hydrazonopyrazole 223.28 13 KP-27387 3,5-diamino-4-(3- [1,2,4]triazinyl)hydrazonopyrazole 205.18 >20 KP-27294 3,5-diamino-4-(1-naphthyl) hydrazonopyrazole 252.27 0.6 KP-27295 4-[N′-(3,5-Diaminopyrazol-4- ylidene)hydrazino]naphthalene-1- sulfonic acid 332.33 19.3 KP-27388 4-[N′-(3,5-diaminopyrazol-4- ylidene)hydrazino]benzoic acid 246.22 13 KP-27389 3,5-diamino-4-(p- hydroxyphenyl)hydrazonopyrazole 218.21 >20 KP-27390 3,5-diamino-4-(p- chlorophenyl)hydrazonopyrazole 236.66 1.2 KP-27391 3,5-diamino-4-(p-(n- propyl)phenyl)hydrazonopyrazole 258.32 4.6 KP-27392 3,5-diamino-4-(p- acetoaminophenyl)hydrazonopyrazole 274.3 5 KP-27393 3,5-diamino-4-(2- hydroxynaphthyl)hydrazonopyrazole 268.27 3 - Unless otherwise stated, chemical reactants and reagents were obtained from standard chemical supply houses, such as Aldrich (Milwaukee, WI; www.aldrich.sial.com); and Lancaster Synthesis, Inc. (Windham, N.H.; www.lancaster.co.uk).
- To a flask containing p-anisidine (5.46 g, 44.3 mmol) and concentrated HCl solution (11 mL) in 75 mL of water, cooled in an ice water bath, was added sodium nitrite solution (4.57 g, 66.3 mmol). The resulting mixture was then added to a solution of malononitrile (4.79 g, 72.6 mmol) in a mixture of MeOH (12 mL) and water (25 mL). A large quantity of yellow solid quickly precipitated. The mixture was stirred for about 30 minutes at room temperature. The solid was collected and purified by recrystallization in hot EtOH. The product (6.17 g, 70%) was obtained as a yellow solid.
- To a suspension of the yellow solid (2.00 g) prepared above in 10 mL of EtOH was added hydrazine hydrate (2.0 mL). This mixture was refluxed for about 3 h. The yellow solid was collected and purified by recrystallization in hot EtOH. The product was isolated as yellow cotton like solid (1.50 g, 65%). m.p.: 263-265° C.1H NMR (ppm, in DMSO-d6): 10.73 (s, br, 1 H), 7.69 (m, 2 H), 6.99 (m, 2 H), 6.00 (s, br, 4 H), 3.81 (s, 3 H). 13C NMR (ppm, in DMSO-d6): 158.4, 147.6, 121.7, 114.0, 113.4, 99.9, 55.3. FTIR (cm−1, KBr pellet): 3401, 3301, 3187, 1603, 562, 1498, 1248,1033, 828. Mass spectrometry (m/e, EI): 232 (M+, 100%). Elemental analysis for C10H12N60 (obtained/calcd.): C 52.28/51.72, H 5.18/5.21, N 35.88/36.19.
- The following compounds were synthesized using malononitrile, following essentially the same procedure as described above in Example 4:
- 3,5-diamino-4-phenylhydrazonopyrazole;
- 3,5-diamino-4-(p-methylphenyl)hydrazonopyrazole;
- 3,5-diamino-4-(3-hydroxy-4-methoxyphenyl)hydrazonopyrazole;
- 4-[N′-(3,5-Diaminopyrazole-4-ylidene)hydrazino]benzenesulfonic acid;
- 3,5-diamino-4-morpholinylhydrazonopyrazole;
- 3,5-diamino-4-(2-morpholinylethyl)hydrazonopyrazole;
- 3,5-diamino-4-(2-imidazolyl)hydrazonopyrazole;
- 3,5-diamino-4-(3-pyrazoly)hydrazonopyrazole;
- 3,5-diamino-4-(2-thiazolyl)hydrazonopyrazole;
- 3,5-diamino-4-(2-naphthyl)hydrazonopyrazole;
- 3,5-diamino-4-(l -(3-sulfonyl)naphthalyl)hydrazonopyrazole;
- 3,5-diamino-4-(4-piperidinylmethyl)hydrazonopyrazole;
- 3,5-diamino-4-(3-[1,2,4]triazinyl)hydrazonopyrazole;
- 4-[N′-(3,5-diaminopyrazol-4-ylidene)hydrazino]naphthalene-1-sulfonic acid;
- 4-[N′-(3,5-diaminopyrazol-4-ylidene)hydrazino]benzoic acid;
- 3,5-diamino-4-(p-hydroxyphenyl)hydrazonopyrazole;
- 3,5-diamino-4-(p-chlorophenyl)hydrazonopyrazole;
- 3,5-diamino-4-(p-(n-propyl)phenyl)hydrazonopyrazole;
- 3,5-diamino-4-(p-acetoaminophenyl)hydrazonopyrazole; and
- 3,5-diamino-4-(2-hydroxynaphthyl)hydrazonopyrazole.
- The following compounds were synthesized using ethyl cyanoacetate instead of malononitrile, but otherwise following essentially the same procedure as described above in Example 4:
- 3-amino-4-phenylazo-2-pyrazolin-5-one;
- 3-amino-4-(p-methylphenylazo)-2-pyrazolin-5-one;
- 3-amino-4-(p-methoxyphenylazo)-2-pyrazolin-5-one; and
- 3-amino-4-(3-hydroxy-4-methyoxyphenylazo)-2-pyrazolin-5-one.
- The following compounds were synthesized using diethyl malonate instead of malononitrile, but otherwise following essentially the same procedure as described above in Example 4:
- 4-phenylhydrazonopyrazolin-3,5-dione;
- 4-(p-methylphenyl)hydrazonopyrazolin-3,5-dione;
- 4-(p-methoxyphenyl)hydrazonopyrazolin-3,5-dione; and
- 4-(3-hydroxy-4-methyoxyphenyl)hydrazonopyrazolin-3,5-dione.
-
- 4-Fluoroaniline (95 μL, 1.0 mmol) was weighed into a 25 mL test tube. Deionized water (1-2 mL) was added to the test tube and the suspension was cooled to below 5° C. in an ice bath. Concentrated HCl (250 μL, 3.0 mmol) was added dropwise to the mixture. If the solution remained inhomogeneous, DMF was added until all the solids had dissolved (0-2 mL). An aqueous sodium nitrite solution (290 μL of a 5.25 M solution, 1.5 mmol) was added dropwise to this mixture and allowed to stir for approximately 5 minutes. The resulting clear pale yellow solution was then added dropwise to a second 25 mL test tube containing 1.4 mL of an ice cold aqueous solution which was 1.82 M (2.3 mmol) in sodium acetate trihydrate and 1.09 M (1.5 mmol) in malononitrile. A precipitate formed immediately. The reaction solution was stirred for 1-2 hrs while warming to room temperature. The solution was then filtered and the precipitate was washed twice with 5 mL of deionized water. The product was dried overnight under vacuum to yield 169 mg (90%) of the desired malononitrile derivative as a yellow solid. A portion of this solid (94 mg, 0.5 mmol) was weighed into a 25 mL test tube. Anhydrous ethanol (1.5 mL) was added and the slurry was heated to 75° C. Once the solid had dissolved, hydrazine hydrate (1 mmol) was added dropwise via micropipette. A precipitate usually formed within 10 minutes. The reaction was monitored for the disappearance of the starting material by TLC, as well as, for the appearance of a more polar spot due to the product. Once the reaction was complete, the solution was allowed to cool to room temperature. The solid was isolated by filtration, washed with ethanol, and dried to yield 17 mg (15%) of the title compound as a mustard coloured solid.
-
- 3-[N′-(3,5-Diaminopyrazol-4-ylidene)hydrazino]phenol was prepared using 93 mg (0.5 mmol) of 2-[(3-hydroxyphenyl)hydrazono]malononitrile, which was derived from 3-aminophenol (109 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. After heating for 4 hrs, a small amount of solid had formed. The solid was filtered off and the filtrate was concentrated to a gummy black solid. This material was dissolved in ethyl acetate and a small amount of gummy solid was precipitated from the solution by the addition of hexanes. The solid was removed by filtration and the filtrate was again concentrated. The resulting solid was purified by flash chromatography eluting with methylene chloride/methanol (7:1) to yield 45 mg (33%) of the title compound as a black solid.
-
- 3,5,-Diamino-4-[(3-ethylphenyl)hydrazono]pyrazole was prepared using 99 mg (0.5 mmol) of 2-[(3-ethylphenyl)hydrazono]malononitrile, which was derived from 3-ethylaniline (124 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 12 mg (10%) of the title compound as a yellow solid.
-
- The title compound was prepared using 100 mg (0.5 mmol) of 2-[(3-methoxyphenyl)-hydrazono]malononitrile, which was derived from m-anisidine (112 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, recrystallized from ethanol, and dried to yield 25 mg (22%) of the title compound as a brownish orange solid.
-
- This compound was prepared using 102 mg (0.5 mmol) of 2-[(3-chlorophenyl)-hydrazono]malononitrile, which was derived from 3-chloroaniline (106 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 17 mg (14%) of the title compound as a yellow solid.1H NMR (ppm, DMSO-d6): 5.98 (br, s, 2H), 6.38 (br, s, 2H), 7.18 (d, 1H), 7.40 (t, 1H), 7.60 (d, 1H), 7.69 (s, 1H), 10.78 (s, 1 H).
-
- This compound was prepared using 94 mg (0.5 mmol) of 2-[(3-fluorophenyl)-hydrazono]malononitrile, which was derived from 3-fluoroaniline (96 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 41 mg (37%) of the title compound as a yellow solid.1H NMR (ppm, DMSO-d6): 6.2 (br s, 4H), 7.0 (t, 1H), 7.35-7.62 (m, 3H), 10.80 (s, 1H).
-
- This compound was prepared using 109 mg (0.5 mmol) of 2-[(3-fluoro-4-methoxyphenyl)hydrazono]malononitrile, which was derived from 3-fluoro-p-anisidine (141 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 85 mg (68%) of the title compound as a mustard coloured solid.
-
- The title compound was prepared using 110 mg (0.5 mmol) of 2-[(naphthalen-2-yl)hydrazono]malononitrile, which was derived from 2-aminonaphthalene (143 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 86 mg (67%) of the title compound as a tan coloured solid.
-
- This compound was prepared using 119 mg (0.5 mmol) of 2-[(4-trifluoromethylphenyl)-hydrazono]malononitrile, which was derived from 4-(trifluoromethyl)aniline (126 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. No precipitate had formed after heating at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 67 mg (50%) of the title compound as a greenish brown solid.1H NMR (ppm, DMSO-d6): 6.03 (br s, 2H), 6.48 (br s, 2H), 7.63 (d, 2H), 7.80 (d, 2H), 10.80 (br s, 1 H).
-
- The title compound was prepared using 131 mg (0.5 mmol) of 2-[(3-phenoxyphenyl)-hydrazono]malononitrile, which was derived from 3-phenoxyaniline (185 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, recrystallized from ethanol, and dried to yield 87 mg (59%) of the title compound as a mustard coloured solid.
-
- This compound was prepared using 121 mg (0.5 mmol) of 4-(N′-dicyanomethylene-hydrazino)benzoic acid ethyl ester, which was derived from ethyl 4-aminobenzoate (165 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 45 mg (33%) of the title compound as a yellow solid.
-
- This compound was prepared using 123 mg (0.5 mmol) of 2-[(biphenyl-2-yl)hydrazono]-malononitrile, which was derived from 2-aminobiphenyl (169 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of the hydrazine hydrate then the solution cleared. Very little solid remained after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 85 mg (61%) of the title compound as an orange solid.
- EXAMPLE 20
-
- This compound was prepared using 125 mg (0.5 mmol) of 2-[(2-Bromophenyl)-hydrazono]malononitrile, which was derived from 2-bromoaniline (172 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 102 mg (73%) of the title compound as an orange solid.
-
- This compound was prepared using 125 mg (0.5 mmol) of 2-[(3-Bromophenyl)-hydrazono]malononitrile, which was derived from 3-bromoaniline (172 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 93 mg (66%) of the title compound as an orange solid.1H NMR (ppm, DMSO-d6): 6.2 (br s, 4H), 7.21-7.32 (m, 2H), 7.50-7.62 (m, 1H), 7.90 (s, 1H), 10.71 (s, 1H).
-
- This compound was prepared using 125 mg (0.5 mmol) of 2-[(4-Bromophenyl)-hydrazono]malononitrile, which was derived from 4-bromoaniline (172 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 109 mg (78%) of the title compound as a yellow solid.1H NMR (ppm, DMSO-d6): 6.15 (br s, 4H), 7.52 (d, 2H), 7.61 (d, 2H), 10.71 (s, 1H).
-
- This compound was prepared using 131 mg (0.5 mmol) of 2-[(4-phenoxyphenyl)-hydrazono]malononitrile, which was derived from 4-phenoxyaniline (185 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 90 mg (61%) of the title compound as an orange solid.
-
- This compound was prepared using 148 mg (0.5 mmol) of 2-[(4-iodophenyl)hydrazono]-malononitrile, which was derived from 4-iodoaniline (219 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 114 mg (70%) of the title compound as a yellow solid.
-
- This compound was prepared using 149 mg (0.5 mmol) of 2-[(4-bomonaphthalen-1-yl)-hydrazono]malononitrile, which was derived from 1-amino-4-bromonaphthalene (222 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in methanol and then precipitated by the addition of water. The resulting solid was isolated by filtration and dried to yield 42 mg (26%) of the title compound as a brown solid.
-
- This compound was prepared using 92 mg (0.5 mmol) of 2-(o-tolylhydrazono)-malononitrile, which was derived from 4-toluidine (107 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 43 mg (40%) of the title compound as a yellow solid.
-
- This compound was prepared using 103 mg (0.5 mmol) of 2-[(2,6-difluorophenyl)-hydrazono]malononitrile, which was derived from 2,6-difluoroaniline (108 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 44 mg (37%) of the title compound as an orange solid.
-
- This compound was prepared using 103 mg (0.5 mmol) of 2-[(3,4-difluorophenyl)-hydrazono]malononitrile, which was derived from 3,4-difluoroaniline (99 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 45 mg (38%) of the title compound as a yellow solid.1H NMR (ppm, DMSO-d6): 6.18 (br s, 4H), 7.28-7.55 (m, 2H), 7.70-7.82 (m, 1H), 10.80 (br s, 1H).
-
- This compound was prepared using 107 mg (0.5 mmol) of 2-(benzo[1,3]dioxol-5-yl-hydrazono)malononitrile, which was derived from 3,4-methylenedioxyaniline (137 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting black solid was isolated by filtration, dissolved in acetone, and hexanes was added to precipitate a small amount of black solid. The solid was removed by filtration and the filtrate was concentrated to yield 1.0 mg (1% yield) of the title compound as a black solid.1H NMR (200 MHz, d6 DMSO) δ: 6.0 (brs, 6H), 6.92 (d, 1H), 7.18 (d, 1H), 7.38 (s, 1H), 10.60 (br s, 1H).
-
- This compound was prepared using 108 mg (0.5 mmol) of 2-[(4-methylsulfanylphenyl)-hydrazono]malononitrile, which was derived from 4-methylthioaniline (117 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 95 mg (77%) of the title compound as an orange solid.
-
- This compound was prepared using 114 mg (0.5 mmol) of 2-[(2,3-dihydro-benzo[1,4]dioxin-6-yl)hydrazono]malononitrile, which was derived from 1,4-benzodiozan-6-amine (151 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 35 mg (27%) of the title compound as a tan coloured solid.
-
- This compound was prepared using 117 mg (0.5 mmol) of 2-[(3-chloro-4-methoxy-phenyl)hydrazono]malononitrile, which was derived from 3-chloro-4-anisidine (157 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 93 mg (70%) of the title compound as a yellow solid.
-
- This compound was prepared using 120 mg (0.5 mmol) of 2-[(3,4-dichlorophenyl)-hydrazono]malononitrile, which was derived from 3,4-dichloroaniline (162 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube immediately after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 53 mg (39%) of the title compound as a yellow solid.1H NMR (ppm, DMSO-d6): 6.30 (br, s, 4H), 7.55-7.79 (m, 2H), 7.95 (s, 1 H), 10.80 (s, 1 H).
-
- This compound was prepared using 120 mg (0.5 mmol) of 2-[(3,5-dichlorophenyl)-hydrazono]malononitrile, which was derived from 3,5-dichloroaniline (162 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, precipitated from an ethyl acetate solution by the addition of hexanes, and dried to yield 25 mg (18%) of the title compound as a yellow solid.
-
- This compound was prepared using 106 mg (0.5 mmol) of 2-[(2-isopropylphenyl)-hydrazono]malononitrile, which was derived from 2-isopropylaniline (142 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 5 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 90 mg (73%) of the title compound as a greenish yellow solid.
-
- This compound was prepared using 115 mg (0.5 mmol) of 2-[(3,4-dimethoxyphenyl)-hydrazono]malononitrile, which was derived from 4-aminoveratrole (153 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 46 mg (35%) of the title compound as a mustard coloured solid.
-
- This compound was prepared using 119 mg (0.5 mmol) of 2-[(3-trifluoromethylphenyl)-hydrazono]malononitrile, which was derived from 3-(trifluoromethyl)aniline (125 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 43 mg (31%) of the title compound as a yellow solid.
-
- The title compound was prepared using 121 mg (0.5 mmol) of 3-(N′-dicyanomethylene-hydrazino)benzoic acid ethyl ester, which was derived from 3-aminobenzoate (149 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 58 mg (42%) of the title compound as a light brown solid.
-
- This compound was prepared using 134 mg (0.5 mmol) of 2-[(3-methoxy-5-trifluoromethylphenyl)hydrazono]malononitrile, which was derived from 3-methoxy-5-trifluoromethylaniline (191 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Very little solid had formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 10 mg (7%) of the title compound as a yellow solid.
-
- This compound was prepared using 102 mg (0.5 mmol) of 2-[(2-chlorophenyl)-hydrazono]malononitrile, which was derived from 2-chloroaniline (105 μL, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 10 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 34 mg (29%) of the title compound as a yellow solid.
-
- This compound was prepared using 148 mg (0.5 mmol) of 2-[(3-iodophenyl)hydrazono]-malononitrile, which was derived from 3-iodoaniline (219 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. The hydrazine hydrate was added to the solution at a temperature of 75° C. despite the fact that the starting material had not fully dissolved. The solution cleared briefly and then a precipitate formed. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 122 mg (74%) of the title compound as a mustard coloured solid.
-
- This compound was prepared using 143 mg (0.5 mmol) of 2-[(9-ethyl-9H-carbazol-3-yl)-hydrazono]malononitrile, which was derived from 3-amino-9-ethylcarbazole (210 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Solids had not formed after heating the reaction at 75° C. for 1 hr, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 46 mg (29%) of the title compound as a black solid.
-
- This compound was prepared using 94 mg (0.5 mmol) of 2-[(2-benzenesulfonylphenyl)-hydrazono]malononitrile, which was derived from 2-(phenylsulfonyl)aniline (233 mg, 1.0 mmol) and malononitrile (1.5 mmol) as described in Example 8, and hydrazine hydrate. Precipitate formed in the reaction tube approximately 20 min after the addition of hydrazine hydrate. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 68 mg (20%) of the title compound as an orange coloured solid.
-
- This compound was prepared using 200 mg (1.2 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and phenylhydrazine (767 mg, 7.1 mmol). Solids had not formed after heating the reaction at 75° C. for 3 hrs, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate and then precipitated by the addition of hexanes. The resulting solid was isolated by filtration and dried to yield 77 mg (23%) of the title compound as an orange coloured solid.
-
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and benzoic hydrazide (68 mg, 0.5 mmol). Solids had not formed after heating the reaction at 75° C. for 3 hrs, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in methanol and then precipitated by the addition of water. The resulting solid was isolated by filtration and dried to yield 20 mg (13%) of the title compound as an orange coloured solid.
-
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono) malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and 4-bromophenylhydrazine hydrochloride (112 mg, 0.5 mmol) with the addition of 0.5 mL of 5% sodium hydroxide solution. Solids had not formed after heating the reaction at 75° C. for 3 hrs, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The residue was dissolved in methanol and then precipitated by the addition of water. The resulting solid was isolated by filtration and dried to yield 49 mg (27%) of the title compound as a brown solid.
-
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and 4-hydrazinobenzoic acid (76 mg, 0.5 mmol). After reacting for 4 hrs, the reaction remained as a slurry; however, analysis of the reaction solution by TLC indicated that no starting material remained. The resulting solid was isolated by filtration, washed with ethanol, and dried to yield 22 mg (14%) of the title compound as a brown solid.
-
- This compound was prepared using 85 mg (0.5 mmol) of 2-(phenylhydrazono)-malononitrile, which was derived from aniline (10 mL, 107 mmol) and malononitrile (161 mmol) as described in Example 8, and 4-fluorophenylhydrazine hydrochloride (81 mg, 0.5 mmol) with the addition of 0.5 mL of 5% sodium hydroxide solution. After reacting for 4 hrs, very little solid had formed; however, analysis of the reaction solution by TLC indicated that no starting material remained. The resulting solid was removed by filtration and the solvent was evaporated from the filtrate to yield 29 mg (20%) of the title compound as a brown solid.
-
- This compound was prepared using 2-[(pyridin-3-yl)hydrazono]malononitrile (342 mg, 2 mmole), which was derived from 3-aminopyridine (940 mg, 10 mmole)) and malononitrile (858 mg, 13 mmol) as described in Example 8, and hydrazine hydrate (110 mg, 2.2 mmole) in ethanol. Solids had not formed after heating the reaction at 80° C. for 40 minutes, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and the solvent was evaporated. The product was obtained after upon re-crystallization from ethanol as a yellow solid (150 mg).1H NMR (ppm, DMSO-d6): 6.18 (br., s, 4H), 7.20 (dd, 1H), 8.00 (dd, 1H), 8.38 (d, 1H), 8.85 (s, 1H), 10.77 (br., s, 1H).
-
- This compound was prepared using 2-[(3-fluorophenyl)hydrazono]malononitrile (145 mg, 0.5 mmole), which was derived from 3-fluoroaniline (111 mg, 1 mmole)) and cyclohexyl cyanoacetate (217 mg, 1.3 mmole) as described in Example 8, and hydrazine hydrate (25 mg, 0.5 mmole) in ethanol. Solids had not formed after heating the reaction at 80° C. for 40 minutes, however, analysis of the reaction solution by TLC indicated that no starting material remained. The solution was allowed to cool to room temperature and concentrated. The product was obtained after filtration as a yellow solid (73 mg).1H NMR (ppm, DMSO-d6): 5.95 (br., s, 2H), 6.90 (m, 1H), 7.20-7.65 (m, 3H), 10.56 (br., s, 1H), 12.77 (br., s, 1H).
-
- This compound was prepared using 2-[(6-methoxybenzothiazol-2-yl)hydrazono]-malononitrile (200 mg), which was derived from 2-amino-6-methoxybensothiazole (1.17 g) and malononitrile (0.82 g) as described in Example 8, and hydrazine hydrate (0.2 mL) in ethanol. Solids had not formed after heating the reaction at 40° C. for 2 hrs. The solution was allowed to cool to room temperature and concentrated. The product was obtained after column chromatography purification (80 mg, 35%).
-
- This compound was prepared using 2-[(6-benzothiazol-2-yl)hydrazono]malononitrile (80 mg), which was derived from 2-aminobensothiazole (925 mg) and malononitrile (0.65 g) as described in Example 8, and hydrazine hydrate (0.1 mL) in ethanol. Solids had not formed after heating the reaction at 60° C. for 3 hrs. The solution was allowed to cool to room temperature and concentrated. The product was obtained after thin layer chromatography purification (47 mg, 50%).
-
- This compound was prepared using 3-aminopyrazole (0.5 g), malononitrile (1.8 g), and hydrazine hydrate (0.3 g) as described in Example 1. The product was obtained after column chromatography purification (157 mg, 14%).
-
- 4-Aminopyridine (0.36 g) was dissolved in a mixture of 2 ml of H3PO4 (85%) and 1 ml of HNO3 (68%). The solution was cooled at −5° C. and then NaNO2 (0.28 g) solution was added. After being stirred at 0° C. for 1 hr., the mixture was added dropwise into a solution of malononitrile (0.5 g), acetic acid (2.4 g), KOAc (6.3 g) and Na2CO3 (5.6 g). The resulting mixture was kept stirring at 0° C. for 1 hr., and 100 mL of water was added. The solid obtained after being filtered and dried was redissolved in 5 mL of EtOH and hydrazine hydrate (0.5 g) was added at 40° C. After one hour of reaction, the solid precipitated upon cooling to 0° C. was collected by filtration and the pure product was obtained after re-crystallization from EtOH (278, mg, 36%).
-
- Pentafluoroaniline (1.0 g) dissolved in 12 mL of CH3COOH was added into a solution of NaNO2 (0.41 g) in concentrated H2SO4 at 5° C. The reaction mixture was kept stirring at 5° C. for 1 hr and then slowly added into a solution of malononitrile (1.0 g) mixed with 37 g of NaOAc in 50 mL of
H 20 at 5-10° C. The reaction mixture was extracted with EtOAc (3×150 mL) ah hour later. The combined organic phase was washed with brine, dried with anhydrous MgSO4 and then evaporated. The residue was dissolved in 5 ml of anhydrous EtOH and 0.2 g of N2H4 was added to it at 40° C. After being stirred at 70° C. for 2 hrs., the solvents were removed and the residue was purified by column yielding 87 mg of the product (5.4%). -
- This compound was prepared using the same method as described in Example 1. 3-Amino-1,2,4-triazole (0.88 g), malononitrile (1.0 g), and hydrazine hydrate (0.5 ml) yielded 34 mg of the product (6%).
-
- This compound was prepared using the same method as described in Example 1. 3,5-Difluoroaniline (0.31 g), malononitrile (0.4 g) and hydrazine hydtrate (0.2 g) yielded 0.201 g of the product (35%).
-
- This compound was prepared using the method as described in Example 1. 2,3,4-Trifluoroaniline (0.36 g), malononitrile (0.4 g) and hydrazine hydrate (0.2 g) yielded 0.337 g of the product (54%).
-
- This compound was prepared using the method as described in Example 1 using 2-phenylhydrazonomalononitrile (425 mg) and methylhydrazine sulfate (720 mg). The product was purified by column chromatography and afforded a yellow solid.
Claims (26)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/747,563 US6436915B1 (en) | 2000-04-07 | 2000-12-22 | Pyrazole compounds |
EP01902197A EP1276723A2 (en) | 2000-04-07 | 2001-01-26 | Pyrazole compounds having anti proliferative activity |
PCT/CA2001/000089 WO2001077080A2 (en) | 2000-04-07 | 2001-01-26 | Pyrazole compounds having anti proliferative activity |
AU2001229915A AU2001229915A1 (en) | 2000-04-07 | 2001-01-26 | Pyrazole compounds |
CA2405408A CA2405408C (en) | 2000-04-07 | 2001-01-26 | Pyrazole compounds |
US10/077,238 US7105503B2 (en) | 2000-04-07 | 2002-02-15 | Pyrazole compounds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/544,908 US6214813B1 (en) | 2000-04-07 | 2000-04-07 | Pyrazole compounds |
US09/747,563 US6436915B1 (en) | 2000-04-07 | 2000-12-22 | Pyrazole compounds |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/544,908 Continuation-In-Part US6214813B1 (en) | 2000-04-07 | 2000-04-07 | Pyrazole compounds |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/077,238 Continuation-In-Part US7105503B2 (en) | 2000-04-07 | 2002-02-15 | Pyrazole compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020042501A1 true US20020042501A1 (en) | 2002-04-11 |
US6436915B1 US6436915B1 (en) | 2002-08-20 |
Family
ID=27067766
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/747,563 Expired - Lifetime US6436915B1 (en) | 2000-04-07 | 2000-12-22 | Pyrazole compounds |
US10/077,238 Expired - Fee Related US7105503B2 (en) | 2000-04-07 | 2002-02-15 | Pyrazole compounds |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/077,238 Expired - Fee Related US7105503B2 (en) | 2000-04-07 | 2002-02-15 | Pyrazole compounds |
Country Status (5)
Country | Link |
---|---|
US (2) | US6436915B1 (en) |
EP (1) | EP1276723A2 (en) |
AU (1) | AU2001229915A1 (en) |
CA (1) | CA2405408C (en) |
WO (1) | WO2001077080A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9802899B2 (en) | 2012-10-02 | 2017-10-31 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CY2010012I2 (en) * | 2000-05-25 | 2020-05-29 | Novartis Ag | THROMBOPOIETIN MIMETICS |
US20110212054A1 (en) * | 2000-05-25 | 2011-09-01 | Glaxosmithkline Llc. | Thrombopoietin mimetics |
US6875786B2 (en) | 2001-03-01 | 2005-04-05 | Smithkline Beecham Corporation | Thrombopoietin mimetics |
PT1384075E (en) | 2001-03-28 | 2010-03-23 | Heska Corp | Methods of detecting early renal disease in animals |
ES2275933T3 (en) * | 2001-11-30 | 2007-06-16 | Qlt, Inc. | TREATMENT OF NEOVASCULAR OPHTHALMOLOGICAL DISEASES. |
WO2003045380A1 (en) * | 2001-11-30 | 2003-06-05 | Kinetek Pharmaceuticals, Inc. | Ilk inhibitors for the treatment of renal disease |
CA2468562C (en) * | 2001-11-30 | 2011-12-20 | Zaihui Zhang | Hydrazonopyrazole derivatives and their use as therapeutics |
MY142390A (en) * | 2002-05-22 | 2010-11-30 | Glaxosmithkline Llc | 3' - [(2z)-[1-(3,4-dimethylphenyl)-1,5- dihydro-3- methyl-5-0xo-4h-pyrazol-4- ylidene]hydrazino]-2' -hydroxy -[1,1' -biphenyl]-3-carboxylic acid bis-(monoethanolamine) |
DK1542997T3 (en) * | 2002-07-24 | 2012-06-25 | Dermira Canada Inc | Pyrazolylbenzothiazole derivatives and their use as therapeutic agents |
TW200526638A (en) * | 2003-10-22 | 2005-08-16 | Smithkline Beecham Corp | 2-(3,4-dimethylphenyl)-4-{[2-hydroxy-3'-(1H-tetrazol-5-yl)biphenyl-3-yl]-hydrazono}-5-methyl-2,4-dihydropyrazol-3-one choline |
GB0419416D0 (en) * | 2004-09-01 | 2004-10-06 | Inst Of Ex Botany Ascr | 4-Arylazo-3,5-Diamino-Pyrazole compounds and use thereof |
AU2007324696B2 (en) | 2006-11-24 | 2012-10-04 | Ac Immune S.A. | N- (methyl) -1H- pyrazol- 3 -amine, N- (methyl) -pyridin-2-amine and N- (methyl) -thiazol-2-amine derivatives for the treatment of diseases associated with amyloid or amyloid-like proteins, like e.g. Alzheimer's |
ECSP077628A (en) * | 2007-05-03 | 2008-12-30 | Smithkline Beechman Corp | NEW PHARMACEUTICAL COMPOSITION |
WO2009039553A1 (en) * | 2007-09-27 | 2009-04-02 | The Walter And Eliza Hall Institute Of Medical Research | Benzothiazole compounds |
KR100987557B1 (en) * | 2008-03-18 | 2010-10-12 | 이화여자대학교 산학협력단 | Compositions for treating or preventing vascular restenosis |
HUE049075T2 (en) | 2009-05-29 | 2020-08-28 | Novartis Ag | Methods of administration of thrombopoietin agonist compounds |
EP2311823A1 (en) * | 2009-10-15 | 2011-04-20 | AC Immune S.A. | 2,6-Diaminopyridine compounds for treating diseases associated with amyloid proteins or for treating ocular diseases |
US9498471B2 (en) * | 2011-10-20 | 2016-11-22 | The Regents Of The University Of California | Use of CDK9 inhibitors to reduce cartilage degradation |
KR102128509B1 (en) * | 2018-12-19 | 2020-07-01 | 한국과학기술연구원 | Novel hydrazone derivatives comprising aryl or heteroaryl group substituted at terminal amine and use thereof |
WO2022043503A1 (en) * | 2020-08-27 | 2022-03-03 | Københavns Universitet | Compounds having pseudomonas anti-biofilm properties |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1162799A1 (en) * | 1982-07-09 | 1985-06-23 | Витебский государственный медицинский институт | Method of obtaining 4-arylhydrazones of pyrazolidinetrion-3,4,5 |
AU1345697A (en) * | 1995-12-22 | 1997-07-17 | Du Pont Merck Pharmaceutical Company, The | Novel integrin receptor antagonists |
IL145756A0 (en) | 2000-02-05 | 2002-07-25 | Vertex Pharma | Pyrazole derivatives and pharmaceutical compositions containing the same |
AU2001236720A1 (en) | 2000-02-05 | 2001-08-14 | Bemis, Guy | Compositions useful as inhibitors of erk |
EP1200422A2 (en) | 2000-02-05 | 2002-05-02 | Vertex Pharmaceuticals Incorporated | Pyrazole compositions useful as inhibitors of erk |
-
2000
- 2000-12-22 US US09/747,563 patent/US6436915B1/en not_active Expired - Lifetime
-
2001
- 2001-01-26 CA CA2405408A patent/CA2405408C/en not_active Expired - Fee Related
- 2001-01-26 AU AU2001229915A patent/AU2001229915A1/en not_active Abandoned
- 2001-01-26 EP EP01902197A patent/EP1276723A2/en not_active Withdrawn
- 2001-01-26 WO PCT/CA2001/000089 patent/WO2001077080A2/en active Application Filing
-
2002
- 2002-02-15 US US10/077,238 patent/US7105503B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9802899B2 (en) | 2012-10-02 | 2017-10-31 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
US10435374B2 (en) | 2012-10-02 | 2019-10-08 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
US10689348B2 (en) | 2012-10-02 | 2020-06-23 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
US10961201B2 (en) | 2012-10-02 | 2021-03-30 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
US11332448B2 (en) | 2012-10-02 | 2022-05-17 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
US11548854B2 (en) | 2012-10-02 | 2023-01-10 | Bayer Cropscience Ag | Heterocyclic compounds as pesticides |
Also Published As
Publication number | Publication date |
---|---|
CA2405408A1 (en) | 2001-10-18 |
WO2001077080A3 (en) | 2002-02-28 |
WO2001077080A2 (en) | 2001-10-18 |
US6436915B1 (en) | 2002-08-20 |
US7105503B2 (en) | 2006-09-12 |
CA2405408C (en) | 2011-11-08 |
AU2001229915A1 (en) | 2001-10-23 |
US20030060453A1 (en) | 2003-03-27 |
EP1276723A2 (en) | 2003-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6436915B1 (en) | Pyrazole compounds | |
US6214813B1 (en) | Pyrazole compounds | |
JP5735931B2 (en) | Pyridone derivatives for modulating the stress-activated protein kinase system | |
EP1003721B1 (en) | Benzylidene-1,3-dihydro-indol-2-one derivatives as receptor tyrosine kinase inhibitors, particularly of raf kinases | |
KR101675984B1 (en) | Thienodiazepine derivatives or pharmaceutically acceptable salt thereof, and pharmaceutical composition comprising the same as an active ingredient | |
JP2003519143A (en) | Pyrimidine and triazine kinase inhibitors | |
JP2013510824A (en) | Compounds for modulating or controlling serine / threonine kinases, methods for their preparation, pharmaceutical compositions, use of compounds, methods and serine / threonine kinase modulators | |
TW200303863A (en) | Substituted indazoles, compositions comprising them, manufacturing process and use | |
US7868185B2 (en) | Shp-2 inhibitors and pharmaceutical compositions comprising them | |
WO2002083064A2 (en) | A method of treating cancer | |
AU2002307163A1 (en) | A method of treating cancer | |
WO2008014822A1 (en) | 6-1h-imidazo-quinazoline and quinolines derivatives, new potent analgesics and anti-inflammatory agents | |
KR20140016889A (en) | Diarylacetylene hydrazide containing tyrosine kinase inhibitors | |
Zhu et al. | Design, synthesis, and antifibrosis evaluation of 4-(benzo-[c][1, 2, 5] thiadiazol-5-yl)-3 (5)-(6-methyl-pyridin-2-yl) pyrazole and 3 (5)-(6-methylpyridin-2-yl)-4-(thieno-[3, 2,-c] pyridin-2-yl) pyrazole derivatives | |
US20080318960A1 (en) | PAR2-modulating compounds and their use | |
EP1928455A1 (en) | Anilinopyrazole derivatives useful for the treatment of diabetes | |
US20230025301A1 (en) | Novel Heterocyclic Derivatives with Cardiomyocyte Proliferation Activity for Treatment of Heart Diseases | |
WO2007121662A1 (en) | Diphenyl urea derivatives as kinase inhibitors, compositions and uses thereof | |
WO2023160708A1 (en) | Indolone-substituted-1,3-thiazolidinone derivative, and preparation method therefor and use thereof | |
JP4365586B2 (en) | Phthalazine derivatives with angiogenesis inhibitory activity | |
CN107151233A (en) | Pyridine derivatives containing hydrazone and application thereof | |
US6420400B1 (en) | Antiproliferative 1,2,3-thiadiazole compounds | |
US6391894B1 (en) | Myt1 kinase inhibitors | |
KR101546743B1 (en) | Indole derivatives, Abl kinase inhibiting composition and pharmaceutical compositions for prevention and treatment of abnormal cell growth diseases comprising the same | |
Galal et al. | Synthesis of (benzimidazol-2-yl) aniline derivatives as glycogen phosphorylase inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KINETEK PHARMACEUTICALS, INC, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, ZAIHUI;YAN, JUN;LEUNG, DANNY;AND OTHERS;REEL/FRAME:011585/0813 Effective date: 20010214 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: QLT INC., BRITISH COLUMBIA Free format text: CHANGE OF NAME;ASSIGNOR:KINETEK PHARMACEUTICALS, INC.;REEL/FRAME:015797/0368 Effective date: 20040701 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: VALOCOR THERAPEUTICS, INC., BRITISH COLUMBIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QLT INC.;REEL/FRAME:026024/0898 Effective date: 20101020 |
|
AS | Assignment |
Owner name: DERMIRA (CANADA), INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:VALOCOR THERAPEUTICS, INC.;REEL/FRAME:031029/0615 Effective date: 20111019 |
|
FPAY | Fee payment |
Year of fee payment: 12 |