US20020036567A1 - Method and apparatus for wheel condition and load position sensing - Google Patents
Method and apparatus for wheel condition and load position sensing Download PDFInfo
- Publication number
- US20020036567A1 US20020036567A1 US09/948,085 US94808501A US2002036567A1 US 20020036567 A1 US20020036567 A1 US 20020036567A1 US 94808501 A US94808501 A US 94808501A US 2002036567 A1 US2002036567 A1 US 2002036567A1
- Authority
- US
- United States
- Prior art keywords
- wheel
- tire
- rotational velocity
- vehicle
- vehicle speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C23/00—Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
- B60C23/06—Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
- B60C23/061—Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
Definitions
- the present invention relates to a method and apparatus for monitoring wheel conditions on a moving truck and more particularly to a method and apparatus for detecting wheel alignment and inflation problems and for monitoring load positioning.
- Tire pressure directly relates to the rolling radius of a tire, which shrinks with reduced pressure. As the tire's rolling radius is compressed, side wall flex increases causing the tire's temperature to increase. Increased operating temperature of a tire promotes degradition of the synthetic rubber of the tire and results in excessive tire wear.
- a wheel's rotational speed can also be measured as an indirect indication of tire under inflation.
- ABS antilock braking systems
- the invention provides an apparatus and a method for detecting compromised vehicle wheel and tire operating characteristics.
- condition indication of which can be detected are out of round new tires, under pressure tires, poor front wheel alignment and either a longitudinally or latitudinally off center load.
- the invention provides that an instantaneous rotational velocity signal for each wheel is generated, typically using an existing antilock braking system (ABS). Wheel speed is compared against an instantaneous indication of vehicle speed, which is usually, but not necessarily, generated from the rotational speed of the drive shaft take-off from the vehicle's transmission.
- ABS antilock braking system
- Operation of the method and system requires calibrating newly mounted tires. As part of the calibration process it is determined if each newly installed tire is within tolerances for the tire and if the front tires appear to be correctly aligned. Calibration is done to generate a scalar relating wheel rotational velocity for each wheel to straight line vehicle speed. Once scalars have been obtained for each wheel they are stored, and then adjusted for estimated wear of the tires as a function of distance traveled. To obtain these numbers, the distance traveled on the tires currently mounted on the wheels and distance traveled since a current trip began are tracked. Vehicle speed can be calibrated utilizing the global positioning system, which involves installation of the appropriate sensor on the vehicle.
- Operational monitoring of the wheels includes initializing the trip odometer, collecting wheel speeds, and sampling vehicle speed.
- Tire radius and tolerance data are generated as a function of estimated wear and tire temperature.
- Tire temperature is in turn a function of ambient temperature and trip distance.
- Rotational velocity of the wheels are estimated as functions of vehicle speed and the updated tire radius data. Rotational velocity for each wheel is subtracted from estimated velocity and the difference is compared to the allowed, updated tolerances. A possible pressurization error is indicated if one wheel departs outside of the updated tolerances from estimated rotational velocity.
- FIG. 1 is a schematic view of a vehicle drive train.
- FIG. 2 is a block diagram of a data processing system and connections to external data inputs used in practicing the invention.
- FIG. 3 is a data flow diagram.
- FIGS. 4 A-C are a flow chart of an algorithm used in practicing the invention.
- FIG. 1 illustrates a vehicle drive train 10 to which the system and method of the invention are applied.
- Vehicle drive train 10 provides for the application of motive power generated by an engine 12 to each of a plurality of rear drive wheels 22 , 24 , 26 and 28 .
- Engine 12 applies power directly to a transmission 14 , which includes a plurality of step down gears.
- Transmission 14 turns a drive shaft 16 which is coupled between the output end of transmission 14 and forward rear differential 18 A and aft rear differential 18 B.
- Forward rear differential 18 A drives wheels 22 and 26 mounted on forward rear axle 20 and aft rear differential 18 B drives wheels 24 and 28 mounted on aft rear axle 21 .
- Wheels 22 and 26 , and wheels 24 and 28 are mounted on the outside ends of rear axles 20 and 21 , respectively.
- Forward left and right steering wheels 34 and 36 are mounted on the outside ends of forward steering axle 32 .
- Each of the rear drive wheels 22 , 24 , 26 and 28 support two tires 30 .
- Forward wheels 34 and 36 each have one tire 30 .
- Vehicle drive train 10 is illustrated as an 8 ⁇ 10 configuration (i.e. two driven axles) commonly found on trucks, but the invention is equally applicable to a 4 ⁇ 6 configuration (i.e. one driven axle).
- the vehicle incorporating vehicle drive train 10 is equipped with an antilock braking system (ABS) which provides wheel speed sensors for each wheel.
- ABS antilock braking system
- These include a wheel rotational speed sensor 38 A positioned adjacent and on left forward wheel 34 .
- Wheel rotational speed sensor 38 B is adjacent drive wheel 22 .
- Wheel rotational speed sensor 38 C is adjacent drive wheel 24 .
- Wheel rotational speed sensor 38 D is adjacent wheel 36 .
- Wheel rotational speed sensor 38 E is adjacent drive wheel 26 .
- Wheel rotational speed sensor 38 F is adjacent drive wheel 28 .
- Vehicle speed may be generated from a tachometer 40 mounted to the output end of transmission 14 .
- the signal generated from tachometer 40 represents an average of the rotational velocity of the vehicle's rear wheels 22 , 24 , 26 and 28 .
- Vehicle speed is generated by factoring the tachometer's output by a standard wheel radius and the step down ratio of the rear differentials to produce a desired speed.
- rear drive wheels are subject to slippage during acceleration (and deceleration) and in climbing and descending from hills, among other situations. Accordingly, the speed signal produced by tachometer 40 is not the most accurate way to measure speed, though it remains commonly employed.
- one embodiment of the invention eliminates the vehicle speed tachometer 40 and substitute the ABS sensors 38 A-F as the data gathering element in a speed signal generating system.
- FIG. 2 is a block diagram illustrating the component elements of the present invention.
- a wheel and tire condition monitoring computer 42 is connected to receive data inputs from the vehicle speed tachometer 40 , an ambient temperature measuring thermometer 44 and a global positioning sensor (GPS) 48 .
- Tachometer 40 and GPS 48 are optional components.
- Computer 42 is equivalent in power to common personal computers contemporary to the date of preparation of this application, although the computational burdens entailed by the method of the invention can be effectively carried out on a minimal system based on an embedded micro computer system.
- Computer 42 requires some writeable, non-volatile memory 52 for the storage of long term data and programs.
- computer 42 is connected to an antilock braking system computer 54 whereby computer 42 reads wheel rotational speeds (or output pulses) passed through from wheel rotational sensors 38 A-F.
- ABS computer 54 reads wheel rotational speeds (or output pulses) passed through from wheel rotational sensors 38 A-F.
- the functions of ABS computer 54 and computer 42 could be combined. However, given that the ABS computer must give priority to the execution of antilock braking functions, prudence suggests the use of separate computers.
- the data link 55 from ABS computer 54 to computer 42 is preferably provided by a link conforming to the SAE J1939 standard.
- Computer 42 must be able to provide warning signals to an operator and accordingly the computer is attached to an operator input/output interface 50 . I/O interface 50 also allows the input of tire data at the time of installation of new tires 30 on a vehicle.
- the stored data in memory 52 includes odometer registers 53 .
- I/O interface 50 includes warning indicators mounted within a truck cab which may emit aural warnings or include warning lights for the indication of particular problems with particular wheels.
- the interface includes a numerical keypad or other interface for the entry of data relating to tires for each wheel of the vehicle.
- the minimum data to be entered includes tire size, tread depth, mileage when installed and manufacturer. Wear profiled are supplied in a data base indexed by manufacturer for operation at rated inflations and loads. To accommodate replacement of a tire, positions are also entered. Further data may include a wear profile for each tire against distance traveled. Upon installation a base mileage is saved for projecting tire rolling radius over the life of the tires. Data entry initiates a calibration algorithm function to obtain and store new tire rolling radius for each tire and to calibrate the vehicle odometer and speedometer.
- FIG. 3 is a data flow diagram illustrating data manipulation steps for two preferred embodiments of the invention.
- a highly accurate, more expensive version of the system relies on vehicle geographical coordinate data 300 , preferably supplied by the global positioning sensor 48 .
- vehicle coordinate data 300 is passed to vehicle speed and direction calculation at algorithm 302 .
- Coordinate data 300 is refreshed on a periodic basis, e.g. once a second.
- a minimum vehicle speed will support consistently reliable calculations of velocity.
- a speed of 50 k.p.h. is adequate.
- Improved accuracy in the global positioning system will allow for determination of vehicle speed and direction at lower speeds.
- Sampled speed over consecutive data samples is a direct matter of determining the distance between successive sampled location coordinates and dividing by the elapsed time.
- Substantially unvarying vehicle speed for a sustained period for example 2 minutes, is taken as indicating a constant vehicle direction, permitting full execution of the calibration and wheel algorithm 304 and 306 . If a vehicle has a steering position sensor, then an input from that sensor can be used to determine straight line operation.
- Calibration algorithm 304 is entered upon installation of one or more new or replacement tires. Data is entered relating to all replacement tires, and their positions. The vehicle is then driven at a constant speed on a straight stretch of road allowing speed data V o to be developed and the individual wheel speed signals (V 1-k ) be generated. As described below, individual wheel signals are analyzed to determine conformity of the newly fitted tire(s) to expected values.
- the calibration algorithm 304 passes wheel by wheel velocity reference values V 1ref ⁇ Vk ref to the wheel algorithm for use in detecting later occurring changes to tires, such as premature wear or low pressure.
- the reference values are found by applying the following general equation to the specific cases:
- V iref 1/ t ( ⁇ V i dt ) for 0, T (1.)
- the calibration algorithm 304 may supply a vehicle speed reference value V ref to be used for calibration of the speedometer and odometer signals.
- V ref is tailored to the specific tire set installed on the vehicle and may be subject to further correction factors relating to tire wear. The use of V ref may depend upon whether GPS data is available on the vehicle.
- Tachometer 40 is one source of speed data 310 .
- tachometer data represent an average of drive wheels' rotational velocity.
- the wheel algorithm 306 is initiated, utilize the raw wheel rotational velocity signals V 1-k , V 1 ref through V k ref and indication of the vehicle traveling in constant direction.
- FIGS. 4 A-C a flow chart is described illustrating one method for practicing the invention adapted to serve as an algorithm executable on a computer 42 .
- the program is initiated upon starting step 60 the vehicle on which the wheel and tire monitoring system is installed. It is immediately determined, from operator input on I/O interface 50 , if new tires have been installed. If not, processing branches to step 84 along the NO branch from decision box 62 . If new tires have been installed calibration of the tires is required and processing follows the YES branch. The calibration of any new or replacement tires 30 requires the data inputs described above, including the expected rolling radius of the tire at each wheel position, the wear factor expected for that position and the tolerances the rolling radius must meet.
- a tire if out of round, will exhibit a variable rolling radius.
- a variable rolling radius results in the wheel on which the out of round tire is mounted exhibiting a varying rotational velocity profile.
- the rotational velocity profile for each wheel is examined. If one or more wheels is out of round it is determined at decision step 70 and the NO branch (i.e. No to the question, are wheel speeds constant?) is taken to step 78 where a warning is issued that one or more tires 30 suffer from a possible out of round condition. Processing is then indicated as terminating at step 79 , indicating opportunity for remedial action to be taken before calibration is resumed.
- the YES branch is taken from decision step 70 to decision step 72 .
- decision step 72 the rotational velocity for each wheel is compared with the expected wheel velocity as determined from vehicle speed (derived from tachometer 40 ).
- vehicle speed derived from tachometer 40
- the output from tachometer 40 is assumed to be equated to a vehicle speed based on knowledge of the rear end differential ratios and a standard wheel rolling radius, the latter of which is a characteristic which compromises tachometer 40 's accuracy as an indication of vehicle speed. Measured wheel speeds should match, or fall within a predetermined margin of error of the estimated speeds.
- step 72 scalars for each wheel are calculated to equate measured wheel rotational velocity to the estimate for wheel rotational velocity derived from vehicle velocity at step 80 .
- a database on the tires 30 and the scalars calculated at step 80 is flagged as usable.
- an odometer is initialized which records the distance traveled on the tires. Where fewer than the entire set of tires is replaced, individual odometers may be set for each wheel. Processing than can continue to step 84 for normal operational processing.
- Wheel rotational velocities which are constant, but out of tolerance, do not necessarily indicate any one problem, although the circumstances under which the deviant rotational velocities occur exhibit a correlation with certain compromised tire, or wheel, operating characteristics. Frequently, a deviation from predicted wheel rotational velocity indicates a deviation from tire rated pressure. However, during mounting of tires it is probable that the tires were correctly pressurized for the calibration test. Under these circumstances other possible problems should be considered and are highlighted through the portion of the algorithm occurring following the NO branch from decision step 72 .
- step 77 it is determined if the wheels exhibiting unexpected rotational velocities are front wheels. If not, processing advances along the NO branch to step 77 where an indication of a tire out of tolerance warning is issued. If a wheel exhibiting an out of tolerance variation from expected rotational velocity is a front wheel then the YES branch is taken to step 76 allowing signaling of a possible alignment error. From step 76 processing continues to step 77 to allow generation of a possible tire size outside tolerance signal to be generated. Step 77 may also be taken as possible indication of an incorrect entry of data, which would also require correction. From step 77 processing is terminated by step 79 to allow corrective steps to be made.
- Step 84 Operational monitoring of wheel and tire condition begins at step 84 .
- the accuracy of certain measurements is enhanced by estimating operational tire temperature, the formula for the generation of which utilizes the distance traveled on the current trip.
- Step 84 provides for initialization of a trip odometer to provide this input.
- data points are collected for several variable inputs. Among the variable inputs developed are measured wheel speed, vehicle speed, and, if available, positional data provided by a global positioning sensor unit.
- the data sampling is represented as a sequence of steps 86 , 88 and 90 . Sampling continues until statistically significant accumulations of data have been collected (step 100 ).
- Positional data is collected to provide a measurement of straight line distance traveled against time.
- This data is used to generate a vehicle velocity measurement which can be used to calibrate the vehicle speedometer, and in part compensate for distortions introduced into the speed measurement by wear of the tires or inadequate inflation of tires mounted on the drive wheels 22 , 24 , 26 and 28 .
- a sufficient number of data points is collected from GPS 48 to provide a more accurate measurement of vehicle speed than is provided by the tachometer 40 .
- Speed during data sampling is monitored and if a deviation from a consistent speed is detected sampling is aborted at step 99 due to possible initiation of a turn.
- step 102 the signals from the GPS (if available) are used to calibrate the instantaneous measurement of vehicle speed.
- step 104 the rotational velocity of each wheel is calculated.
- step 106 the odometer is interrogated to retrieve the distance traveled on the tires at each wheel location. This figure is used to update the estimate of each tire's rolling radius and to update the allowable variation in that diameter.
- Tire characteristics are also a function of tire temperature, which, as is well known, can increase pressure. Tire temperature is indirectly calculated from the distance traveled on the instant trip, or since the last prolonged stop and ambient temperature.
- step 112 an estimate for the rotational velocity for each vehicle wheel is generated from the estimated wear, estimated tire temperature and vehicle speed.
- the estimated and measured wheel rotational speeds are compared at step 112 to determine if the differences between measured values and estimated values are within tolerances. If the differences are within tolerances, processing is returned to step 86 to collect another data set along the YES branch from decision step 112 .
- the return loop includes a variable reinitialization and update step 114 .
- Certain diagnostic processes require tracking certain designated variables for longer periods then each sample collection period. For example, a running tally of wheel rotations, and relative wheel speed during a trip may be maintained for comparison with the other wheels to detect situations that develop during a trip that might otherwise falsely indicate a pressurization problem. These values may be updated at step 114 .
- the NO branch from decision step 112 advances the algorithm to a series of diagnostic tests represented by steps 116 - 125 .
- a series of diagnostic tests represented by steps 116 - 125 .
- wheel speeds e.g. are wheels 22 , 24 and 34 turning faster than expected compared to wheels 28 , 26 and 36 .
- Such a pattern can indicate that the vehicle is overloaded to one side, which may occur due to poor loading or shifts in a load during travel. It may be observed that this test is depicted as occurring only if some of the wheels have a rotational velocity outside of tolerances for the observed vehicle speed, which implies a minimum wheel rotational velocity variation as a threshold before an unbalanced load is indicated.
- This test can be moved ahead of the wheel speed out of range step 112 , provided a set of threshold differences in side to side wheel rotational speed are applied. If load is off balance along the roll axis, wheels on one side of the vehicle will show a speed difference compared to wheels on the other side.
- step 116 advances processing along a path where the likely cause of wheel rotational velocity is loss of tire pressure.
- step 118 it is determined whether the wheel departing from norms is a front wheel. Whether it is or not, a warning is issued of a possible pressurization problem (step 122 ). If the wheel is a front wheel a second warning is issued also indicating the possibility that an alignment error may have developed (step 120 ).
- Step 123 following step 124 may be used to detect the largest variation in wheel speed among wheels on one side of a vehicle for recomparison to its estimated rotational speed.
- a YES result at step 123 returns process execution to step 118 .
- a NO result results in processing returning to step 114 .
- the system and method of the present invention must have a mechanism for distinguishing turns from load imbalances.
- a secondary benefit of the ability to detect the onset and termination of turns is the possibility of replacing the automatic cancellation mechanism for turn signals.
- a side to side variation in wheel speed may indicate an unbalanced load, or it may indicate that the vehicle is turning, in which case the inside wheels will turn more slowly than the outside wheels.
- Step 125 which follows along the YES branch from decision step 99 is used to determine occurrence of a turn. Turns are likely to occur as temporary side to side variations in wheel rotational velocity which span several sampling intervals. To determine the occurrence of a turn the mid-term wheel rotational velocity signals may be recalled to determine the persistence of the side to side variation.
- step 126 may be provided to activate the turn signal if not on during a turn.
- step 128 the difference in wheel speeds is compared until the side to side difference approaches 0 . Cancellation of the signal follows that event after a brief time delay at step 130 . Since data points collected in a turn are distorted processing is returned to step 114 to reset counters before the collection of a new set of data points.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
- 1. Technical Field
- The present invention relates to a method and apparatus for monitoring wheel conditions on a moving truck and more particularly to a method and apparatus for detecting wheel alignment and inflation problems and for monitoring load positioning.
- 2. Background to the Invention
- Poor wheel alignment and tire under inflation are factors contributing to premature tire wear and poor vehicle handling. A system which alerts a vehicle operator of low tire pressure and misalignment would help control one of the factors contributing to the accelerated wear of tires. Unfortunately, the direct provision of pressure sensors in wheels to monitor tire pressure has proven unreliable and expensive. Pressure sensors mounted in wheels are subjected to a hostile environment of high temperatures, road shock and high rotational velocities. The data transmission linkage from the wheel to the vehicle is necessarily indirect and adds expense to the system, and it requires an independent power supply, such as a battery, which must-periodically be removed from the tire for replacement.
- Tire pressure directly relates to the rolling radius of a tire, which shrinks with reduced pressure. As the tire's rolling radius is compressed, side wall flex increases causing the tire's temperature to increase. Increased operating temperature of a tire promotes degradition of the synthetic rubber of the tire and results in excessive tire wear. As an alternative to measuring tire pressure, a wheel's rotational speed can also be measured as an indirect indication of tire under inflation. The increasingly widespread use of antilock braking systems (ABS) on cars and trucks affords a convenient source of wheel rotational speed information which can be used to implement pressure monitoring methods involving wheel rotational speed monitoring. U.S. Pat. No. 6,064,936 to Nakajima describes a system utilizing an ABS to provide inputs for tire pressure monitoring system. While increases in one wheel's velocity suggest low inflation of the tire mounted on that wheel, other circumstances may exist which be the cause of a relative increase in wheel angular velocity. The Liu, et al. reference, U.S. Pat. No. 5,760,682 develops calibration coefficients to compensate for factors such as wheel slippage, rough road fluctuations, vehicle cornering, and uphill and downhill travel. Desirable though is a system which can identify different conditions affecting wheel rotational velocity so that the proper corrective steps may be taken.
- Numerous patents relate specifically to the application of indirect tire pressure measurement using ABS wheel speed sensors on automobiles. With trucks additional issues are raised due to the much higher sidewall stiffness of tires compared to automobile tires (and consequent relatively lower sensitivity of rolling radius to tire pressure) and the differences in wheel layout used for trucks, for example 4×6 (a front steering axle with two tires with a rear driven axle carrying four tires) and 6×10 (a front steering axle with two rear driven axles, each with four tires) wheel arrangements. Truck suspensions are designed for maximum load conditions and loading varies much more than for passenger autos. Vehicle speed for trucks is commonly measured by a tachometer. The tach is attached to track the rotational velocity of a drive shaft installed between the vehicle's transmission and a rear end differential. As a result measured velocity is proportional to the average rotational velocity of the driven wheels. ABS wheel sensors provide an alternative source of data with which to generate vehicle speed, among values for other operating variables.
- The objects, features, and advantages of the invention will be apparent from the written description that follows. The invention provides an apparatus and a method for detecting compromised vehicle wheel and tire operating characteristics. Among the condition indication of which can be detected are out of round new tires, under pressure tires, poor front wheel alignment and either a longitudinally or latitudinally off center load. The invention provides that an instantaneous rotational velocity signal for each wheel is generated, typically using an existing antilock braking system (ABS). Wheel speed is compared against an instantaneous indication of vehicle speed, which is usually, but not necessarily, generated from the rotational speed of the drive shaft take-off from the vehicle's transmission.
- Operation of the method and system requires calibrating newly mounted tires. As part of the calibration process it is determined if each newly installed tire is within tolerances for the tire and if the front tires appear to be correctly aligned. Calibration is done to generate a scalar relating wheel rotational velocity for each wheel to straight line vehicle speed. Once scalars have been obtained for each wheel they are stored, and then adjusted for estimated wear of the tires as a function of distance traveled. To obtain these numbers, the distance traveled on the tires currently mounted on the wheels and distance traveled since a current trip began are tracked. Vehicle speed can be calibrated utilizing the global positioning system, which involves installation of the appropriate sensor on the vehicle.
- Operational monitoring of the wheels includes initializing the trip odometer, collecting wheel speeds, and sampling vehicle speed. Tire radius and tolerance data are generated as a function of estimated wear and tire temperature. Tire temperature is in turn a function of ambient temperature and trip distance. Rotational velocity of the wheels are estimated as functions of vehicle speed and the updated tire radius data. Rotational velocity for each wheel is subtracted from estimated velocity and the difference is compared to the allowed, updated tolerances. A possible pressurization error is indicated if one wheel departs outside of the updated tolerances from estimated rotational velocity.
- Additional effects, features and advantages will be apparent in the written description that follows.
- The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
- FIG. 1 is a schematic view of a vehicle drive train.
- FIG. 2 is a block diagram of a data processing system and connections to external data inputs used in practicing the invention.
- FIG. 3 is a data flow diagram.
- FIGS.4A-C are a flow chart of an algorithm used in practicing the invention.
- Referring now to the drawings, a preferred embodiment of the invention and its manner of use will be described. FIG. 1 illustrates a
vehicle drive train 10 to which the system and method of the invention are applied.Vehicle drive train 10 provides for the application of motive power generated by anengine 12 to each of a plurality ofrear drive wheels Engine 12 applies power directly to atransmission 14, which includes a plurality of step down gears.Transmission 14 turns adrive shaft 16 which is coupled between the output end oftransmission 14 and forwardrear differential 18A and aftrear differential 18B. Forwardrear differential 18A driveswheels rear axle 20 and aftrear differential 18 B drives wheels Wheels wheels rear axles 20 and 21, respectively. Forward left andright steering wheels forward steering axle 32. Each of therear drive wheels tires 30.Forward wheels tire 30.Vehicle drive train 10 is illustrated as an 8×10 configuration (i.e. two driven axles) commonly found on trucks, but the invention is equally applicable to a 4×6 configuration (i.e. one driven axle). - The vehicle incorporating
vehicle drive train 10 is equipped with an antilock braking system (ABS) which provides wheel speed sensors for each wheel. These include a wheelrotational speed sensor 38A positioned adjacent and onleft forward wheel 34. Wheelrotational speed sensor 38B isadjacent drive wheel 22. Wheelrotational speed sensor 38C isadjacent drive wheel 24. Wheelrotational speed sensor 38D isadjacent wheel 36. Wheelrotational speed sensor 38E isadjacent drive wheel 26. Wheelrotational speed sensor 38F isadjacent drive wheel 28. Vehicle speed may be generated from atachometer 40 mounted to the output end oftransmission 14. The signal generated fromtachometer 40 represents an average of the rotational velocity of the vehicle'srear wheels tachometer 40 is not the most accurate way to measure speed, though it remains commonly employed. As will be described below, one embodiment of the invention eliminates thevehicle speed tachometer 40 and substitute theABS sensors 38A-F as the data gathering element in a speed signal generating system. - FIG. 2 is a block diagram illustrating the component elements of the present invention. A wheel and tire
condition monitoring computer 42 is connected to receive data inputs from thevehicle speed tachometer 40, an ambienttemperature measuring thermometer 44 and a global positioning sensor (GPS) 48.Tachometer 40 andGPS 48 are optional components.Computer 42 is equivalent in power to common personal computers contemporary to the date of preparation of this application, although the computational burdens entailed by the method of the invention can be effectively carried out on a minimal system based on an embedded micro computer system.Computer 42 requires some writeable,non-volatile memory 52 for the storage of long term data and programs. In addition,computer 42 is connected to an antilockbraking system computer 54 wherebycomputer 42 reads wheel rotational speeds (or output pulses) passed through from wheelrotational sensors 38A-F. (For a 4×6 drive train configuration there are only four rotational sensors.) The functions ofABS computer 54 andcomputer 42 could be combined. However, given that the ABS computer must give priority to the execution of antilock braking functions, prudence suggests the use of separate computers. The data link 55 fromABS computer 54 tocomputer 42 is preferably provided by a link conforming to the SAE J1939 standard.Computer 42 must be able to provide warning signals to an operator and accordingly the computer is attached to an operator input/output interface 50. I/O interface 50 also allows the input of tire data at the time of installation ofnew tires 30 on a vehicle. The stored data inmemory 52 includes odometer registers 53. - I/
O interface 50 includes warning indicators mounted within a truck cab which may emit aural warnings or include warning lights for the indication of particular problems with particular wheels. The interface includes a numerical keypad or other interface for the entry of data relating to tires for each wheel of the vehicle. The minimum data to be entered includes tire size, tread depth, mileage when installed and manufacturer. Wear profiled are supplied in a data base indexed by manufacturer for operation at rated inflations and loads. To accommodate replacement of a tire, positions are also entered. Further data may include a wear profile for each tire against distance traveled. Upon installation a base mileage is saved for projecting tire rolling radius over the life of the tires. Data entry initiates a calibration algorithm function to obtain and store new tire rolling radius for each tire and to calibrate the vehicle odometer and speedometer. - FIG. 3 is a data flow diagram illustrating data manipulation steps for two preferred embodiments of the invention. A highly accurate, more expensive version of the system relies on vehicle geographical coordinate
data 300, preferably supplied by theglobal positioning sensor 48. - If available, vehicle coordinate
data 300 is passed to vehicle speed and direction calculation atalgorithm 302. Coordinatedata 300 is refreshed on a periodic basis, e.g. once a second. A minimum vehicle speed will support consistently reliable calculations of velocity. At the time of filing of this patent a speed of 50 k.p.h. is adequate. Improved accuracy in the global positioning system will allow for determination of vehicle speed and direction at lower speeds. Sampled speed over consecutive data samples is a direct matter of determining the distance between successive sampled location coordinates and dividing by the elapsed time. - It will now be obvious to those skilled in the art that such a direct calculation does not allow for the possibility that the vehicle followed a path other than the most direct one between successive locations corresponding to
GPS 48 initiated inquiries. Vehicle turns, whether turns along a highway at a sustained velocity, or events involving an actual change of speed, will be reflected by changes in speed determined by the vehicle speed anddirection calculation algorithm 302 if using GPS data. In the first case, the detected change in speed may not be the product of an actual change in vehicle velocity. Thus the calculations ofcalibration algorithm 304 andwheel algorithm 306 depend, primarily, on the vehicle following a constant direction. Substantially unvarying vehicle speed for a sustained period, for example 2 minutes, is taken as indicating a constant vehicle direction, permitting full execution of the calibration andwheel algorithm -
Calibration algorithm 304 is entered upon installation of one or more new or replacement tires. Data is entered relating to all replacement tires, and their positions. The vehicle is then driven at a constant speed on a straight stretch of road allowing speed data Vo to be developed and the individual wheel speed signals (V1-k) be generated. As described below, individual wheel signals are analyzed to determine conformity of the newly fitted tire(s) to expected values. - Once wheel speed signals are brought into conformance with expected operating characteristics, the
calibration algorithm 304 passes wheel by wheel velocity reference values V1ref−Vk ref to the wheel algorithm for use in detecting later occurring changes to tires, such as premature wear or low pressure. The reference values are found by applying the following general equation to the specific cases: - V iref=1/t(òV i dt) for 0, T (1.)
- The
calibration algorithm 304 may supply a vehicle speed reference value Vref to be used for calibration of the speedometer and odometer signals. Vref is tailored to the specific tire set installed on the vehicle and may be subject to further correction factors relating to tire wear. The use of Vref may depend upon whether GPS data is available on the vehicle. - Alternative sources for vehicle speed may be utilized where no
GPS unit 48 is provided on a vehicle.Tachometer 40 is one source ofspeed data 310. As described above, tachometer data represent an average of drive wheels' rotational velocity. Wheel speed averages 312 can supply a velocity signal (Vout) which is an average of wheel rotational speeds for all of the which, i.e. - If one signal of the wheel rotational signal departs by more than a threshold deviation from the average for the remaining wheel rotational speed signals, that value may be dropped from the calibration of vehicle speed before the value is passed to vehicle speed and
direction calculation algorithm 302 and application to thecalibration algorithm 304. Vehicle direction determinations need not change greatly with changes in the source of the velocity signal. Neither thetachometer unit 40 or theGPS unit 48 is strictly required to practice the invention and either or both may be eliminated from the vehicle. Use ofGPS unit 48 has a number of benefits however including increased accuracy in the calculations called for and as a way of updating calibration of the vehicle speedometer and odometer. Where both are eliminated vehicle speed is determined usingequation 2. Where theGPS 40 is available, vehicle speed is still determined usingequation 2, but the result is calibrated usingGPS 40 data. - Once calibration is complete the
wheel algorithm 306 is initiated, utilize the raw wheel rotational velocity signals V1-k, V1 ref through Vk ref and indication of the vehicle traveling in constant direction. - Referring now to FIGS.4A-C, a flow chart is described illustrating one method for practicing the invention adapted to serve as an algorithm executable on a
computer 42. Those skilled in the art will recognize that the sequence of steps of the program is subject to considerable rearrangement without changing the essence of the processes. The program is initiated upon startingstep 60 the vehicle on which the wheel and tire monitoring system is installed. It is immediately determined, from operator input on I/O interface 50, if new tires have been installed. If not, processing branches to step 84 along the NO branch fromdecision box 62. If new tires have been installed calibration of the tires is required and processing follows the YES branch. The calibration of any new orreplacement tires 30 requires the data inputs described above, including the expected rolling radius of the tire at each wheel position, the wear factor expected for that position and the tolerances the rolling radius must meet. - A tire, if out of round, will exhibit a variable rolling radius. A variable rolling radius results in the wheel on which the out of round tire is mounted exhibiting a varying rotational velocity profile. At
step 70 the rotational velocity profile for each wheel is examined. If one or more wheels is out of round it is determined atdecision step 70 and the NO branch (i.e. No to the question, are wheel speeds constant?) is taken to step 78 where a warning is issued that one ormore tires 30 suffer from a possible out of round condition. Processing is then indicated as terminating atstep 79, indicating opportunity for remedial action to be taken before calibration is resumed. - If wheel speeds are constant at the outset of calibration then the YES branch is taken from
decision step 70 todecision step 72. Atdecision step 72 the rotational velocity for each wheel is compared with the expected wheel velocity as determined from vehicle speed (derived from tachometer 40). The output fromtachometer 40 is assumed to be equated to a vehicle speed based on knowledge of the rear end differential ratios and a standard wheel rolling radius, the latter of which is a characteristic which compromisestachometer 40's accuracy as an indication of vehicle speed. Measured wheel speeds should match, or fall within a predetermined margin of error of the estimated speeds. If they do, the YES branch is taken fromdecision step 72 and scalars for each wheel are calculated to equate measured wheel rotational velocity to the estimate for wheel rotational velocity derived from vehicle velocity atstep 80. After the scalars are calculated, a database on thetires 30 and the scalars calculated atstep 80 is flagged as usable. Atstep 82 an odometer is initialized which records the distance traveled on the tires. Where fewer than the entire set of tires is replaced, individual odometers may be set for each wheel. Processing than can continue to step 84 for normal operational processing. - Wheel rotational velocities which are constant, but out of tolerance, do not necessarily indicate any one problem, although the circumstances under which the deviant rotational velocities occur exhibit a correlation with certain compromised tire, or wheel, operating characteristics. Frequently, a deviation from predicted wheel rotational velocity indicates a deviation from tire rated pressure. However, during mounting of tires it is probable that the tires were correctly pressurized for the calibration test. Under these circumstances other possible problems should be considered and are highlighted through the portion of the algorithm occurring following the NO branch from
decision step 72. - Among the problems which may be present are an alignment problem which can occur with either of the
front wheels decision step 72 it is determined if the wheels exhibiting unexpected rotational velocities are front wheels. If not, processing advances along the NO branch to step 77 where an indication of a tire out of tolerance warning is issued. If a wheel exhibiting an out of tolerance variation from expected rotational velocity is a front wheel then the YES branch is taken to step 76 allowing signaling of a possible alignment error. Fromstep 76 processing continues to step 77 to allow generation of a possible tire size outside tolerance signal to be generated.Step 77 may also be taken as possible indication of an incorrect entry of data, which would also require correction. Fromstep 77 processing is terminated bystep 79 to allow corrective steps to be made. - Operational monitoring of wheel and tire condition begins at
step 84. The accuracy of certain measurements is enhanced by estimating operational tire temperature, the formula for the generation of which utilizes the distance traveled on the current trip.Step 84 provides for initialization of a trip odometer to provide this input. Initially, data points are collected for several variable inputs. Among the variable inputs developed are measured wheel speed, vehicle speed, and, if available, positional data provided by a global positioning sensor unit. The data sampling is represented as a sequence ofsteps drive wheels GPS 48 to provide a more accurate measurement of vehicle speed than is provided by thetachometer 40. Speed during data sampling is monitored and if a deviation from a consistent speed is detected sampling is aborted atstep 99 due to possible initiation of a turn. - Once a statistically significant sample set has been collected processing of the data begins. At
step 102 the signals from the GPS (if available) are used to calibrate the instantaneous measurement of vehicle speed. Next, atstep 104, the rotational velocity of each wheel is calculated. Atstep 106 the odometer is interrogated to retrieve the distance traveled on the tires at each wheel location. This figure is used to update the estimate of each tire's rolling radius and to update the allowable variation in that diameter. Tire characteristics are also a function of tire temperature, which, as is well known, can increase pressure. Tire temperature is indirectly calculated from the distance traveled on the instant trip, or since the last prolonged stop and ambient temperature. From these calculations an estimate for the rotational velocity for each vehicle wheel is generated from the estimated wear, estimated tire temperature and vehicle speed. The estimated and measured wheel rotational speeds are compared atstep 112 to determine if the differences between measured values and estimated values are within tolerances. If the differences are within tolerances, processing is returned to step 86 to collect another data set along the YES branch fromdecision step 112. The return loop includes a variable reinitialization and update step 114. - Certain diagnostic processes require tracking certain designated variables for longer periods then each sample collection period. For example, a running tally of wheel rotations, and relative wheel speed during a trip may be maintained for comparison with the other wheels to detect situations that develop during a trip that might otherwise falsely indicate a pressurization problem. These values may be updated at step114.
- The NO branch from
decision step 112 advances the algorithm to a series of diagnostic tests represented by steps 116-125. Initially it is determined if there is side to side pattern in the variation of wheel speeds, e.g. arewheels wheels range step 112, provided a set of threshold differences in side to side wheel rotational speed are applied. If load is off balance along the roll axis, wheels on one side of the vehicle will show a speed difference compared to wheels on the other side. - The NO branch from
step 116 advances processing along a path where the likely cause of wheel rotational velocity is loss of tire pressure. Atstep 118 it is determined whether the wheel departing from norms is a front wheel. Whether it is or not, a warning is issued of a possible pressurization problem (step 122). If the wheel is a front wheel a second warning is issued also indicating the possibility that an alignment error may have developed (step 120). - Careful readers will note that multiple problems can occur simultaneously. For example, tire pressure may be low and the vehicle load out of balance. It is conceivable that a slow leak leading to developing low tire pressure could contribute to a shift in load, also putting a vehicle out of acceptable balance. Step123 following
step 124 may be used to detect the largest variation in wheel speed among wheels on one side of a vehicle for recomparison to its estimated rotational speed. A YES result atstep 123 returns process execution to step 118. A NO result results in processing returning to step 114. - The system and method of the present invention must have a mechanism for distinguishing turns from load imbalances. A secondary benefit of the ability to detect the onset and termination of turns is the possibility of replacing the automatic cancellation mechanism for turn signals. A side to side variation in wheel speed may indicate an unbalanced load, or it may indicate that the vehicle is turning, in which case the inside wheels will turn more slowly than the outside wheels.
Step 125, which follows along the YES branch fromdecision step 99 is used to determine occurrence of a turn. Turns are likely to occur as temporary side to side variations in wheel rotational velocity which span several sampling intervals. To determine the occurrence of a turn the mid-term wheel rotational velocity signals may be recalled to determine the persistence of the side to side variation. Along the YES branch fromstep 125, i.e. detection of a turn,step 126 may be provided to activate the turn signal if not on during a turn. Atstep 128 the difference in wheel speeds is compared until the side to side difference approaches 0. Cancellation of the signal follows that event after a brief time delay atstep 130. Since data points collected in a turn are distorted processing is returned to step 114 to reset counters before the collection of a new set of data points. - The system and method of indirect tire pressure measurement using ABS wheel speed sensors of the present inventions has several advantages. Trucks require greater sensitivity of measurement due to the much higher sidewall stiffness of tires compared to automobile tires. Various drive train patterns are allowed for including both 4×6 and 6×10 wheel arrangements. Load imbalance, wheel alignment, out of specification tires and other problems are also handled.
- While the invention is shown in only one of its forms, it is not thus limited but is susceptible to various changes and modifications without departing from the spirit and scope of the invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/948,085 US6426694B1 (en) | 2000-08-09 | 2001-09-06 | Method and apparatus for determining vehicle speed |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/634,166 US6313742B1 (en) | 2000-08-09 | 2000-08-09 | Method and apparatus for wheel condition and load position sensing |
US09/948,085 US6426694B1 (en) | 2000-08-09 | 2001-09-06 | Method and apparatus for determining vehicle speed |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/634,166 Division US6313742B1 (en) | 2000-08-09 | 2000-08-09 | Method and apparatus for wheel condition and load position sensing |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020036567A1 true US20020036567A1 (en) | 2002-03-28 |
US6426694B1 US6426694B1 (en) | 2002-07-30 |
Family
ID=24542685
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/634,166 Expired - Lifetime US6313742B1 (en) | 2000-08-09 | 2000-08-09 | Method and apparatus for wheel condition and load position sensing |
US09/948,085 Expired - Fee Related US6426694B1 (en) | 2000-08-09 | 2001-09-06 | Method and apparatus for determining vehicle speed |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/634,166 Expired - Lifetime US6313742B1 (en) | 2000-08-09 | 2000-08-09 | Method and apparatus for wheel condition and load position sensing |
Country Status (6)
Country | Link |
---|---|
US (2) | US6313742B1 (en) |
EP (1) | EP1318924A4 (en) |
AU (1) | AU2001292550A1 (en) |
CA (1) | CA2419004A1 (en) |
MX (1) | MXPA03001217A (en) |
WO (1) | WO2002012003A2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6876300B2 (en) | 2002-11-25 | 2005-04-05 | Richard L. Ponziani | Electronic intelligent turn signal control system |
US20050113992A1 (en) * | 2003-11-25 | 2005-05-26 | Masashi Kitano | Method for detecting decompression of tires and device thereof, and program for judging decompression of tires |
US20050134503A1 (en) * | 2003-10-06 | 2005-06-23 | Colley Jaime B. | Method and system for a data interface for aiding a satellite positioning system receiver |
EP1584928A1 (en) * | 2004-04-07 | 2005-10-12 | Scania CV AB (publ) | System and method for estimating a vehicle speed |
US20050228570A1 (en) * | 2004-04-07 | 2005-10-13 | Tony Sandberg | System, method, vehicle, ECU, computer program and computer program product |
US20060058977A1 (en) * | 2004-09-14 | 2006-03-16 | Youcong Zhu | Method for monitoring tyre pressure variation of automobile tyre and system for realizing the same |
US20060178853A1 (en) * | 2004-09-14 | 2006-08-10 | Haosheng Chen | Method for monitoring tire pressure variation of automobile tire and system for realizing the same |
US20060193368A1 (en) * | 2001-10-18 | 2006-08-31 | Michelin Recherche Et Technique S.A. | Method of estimating the temperature of the air in the internal cavity of a tire and application to the detection of abnormal operating of a running-flat system |
US20070100529A1 (en) * | 2005-10-31 | 2007-05-03 | Williams-Pyro, Inc. | Vehicle odometer using on-board diagnostic information |
US20080309154A1 (en) * | 2005-09-06 | 2008-12-18 | Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh | Method For Controlling a Pneumatic Braking System |
US20100030512A1 (en) * | 2008-07-31 | 2010-02-04 | Hoeffel James J | Determination and wireless communication of sensed vehicle data for computing vehicle speed |
US20100114428A1 (en) * | 2007-06-01 | 2010-05-06 | Honda Motor Co., Ltd. | Wheel diameter variation-detecting device |
US20100191413A1 (en) * | 2006-08-29 | 2010-07-29 | Continental Automotive Gmbh | Speed detection for a tachograph system |
US20110210841A1 (en) * | 2010-03-01 | 2011-09-01 | International Truck Intellectual Property Company, Llc | System and Method for Indirect Indication of Tire Pressure Loss |
US20110276242A1 (en) * | 2010-05-07 | 2011-11-10 | Gm Global Technology Operations, Inc. | Method and system for assessing vehicle movement |
CN104417565A (en) * | 2013-08-26 | 2015-03-18 | 福特全球技术公司 | Sensor fusion vehicle velocity estimation system and method |
DE112004000648B4 (en) * | 2003-04-14 | 2016-01-21 | Scania Cv Ab (Publ) | Arrangement for estimating the speed of a vehicle with the aid of a corrected wheel radius |
US20170023441A1 (en) * | 2015-07-21 | 2017-01-26 | The Goodyear Tire & Rubber Company | Tread wear estimation system and method |
CN107539215A (en) * | 2017-08-24 | 2018-01-05 | 易绍福 | A kind of wheel temperature monitoring system |
CN108674101A (en) * | 2017-08-23 | 2018-10-19 | 佛山市顺德区中山大学研究院 | A kind of tire health and Geography monitor system |
US10384537B2 (en) | 2014-12-23 | 2019-08-20 | Volvo Truck Corporation | Method and device for tandem- or multiple-axle drive for a vehicle |
US10974731B2 (en) * | 2019-03-26 | 2021-04-13 | Ford Global Technologies, Llc | Vehicle fault detection system |
US20220120638A1 (en) * | 2020-10-16 | 2022-04-21 | GM Global Technology Operations LLC | Robust tire/wheel vibration monitor system |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2814238B1 (en) * | 2000-09-15 | 2004-06-25 | Dufournier Technologies S A S | METHOD AND SYSTEM OR CENTRAL FOR MONITORING THE CONDITION OF TIRES, AND DETECTION OF THE PRESENCE OF CHAINS OR SNOW NAILS, ON A VEHICLE |
US6671609B2 (en) * | 2000-12-05 | 2003-12-30 | Lear Corporation | Tire pressure vehicle speed limiting |
US6526336B2 (en) | 2001-02-01 | 2003-02-25 | Invacare Corp. | System and method for steering a multi-wheel drive vehicle |
US7127369B2 (en) * | 2001-10-09 | 2006-10-24 | Siemens Vdo Automotive Corporation | Sensor assembly |
US6659233B2 (en) * | 2001-12-04 | 2003-12-09 | Hydro-Aire, Inc. | System and method for aircraft braking system usage monitoring |
DE10205815A1 (en) * | 2002-02-13 | 2003-08-28 | Bosch Gmbh Robert | Method and device for monitoring tire pressure in a motor vehicle |
US6725136B2 (en) * | 2002-04-01 | 2004-04-20 | Robert Bosch Gmbh | Tire pressure and parameter monitoring system and method using accelerometers |
EP1403100A1 (en) * | 2002-09-27 | 2004-03-31 | Robert Bosch Gmbh | Adaptative tire pressure surveillance |
JP3765539B2 (en) * | 2002-10-29 | 2006-04-12 | 本田技研工業株式会社 | Air pressure drop detection device |
US6834222B2 (en) * | 2003-02-27 | 2004-12-21 | Ford Global Technologies, Llc | Tire imbalance detection system and method using anti-lock brake wheel speed sensors |
US20040225423A1 (en) * | 2003-05-07 | 2004-11-11 | Carlson Christopher R. | Determination of operational parameters of tires in vehicles from longitudinal stiffness and effective tire radius |
EP1475250B1 (en) * | 2003-05-09 | 2006-08-09 | Harman/Becker Automotive Systems GmbH | GPS (global positioning system) based method for determining a change of an inflation pressure of a tire and system therefor |
JP4175306B2 (en) * | 2003-09-18 | 2008-11-05 | 株式会社デンソー | Tire pressure monitoring system |
JP4321194B2 (en) * | 2003-09-24 | 2009-08-26 | 株式会社アドヴィックス | Speedometer control device and speedometer control method |
DE102004020927A1 (en) * | 2004-04-28 | 2005-11-17 | Continental Aktiengesellschaft | Car safety sensor functionality verification procedure compares car status values derived from two different sensors with threshold difference |
JP2008523360A (en) * | 2004-12-06 | 2008-07-03 | エヌエックスピー ビー ヴィ | System, data carrier, reader and method for measuring wheel peripheral speed and distance traveled |
US7302979B2 (en) * | 2005-03-16 | 2007-12-04 | Dana Corporation | Vehicle tire inflation system and sensor and method of use |
US7306020B2 (en) * | 2005-04-19 | 2007-12-11 | Dana Corporation | Tire inflation system and wheel sensor and method of use |
US7574292B2 (en) * | 2005-05-18 | 2009-08-11 | Chrysler Group Llc | Method and system for calibrating a vehicle speed |
JP4707496B2 (en) * | 2005-08-09 | 2011-06-22 | 住友ゴム工業株式会社 | Tire pressure drop detection method using GPS speed information |
US20090150118A1 (en) * | 2005-08-31 | 2009-06-11 | Reza Naima | Method and apparatus for secure wireless tracking and control |
JP4823642B2 (en) * | 2005-10-21 | 2011-11-24 | 住友ゴム工業株式会社 | Tire pressure drop warning method and apparatus using GPS information, and tire pressure drop warning program |
US7953526B2 (en) * | 2006-01-18 | 2011-05-31 | I-Guide Robotics, Inc. | Robotic vehicle controller |
US8239083B2 (en) * | 2006-01-18 | 2012-08-07 | I-Guide Robotics, Inc. | Robotic vehicle controller |
US8630768B2 (en) | 2006-05-22 | 2014-01-14 | Inthinc Technology Solutions, Inc. | System and method for monitoring vehicle parameters and driver behavior |
US9067565B2 (en) | 2006-05-22 | 2015-06-30 | Inthinc Technology Solutions, Inc. | System and method for evaluating driver behavior |
DE102006028584A1 (en) * | 2006-06-22 | 2007-12-27 | Wabco Gmbh | Display system for a trailer |
US7899610B2 (en) | 2006-10-02 | 2011-03-01 | Inthinc Technology Solutions, Inc. | System and method for reconfiguring an electronic control unit of a motor vehicle to optimize fuel economy |
US7589471B2 (en) * | 2006-10-20 | 2009-09-15 | International Truck Intellectual Property Company, Llc | System for pre-indication of motor vehicle HID lamp feature |
EP2123487B1 (en) * | 2006-12-13 | 2015-07-29 | Kabushiki Kaisha Bridgestone | Device for estimating tire wear amount and vehicle mounted with device for estimating tire wear amount |
JP5457201B2 (en) * | 2007-03-16 | 2014-04-02 | ニラ・ダイナミクス・エイビイ | Use of suspension information in detecting tire pressure deviations in vehicle tires |
US8825277B2 (en) | 2007-06-05 | 2014-09-02 | Inthinc Technology Solutions, Inc. | System and method for the collection, correlation and use of vehicle collision data |
US8666590B2 (en) | 2007-06-22 | 2014-03-04 | Inthinc Technology Solutions, Inc. | System and method for naming, filtering, and recall of remotely monitored event data |
US8150576B2 (en) | 2007-06-25 | 2012-04-03 | International Engine Intellectual Property Company Llc | Engine glow plug diagnosis using crankshaft sensor data |
US9129460B2 (en) | 2007-06-25 | 2015-09-08 | Inthinc Technology Solutions, Inc. | System and method for monitoring and improving driver behavior |
US7999670B2 (en) | 2007-07-02 | 2011-08-16 | Inthinc Technology Solutions, Inc. | System and method for defining areas of interest and modifying asset monitoring in relation thereto |
US8818618B2 (en) | 2007-07-17 | 2014-08-26 | Inthinc Technology Solutions, Inc. | System and method for providing a user interface for vehicle monitoring system users and insurers |
US9117246B2 (en) | 2007-07-17 | 2015-08-25 | Inthinc Technology Solutions, Inc. | System and method for providing a user interface for vehicle mentoring system users and insurers |
US8577703B2 (en) | 2007-07-17 | 2013-11-05 | Inthinc Technology Solutions, Inc. | System and method for categorizing driving behavior using driver mentoring and/or monitoring equipment to determine an underwriting risk |
US7876205B2 (en) | 2007-10-02 | 2011-01-25 | Inthinc Technology Solutions, Inc. | System and method for detecting use of a wireless device in a moving vehicle |
EP2065688B1 (en) | 2007-11-27 | 2012-04-18 | Elektrobit Automotive GmbH | Technique for detecting shifted cargo |
US7843320B2 (en) * | 2008-02-16 | 2010-11-30 | Richard Louis Ponziani | Turn signal appropritate use reminder system |
US8612066B2 (en) * | 2008-03-28 | 2013-12-17 | Caterpillar Inc. | Control system for payload limiting of hauling operation |
EP2107356A1 (en) * | 2008-03-31 | 2009-10-07 | Carnehammar, Lars Bertil | Method, apparatus and system for analyzing a vehicle wheel |
US8290662B2 (en) * | 2008-04-25 | 2012-10-16 | Ford Global Technologies, Llc | System and method for tire cornering power estimation and monitoring |
US8688180B2 (en) | 2008-08-06 | 2014-04-01 | Inthinc Technology Solutions, Inc. | System and method for detecting use of a wireless device while driving |
US8024118B2 (en) * | 2008-09-16 | 2011-09-20 | International Truck Intellectual Property Company, Llc | Engine idle control using GPS telematics |
US8963702B2 (en) | 2009-02-13 | 2015-02-24 | Inthinc Technology Solutions, Inc. | System and method for viewing and correcting data in a street mapping database |
US8892341B2 (en) | 2009-02-13 | 2014-11-18 | Inthinc Technology Solutions, Inc. | Driver mentoring to improve vehicle operation |
US8188887B2 (en) | 2009-02-13 | 2012-05-29 | Inthinc Technology Solutions, Inc. | System and method for alerting drivers to road conditions |
JP4979729B2 (en) * | 2009-03-19 | 2012-07-18 | 日立建機株式会社 | Vehicle equipped with a tire wear determination device |
US8010276B2 (en) | 2009-08-31 | 2011-08-30 | International Engine Intellectual Property Company, Llc | Intake manifold oxygen control |
US8306710B2 (en) | 2010-04-14 | 2012-11-06 | International Engine Intellectual Property Company, Llc | Method for diesel particulate filter regeneration in a vehicle equipped with a hybrid engine background of the invention |
CN101973192B (en) * | 2010-10-03 | 2013-01-30 | 燕山大学 | Method for Monitoring Tire Pressure During Car Turning |
US9189454B2 (en) | 2010-11-19 | 2015-11-17 | Yamaha Hatsudoki Kabushiki Kaisha | Two-wheeled motor vehicle and control device therefor |
EP2755876B1 (en) * | 2011-09-12 | 2019-05-08 | Continental Teves AG & Co. OHG | Method for estimating tire parameters for a vehicle |
US8874345B2 (en) * | 2012-04-04 | 2014-10-28 | General Electric Company | Method and system for identifying an erroneous speed of a vehicle |
EP2847020B1 (en) | 2012-05-08 | 2016-07-06 | Volvo Lastvagnar AB | Traction system and a method for controlling said traction system |
DE102012217901B3 (en) | 2012-10-01 | 2014-05-28 | Continental Automotive Gmbh | Method, controller and system for determining a tread depth of a tread of a tire |
US9205759B2 (en) * | 2013-03-15 | 2015-12-08 | General Electric Company | System and method of vehicle system control |
US9172477B2 (en) | 2013-10-30 | 2015-10-27 | Inthinc Technology Solutions, Inc. | Wireless device detection using multiple antennas separated by an RF shield |
US20150186690A1 (en) * | 2013-12-26 | 2015-07-02 | Justin Thomas Loop | System and Method for Tracking a Consumable with a Mobile Depreciating Asset System |
US9387734B1 (en) * | 2015-03-26 | 2016-07-12 | Hussain Ali Alhazmi | Intelligent embedded system device for monitoring car wheel performance |
US10464419B2 (en) | 2015-09-30 | 2019-11-05 | Cnh Industrial America Llc | System and method for automatically controlling vehicle speed based on track-related temperatures of a work vehicle |
DE102016225429A1 (en) * | 2016-12-19 | 2018-06-21 | Continental Automotive Gmbh | Control device and electronic wheel unit for a wheel monitoring system of a vehicle, wheel monitoring system of a vehicle and method for wheel monitoring in a vehicle |
US11110760B2 (en) * | 2017-01-23 | 2021-09-07 | Fresnel Technologies, Inc. | Systems and methodologies for capturing tire temperatures with a temperature sensing instrument |
US11366135B2 (en) | 2017-04-19 | 2022-06-21 | Ford Global Technologies, Llc | GNSS statistically derived ABS speedometer calibration |
RU2679271C1 (en) * | 2017-10-02 | 2019-02-06 | Федеральное государственное бюджетное учреждение "4 Центральный научно-исследовательский институт" Министерства обороны Российской Федерации | Mechanical path meter |
DE102017221142B4 (en) * | 2017-11-27 | 2019-12-19 | Continental Automotive Gmbh | Method, control device and system for determining a tread depth of a tread profile |
US10661808B2 (en) * | 2018-04-09 | 2020-05-26 | Arnold Chase | Dynamic vehicle separation system |
US10730529B2 (en) | 2018-04-09 | 2020-08-04 | Arnold Chase | Dynamic vehicle separation system |
US20220185037A1 (en) * | 2020-12-15 | 2022-06-16 | The Goodyear Tire & Rubber Company | System and method for evaluation of tire pressure |
DE102021200236A1 (en) * | 2021-01-13 | 2022-07-14 | Dana Motion Systems Italia S.R.L. | Method of inflating a tire and central tire inflation system |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3236520A1 (en) * | 1982-10-02 | 1984-04-05 | Robert Bosch Gmbh, 7000 Stuttgart | Device for indicating the state of vehicle tyres |
US4773011A (en) * | 1986-01-27 | 1988-09-20 | The Goodyear Tire & Rubber Company | Method of surveying, selecting, evaluating, or servicing the tires of vehicles |
US5587698A (en) * | 1992-02-05 | 1996-12-24 | Genna; Robert A. | Automatic tire pressure control system for a vehicle |
JP3270844B2 (en) * | 1993-02-19 | 2002-04-02 | トヨタ自動車株式会社 | Vehicle control device |
JP3289375B2 (en) * | 1993-03-24 | 2002-06-04 | 株式会社デンソー | VEHICLE VEHICLE VEHICLE ESTIMATION DEVICE AND TIRE CONDITION DETECTOR USING ESTIMATED VEHICLE VEHICLE VEHICLE |
DE4342332A1 (en) | 1993-12-11 | 1995-06-14 | Bosch Gmbh Robert | Method for generating a straight-ahead signal |
JPH07315196A (en) * | 1994-05-24 | 1995-12-05 | Nissan Motor Co Ltd | Nonskid control device |
DE4430458A1 (en) | 1994-08-27 | 1996-02-29 | Teves Gmbh Alfred | Method for determining the lateral acceleration of a vehicle |
US5583797A (en) | 1994-11-03 | 1996-12-10 | Ford Motor Company | Method and apparatus for wheel alignment audit |
JP2749784B2 (en) * | 1994-11-21 | 1998-05-13 | 住友電気工業株式会社 | Turning radius calculation method and turning radius calculation device |
US5569848A (en) * | 1995-01-06 | 1996-10-29 | Sharp; Everett H. | System, method and apparatus for monitoring tire inflation pressure in a vehicle tire and wheel assembly |
JPH092240A (en) * | 1995-06-14 | 1997-01-07 | Nippon Denshi Kogyo Kk | Braking pressure reducing control point detecting method in abs device |
JP3150893B2 (en) | 1996-01-12 | 2001-03-26 | 住友ゴム工業株式会社 | Tire identification method and device |
GB9602442D0 (en) * | 1996-02-07 | 1996-04-03 | Sumitomo Rubber Ind | Method of detecting a deflated tyre on a vehicle |
DE69725814T2 (en) * | 1996-08-23 | 2004-09-23 | Canon Denshi K.K., Chichibu | Method and device for determining the rotation of wheels |
JPH1071818A (en) | 1996-08-30 | 1998-03-17 | Sumitomo Electric Ind Ltd | Wheel speed signal processing device used for detecting tire pressure drop |
US5760682A (en) | 1997-03-07 | 1998-06-02 | Robert Bosch Gmbh | Method for detecting a deflated tire on a vehicle |
US6064936A (en) | 1997-04-14 | 2000-05-16 | Sumitomo Electric Industries, Ltd. | Tire air pressure reduction detecting apparatus |
US5847645A (en) * | 1997-06-04 | 1998-12-08 | Ford Global Technologies, Inc. | Tire diagnostic system |
US6002327A (en) * | 1998-11-04 | 1999-12-14 | Ford Global Technologies, Inc. | Low tire warning system with axle torque signal |
US6222444B1 (en) * | 2000-04-03 | 2001-04-24 | Robert Bosch Corporation | Method for detecting a deflated tire on a vehicle |
-
2000
- 2000-08-09 US US09/634,166 patent/US6313742B1/en not_active Expired - Lifetime
-
2001
- 2001-08-01 WO PCT/US2001/024160 patent/WO2002012003A2/en active Application Filing
- 2001-08-01 CA CA002419004A patent/CA2419004A1/en not_active Abandoned
- 2001-08-01 EP EP01972919A patent/EP1318924A4/en not_active Withdrawn
- 2001-08-01 MX MXPA03001217A patent/MXPA03001217A/en active IP Right Grant
- 2001-08-01 AU AU2001292550A patent/AU2001292550A1/en not_active Abandoned
- 2001-09-06 US US09/948,085 patent/US6426694B1/en not_active Expired - Fee Related
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060193368A1 (en) * | 2001-10-18 | 2006-08-31 | Michelin Recherche Et Technique S.A. | Method of estimating the temperature of the air in the internal cavity of a tire and application to the detection of abnormal operating of a running-flat system |
US7338201B2 (en) * | 2001-10-18 | 2008-03-04 | Michelin Recherche Et Technique S.A. | Method of estimating the temperature of the air in the internal cavity of a tire and application to the detection of abnormal operating of a running-flat system |
US6876300B2 (en) | 2002-11-25 | 2005-04-05 | Richard L. Ponziani | Electronic intelligent turn signal control system |
US7408455B2 (en) | 2002-11-25 | 2008-08-05 | Richard L. Ponziani | Electronic intelligent turn signal control system |
US20050248449A1 (en) * | 2002-11-25 | 2005-11-10 | Ponziani Richard L | Electronic intelligent turn signal control system |
US7173524B2 (en) | 2002-11-25 | 2007-02-06 | Richard L. Ponziani | Electronic intelligent turn signal control system |
DE112004000648B4 (en) * | 2003-04-14 | 2016-01-21 | Scania Cv Ab (Publ) | Arrangement for estimating the speed of a vehicle with the aid of a corrected wheel radius |
US8768617B2 (en) * | 2003-10-06 | 2014-07-01 | Csr Technology Inc. | Method and system for a data interface for aiding a satellite positioning system receiver |
US20050134503A1 (en) * | 2003-10-06 | 2005-06-23 | Colley Jaime B. | Method and system for a data interface for aiding a satellite positioning system receiver |
US7551992B2 (en) * | 2003-11-25 | 2009-06-23 | Sumitomo Rubber Industries, Ltd. | Detecting tire decompression based on wheel speed |
EP1547828A3 (en) * | 2003-11-25 | 2007-04-18 | Sumitomo Rubber Industries Limited | Method for detecting decompression of tires and device thereof |
US20050113992A1 (en) * | 2003-11-25 | 2005-05-26 | Masashi Kitano | Method for detecting decompression of tires and device thereof, and program for judging decompression of tires |
EP1547828A2 (en) | 2003-11-25 | 2005-06-29 | Sumitomo Rubber Industries Limited | Method for detecting decompression of tires and device thereof |
US7831346B2 (en) * | 2003-11-25 | 2010-11-09 | Sumitomo Rubber Industries, Inc. | Method for detecting decompression of tires and device thereof, and program for judging decompression of tires |
US20080255719A1 (en) * | 2003-11-25 | 2008-10-16 | Masashi Kitano | Method for detecting decompression of tires and device thereof, and program for judging decompression of tires |
EP1584928A1 (en) * | 2004-04-07 | 2005-10-12 | Scania CV AB (publ) | System and method for estimating a vehicle speed |
US20050228570A1 (en) * | 2004-04-07 | 2005-10-13 | Tony Sandberg | System, method, vehicle, ECU, computer program and computer program product |
US20060058977A1 (en) * | 2004-09-14 | 2006-03-16 | Youcong Zhu | Method for monitoring tyre pressure variation of automobile tyre and system for realizing the same |
US7395177B2 (en) * | 2004-09-14 | 2008-07-01 | Shantou Hi-Tech Zone Tonki Motorcar Science And Technology Co., Ltd. | Method for monitoring tire pressure variation of automobile tire and system for realizing the same |
US20060178853A1 (en) * | 2004-09-14 | 2006-08-10 | Haosheng Chen | Method for monitoring tire pressure variation of automobile tire and system for realizing the same |
US9604606B2 (en) * | 2005-09-06 | 2017-03-28 | Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh | Method for controlling a pneumatic braking system |
US20080309154A1 (en) * | 2005-09-06 | 2008-12-18 | Knorr-Bremse Systeme Fuer Nutzfahrzeuge Gmbh | Method For Controlling a Pneumatic Braking System |
US20070100529A1 (en) * | 2005-10-31 | 2007-05-03 | Williams-Pyro, Inc. | Vehicle odometer using on-board diagnostic information |
US8275509B2 (en) * | 2006-08-29 | 2012-09-25 | Continental Automotive Gmbh | Speed detection for a tachograph system |
US20100191413A1 (en) * | 2006-08-29 | 2010-07-29 | Continental Automotive Gmbh | Speed detection for a tachograph system |
US20100114428A1 (en) * | 2007-06-01 | 2010-05-06 | Honda Motor Co., Ltd. | Wheel diameter variation-detecting device |
US9008903B2 (en) * | 2007-06-01 | 2015-04-14 | Honda Motor Co., Ltd. | Wheel diameter variation-detecting device |
US20100030512A1 (en) * | 2008-07-31 | 2010-02-04 | Hoeffel James J | Determination and wireless communication of sensed vehicle data for computing vehicle speed |
US8346502B2 (en) * | 2008-07-31 | 2013-01-01 | Chrysler Group Llc | Determination and wireless communication of sensed vehicle data for computing vehicle speed |
US8350688B2 (en) * | 2010-03-01 | 2013-01-08 | International Truck Intellectual Property Company, Llc | System and method for indirect indication of tire pressure loss |
US20110210841A1 (en) * | 2010-03-01 | 2011-09-01 | International Truck Intellectual Property Company, Llc | System and Method for Indirect Indication of Tire Pressure Loss |
US20110276242A1 (en) * | 2010-05-07 | 2011-11-10 | Gm Global Technology Operations, Inc. | Method and system for assessing vehicle movement |
US8340881B2 (en) * | 2010-05-07 | 2012-12-25 | GM Global Technology Operations LLC | Method and system for assessing vehicle movement |
CN104417565A (en) * | 2013-08-26 | 2015-03-18 | 福特全球技术公司 | Sensor fusion vehicle velocity estimation system and method |
US10384537B2 (en) | 2014-12-23 | 2019-08-20 | Volvo Truck Corporation | Method and device for tandem- or multiple-axle drive for a vehicle |
US20170023441A1 (en) * | 2015-07-21 | 2017-01-26 | The Goodyear Tire & Rubber Company | Tread wear estimation system and method |
US9719886B2 (en) * | 2015-07-21 | 2017-08-01 | The Goodyear Tire & Rubber Company | Tread wear estimation system and method |
CN108674101A (en) * | 2017-08-23 | 2018-10-19 | 佛山市顺德区中山大学研究院 | A kind of tire health and Geography monitor system |
CN107539215A (en) * | 2017-08-24 | 2018-01-05 | 易绍福 | A kind of wheel temperature monitoring system |
US10974731B2 (en) * | 2019-03-26 | 2021-04-13 | Ford Global Technologies, Llc | Vehicle fault detection system |
US20220120638A1 (en) * | 2020-10-16 | 2022-04-21 | GM Global Technology Operations LLC | Robust tire/wheel vibration monitor system |
US11815426B2 (en) * | 2020-10-16 | 2023-11-14 | GM Global Technology Operations LLC | Robust tire/wheel vibration monitor system |
Also Published As
Publication number | Publication date |
---|---|
CA2419004A1 (en) | 2002-02-14 |
WO2002012003A3 (en) | 2002-06-13 |
US6426694B1 (en) | 2002-07-30 |
EP1318924A4 (en) | 2004-08-04 |
WO2002012003A2 (en) | 2002-02-14 |
AU2001292550A1 (en) | 2002-02-18 |
MXPA03001217A (en) | 2003-08-19 |
US6313742B1 (en) | 2001-11-06 |
EP1318924A2 (en) | 2003-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6313742B1 (en) | Method and apparatus for wheel condition and load position sensing | |
EP0800464B1 (en) | System and method for monitoring tire inflation pressure in a vechicle tire and wheel assembly | |
CN111315593B (en) | Method, control device and system for determining the profile depth of a tire profile | |
US7567171B2 (en) | Method and device or system to monitor the state of tires, and detection of snow chains or spikes use, on a vehicle | |
US7522032B2 (en) | Method for detecting decrease in inner pressure of tire using GPS speed information | |
US7469578B2 (en) | Method and apparatus for evaluating a cornering stability of a wheel | |
US7187273B2 (en) | System for determining a change in vehicle tire pressure | |
EP3605023B1 (en) | Method for determining a vehicle route based on an estimation of the weight of the vehicle | |
US12128714B2 (en) | Model for predicting wear and the end of life of a tire | |
JPH10506468A (en) | Vehicle running meter | |
US12275280B2 (en) | Enhanced tracking of tire tread wear | |
US20040093128A1 (en) | Vehicle speed measuring apparatus | |
US20040143376A1 (en) | Method and system for determining tire pressure imbalances | |
JP2003531763A (en) | Misalignment detection system for automotive steering system | |
JP2023020492A (en) | Tire damage accumulation amount estimation system, arithmetic model generation system, and tire damage accumulation amount estimation method | |
US10668778B2 (en) | Method and system for ascertaining a pressure ratio between a setpoint tire pressure and an actual tire pressure for tire of a vehicle | |
CN110461628A (en) | Method for the measurement pressure in tire balance | |
US6877371B1 (en) | Method and apparatus for detecting tire pressure | |
US20040111198A1 (en) | Underinflation detector | |
JP7595494B2 (en) | Wear amount estimation system, computation model generation system, and wear amount estimation method | |
JP4800025B2 (en) | Vehicle load state estimation method and tire pressure drop warning method | |
JP4163009B2 (en) | Section time calculation method for traveling vehicle, evaluation method for traveling vehicle, and tire evaluation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL TRUCK AND ENGINE CORPORATION;REEL/FRAME:012641/0107 Effective date: 20001117 |
|
AS | Assignment |
Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LARSON, GERALD L.;REEL/FRAME:012765/0891 Effective date: 20020531 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY AGREEMENT;ASSIGNORS:INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY, LLC;INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, LLC;NAVISTAR INTERNATIONAL CORPORATION;AND OTHERS;REEL/FRAME:028944/0730 Effective date: 20120817 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140730 |
|
AS | Assignment |
Owner name: NAVISTAR INTERNATIONAL CORPORATION, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 Owner name: INTERNATIONAL ENGINE INTELLECTUAL PROPERTY COMPANY Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 Owner name: NAVISTAR, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 Owner name: INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT;REEL/FRAME:044416/0867 Effective date: 20171106 |