US20020036411A1 - Apparatus and method for handling an integrated circuit - Google Patents
Apparatus and method for handling an integrated circuit Download PDFInfo
- Publication number
- US20020036411A1 US20020036411A1 US10/000,614 US61401A US2002036411A1 US 20020036411 A1 US20020036411 A1 US 20020036411A1 US 61401 A US61401 A US 61401A US 2002036411 A1 US2002036411 A1 US 2002036411A1
- Authority
- US
- United States
- Prior art keywords
- integrated circuit
- vacuum chamber
- suction orifice
- expandable member
- aperture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 31
- 230000037361 pathway Effects 0.000 claims abstract description 26
- 238000012360 testing method Methods 0.000 claims abstract description 26
- 230000008602 contraction Effects 0.000 claims description 5
- 230000001902 propagating effect Effects 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims 4
- 230000007246 mechanism Effects 0.000 abstract description 27
- 239000011521 glass Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000013011 mating Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007567 mass-production technique Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920002449 FKM Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
- H05K13/0404—Pick-and-place heads or apparatus, e.g. with jaws
- H05K13/0408—Incorporating a pick-up tool
- H05K13/0409—Sucking devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/08—Monitoring manufacture of assemblages
- H05K13/081—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
- H05K13/0812—Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S294/00—Handling: hand and hoist-line implements
- Y10S294/907—Sensor controlled device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/53—Means to assemble or disassemble
- Y10T29/5313—Means to assemble electrical device
- Y10T29/53191—Means to apply vacuum directly to position or hold work part
Definitions
- the present invention is generally related to the field of integrated circuit fabrication and, more particularly, is related to an apparatus and method for the automated handling and testing of optical integrated circuits.
- the present invention provides an apparatus and method for picking up an integrated circuit that facilitates optical testing thereof.
- the apparatus comprises a pick-up mechanism that includes a vacuum chamber.
- the vacuum chamber is defined by an upper portion, an expandable member, and a lower portion.
- the lower portion defines a suction orifice that is moveable with a movement of the expandable member.
- An optical pathway is defined by the vacuum chamber, the optical pathway passing through the suction orifice and onto an integrated circuit that is held against the suction orifice via a vacuum pressure applied to the vacuum chamber.
- the suction orifice is applied to a surface of the integrated circuit and the vacuum is applied to the vacuum chamber, thereby applying a suction hold to the integrated circuit.
- the expandable member contracts, thereby moving the suction orifice in an axial direction until the integrated circuit comes into contact with a number of contact edges that stop the movement.
- the expandable member may be, for example, a bellows or other similar device as an integral portion of the vacuum chamber.
- the present invention can also be viewed as providing a method for picking up and testing an integrated circuit.
- the method can be broadly summarized by the following steps: providing a vacuum chamber having an upper portion, an expandable member, and a lower portion, the lower portion defining a suction orifice, the suction orifice being moveable with a movement of the expandable member; applying the suction orifice to a smooth face of an integrated circuit; evacuating the vacuum chamber to pick up the integrated circuit; and illuminating the smooth face of the integrated circuit with a light that propagates along an optical pathway that passes through the suction orifice.
- the present invention has numerous advantages, including the movement of the suction orifice that accommodates the use of a more rigid 0 -ring that provides greater durability and reliability in operation.
- the movement of the suction orifice also allows the pick-up mechanism to be employed with integrated circuits of varying height with the less durable O-ring.
- the frictional mounting of the O-ring keeps it in place in the O-ring groove and it does not move into the optical pathway in any way.
- the pick-up mechanism allows the automated testing of active pixel sensors, for example, by applying light to the sensor while it is held by the pick-up mechanism which places the sensor over test pads for testing.
- the over all design of the pick-up mechanism is simple, user friendly, robust and reliable in operation, efficient in operation, and easily implemented for mass commercial production.
- FIG. 1 is a section view of a pick-up mechanism according to an embodiment of the present invention
- FIG. 2 is a section view of the pick-up mechanism of FIG. 1 engaging an integrated circuit
- FIG. 3A is a top view of a upper portion employed in the pick-up mechanism of FIG. 1;
- FIG. 3B is a side view of the upper portion of FIG. 3A;
- FIG. 4A is a bottom view of a lower portion employed in the pick-up mechanism of FIG. 1;
- FIG. 4B is a side view of the lower portion of FIG. 4A;
- FIG. 5A is a top view of an O-ring employed in the pick-up mechanism of FIG. 1;
- FIG. 5B is a side view of the O-ring of FIG. 5A.
- the pick-up mechanism 100 includes a support bracket 103 that provides a support structure for the major components of the pick-up mechanism 100 .
- the pick-up mechanism 100 also includes a vacuum chamber 105 that is defined by an upper portion 106 top, an expandable member 109 , and a lower portion 113 .
- the upper portion 106 may comprise, for example, a top flange or other suitable structural member.
- the expandable portion 109 may comprise, for example, a bellows or other suitable member that expands and contracts accordingly.
- the lower portion 113 may comprise, for example, a pick-up flange or other suitable structural member.
- the upper portion 106 is set into the support bracket 103 as shown and is held into place by set screw 116 .
- the support bracket 103 also includes a vacuum inlet 119 that provides access to a threaded vacuum inlet 123 of the upper portion 106 .
- An appropriate vacuum fitting 126 is threaded into the threaded vacuum inlet 123 through the vacuum inlet 119 of the support bracket 103 as shown.
- the expandable member 109 is adhesively attached to the bottom of the upper portion 106 and the top of the lower portion 113 as shown.
- the pick-up mechanism 100 also includes a mating flange 129 that is removably attached to the bottom of the support bracket 103 via one of a number of means, for example, by bolts, etc.
- the mating flange 129 restricts the movement of the lower portion 113 in an axial direction 131 .
- the lower portion 113 is movable within the mating flange 129 with the movement, i.e., the expansion and/or the contraction, of the expandable member 109 .
- the mating flange 129 restricts the movement of the lower portion 113 in the axial direction 131 .
- the mating flange 129 also includes a number of contact edges 133 that together define an integrated circuit stop as will be discussed.
- the pick-up mechanism 100 further includes a lens/glass diffuser 136 that is seated into the upper portion 106 and adhesively mounted thereto.
- the expandable member 109 is adhesively mounted to the bottom of the upper portion 106 . Both the lens/glass diffuser 136 and the expandable member 109 are attached to the upper portion 106 using a suitable adhesive to prevent any vacuum leakage as will be discussed.
- the lower portion 113 is also adhesively attached to the expandable member 109 as shown.
- the bottom of the lower portion 113 defines a suction orifice 139 .
- the suction orifice 139 is exposed at its exit face 143 .
- the lower portion 113 also includes an O-ring groove 146 that is placed around the perimeter of the exit face 143 of the suction orifice 139 .
- Mounted in the O-ring groove 146 is an O-ring 153 .
- the O-ring 153 is preferably frictionally mounted into the O-ring groove 146 to provide for easy removal and replacement by hand.
- the O-ring 153 defines a ceiling junction with an integrated circuit 156 that may include, for example, active pixel sensor circuits.
- the vacuum chamber 105 generally defines an optical pathway 159 that passes through the lens/glass diffuser 136 , the upper portion 106 , expandable member 109 , and the lower portion 113 and exits out of the suction orifice 139 .
- the optical pathway 159 advantageously facilitates an optical testing of the integrated circuit 156 while it is held by the pick-up mechanism 100 as will be discussed.
- the pick-up mechanism 100 is discussed. To begin, the pick-up mechanism 100 is positioned above, for example, an optical integrated circuit 156 or other integrated circuit that is to be tested. The suction orifice 139 is then placed against the upper surface of the integrated circuit 156 such that the O-ring 153 is mated against the upper surface of the integrated circuit 156 . Thereafter, a vacuum pressure is applied to the vacuum inlet 126 , causing the lower portion 113 with the integrated circuit 156 to be pulled upward in an axial motion.
- the axial movement occurs when the expandable member 109 contracts as shown.
- the O-ring 153 advantageously creates a vacuum seal with the upper surface of the integrated circuit 156 and therefore the integrated circuit is held against the lower portion 113 . Together the lower portion 113 and the integrated circuit 156 will move upward until the contact edges 133 come into contact with the leads 163 of the integrated circuit 156 .
- two contact edges 133 are shown, it is understood that there may be four contact edges 133 that come into contact with leads 163 that extend from the integrated circuit 156 on all four sides, etc.
- the integrated circuit 156 is thus seated against the contact edges 133 thereby preventing the further axial movement of the lower portion 113 and the integrated circuit 156 .
- the pick-up mechanism 100 travels to a new position to place the integrated circuit 156 on contact pads for testing as is known in the art.
- a light source 166 may then be employed to generate light that propagates along the optical pathway 159 and falls on the sensor 156 .
- the light source 166 may comprise, for example, a laser, incoherent light, or other suitable light source.
- Light sensitive components 169 located on the surface of the integrated circuit 156 sense the light and the testing of the integrated circuit 156 is performed.
- the light sensitive components 169 may be covered by a layer of transparent material, such as glass, etc.
- the integrated circuit 156 may comprise, for example, an active pixel sensor or other similar integrated circuit.
- the integrated circuit 156 is released by relieving the vacuum at the vacuum inlet 126 .
- the pick-up mechanism 100 provides several benefits including an axial movement of the suction orifice 139 that accommodates the use of a more rigid O-ring 153 .
- the axial movement allows the pick-up mechanism 100 to be employed with integrated circuits 156 of varying height and at the same time allows the use of the O-ring 153 .
- the use of the expandable member 109 allows the suction orifice 139 along with the O-ring 153 to be placed over integrated circuits with greater height as the lower portion 113 will be pushed up into the mating flange 129 , the expandable member 109 contracting accordingly.
- the pick-up mechanism 100 facilitates the automated testing of active pixel sensors, for example, by applying light to the sensor while it is held by the pick-up mechanism 100 which places the sensor over test pads for testing.
- the materials that are used to manufacture the support bracket 103 , upper portion 106 , and the lower portion 113 may be, for example, aluminum, steel, or other material. Aluminum or other lightweight materials are preferable as the resulting pick-up mechanism 100 requires less force and energy to manipulate during use, etc.
- the expandable member 109 may comprise stainless steel or other suitable material that is durable and can withstand repeated use without degradation or developing holes, etc.
- the upper portion 106 facilitates adhesive mounting of the lens/glass diffuser 136 therein. Specifically, a silicon adhesive may be applied to a contact surface 173 of the upper portion 106 or to the lens/glass diffuser 136 . Thereafter, the lens/glass diffuser 136 is placed into position in the upper portion 106 .
- the upper portion 106 also includes spill over grooves 176 that accommodate a run over of silicon adhesive. After placing the lens/glass diffuser 136 into the upper portion 106 , it is given a quarter turn, for example, to ensure a proper vacuum seal is formed between the lens/glass diffuser 136 and the upper portion 106 .
- the lower portion 113 includes interior angled surfaces 179 .
- the interior angled surfaces 179 serve to prevent the light propagating along the optical pathway 159 (FIG. 2) from reflecting off of the interior angled surfaces 179 thereby adversely affecting the uniformity of the light that falls on the light sensitive components 169 (FIG. 2). Rather than fall on the light sensitive components 169 , the reflected light propagates toward the opposing interior angled surfaces 179 .
- the angle of the interior angled surfaces 179 with respect to the optical pathway 159 is, for example, 20 degrees, but other angles may be employed.
- the interior angled surfaces 179 as well as the entire interior of the lower portion 113 are preferably colored in a non-reflective color such as, for example, flat black to reduce unwanted reflection of the light that propagates along the optical pathway 159 .
- the O-ring groove 146 located around the suction orifice 139 preferably accommodates the frictional mounting of the O-ring 153 therein.
- the O-ring groove 146 may appear in many different shapes and sizes, depending upon the particular size and shape of the integrated circuit 156 that one wishes to pick up with the pick-up mechanism 100 . Due to the fact that the O-ring 153 is made of a flexible material, the O-ring can typically be fitted into the O-ring groove 146 even though the O-ring groove 146 is a different shape than the O-ring 153 .
- the O-ring groove 146 also includes a surface smoothness that is necessary to form a vacuum seal between the O-ring 153 and the lower portion 113 .
- the roughness/height index value of the surface of the O-ring groove 146 is generally not greater than 16 microinches, for example, although other smoothness factors may be employed providing that a proper vacuum seal is formed.
- the O-ring may be mounted into the O-ring groove 146 using an appropriate adhesive, etc., however such a mounting may make the O-ring 153 harder to remove.
- the O-ring 153 is comprised of a material of sufficient hardness to prevent the integrated circuit 156 (FIG. 1) from sticking to the O-ring 153 itself after the vacuum is relieved in the vacuum chamber 104 (FIG. 1).
- the material of the O-ring 153 is also preferably durability and capable of withstanding harsh atmospheres.
- the O-ring 153 may be exposed to solvents such as acetone or alcohol in the typical integrated circuit manufacturing environment and should not experience any significant degradation therefrom.
- One suitable material that may be used for the O-ring 153 is Viton, manufactured by and commercially available from Pressure Seals, Inc., of South Windsor, Conn. although other suitable materials may be employed as well keeping the above criterion in mind.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Operations Research (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
- This application is a divisional of copending U.S. utility application entitled, “Apparatus And Method For Handling An Integrated Circuit,” having Ser. No. 09/428,152, filed Oct. 27, 1999, which is entirely incorporated herein by reference.
- The present invention is generally related to the field of integrated circuit fabrication and, more particularly, is related to an apparatus and method for the automated handling and testing of optical integrated circuits.
- The electronics industry currently produces thousands of integrated circuits each day. These circuits have come down in cost significantly in more recent years due to the use of effective mass production techniques that facilitate the current high output. The machinery employed in these mass production techniques is quite complex and often performs repetitive tasks. Such machinery is typically engineered for maximum reliability over a large number of operation cycles, whatever the specific operation may entail.
- In addition to the use of automated machines to produce various integrated circuits, industry also employs automated machines to test the integrated circuits to ensure maximum reliability and quality of the end product. Due to the high volumes created, such testing equipment is designed with the goal in mind to operate with maximum efficiency over numerous cycles without failure. However, some testing systems fall short of this goal.
- For example, in testing one particular type of integrated circuit, namely, an active pixel sensor, machines are employed to pick up the sensor and place it on a test circuit such that the leads of the sensor come into contact with electrical pads through which the sensor may be tested. Such sensors require that light be applied to their light sensitive surface to determine whether the response of the sensor is within acceptable parameters.
- However, typical pick-up devices employed to handle such sensors do not provide an ability to both hold the sensor and apply light to the light sensitive surface. In particular, suction cups that are typically used in such handling equipment generally cover the light sensitive surfaces and a proper test may not be performed when such handlers place the sensor against the appropriate test pads.
- To solve this problem, some have attempted to use suction devices that allow light to illuminate the light sensitive surfaces. However, such machinery has proven unreliable. In particular, such pick-up machines cannot effectively create a reliable vacuum seal with the integrated circuit that allows light to be applied to the light sensitive surfaces over an acceptable number of testing cycles.
- In light of the foregoing, the present invention provides an apparatus and method for picking up an integrated circuit that facilitates optical testing thereof. Briefly described, the apparatus comprises a pick-up mechanism that includes a vacuum chamber. The vacuum chamber is defined by an upper portion, an expandable member, and a lower portion. The lower portion defines a suction orifice that is moveable with a movement of the expandable member. An optical pathway is defined by the vacuum chamber, the optical pathway passing through the suction orifice and onto an integrated circuit that is held against the suction orifice via a vacuum pressure applied to the vacuum chamber.
- During operation, the suction orifice is applied to a surface of the integrated circuit and the vacuum is applied to the vacuum chamber, thereby applying a suction hold to the integrated circuit. The expandable member contracts, thereby moving the suction orifice in an axial direction until the integrated circuit comes into contact with a number of contact edges that stop the movement. The expandable member may be, for example, a bellows or other similar device as an integral portion of the vacuum chamber.
- The present invention can also be viewed as providing a method for picking up and testing an integrated circuit. In this regard, the method can be broadly summarized by the following steps: providing a vacuum chamber having an upper portion, an expandable member, and a lower portion, the lower portion defining a suction orifice, the suction orifice being moveable with a movement of the expandable member; applying the suction orifice to a smooth face of an integrated circuit; evacuating the vacuum chamber to pick up the integrated circuit; and illuminating the smooth face of the integrated circuit with a light that propagates along an optical pathway that passes through the suction orifice.
- The present invention has numerous advantages, including the movement of the suction orifice that accommodates the use of a more rigid0-ring that provides greater durability and reliability in operation. The movement of the suction orifice also allows the pick-up mechanism to be employed with integrated circuits of varying height with the less durable O-ring. In addition, due to the flexibility of the O-ring and the fact that it is frictionally mounted into the O-ring groove, it is easily replaced by hand when worn, etc. Also, the frictional mounting of the O-ring keeps it in place in the O-ring groove and it does not move into the optical pathway in any way. In addition, the pick-up mechanism allows the automated testing of active pixel sensors, for example, by applying light to the sensor while it is held by the pick-up mechanism which places the sensor over test pads for testing. Also, the over all design of the pick-up mechanism is simple, user friendly, robust and reliable in operation, efficient in operation, and easily implemented for mass commercial production.
- Other features and advantages of the present invention will become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional features and advantages be included herein within the scope of the present invention.
- The invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
- FIG. 1 is a section view of a pick-up mechanism according to an embodiment of the present invention;
- FIG. 2 is a section view of the pick-up mechanism of FIG. 1 engaging an integrated circuit;
- FIG. 3A is a top view of a upper portion employed in the pick-up mechanism of FIG. 1;
- FIG. 3B is a side view of the upper portion of FIG. 3A;
- FIG. 4A is a bottom view of a lower portion employed in the pick-up mechanism of FIG. 1;
- FIG. 4B is a side view of the lower portion of FIG. 4A;
- FIG. 5A is a top view of an O-ring employed in the pick-up mechanism of FIG. 1; and
- FIG. 5B is a side view of the O-ring of FIG. 5A.
- With reference to FIG. 1, shown is a pick-
up mechanism 100 according to an embodiment of the present invention. The pick-up mechanism 100 includes asupport bracket 103 that provides a support structure for the major components of the pick-up mechanism 100. The pick-up mechanism 100 also includes avacuum chamber 105 that is defined by anupper portion 106 top, anexpandable member 109, and alower portion 113. Theupper portion 106 may comprise, for example, a top flange or other suitable structural member. Theexpandable portion 109 may comprise, for example, a bellows or other suitable member that expands and contracts accordingly. Also, thelower portion 113 may comprise, for example, a pick-up flange or other suitable structural member. - The
upper portion 106 is set into thesupport bracket 103 as shown and is held into place byset screw 116. Thesupport bracket 103 also includes avacuum inlet 119 that provides access to a threadedvacuum inlet 123 of theupper portion 106. An appropriate vacuum fitting 126 is threaded into the threadedvacuum inlet 123 through thevacuum inlet 119 of thesupport bracket 103 as shown. Theexpandable member 109 is adhesively attached to the bottom of theupper portion 106 and the top of thelower portion 113 as shown. - The pick-up
mechanism 100 also includes amating flange 129 that is removably attached to the bottom of thesupport bracket 103 via one of a number of means, for example, by bolts, etc. Themating flange 129 restricts the movement of thelower portion 113 in anaxial direction 131. In particular, thelower portion 113 is movable within themating flange 129 with the movement, i.e., the expansion and/or the contraction, of theexpandable member 109. Themating flange 129 restricts the movement of thelower portion 113 in theaxial direction 131. Themating flange 129 also includes a number of contact edges 133 that together define an integrated circuit stop as will be discussed. - The pick-up
mechanism 100 further includes a lens/glass diffuser 136 that is seated into theupper portion 106 and adhesively mounted thereto. Theexpandable member 109 is adhesively mounted to the bottom of theupper portion 106. Both the lens/glass diffuser 136 and theexpandable member 109 are attached to theupper portion 106 using a suitable adhesive to prevent any vacuum leakage as will be discussed. - The
lower portion 113 is also adhesively attached to theexpandable member 109 as shown. The bottom of thelower portion 113 defines asuction orifice 139. Thesuction orifice 139 is exposed at itsexit face 143. Thelower portion 113 also includes an O-ring groove 146 that is placed around the perimeter of theexit face 143 of thesuction orifice 139. Mounted in the O-ring groove 146 is an O-ring 153. The O-ring 153 is preferably frictionally mounted into the O-ring groove 146 to provide for easy removal and replacement by hand. The O-ring 153 defines a ceiling junction with anintegrated circuit 156 that may include, for example, active pixel sensor circuits. - The
vacuum chamber 105 generally defines anoptical pathway 159 that passes through the lens/glass diffuser 136, theupper portion 106,expandable member 109, and thelower portion 113 and exits out of thesuction orifice 139. Theoptical pathway 159 advantageously facilitates an optical testing of theintegrated circuit 156 while it is held by the pick-upmechanism 100 as will be discussed. - With reference to FIG. 2, the operation of the pick-up
mechanism 100 is discussed. To begin, the pick-upmechanism 100 is positioned above, for example, an opticalintegrated circuit 156 or other integrated circuit that is to be tested. Thesuction orifice 139 is then placed against the upper surface of theintegrated circuit 156 such that the O-ring 153 is mated against the upper surface of theintegrated circuit 156. Thereafter, a vacuum pressure is applied to thevacuum inlet 126, causing thelower portion 113 with theintegrated circuit 156 to be pulled upward in an axial motion. - The axial movement occurs when the
expandable member 109 contracts as shown. The O-ring 153 advantageously creates a vacuum seal with the upper surface of theintegrated circuit 156 and therefore the integrated circuit is held against thelower portion 113. Together thelower portion 113 and theintegrated circuit 156 will move upward until the contact edges 133 come into contact with theleads 163 of theintegrated circuit 156. Although twocontact edges 133 are shown, it is understood that there may be fourcontact edges 133 that come into contact withleads 163 that extend from theintegrated circuit 156 on all four sides, etc. Theintegrated circuit 156 is thus seated against the contact edges 133 thereby preventing the further axial movement of thelower portion 113 and theintegrated circuit 156. - Thereafter, the pick-up
mechanism 100 travels to a new position to place theintegrated circuit 156 on contact pads for testing as is known in the art. Alight source 166 may then be employed to generate light that propagates along theoptical pathway 159 and falls on thesensor 156. Thelight source 166 may comprise, for example, a laser, incoherent light, or other suitable light source. Lightsensitive components 169 located on the surface of theintegrated circuit 156 sense the light and the testing of theintegrated circuit 156 is performed. The lightsensitive components 169 may be covered by a layer of transparent material, such as glass, etc. Thus, theintegrated circuit 156 may comprise, for example, an active pixel sensor or other similar integrated circuit. Theintegrated circuit 156 is released by relieving the vacuum at thevacuum inlet 126. - The pick-up
mechanism 100 provides several benefits including an axial movement of thesuction orifice 139 that accommodates the use of a more rigid O-ring 153. The axial movement allows the pick-upmechanism 100 to be employed withintegrated circuits 156 of varying height and at the same time allows the use of the O-ring 153. In particular, the use of theexpandable member 109 allows thesuction orifice 139 along with the O-ring 153 to be placed over integrated circuits with greater height as thelower portion 113 will be pushed up into themating flange 129, theexpandable member 109 contracting accordingly. - In addition, due to the material makeup of the O-
ring 153, it can last through thousands of pick-up cycles and is easily replaced by hand. Also, the O-ring 153 stays in place in the O-ring groove 146 and does not block theoptical pathway 159 in any way. Thus, the pick-upmechanism 100 facilitates the automated testing of active pixel sensors, for example, by applying light to the sensor while it is held by the pick-upmechanism 100 which places the sensor over test pads for testing. - The materials that are used to manufacture the
support bracket 103,upper portion 106, and thelower portion 113 may be, for example, aluminum, steel, or other material. Aluminum or other lightweight materials are preferable as the resulting pick-upmechanism 100 requires less force and energy to manipulate during use, etc. Theexpandable member 109 may comprise stainless steel or other suitable material that is durable and can withstand repeated use without degradation or developing holes, etc. - With reference to FIGS. 3A AND 3B, shown are side and top views of the
upper portion 106. Theupper portion 106 facilitates adhesive mounting of the lens/glass diffuser 136 therein. Specifically, a silicon adhesive may be applied to acontact surface 173 of theupper portion 106 or to the lens/glass diffuser 136. Thereafter, the lens/glass diffuser 136 is placed into position in theupper portion 106. Theupper portion 106 also includes spill overgrooves 176 that accommodate a run over of silicon adhesive. After placing the lens/glass diffuser 136 into theupper portion 106, it is given a quarter turn, for example, to ensure a proper vacuum seal is formed between the lens/glass diffuser 136 and theupper portion 106. - With reference to FIGS. 4A AND 4B, shown are top and side views of the
lower portion 113 according to another embodiment of the present invention. Thelower portion 113 includes interior angled surfaces 179. The interior angled surfaces 179 serve to prevent the light propagating along the optical pathway 159 (FIG. 2) from reflecting off of the interior angled surfaces 179 thereby adversely affecting the uniformity of the light that falls on the light sensitive components 169 (FIG. 2). Rather than fall on the lightsensitive components 169, the reflected light propagates toward the opposing interior angled surfaces 179. The angle of the interior angled surfaces 179 with respect to theoptical pathway 159 is, for example, 20 degrees, but other angles may be employed. Also, the interior angled surfaces 179 as well as the entire interior of thelower portion 113 are preferably colored in a non-reflective color such as, for example, flat black to reduce unwanted reflection of the light that propagates along theoptical pathway 159. - The O-
ring groove 146 located around thesuction orifice 139 preferably accommodates the frictional mounting of the O-ring 153 therein. The O-ring groove 146 may appear in many different shapes and sizes, depending upon the particular size and shape of theintegrated circuit 156 that one wishes to pick up with the pick-upmechanism 100. Due to the fact that the O-ring 153 is made of a flexible material, the O-ring can typically be fitted into the O-ring groove 146 even though the O-ring groove 146 is a different shape than the O-ring 153. - The O-
ring groove 146 also includes a surface smoothness that is necessary to form a vacuum seal between the O-ring 153 and thelower portion 113. For best results, the roughness/height index value of the surface of the O-ring groove 146 is generally not greater than 16 microinches, for example, although other smoothness factors may be employed providing that a proper vacuum seal is formed. Alternatively, the O-ring may be mounted into the O-ring groove 146 using an appropriate adhesive, etc., however such a mounting may make the O-ring 153 harder to remove. - Finally, with reference to FIGS. 5A AND 5B, shown are side and top views of the O-
ring 153. The O-ring 153 is comprised of a material of sufficient hardness to prevent the integrated circuit 156 (FIG. 1) from sticking to the O-ring 153 itself after the vacuum is relieved in the vacuum chamber 104 (FIG. 1). The material of the O-ring 153 is also preferably durability and capable of withstanding harsh atmospheres. For example, the O-ring 153 may be exposed to solvents such as acetone or alcohol in the typical integrated circuit manufacturing environment and should not experience any significant degradation therefrom. One suitable material that may be used for the O-ring 153, for example, is Viton, manufactured by and commercially available from Pressure Seals, Inc., of South Windsor, Conn. although other suitable materials may be employed as well keeping the above criterion in mind. - Many variations and modifications may be made to the above-described embodiment(s) of the invention without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/000,614 US6394520B1 (en) | 1999-10-27 | 2001-10-30 | Apparatus and method for handling an integrated circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/428,152 US6364386B1 (en) | 1999-10-27 | 1999-10-27 | Apparatus and method for handling an integrated circuit |
US10/000,614 US6394520B1 (en) | 1999-10-27 | 2001-10-30 | Apparatus and method for handling an integrated circuit |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/428,152 Division US6364386B1 (en) | 1999-10-27 | 1999-10-27 | Apparatus and method for handling an integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020036411A1 true US20020036411A1 (en) | 2002-03-28 |
US6394520B1 US6394520B1 (en) | 2002-05-28 |
Family
ID=23697757
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/428,152 Expired - Fee Related US6364386B1 (en) | 1999-10-27 | 1999-10-27 | Apparatus and method for handling an integrated circuit |
US10/000,614 Expired - Lifetime US6394520B1 (en) | 1999-10-27 | 2001-10-30 | Apparatus and method for handling an integrated circuit |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/428,152 Expired - Fee Related US6364386B1 (en) | 1999-10-27 | 1999-10-27 | Apparatus and method for handling an integrated circuit |
Country Status (3)
Country | Link |
---|---|
US (2) | US6364386B1 (en) |
JP (1) | JP2001188078A (en) |
SG (1) | SG90177A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050109113A1 (en) * | 2003-11-25 | 2005-05-26 | Denso Corporation | Pressure sensor |
EP2284862A1 (en) * | 2009-08-11 | 2011-02-16 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | System and method for picking and placement of chip dies |
EP2463065A1 (en) * | 2010-12-07 | 2012-06-13 | CAMA 1 SpA | Vacuum gripping head for an industrial robot |
CN103934655A (en) * | 2013-12-27 | 2014-07-23 | 广州奥迪通用照明有限公司 | Vacuum assembling mechanism |
US20140353996A1 (en) * | 2013-05-31 | 2014-12-04 | Hon Hai Precision Industry Co., Ltd. | Vacuum-lifting device for assembling and testing optical connector |
US20150176981A1 (en) * | 2013-12-20 | 2015-06-25 | Nike, Inc. | Pick-Up Tool With Integrated Light Source |
EP3035785A1 (en) * | 2014-12-18 | 2016-06-22 | Endress + Hauser GmbH + Co. KG | Device and method for the automated mounting of at least one electronic component on a printed circuit board |
US20210339405A1 (en) * | 2020-04-30 | 2021-11-04 | Asm Technology Singapore Pte Ltd | Ejector unit for detaching an electronic element from an adhesive carrier |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6749238B2 (en) * | 2002-04-26 | 2004-06-15 | Delaware Capital Formation, Inc. | Vacuum nozzle |
US6916055B2 (en) * | 2002-10-24 | 2005-07-12 | Finisar Corporation | Lens press tool |
US7147739B2 (en) * | 2002-12-20 | 2006-12-12 | Cree Inc. | Systems for assembling components on submounts and methods therefor |
JP4698674B2 (en) * | 2005-08-05 | 2011-06-08 | 平田機工株式会社 | Work suction head |
TW200729374A (en) * | 2006-01-26 | 2007-08-01 | Horng Terng Automation Co Ltd | Method of testing semiconductor device under stable pressure and apparatus for test the same under stable pressure |
US8632112B2 (en) * | 2006-08-18 | 2014-01-21 | Stats Chippac Ltd. | Workpiece displacement system |
US7690705B1 (en) * | 2006-12-21 | 2010-04-06 | Western Digital Technologies, Inc. | Vacuum chuck useful for affixing cover seals to hard disk drives |
US7631912B2 (en) * | 2007-07-31 | 2009-12-15 | Evergreen Packaging Inc. | Lifting device for a vacuum transfer system |
EP2108625B1 (en) * | 2008-04-09 | 2013-03-27 | Zwiesel Kristallglas AG | Method for generating embossed/retracted structures on hollow ware, preferably made of glass |
DE102012019839B4 (en) * | 2012-10-09 | 2017-08-24 | Grenzebach Maschinenbau Gmbh | Method and device for the transport of large-size plates in extreme oversize |
US20150241477A1 (en) * | 2014-02-27 | 2015-08-27 | Texas Instruments Incorporated | Effective and efficient solution for pin to pad contactor on wide range of smd package tolerances using a reverse funnel design anvil handler mechanism |
KR20160044975A (en) * | 2014-10-16 | 2016-04-26 | 삼성전자주식회사 | Semiconductor package test blade and semiconductor package test apparatus comprising the same |
SG11201803720RA (en) * | 2015-12-15 | 2018-06-28 | Novartis Ag | Method and system for transporting a packaging shell of an ophthalmic lens package |
US10852321B2 (en) | 2016-08-19 | 2020-12-01 | Delta Design, Inc. | Test handler head having reverse funnel design |
CN111573206B (en) * | 2020-05-12 | 2022-04-08 | 湖南中南鸿思自动化科技有限公司 | Conveyer of laser instrument bar test system |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5435653Y2 (en) * | 1971-11-08 | 1979-10-29 | ||
US4451197A (en) * | 1982-07-26 | 1984-05-29 | Advanced Semiconductor Materials Die Bonding, Inc. | Object detection apparatus and method |
JPS59101833A (en) * | 1982-12-03 | 1984-06-12 | Hitachi Ltd | X-ray exposure device |
US4529353A (en) * | 1983-01-27 | 1985-07-16 | At&T Bell Laboratories | Wafer handling apparatus and method |
EP0116953A2 (en) * | 1983-02-18 | 1984-08-29 | Hitachi, Ltd. | Alignment apparatus |
US4530635A (en) * | 1983-06-15 | 1985-07-23 | The Perkin-Elmer Corporation | Wafer transferring chuck assembly |
US4603867A (en) * | 1984-04-02 | 1986-08-05 | Motorola, Inc. | Spinner chuck |
FR2564139B1 (en) * | 1984-05-10 | 1988-11-18 | Peugeot | DEVICE FOR MOUNTING VALVES IN THE CYLINDER HEAD OF AN INTERNAL COMBUSTION ENGINE |
US4600228A (en) * | 1984-05-31 | 1986-07-15 | Sperry Corporation | Lockable compliant end effector apparatus |
US4557514A (en) * | 1984-07-18 | 1985-12-10 | At&T Technologies, Inc. | Vacuum pick and place robotic hand |
JPS6197918A (en) * | 1984-10-19 | 1986-05-16 | Hitachi Ltd | X-ray exposure device |
US4752668A (en) * | 1986-04-28 | 1988-06-21 | Rosenfield Michael G | System for laser removal of excess material from a semiconductor wafer |
DE3637567A1 (en) * | 1986-11-04 | 1988-05-05 | Trumpf Gmbh & Co | Suction apparatus on or for a processing machine |
US4763941A (en) * | 1987-06-11 | 1988-08-16 | Unisys Corporation | Automatic vacuum gripper |
DE3730396A1 (en) * | 1987-09-10 | 1989-03-23 | Ipr Intelligente Peripherien F | Method and device for contactless determination of the jaw position on the gripper of an automatic manipulator |
DE3815971A1 (en) * | 1988-05-10 | 1989-11-23 | Siegfried Weber | Method and device for determining the grip position and for determining the jaw position of grippers |
DE68920813T2 (en) * | 1988-06-29 | 1995-05-24 | Matsushita Electric Ind Co Ltd | Device picking up electronic components. |
JPH02111100A (en) * | 1988-10-20 | 1990-04-24 | Matsushita Electric Ind Co Ltd | Parts attaching device |
US5106139A (en) * | 1989-04-27 | 1992-04-21 | Palmer Harold D | Hand-held pick-up device |
US5251266A (en) * | 1990-08-27 | 1993-10-05 | Sierra Research And Technology, Inc. | System for placement and mounting of fine pitch integrated circuit devices using a split mirror assembly |
US5708222A (en) * | 1994-08-01 | 1998-01-13 | Tokyo Electron Limited | Inspection apparatus, transportation apparatus, and temperature control apparatus |
IL113829A (en) * | 1995-05-23 | 2000-12-06 | Nova Measuring Instr Ltd | Apparatus for optical inspection of wafers during polishing |
US5681215A (en) * | 1995-10-27 | 1997-10-28 | Applied Materials, Inc. | Carrier head design for a chemical mechanical polishing apparatus |
JPH0983193A (en) * | 1995-09-13 | 1997-03-28 | Matsushita Electric Ind Co Ltd | Component suction head for electronic-component mounting machine |
KR0151824B1 (en) * | 1995-10-14 | 1998-11-02 | 정명식 | Waveguide valve |
US5629657A (en) * | 1996-04-30 | 1997-05-13 | Hughes Electronics | High power waveguide RF seal |
US5944940A (en) * | 1996-07-09 | 1999-08-31 | Gamma Precision Technology, Inc. | Wafer transfer system and method of using the same |
US6203082B1 (en) * | 1999-07-12 | 2001-03-20 | Rd Automation | Mounting apparatus for electronic parts |
-
1999
- 1999-10-27 US US09/428,152 patent/US6364386B1/en not_active Expired - Fee Related
-
2000
- 2000-10-24 SG SG200005730A patent/SG90177A1/en unknown
- 2000-10-27 JP JP2000328222A patent/JP2001188078A/en active Pending
-
2001
- 2001-10-30 US US10/000,614 patent/US6394520B1/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7197936B2 (en) * | 2003-11-25 | 2007-04-03 | Denso Coporation | Pressure sensor |
US20050109113A1 (en) * | 2003-11-25 | 2005-05-26 | Denso Corporation | Pressure sensor |
EP2284862A1 (en) * | 2009-08-11 | 2011-02-16 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | System and method for picking and placement of chip dies |
WO2011019275A1 (en) * | 2009-08-11 | 2011-02-17 | Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno | System and method for picking and placement of chip dies |
EP2463065A1 (en) * | 2010-12-07 | 2012-06-13 | CAMA 1 SpA | Vacuum gripping head for an industrial robot |
US9039059B2 (en) * | 2013-05-31 | 2015-05-26 | Hon Hai Precision Industry Co., Ltd. | Vacuum-lifting device for assembling and testing optical connector |
US20140353996A1 (en) * | 2013-05-31 | 2014-12-04 | Hon Hai Precision Industry Co., Ltd. | Vacuum-lifting device for assembling and testing optical connector |
US20150176981A1 (en) * | 2013-12-20 | 2015-06-25 | Nike, Inc. | Pick-Up Tool With Integrated Light Source |
US9523570B2 (en) * | 2013-12-20 | 2016-12-20 | Nike, Inc. | Pick-up tool with integrated light source |
US20170087729A1 (en) * | 2013-12-20 | 2017-03-30 | Nike, Inc. | Pick-up tool with integrated light source |
US9701025B2 (en) * | 2013-12-20 | 2017-07-11 | Nike, Inc. | Pick-up tool with integrated light source |
US9902074B2 (en) | 2013-12-20 | 2018-02-27 | Nike, Inc. | Pick-up tool with integrated light source |
US10065326B2 (en) * | 2013-12-20 | 2018-09-04 | Nike, Inc. | Pick-up tool with integrated light source |
CN103934655A (en) * | 2013-12-27 | 2014-07-23 | 广州奥迪通用照明有限公司 | Vacuum assembling mechanism |
EP3035785A1 (en) * | 2014-12-18 | 2016-06-22 | Endress + Hauser GmbH + Co. KG | Device and method for the automated mounting of at least one electronic component on a printed circuit board |
US20210339405A1 (en) * | 2020-04-30 | 2021-11-04 | Asm Technology Singapore Pte Ltd | Ejector unit for detaching an electronic element from an adhesive carrier |
US11618172B2 (en) * | 2020-04-30 | 2023-04-04 | Asmpt Singapore Pte. Ltd. | Ejector unit for detaching an electronic element from an adhesive carrier |
Also Published As
Publication number | Publication date |
---|---|
US6364386B1 (en) | 2002-04-02 |
JP2001188078A (en) | 2001-07-10 |
SG90177A1 (en) | 2002-07-23 |
US6394520B1 (en) | 2002-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6394520B1 (en) | Apparatus and method for handling an integrated circuit | |
EP3507827B1 (en) | Methods and systems for chucking a warped wafer | |
CN101908498A (en) | Be used to load and unload the end effector of semiconductor wafer | |
CN1552000B (en) | Removable optical pellicle | |
KR101937747B1 (en) | Flexible display device test jig and test device using the same | |
US20170074733A1 (en) | Surface force apparatus based on a spherical lens | |
JP4037726B2 (en) | Vacuum probe apparatus and vacuum probe method | |
JP2008507688A (en) | Pressure testing apparatus and method for pressure testing | |
CN101383318A (en) | Endeffectors for handling semiconductor wafers | |
US4541717A (en) | Attraction holding device | |
JPS57167651A (en) | Inspecting device for surface of semiconductor wafer | |
JP2750554B2 (en) | Vacuum suction device | |
US7190448B2 (en) | Surface inspecting apparatus | |
JP2004247718A (en) | Photomask holder and method for fixing photomask | |
JP2017050482A (en) | Imprint device, imprint method, and method for manufacturing article | |
US6212786B1 (en) | Thin board holding device and method of and apparatus for measuring thickness of thin board | |
TW201133691A (en) | A test system for detecting shape and/or orientation errors of wafers | |
TWM539624U (en) | Light emitting element inspection apparatus | |
TWI850820B (en) | Substrate carrying structure and substrate detection device | |
TW202345251A (en) | Wafer inspection device | |
JPS63244643A (en) | Wafer-mounting stage | |
JPH05187818A (en) | Evaluating apparatus of lens | |
KR200211233Y1 (en) | Mask Support Device for Semiconductor Pattern Inspection Equipment | |
JP2007324457A (en) | Support jig used in failure analysis of semiconductor device and failure analysis method using same | |
JPH06300697A (en) | Non-reformable inspection platen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP PTE. LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:017207/0020 Effective date: 20051201 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 12 |
|
SULP | Surcharge for late payment |
Year of fee payment: 11 |
|
AS | Assignment |
Owner name: III HOLDINGS 1, LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD.;REEL/FRAME:032932/0719 Effective date: 20140213 |
|
AS | Assignment |
Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 017207 FRAME 0020. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:AGILENT TECHNOLOGIES, INC.;REEL/FRAME:038633/0001 Effective date: 20051201 |