US20020032162A1 - Polynucleotide tuberculosis vaccine - Google Patents
Polynucleotide tuberculosis vaccine Download PDFInfo
- Publication number
- US20020032162A1 US20020032162A1 US09/010,733 US1073398A US2002032162A1 US 20020032162 A1 US20020032162 A1 US 20020032162A1 US 1073398 A US1073398 A US 1073398A US 2002032162 A1 US2002032162 A1 US 2002032162A1
- Authority
- US
- United States
- Prior art keywords
- polynucleotide
- dna
- functional equivalents
- mycobacterial
- antigen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108091033319 polynucleotide Proteins 0.000 title claims description 34
- 102000040430 polynucleotide Human genes 0.000 title claims description 34
- 239000002157 polynucleotide Substances 0.000 title claims description 34
- 229960002109 tuberculosis vaccine Drugs 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 159
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 65
- 108091007433 antigens Proteins 0.000 claims abstract description 43
- 102000036639 antigens Human genes 0.000 claims abstract description 43
- 239000000427 antigen Substances 0.000 claims abstract description 42
- 241001465754 Metazoa Species 0.000 claims abstract description 17
- 241000187479 Mycobacterium tuberculosis Species 0.000 claims abstract description 11
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000001681 protective effect Effects 0.000 claims abstract description 10
- 210000002443 helper t lymphocyte Anatomy 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 31
- 230000028993 immune response Effects 0.000 claims description 28
- 229960005486 vaccine Drugs 0.000 claims description 27
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 15
- 241000251539 Vertebrata <Metazoa> Species 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 5
- 230000003308 immunostimulating effect Effects 0.000 claims description 5
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 claims description 4
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 claims description 4
- 108010065805 Interleukin-12 Proteins 0.000 claims description 4
- 102000013462 Interleukin-12 Human genes 0.000 claims description 4
- 108700026244 Open Reading Frames Proteins 0.000 claims description 4
- 208000027531 mycobacterial infectious disease Diseases 0.000 claims description 4
- 238000013518 transcription Methods 0.000 claims description 4
- 230000035897 transcription Effects 0.000 claims description 4
- 238000013519 translation Methods 0.000 claims description 4
- 206010062207 Mycobacterial infection Diseases 0.000 claims description 3
- 230000001355 anti-mycobacterial effect Effects 0.000 claims description 3
- 239000003926 antimycobacterial agent Substances 0.000 claims description 3
- 230000005030 transcription termination Effects 0.000 claims description 3
- 230000000139 costimulatory effect Effects 0.000 claims description 2
- 230000002519 immonomodulatory effect Effects 0.000 claims description 2
- 238000011282 treatment Methods 0.000 claims description 2
- 102000014150 Interferons Human genes 0.000 claims 1
- 108010050904 Interferons Proteins 0.000 claims 1
- 229940079322 interferon Drugs 0.000 claims 1
- 244000144972 livestock Species 0.000 claims 1
- 241000699670 Mus sp. Species 0.000 abstract description 32
- 239000013604 expression vector Substances 0.000 abstract description 18
- 238000002347 injection Methods 0.000 abstract description 17
- 239000007924 injection Substances 0.000 abstract description 17
- 108010041986 DNA Vaccines Proteins 0.000 abstract description 15
- 229940021995 DNA vaccine Drugs 0.000 abstract description 15
- 208000015181 infectious disease Diseases 0.000 abstract description 13
- 102000004127 Cytokines Human genes 0.000 abstract description 9
- 108090000695 Cytokines Proteins 0.000 abstract description 9
- 238000001727 in vivo Methods 0.000 abstract description 9
- 108010074328 Interferon-gamma Proteins 0.000 abstract description 7
- 230000005867 T cell response Effects 0.000 abstract description 7
- 210000004072 lung Anatomy 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 6
- 210000000952 spleen Anatomy 0.000 abstract description 5
- 102100037850 Interferon gamma Human genes 0.000 abstract description 4
- 108700001237 Nucleic Acid-Based Vaccines Proteins 0.000 abstract description 4
- 108010002350 Interleukin-2 Proteins 0.000 abstract description 3
- 241001467552 Mycobacterium bovis BCG Species 0.000 abstract description 3
- 210000003205 muscle Anatomy 0.000 abstract description 3
- 230000028327 secretion Effects 0.000 abstract description 3
- 210000004989 spleen cell Anatomy 0.000 abstract description 3
- 210000000663 muscle cell Anatomy 0.000 abstract description 2
- 108020004414 DNA Proteins 0.000 description 86
- 239000013598 vector Substances 0.000 description 46
- 210000004027 cell Anatomy 0.000 description 33
- 150000007523 nucleic acids Chemical class 0.000 description 33
- 102000039446 nucleic acids Human genes 0.000 description 31
- 108020004707 nucleic acids Proteins 0.000 description 31
- 230000014509 gene expression Effects 0.000 description 29
- 239000013612 plasmid Substances 0.000 description 22
- 201000008827 tuberculosis Diseases 0.000 description 18
- 230000036039 immunity Effects 0.000 description 17
- 239000012634 fragment Substances 0.000 description 16
- 230000003053 immunization Effects 0.000 description 15
- 238000002649 immunization Methods 0.000 description 15
- 108010006025 bovine growth hormone Proteins 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 210000001519 tissue Anatomy 0.000 description 12
- 238000011740 C57BL/6 mouse Methods 0.000 description 11
- 238000010276 construction Methods 0.000 description 11
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 11
- 230000002103 transcriptional effect Effects 0.000 description 11
- 230000000692 anti-sense effect Effects 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 108091008146 restriction endonucleases Proteins 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 210000002540 macrophage Anatomy 0.000 description 9
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 9
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 8
- 108010076504 Protein Sorting Signals Proteins 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000011725 BALB/c mouse Methods 0.000 description 7
- 230000002163 immunogen Effects 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 6
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 244000052616 bacterial pathogen Species 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 210000000612 antigen-presenting cell Anatomy 0.000 description 5
- 230000003115 biocidal effect Effects 0.000 description 5
- 230000029087 digestion Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 239000002502 liposome Substances 0.000 description 5
- 108020004999 messenger RNA Proteins 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000002255 vaccination Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 101710088335 Diacylglycerol acyltransferase/mycolyltransferase Ag85A Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 102000011931 Nucleoproteins Human genes 0.000 description 4
- 108010061100 Nucleoproteins Proteins 0.000 description 4
- 206010053613 Type IV hypersensitivity reaction Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 238000003119 immunoblot Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 229940065638 intron a Drugs 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 244000052769 pathogen Species 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 230000005951 type IV hypersensitivity Effects 0.000 description 4
- 208000027930 type IV hypersensitivity disease Diseases 0.000 description 4
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 3
- 241000701083 Bovine alphaherpesvirus 1 Species 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 102000008070 Interferon-gamma Human genes 0.000 description 3
- 108090000978 Interleukin-4 Proteins 0.000 description 3
- 102000043129 MHC class I family Human genes 0.000 description 3
- 108091054437 MHC class I family Proteins 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 229930193140 Neomycin Natural products 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091008874 T cell receptors Proteins 0.000 description 3
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 238000000246 agarose gel electrophoresis Methods 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 230000000890 antigenic effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 206010022000 influenza Diseases 0.000 description 3
- 229960003130 interferon gamma Drugs 0.000 description 3
- 230000021633 leukocyte mediated immunity Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000000107 myocyte Anatomy 0.000 description 3
- 229960004927 neomycin Drugs 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 108010039627 Aprotinin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 101100268670 Caenorhabditis elegans acc-3 gene Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 2
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 2
- 101710088334 Diacylglycerol acyltransferase/mycolyltransferase Ag85B Proteins 0.000 description 2
- 101710088427 Diacylglycerol acyltransferase/mycolyltransferase Ag85C Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 108090000174 Interleukin-10 Proteins 0.000 description 2
- 108090001005 Interleukin-6 Proteins 0.000 description 2
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 2
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 2
- 101710184243 Intestinal-type alkaline phosphatase Proteins 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 2
- 108010059343 MM Form Creatine Kinase Proteins 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- 206010046865 Vaccinia virus infection Diseases 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 208000036981 active tuberculosis Diseases 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229960004405 aprotinin Drugs 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000001415 gene therapy Methods 0.000 description 2
- 208000037797 influenza A Diseases 0.000 description 2
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 2
- 230000004073 interleukin-2 production Effects 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 2
- 108010052968 leupeptin Proteins 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 108010091212 pepstatin Proteins 0.000 description 2
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 208000007089 vaccinia Diseases 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- AXAVXPMQTGXXJZ-UHFFFAOYSA-N 2-aminoacetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound NCC(O)=O.OCC(N)(CO)CO AXAVXPMQTGXXJZ-UHFFFAOYSA-N 0.000 description 1
- 101710166488 6 kDa early secretory antigenic target Proteins 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 101150089247 B7 gene Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 108010072454 CTGCAG-specific type II deoxyribonucleases Proteins 0.000 description 1
- 102000008203 CTLA-4 Antigen Human genes 0.000 description 1
- 108010021064 CTLA-4 Antigen Proteins 0.000 description 1
- 229940045513 CTLA4 antagonist Drugs 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000006303 Chaperonin 60 Human genes 0.000 description 1
- 108010058432 Chaperonin 60 Proteins 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 101710088172 HTH-type transcriptional regulator RipA Proteins 0.000 description 1
- 101710154606 Hemagglutinin Proteins 0.000 description 1
- 102000018713 Histocompatibility Antigens Class II Human genes 0.000 description 1
- 101000926206 Homo sapiens Putative glutathione hydrolase 3 proenzyme Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 208000002979 Influenza in Birds Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 108091054438 MHC class II family Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- PKVZBNCYEICAQP-UHFFFAOYSA-N Mecamylamine hydrochloride Chemical compound Cl.C1CC2C(C)(C)C(NC)(C)C1C2 PKVZBNCYEICAQP-UHFFFAOYSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241000713333 Mouse mammary tumor virus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000186366 Mycobacterium bovis Species 0.000 description 1
- 101001043272 Mycobacterium tuberculosis (strain ATCC 25177 / H37Ra) Lipoprotein LpqH Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 1
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 101710181935 Phosphate-binding protein PstS 1 Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 101710176177 Protein A56 Proteins 0.000 description 1
- 108010007131 Pulmonary Surfactant-Associated Protein B Proteins 0.000 description 1
- 102100032617 Pulmonary surfactant-associated protein B Human genes 0.000 description 1
- 102100034060 Putative glutathione hydrolase 3 proenzyme Human genes 0.000 description 1
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 230000029662 T-helper 1 type immune response Effects 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 102100036034 Thrombospondin-1 Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 229940038444 antibody-based vaccine Drugs 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 230000007503 antigenic stimulation Effects 0.000 description 1
- 206010064097 avian influenza Diseases 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 108091092356 cellular DNA Proteins 0.000 description 1
- 230000004700 cellular uptake Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- BKHZIBWEHPHYAI-UHFFFAOYSA-N chloroform;3-methylbutan-1-ol Chemical compound ClC(Cl)Cl.CC(C)CCO BKHZIBWEHPHYAI-UHFFFAOYSA-N 0.000 description 1
- YTRQFSDWAXHJCC-UHFFFAOYSA-N chloroform;phenol Chemical compound ClC(Cl)Cl.OC1=CC=CC=C1 YTRQFSDWAXHJCC-UHFFFAOYSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 210000000172 cytosol Anatomy 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 108020001096 dihydrofolate reductase Proteins 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 238000011554 guinea pig model Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000185 hemagglutinin Substances 0.000 description 1
- 208000013210 hematogenous Diseases 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 230000002766 immunoenhancing effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 229960001438 immunostimulant agent Drugs 0.000 description 1
- 239000003022 immunostimulating agent Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 108700010900 influenza virus proteins Proteins 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000011542 interferon-beta production Effects 0.000 description 1
- 230000031261 interleukin-10 production Effects 0.000 description 1
- 230000017307 interleukin-4 production Effects 0.000 description 1
- 230000017306 interleukin-6 production Effects 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940090046 jet injector Drugs 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 101150109249 lacI gene Proteins 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- YFCUZWYIPBUQBD-ZOWNYOTGSA-N n-[(3s)-7-amino-1-chloro-2-oxoheptan-3-yl]-4-methylbenzenesulfonamide;hydron;chloride Chemical compound Cl.CC1=CC=C(S(=O)(=O)N[C@@H](CCCCN)C(=O)CCl)C=C1 YFCUZWYIPBUQBD-ZOWNYOTGSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 210000000680 phagosome Anatomy 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000009696 proliferative response Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000010814 radioimmunoprecipitation assay Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000009711 regulatory function Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 229940031626 subunit vaccine Drugs 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940043263 traditional drug Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- YNDXUCZADRHECN-JNQJZLCISA-N triamcinolone acetonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H]3OC(C)(C)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O YNDXUCZADRHECN-JNQJZLCISA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/117—Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/711—Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/04—Mycobacterium, e.g. Mycobacterium tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
- A61P31/06—Antibacterial agents for tuberculosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/35—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Mycobacteriaceae (F)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
Definitions
- CTLs cytotoxic T-lymphocytes
- CTLs kill virally- or bacterially-infected cells when their T cell receptors recognize foreign peptides associated with MHC class I and/or class II molecules. These peptides can be derived from endogenously synthesized foreign proteins, regardless of the protein's location or function within the pathogen. By recognition of epitopes from conserved proteins, CTLs may provide heterologous protection. In the case of intracellular bacteria, proteins secreted by or released from the bacteria are processed and presented by MHC class I and II molecules, thereby generating T-cell responses that may play a role in reducing or eliminating infection.
- Retroviral vectors have restrictions on the size and structure of polypeptides that can be expressed as fusion proteins while maintaining the ability of the recombinant virus to replicate [A. D. Miller, Curr. Top. Microbiol. Immunol. 158, 1 (1992)], and the effectiveness of vectors such as vaccinia for subsequent immunizations may be compromised by immune responses against vaccinia [E. L. Cooney et al., Lancet 337, 567 (1991)]. Also, viral vectors and modified pathogens have inherent risks that may hinder their use in humans [R. R. Redfield et al., New Engl. J. Med. 316, 673 (1987); L. Mascola et al., Arch. Intern. Med.
- peptide epitopes to be presented is dependent upon the structure of an individual's MHC antigens and, therefore, peptide vaccines may have limited effectiveness due to the diversity of MHC haplotypes in outbred populations.
- WO 93/17706 describes a method for vaccinating an animal against a virus, wherein carrier particles were coated with a gene construct and the coated particles are accelerated into cells of an animal.
- Tuberculosis is a chronic infectious disease of the lung caused by the pathogen Mycobacterium tuberculosis. TB is one of the most clinically significant infections worldwide, with an incidence of 3 million deaths and 10 million new cases each year. It has been estimated that as much as one third of the world's population may be infected and, in developing countries, 55 million cases of active TB have been reported. Until the turn of the century, TB was the leading cause of death in the United States. But, with improved sanitary conditions and the advent of antimicrobial drugs, the incidence of mortality steadily declined to the point where it was predicted that the disease would be eradicated by the year 2000.
- MDR multidrug-resistant
- M. tuberculosis is an intracellular pathogen that infects macrophages and is able to survive within the harsh environment of the phagolysosome in this type of cell. Most inhaled bacilli are destroyed by activated alveolar macrophages. However, the surviving bacilli can multiply in macrophages and be released upon cell death, which signals the infiltration of lymphocytes, monocytes and macrophages to the site. Lysis of the bacilli-laden macrophages is mediated by delayed-type hypersensitivity (DTH) and results in the development of a solid caseous tubercle surrounding the area of infected cells.
- DTH delayed-type hypersensitivity
- DTH causes the tubercle to liquefy, thereby releasing entrapped bacilli.
- the large dose of extracellular bacilli triggers further DTH, causing damage to the bronchi and dissemination by lymphatic, hematogenous and bronchial routes, and eventually allowing infectious bacilli to be spread by respiration.
- Immunity to TB involves several types of effector cells. Activation of macrophages by cytokines, such as interferon- ⁇ , is an effective means of minimizing intracellular mycobacterial multiplication. However, complete eradication of the bacilli by this means is often not achieved. Acquisition of protection against TB requires T lymphocytes. Among these, both CD8 + and CD4 + T cells seem to be important [Orme et al, 1993, J. Infect. Dis. 167, 1481]. These cell types secrete interferon- ⁇ in response to mycobacteria, indicative of a T h 1 immune response, and possess cytotoxic activity to mycobacteria-pulsed target cells.
- Antigenic stimulation of T cells requires presentation by MHC molecules. In order for mycobacterial antigens to gain access to the antigen presentation pathway they must be released from the bacteria. In infected macrophages, this could be accomplished by secretion or bacterial lysis. Mycobacteria possess many potential T-cell antigens and several have now been identified [Andersen 1994, Dan. Med. Bull. 41, 205]. Some of these antigens are secreted by the bacteria. It is generally believed that immunity against TB is mediated by CD8 + and CD4 + T cells directed toward these secreted antigens.
- T cell antigens include those proteins that are secreted by mycobacteria during their residence in macrophages, such as: i) the antigen 85 complex of proteins (85A, 85B, 85C) [Wiker and Harboe, 1992, Microbiol. Rev. 56, 648], ii) a 6 kDa protein termed ESAT-6 [Andersen 1994, Infect. Immunity 62, 2536], iii) a 38 kDa lipoprotein with homology to PhoS [Young and Garbe, 1991, Res. Microbiol.
- M.tb protein-coding DNA sequences were cloned into eukaryotic expression vectors. These DNA constructions elicit an immune response when injected into animals. Immunized animals are infected with mycobacteria to evaluate whether or not direct DNA immunization with the gene (or other M.tb genes) could protect them from disease. Nucleic acids, including DNA constructs and RNA transcripts, capable of inducing in vivo expression of M.tb proteins upon direct introduction into animal tissues via injection or otherwise are therefore disclosed.
- nucleic acids may elicit immune responses which result in the production of cytotoxic T lymphocytes (CTLs) specific for M.tb antigens, as well as the generation of M.tb -specific helper T lymphocyte responses, which are protective upon subsequent challenge.
- CTLs cytotoxic T lymphocytes
- These nucleic acids are useful as vaccines for inducing immunity to M.tb , which can prevent infection and/or ameliorate M.tb -related disease.
- FIG. 1 General principle for cloning M.tb genes into expression vectors is shown.
- FIG. 2 Vector map of V1Jns.tPA85A.C1 is shown.
- FIG. 3 Vector map of V1Jns.85A.C2 is shown.
- FIG. 4 Vector map of V1Jns.85A.C3 is shown.
- FIG. 5 Vector map of V1Jns.tPA85B.C1 is shown.
- FIG. 6 Vector map of V1Jns.tPA85C.C1 is shown.
- FIG. 7 N-Terminal sequence verification of constructs is shown.
- FIG. 8 Expression of M.tb proteins in tissue culture is shown.
- FIG. 9 Production of antigen 85A-specific antibodies in DNA-vaccinated mice is shown.
- FIG. 10 IL-2 production in BALB/c mice by a Tb DNA vaccine is shown.
- FIG. 11 IL-2 production in C57BL/6 mice by a Tb DNA vaccine is shown.
- FIG. 12 IFN- ⁇ production in BALB/c mice by a Tb DNA vaccine is shown.
- FIG. 13 IFN- ⁇ production in C57BL/6 mice by a Tb DNA vaccine is shown.
- FIG. 14 Lack of IL-4 production in BALB/c mice by a Tb DNA vaccine is shown.
- FIG. 15 Lack of IL-6 production in mice by a Tb DNA vaccine is shown.
- FIG. 16 Lack of IL-10 production in mice by a Tb DNA vaccine is shown.
- FIG. 17 Reduction of BCG multiplication in lungs of C57BL/6 mice vaccinated with a Tb DNA vaccine is shown.
- FIG. 18 Reduction of BCG multiplication in lungs of BALB/c mice vaccinated with a Tb DNA vaccine is shown.
- FIG. 19 Reduction of BCG multiplication in spleens of BALB/c mice vaccinated with a Tb DNA vaccine is shown.
- FIG. 20 Reduction of BCG multiplication in spleens of C57BL/6 mice vaccinated with a Tb DNA vaccine is shown.
- a polynucleotide is a nucleic acid which contains essential regulatory elements such that upon introduction into a living vertebrate cell, and is able to direct the cellular machinery to produce translation products encoded by the genes comprising the polynucleotide.
- the polynucleotide is a polydeoxyribonucleic acid comprising Mycobacterium tuberculosis ( M.tb ) genes operatively linked to a transcriptional promoter.
- the polynucleotide vaccine comprises polyribonucleic acid encoding M.tb genes which are amenable to translation by the eukaryotic cellular machinery (ribosomes, tRNAs, and other translation factors).
- M.tb eukaryotic cellular machinery
- the proteins encoded by the polynucleotide is one which does not normally occur in that animal except in pathological conditions, (i.e. an heterologous protein) such as proteins associated with M.tb
- the animals' immune system is activated to launch a protective immune response. Because these exogenous proteins are produced by the animals' own tissues, the expressed proteins are processed by the major histocompatibility system (MHC) in a fashion analogous to when an actual M.tb infection occurs.
- MHC major histocompatibility system
- the instant invention provides a method for using a polynucleotide which, upon introduction into mammalian tissue, induces the expression, in vivo, of the polynucleotide thereby producing the encoded protein. It is readily apparent to those skilled in the art that variations or derivatives of the nucleotide sequence encoding a protein can be produced which alter the amino acid sequence of the encoded protein. The altered expressed protein may have an altered amino acid sequence, yet still elicits immune responses which react with the mycobacterial protein, and are considered functional equivalents. In addition, fragments of the full length genes which encode portions of the full length protein may also be constructed. These fragments may encode a protein or peptide which elicits antibodies which react with the mycobacterial protein, and are considered functional equivalents.
- a gene encoding an M.tb gene product is incorporated in an expression vector.
- the vector contains a transcriptional promoter recognized by eukaryotic RNA polymerase, and a transcriptional terminator at the end of the M.tb gene coding sequence.
- the promoter is the cytomegalovirus promoter with the intron A sequence (CMV-intA), although those skilled in the art will recognize that any of a number of other known promoters such as the strong immunoglobulin, or other eukaryotic gene promoters may be used.
- a preferred transcriptional terminator is the bovine growth hormone terminator. The combination of CMVintA-BGH terminator is preferred.
- an antibiotic resistance marker is also optionally included in the expression vector under transcriptional control of a suitable prokaryotic promoter.
- Ampicillin resistance genes, neomycin resistance genes or any other suitable antibiotic resistance marker may be used.
- the antibiotic resistance gene encodes a gene product for neomycin/kanamycin resistance.
- the vector to aid in the high level production of the polynucleotide by growth in prokaryotic organisms, it is advantageous for the vector to contain a prokaryotic origin of replication and be of high copy number. Any of a number of commercially available prokaryotic cloning vectors provide these elements.
- these functionalities are provided by the commercially available vectors known as the pUC series. It may be desirable, however, to remove non-essential DNA sequences. Thus, the lacZ and lacI coding sequences of pUC may be removed. It is also desirable that the vectors are not able to replicate in eukaryotic cells. This minimizes the risk of integration of polynucleotide vaccine sequences into the recipients' genome.
- the expression vector pnRSV is used, wherein the Rous sarcoma virus (RSV) long terminal repeat (LTR) is used as the promoter.
- RSV Rous sarcoma virus
- LTR long terminal repeat
- V1 a mutated pBR322 vector into which the CMV promoter and the BGH transcriptional terminator were cloned is used.
- the elements of V1 and pUC19 have been been combined to produce an expression vector named V1J.
- V1JtPA or another desirable expression vector is cloned an M.tb gene, such as one of the antigen 85 complex genes, or any other M.tb gene which can induce anti- M.tb immune responses (CTLs, helper T lymphocytes and antibodies).
- M.tb gene such as one of the antigen 85 complex genes, or any other M.tb gene which can induce anti- M.tb immune responses (CTLs, helper T lymphocytes and antibodies).
- CTLs anti- M.tb immune responses
- helper T lymphocytes and antibodies helper T lymphocytes and antibodies.
- the ampicillin resistance gene is removed from V1J and replaced with a neomycin resistance gene, to generate V1J-neo, into which any of a number of different M.tb genes may be cloned for use according to this invention.
- the vector is V1Jns, which is the same as V1Jneo except that a unique Sfil restriction site has been engineered into the single Kpn1 site at position 2114 of V1J-neo.
- the incidence of Sfi1 sites in human genomic DNA is very low (approximately 1 site per 100,000 bases).
- this vector allows careful monitoring for expression vector integration into host DNA, simply by Sfi1 digestion of extracted genomic DNA.
- the vector is V1R. In this vector, as much non-essential DNA as possible is “trimmed” to produce a highly compact vector.
- This vector allows larger inserts to be used, with less concern that undesirable sequences are encoded and optimizes uptake by cells when the construct encoding specific virus genes is introduced into surrounding tissue.
- the methods used in producing the foregoing vector modifications and development procedures may be accomplished according to methods known by those skilled in the art.
- one of the utilities of the instant invention is to provide a system for in vivo as well as in vitro testing and analysis so that a correlation of M.tb sequence diversity with CTL and T-cell proliferative responses, as well as other parameters can be made.
- the isolation and cloning of these various genes may be accomplished according to methods known to those skilled in the art.
- This invention further provides a method for systematic identification of M.tb strains and sequences for vaccine production. Incorporation of genes from primary isolates of M.tb strains provides an immunogen which induces immune responses against clinical isolates of the organism and thus meets a need as yet unmet in the field. Furthermore, if the virulent isolates change, the immunogen may be modified to reflect new sequences as necessary.
- a gene encoding an M.tb protein is directly linked to a transcriptional promoter.
- tissue-specific promoters or enhancers for example the muscle creatine kinase (MCK) enhancer element may be desirable to limit expression of the polynucleotide to a particular tissue type.
- myocytes are terminally differentiated cells which do not divide. Integration of foreign DNA into chromosomes appears to require both cell division and protein synthesis. Thus, limiting protein expression to non-dividing cells such as myocytes may be preferable.
- use of the CMV promoter is adequate for achieving expression in many tissues into which the PNV is introduced.
- M.tb and other genes are preferably ligated into an expression vector which has been specifically optimized for polynucleotide vaccinations.
- Elements include a transcriptional promoter, immunogenic epitopes, and additional cistrons encoding immunoenhancing or immunomodulatory genes, with their own promoters, transcriptional terminator, bacterial origin of replication and antibiotic resistance gene, as described herein.
- the vector may contain internal ribosome entry sites (IRES) for the expression of polycistronic mRNA.
- IRS internal ribosome entry sites
- the injection of a DNA expression vector encoding antigen 85A, B or C may result in the generation of significant protective immunity against subsequent challenge.
- specific CTLs and helper T lymphocyte responses may be produced.
- the invention offers a means to induce heterologous protective immunity without the need for self-replicating agents or adjuvants.
- DNA constructs compares favorably with traditional protein purification, facilitating the generation of combination vaccines.
- multiple constructs for example encoding antigen 85 complex genes and any other M.tb gene also including non- M.tb genes may be prepared, mixed and co-administered.
- protein expression is maintained following DNA injection [H. Lin et al., Circulation 82, 2217 (1990); R. N. Kitsis et al., Proc. Natl. Acad. Sci. (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1991); S. Jiao et al., Hum. Gene Therapy 3, 21 (1992); J.
- the amount of expressible DNA or transcribed RNA to be introduced into a vaccine recipient will have a very broad dosage range and may depend on the strength of the transcriptional and translational promoters used. In addition, the magnitude of the immune response may depend on the level of protein expression and on the immunogenicity of the expressed gene product. In general, an effective dose ranges of about 1 ng to 5 mg, 100 ng to 2.5 mg, 1 ⁇ g to 750 ⁇ g, and preferably about 10 ⁇ g to 300 ⁇ g of DNA is administered directly into muscle tissue. Subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, or inhalation delivery are also suitable. It is also contemplated that booster vaccinations may be provided.
- M.tb polynucleotide immunogen Following vaccination with M.tb polynucleotide immunogen, boosting with M.tb protein immunogens such as the antigen 85 complex gene products is also contemplated.
- Parenteral administration such as intravenous, intramuscular, subcutaneous or other means of administration of interleukin-12 protein (or other cytokines, e.g. GM-CSF), concurrently with or subsequent to parenteral introduction of the PNV of this invention may be advantageous.
- interleukin-12 protein or other cytokines, e.g. GM-CSF
- the polynucleotide may be naked, that is, unassociated with any proteins, adjuvants or other agents which affect the recipients' immune system.
- the DNA may be associated with liposomes, such as lecithin liposomes or other liposomes known in the art, as a DNA-liposome mixture, or the DNA may be associated with an adjuvant known in the art to boost immune responses, such as a protein or other carrier.
- Agents which assist in the cellular uptake of DNA such as, but not limited to, calcium ions, may also be used. These agents are generally referred to herein as transfection facilitating reagents and pharmaceutically acceptable carriers. Techniques for coating microprojectiles coated with polynucleotide are known in the art and are also useful in connection with this invention. For DNA intended for human use it may be useful to have the final DNA product in a pharmaceutically acceptable carrier or buffer solution. Pharmaceutically acceptable carriers or buffer solutions are known in the art and include those described in a variety of texts such as Remington's Pharmaceutical Sciences.
- the invention is a polynucleotide which comprises contiguous nucleic acid sequences capable of being expressed to produce a gene product upon introduction of said polynucleotide into eukaryotic tissues in vivo.
- the encoded gene product preferably either acts as an immunostimulant or as an antigen capable of generating an immune response.
- the nucleic acid sequences in this embodiment encode an M.tb immunogenic epitope, and optionally a cytokine or a T-cell costimulatory element, such as a member of the B7 family of proteins.
- Immunization by DNA injection also allows, as discussed above, the ready assembly of multicomponent subunit vaccines. Simultaneous immunization with multiple influenza genes has recently been reported. (Donnelly, J. et al., 1994, Vaccines, pp 55-59). The inclusion in an M.tb vaccine of genes whose products activate different arms of the immune system may also provide thorough protection from subsequent challenge.
- the vaccines of the present invention are useful for administration to domesticated or agricultural animals, as well as humans.
- Vaccines of the present invention may be used to prevent and/or combat infection of any agricultural animals, including but not limited to, dairy cattle, which are susceptible to Mycobacterial infection.
- the techniques for administering these vaccines to animals and humans are known to those skilled in the veterinary and human health fields, respectively.
- the expression vector V1 was constructed from pCMVIE-AKI-DHFR [Y. Whang et al., J. Virol. 61, 1796 (1987)].
- the AKI and DHFR genes were removed by cutting the vector with EcoR I and self-ligating. This vector does not contain intron A in the CMV promoter, so it was added as a PCR fragment that had a deleted internal Sac I site [at 1855 as numbered in B. S. Chapman et al., Nuc. Acids Res. 19, 3979 (1991)].
- the template used for the PCR reactions was pCMVintA-Lux, made by ligating the Hind III and Nhe I fragment from pCMV6a12O [see B. S.
- the primers that spanned intron A are:
- 5′ primer SEQ. ID:1: 5′-CTATATAAGCAGAG CTCGTTTAG-3′;
- the 3′ primer, SEQ ID:2 5′-GTAGCAAAGATCTAAGGACGGTGA CTGCAG-3′.
- the primers used to remove the Sac I site are:
- sense primer SEQ ID:3: 5-GTATGTGTCTGAAAATGAGC GT GGAGATTGGGCTCGCAC-3′ and the antisense primer, SEQ ID:4: 5′-GTGCGAGCCCAATCTCC AC GCTCATTTTCAGACACA TAC-3′.
- PCR fragment was cut with Sac I and Bgl II and inserted into the vector which had been cut with the same enzymes.
- V1J The purpose in creating V1J was to remove the promoter and transcription termination elements from vector V1 in order to place them within a more defined context, create a more compact vector, and to improve plasmid purification yields.
- V1J is derived from vectors V1 and pUC18, a commercially available plasmid.
- V1 was digested with SspI and EcoRI restriction enzymes producing two fragments of DNA. The smaller of these fragments, containing the CMVintA promoter and Bovine Growth Hormone (BGH) transcription termination elements which control the expression of heterologous genes, was purified from an agarose electrophoresis gel. The ends of this DNA fragment were then “blunted” using the T4 DNA polymerase enzyme in order to facilitate its ligation to another “blunt-ended” DNA fragment.
- BGH Bovine Growth Hormone
- pUC18 was chosen to provide the “backbone” of the expression vector. It is known to produce high yields of plasmid, is well-characterized by sequence and function, and is of small size. The entire lac operon was removed from this vector by partial digestion with the HaeII restriction enzyme. The remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase treated with calf intestinal alkaline phosphatase, and ligated to the CMVintA/BGH element described above. Plasmids exhibiting either of two possible orientations of the promoter elements within the pUC backbone were obtained. One of these plasmids gave much higher yields of DNA in E. coli and was designated V1J. This vector's structure was verified by sequence analysis of the junction regions and was subsequently demonstrated to give comparable or higher expression of heterologous genes compared with V1.
- amp r gene used for antibiotic selection of bacteria harboring V1J because ampicillin may not be desirable in large-scale fermenters.
- the amp r gene from the pUC backbone of V1J was removed by digestion with SspI and Eam1 1051 restriction enzymes.
- the remaining plasmid was purified by agarose gel electrophoresis, blunt-ended with T4 DNA polymerase, and then treated with calf intestinal alkaline phosphatase.
- the commercially available kan r gene derived from transposon 903 and contained within the pUC4K plasmid, was excised using the PstI restriction enzyme, purified by agarose gel electrophoresis, and blunt-ended with T4 DNA polymerase.
- V1Jneo #'s 1 and 3 plasmids with the kan r gene in either orientation were derived which were designated as V1Jneo #'s 1 and 3.
- V1Jneo #'s 1 and 3 plasmids with the kan r gene in either orientation were derived which were designated as V1Jneo #'s 1 and 3.
- Each of these plasmids was confirmed by restriction enzyme digestion analysis, DNA sequencing of the junction regions, and was shown to produce similar quantities of plasmid as V1J.
- Expression of heterologous gene products was also comparable to V1J for these V1Jneo vectors.
- V1Jneo An Sfi I site was added to V1Jneo to facilitate integration studies.
- a commercially available 13 base pair Sfi I linker (New England BioLabs) was added at the Kpn I site within the BGH sequence of the vector.
- V1Jneo was linearized with Kpn I, gel purified, blunted by T4 DNA polymerase, and ligated to the blunt Sfi I linker. Clonal isolates were chosen by restriction mapping and verified by sequencing through the linker.
- the new vector was designated V1Jns. Expression of heterologous genes in V1Jns (with Sfi I) was comparable to expression of the same genes in V1Jneo (with Kpn I).
- V1Jns was modified to include the human tissue-specific plasminogen activator (tPA) leader.
- tPA tissue-specific plasminogen activator
- Two synthetic complementary oligomers were annealed and then ligated into V1Jn which had been BglII digested.
- the sense and antisense oligomers were 5′-GATC ACC ATG G AT GCA ATG AAG AGA GGG CTC TGC TGT GTG CTG CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GA-3′, SEQ.
- an SfiI restriction site was placed at the KpnI site within the BGH terminator region of V1Jn-tPA by blunting the KpnI site with T4 DNA polymerase followed by ligation with an SfiI linker (catalogue #1138, New England Biolabs). This modification was verified by restriction digestion and agarose gel electrophoresis.
- X any antigenic gene
- the murine B7 gene was PCR amplified from the B lymphoma cell line CH1 (obtained from the ATCC).
- B7 is a member of a family of proteins which provide essential costimulation T cell activation by antigen in the context of major histocompatibility complexes I and II.
- CH1 cells provide a good source of B7 mRNA because they have the phenotype of being constitutively activated and B7 is expressed primarily by activated antigen presenting cells such as B cells and macrophages.
- cAMP or IL-4 were further stimulated in vitro using cAMP or IL-4 and mRNA prepared using standard guanidinium thiocyanate procedures.
- cDNA synthesis was performed using this mRNA using the GeneAmp RNA PCR kit (Perkin-Elmer Cetus) and a priming oligomer (5′-GTA CCT CAT GAG CCA CAT AAT ACC ATG-3′, SEQ. ID:7: ) specific for B7 located downstream of the B7 translational open reading frame.
- B7 was amplified by PCR using the following sense and antisense PCR oligomers: 5′-GGT ACA AGA TCT ACC ATG GCT TGC AAT TGT CAG TTG ATG C-3′, SEQ.
- oligomers provide BglII restriction enzyme sites at the ends of the insert as well as a Kozak translation initiation sequence containing an NcoI restriction site and an additional NcoI site located immediately prior to the 3′-terminal BglII site. NcoI digestion yielded a fragment suitable for cloning into pGEM-3-IRES which had been digested with NcoI.
- the resulting vector, pGEM-3-IRES-B7 contains an IRES-B7 cassette which can easily be transferred to V1Jns-X, where X represents an antigen-encoding gene.
- This vector contains a cassette analogous to that described in item C above except that the gene for the immunostimulatory cytokine, GM-CSF, is used rather than B7.
- GM-CSF is a macrophage differentiation and stimulation cytokine which has been shown to elicit potent anti-tumor T cell activities in vivo [G. Dranoff et al., Proc. Natl. Acad. Sci. USA, 90, 3539 (1993).
- This vector contains a cassette analogous to that described in item C above except that the gene for the immunostimulatory cytokine, IL-12, is used rather than B7.
- IL-12 has been demonstrated to have an influential role in shifting immune responses towards cellular, T cell-dominated pathways as opposed to humoral responses [L. Alfonso et al., Science, 263, 235, 1994].
- V1R a derivative of V1Jns, designated V1R.
- the purpose for this vector construction was to obtain a minimum-sized vaccine vector without unneeded DNA sequences, which still retained the overall optimized heterologous gene expression characteristics and high plasmid yields that V1J and V1Jns afford. It was determined from the literature as well as by experiment that (1) regions within the pUC backbone comprising the E.
- coli origin of replication could be removed without affecting plasmid yield from bacteria; (2) the 3′-region of the kan r gene following the kanamycin open reading frame could be removed if a bacterial terminator was inserted in its place; and, (3) ⁇ 300 bp from the 3′-half of the BGH terminator could be removed without affecting its regulatory function (following the original KpnI restriction enzyme site within the BGH element).
- V1R was constructed by using PCR to synthesize three segments of DNA from V1Jns representing the CMVintA promoter/BGH terminator, origin of replication, and kanamycin resistance elements, respectively. Restriction enzymes unique for each segment were added to each segment end using the PCR oligomers: SspI and XhoI for CMVintA/BGH; EcoRV and BamHI for the kan r gene; and, BclI and SalI for the ori r .
- the ligated product was confirmed by restriction enzyme digestion (>8 enzymes) as well as by DNA sequencing of the ligation junctions.
- RD cells human rhabdomyosarcoma ATCC CCL 1366
- DMEM Dulbecco's modified Eagle's medium
- HEPES heat inactivated fetal bovine serum
- 4 mM L-glutamine 100 ⁇ g/mL each of penicillin and streptomycin.
- Cells were seeded at 1.5 ⁇ 10 6 cells/100 mm 2 plate and grown for 18 hours.
- Cell were transfected with 10 ⁇ g/plate of the TB construct and 10 ⁇ g of co-transfected Cat construct using the CellPhect kit (Pharmacia), and glycerol shocked (15% glycerol in PBS, pH 7.2 for 2.5 min) 5 hours after DNA was added to the cells.
- Cultures were harvested 72 hours after transfection by washing the plates 2 ⁇ -10 mL of cold PBS, pH 7.2, adding 5 mL of cold TEN buffer (40 mM TRIS-Cl, pH 7.5, 1 mM EDTA, 150 mM NaCl) and scraping.
- cold TEN buffer 40 mM TRIS-Cl, pH 7.5, 1 mM EDTA, 150 mM NaCl
- cell pellets were lysed in 50 ⁇ L of Single Detergent Lysis Buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 0.02% NaN3, 1%Nonidet P-40, 100 mM PMSF, 2 ⁇ g/mL aprotinin, 2 ⁇ g/mL leupeptin, and 1 ⁇ g/mL Pepstatin A) and sonicated on ice (2-15 second bursts). Lysates were centrifuged at 13,000 ⁇ g, 4° C., for 10 minutes.
- Single Detergent Lysis Buffer 50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 0.02% NaN3, 1%Nonidet P-40, 100 mM PMSF, 2 ⁇ g/mL aprotinin, 2 ⁇ g/mL leupeptin, and 1 ⁇ g/mL Pepstatin A
- Lysates were centrifuged at 13,000
- Protein concentration was determined by the Bradford method and 20 ⁇ g of cell extract protein per lane was applied to a 10% TRIS-glycine polyacrylamide gel (Novex), then transferred to inmobilon P (Millipore) membrane. Immunoblots were reacted overnight with a 1:20 dilution of the mouse monoclonal antibody TD 17-4 [Huygen et al, 1994, Infect. Immunity 62, 363], followed by a 1.5 hours reaction with a 1:1000 dilution of goat anti-mouse IgGFc peroxidase (Jackson). The blots were developed using the ECL kit (Amersham).
- V1Jns-tPA-85A contains mature Ag85A with tPA signal sequence
- sense 85A.C1 primer [SEQ.ID.NO.:16]
- antisense 85A primer [SEQ.ID.NO.:17]
- the Ag85A from M. tuberculosis was amplified from plasmid p85A.tub, which was prepared by ligating an 800 bp HindIII fragment to a 1600 bp HindIII-SphII fragment from FIG. 2 of Borremans et al, 1989 [Infect. Immunity 57, 3123].
- the resulting 2400 bp insert was subcloned in the HindIII and SphI sites of the BlueScribe Ml 3 + .
- the entire coding sequence and flanking regions in BlueScribe M13+ (VCS/Stratagene) were amplified by PCR with the indicated primers in the following conditions.
- Each 100 ⁇ l reaction contains 2.5 Units Cloned Pfu DNA Polymerase (Stratagene), 200 mM dNTP, 0.5 ⁇ g of each primer and 250 ng of template DNA in the reaction buffer supplied with the enzyme (Stratagene).
- the Hybaid Thermal Reactor was programmed as follows: 5 minutes denaturation at 94° C. followed by 25 cycles (1 minute at 94° C., 2 minutes at 55° C. and 3 minutes at 72° C.) ending with 10 minutes extension at 72° C.
- Amplified DNA was digested with 50 ⁇ g/ml Proteinase K (Boehringer Mannheim) for 30 minutes at 37° C., heated 10 minutes at 95° C. followed by 2 phenol (Chloroform-Isoamyl alcohol) extractions and precipitated with 1 volume of isopropanol, washed twice with 70% ethanol, dried and dissolved in 20 ⁇ l H 2 O. 3 ⁇ g of amplified DNA was digested with 40 Units of Bgl II (Boehringer Mannheim) and the 907 bp fragment (in the case of 85A-C1) was isolated on a 1% agarose gel and extracted on “Prep a Gene” (BioRad) following the manufacturer's instructions.
- Antisense 85A [SEQ.ID.NO.:17]
- Antisense 85A [SEQ.ID.NO.:17]
- Antisense 85B [SEQ.ID.NO.:21]
- Antisense 85C [SEQ.ID.NO.:23]
- Antisense 85B [SEQ.ID.NO.:21]
- Antisense 85C [SEQ.ID.NO.:23]
- the plasmid constructions were characterized by restriction mapping and sequence analysis of the vector-insert junctions (see FIGS. 1 - 6 ). Results were consistent with published M.tb sequence data and showed that the initiation codon was intact for each construct (FIG. 7). Also shown are the various additional amino acid residues unrelated to M.tb Ag85 that were inserted as a result of cloning.
- Rhabdomyosarcoma cells were planted one day before use at a density of 1.2 ⁇ 10 6 cells per 9.5 cm 2 well in six-well tissue culture clusters in high glucose DMEM supplemented with 10% heat-inactivated fetal calf serum, 2 mM L-glutamine, 25 mM HEPES, 50 U/ml penicillin and 50 ⁇ g/ml streptomycin.
- Phenol chloroform extracted cesium chloride purified plasmid DNA was precipitated with calcium phosphate using Pharmacia CellPhect reagents according to the kit instructions except that 5-15 ⁇ g is used for each 9.5 cm 2 well of RD cells. Cultures were glycerol shocked six hours post addition of calcium phosphate-DNA precipate; after refeeding, cultures were incubated for two days prior to harvest.
- Lysates of transfected cultures were prepared in 1 ⁇ RIPA (0.5% SDS, 1.0% TRITON X-100, 1% sodium deoxycholate, 1 mM EDTA, 150 mM NaCl, 25 mM TRIS-HCl pH 7.4) supplemented with 1 ⁇ M leupeptin, 1 ⁇ M pepstatin, 300 nM aprotinin, and 10 ⁇ M TLCK, and sonicated briefly to reduce viscosity. Lysates were resolved by electrophoresis on 10% Tricine gels (Novex) and then transferred to nitrocellulose membranes. Immunoblots were processed with M.tb monoclonal antibodies 17/4 and 32/15 [Huygen et al, 1994, Infect. Immunity 62, 363] and developed with the ECL detection kit (Amersham).
- FIG. 8 shows that V1Jns.tPA-85A(C1), V1Jns.tPA-85A(C2), V1Jns.tPA-85A(C3), and V1Jns.tPA-85B(C1) transfected RD cells express an immunoreactive protein with an apparent molecular weight of approximately 30-32 kDa.
- mice Five- to six-week-old female BALB/c and C57BL/6 mice were anesthetized by intraperitoneal (i.p.) injection of a mixture of 5 mg ketamine HCl (Aveco, Fort Dodge, Iowa) and 0.5 mg xylazine (Mobley Corp., Shawnee, Kans.) in saline. The hind legs were washed with 70% ethanol. Animals were injected three times with 100 ⁇ l of DNA (2 mg/ml) suspended in saline: 50 ⁇ l each leg. At 17-18 days after immunization, serum samples were collected and analyzed for the presence of anti-Ag85 antibodies.
- FIG. 9 shows specific immunoblot reactivity of sera from Ag85 DNA-injected mice (C1) but not from mice that received a control DNA not containing a gene insert (V1J). Reactivity was detected to a serum dilution of at least 1:160 against 300 ng of purified antigen 85A (FIG. 9 b ). This demonstrates that injection of Ag85 DNA resulted in Ag85 expression in vivo such that it was available for the generation of antibody responses in both BALB/c and C57BL/6 (B6) mice.
- Spleen cells from vaccinated mice were analyzed for cytokine secretion in response to specific antigen restimulation as described in Huygen et al, 1992 [Infect. Immunity 60, 2880]. Specifically, spleen cells were incubated with culture filtrate (CF) proteins from M. bovis BCG purified antigen 85A or a 20-mer peptide (p25) corresponding to a known T-cell epitope for C57BL/6 mice (amino acids 241-260). Mice were immunized with V1Jns.tPA85A (C1) (100 ⁇ g) three times with three week intervals and analyzed 17 days after the final injection.
- CF culture filtrate
- Cytokines were assayed using bio-assays for IL-2, interferon- ⁇ (IFN- ⁇ ) and IL-6, and by ELISA for IL-4 and IL-10. Substantial IL-2 and IFN- ⁇ production was observed in both BALB/c and C57BL/6 mice vaccinated with V1Jns.tPA85A (Cl) (FIGS. 10 - 13 ). Furthermore, C57BL/6 mice also reacted to the H-2b-restricted T-cell epitope (FIG. 13). IL-4, IL-6 and IL-10 levels were not increased in V1Jns.tPA85A-vaccinated mice (FIGS. 14 - 16 ). These results indicate that a T h 1 type of helper T-cell response was generated by the DNA vaccine.
- mice were challenged with an intravenous injection of live M. bovis BCG (0.5 mg) and BCG multiplication was analyzed in the spleens and lungs.
- BCG multiplication was measured in challenged naive mice (primary infection) and challenged mice that were vaccinated with BCG at the time of DNA injection (secondary infection).
- the number of colony-forming units (CFU) in lungs of V1Jns.tPA85A (C1)-vaccinated mice was substantially reduced compared to mice with primary infection or mice vaccinated with control DNA V1J.
- CFU colony-forming units
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Gastroenterology & Hepatology (AREA)
- Plant Pathology (AREA)
- Oncology (AREA)
- Pulmonology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Mycology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Genes encoding Mycobacterium tuberculosis (M.tb) proteins were cloned into eukaryotic expression vectors to express the encoded proteins in mammalian muscle cells in vivo. Animals were immunized by injection of these DNA constructs, termed polynucleotide vaccines or PNV, into their muscles. Immune antisera was produced against M.tb antigens. Specific T-cell responses were detected in spleen cells of vaccinated mice and the profile of cytokine secretion in response to antigen 85 was indicative of a Th1 type of helper T-cell response (i.e., high IL-2 and IFN-γ). Protective efficacy of an M.tb DNA vaccine was demonstrated in mice after challenge with M.bovis BCG, as measured by a reduction in mycobacterial multiplication in the spleens and lungs of M.tb DNA-vaccinated mice compared to control DNA-vaccinated mice or primary infection in naive mice.
Description
- A major obstacle to the development of vaccines against viruses and bacteria, particularly those with multiple serotypes or a high rate of mutation, against which elicitation of neutralizing antibodies and/or protective cell-mediated immune responses is desirable, is the diversity of the external proteins among different isolates or strains. Since cytotoxic T-lymphocytes (CTLs) in both mice and humans are capable of recognizing epitopes derived from conserved internal viral proteins [J. W. Yewdell et al.,Proc. Natl. Acad. Sci. (USA) 82, 1785 (1985); A. R. M. Townsend, et al., Cell 44, 959 (1986); A. J. McMichael et al., J. Gen. Virol. 67, 719 (1986); J. Bastin et al., J. Exp. Med. 165, 1508 (1987); A. R. M. Townsend and H. Bodmer, Annu. Rev. Immunol. 7, 601 (1989)], and are thought to be important in the immune response against viruses [Y. -L. Lin and B. A. Askonas, J. Exp. Med. 154, 225 (1981); I. Gardner et al., Eur. J. Immunol. 4, 68 (1974); K. L. Yap and G. L. Ada, Nature 273, 238 (1978); A. J. McMichael et al., New Engl. J. Med. 309, 13 (1983); P. M. Taylor and B. A. Askonas, Immunol. 58, 417 (1986)], efforts have been directed towards the development of CTL vaccines capable of providing heterologous protection against different viral strains.
- It is known that CTLs kill virally- or bacterially-infected cells when their T cell receptors recognize foreign peptides associated with MHC class I and/or class II molecules. These peptides can be derived from endogenously synthesized foreign proteins, regardless of the protein's location or function within the pathogen. By recognition of epitopes from conserved proteins, CTLs may provide heterologous protection. In the case of intracellular bacteria, proteins secreted by or released from the bacteria are processed and presented by MHC class I and II molecules, thereby generating T-cell responses that may play a role in reducing or eliminating infection.
- Most efforts to generate CTL responses have either used replicating vectors to produce the protein antigen within the cell [J. R. Bennink et al., ibid. 311, 578 (1984); J. R. Bennink and J. W. Yewdell,Curr. Top. Microbiol. Immunol. 163, 153 (1990); C. K. Stover et al., Nature 351, 456 (1991); A. Aldovini and R. A. Young, Nature 351, 479 (1991); R. Schafer et al., J. Immunol. 149, 53 (1992); C. S. Hahn et al., Proc. Natl. Acad. Sci. (USA) 89, 2679 (1992)], or they have focused upon the introduction of peptides into the cytosol [F. R. Carbone and M. J. Bevan, J. Exp. Med. 169, 603 (1989); K. Deres et al., Nature 342, 561 (1989); H. Takahashi et al., ibid. 344, 873 (1990); D. S. Collins et al., J. Immunol. 148, 3336 (1992); M. J. Newman et al., ibid. 148, 2357 (1992)]. Both of these approaches have limitations that may reduce their utility as vaccines. Retroviral vectors have restrictions on the size and structure of polypeptides that can be expressed as fusion proteins while maintaining the ability of the recombinant virus to replicate [A. D. Miller, Curr. Top. Microbiol. Immunol. 158, 1 (1992)], and the effectiveness of vectors such as vaccinia for subsequent immunizations may be compromised by immune responses against vaccinia [E. L. Cooney et al., Lancet 337, 567 (1991)]. Also, viral vectors and modified pathogens have inherent risks that may hinder their use in humans [R. R. Redfield et al., New Engl. J. Med. 316, 673 (1987); L. Mascola et al., Arch. Intern. Med. 149, 1569 (1989)]. Furthermore, the selection of peptide epitopes to be presented is dependent upon the structure of an individual's MHC antigens and, therefore, peptide vaccines may have limited effectiveness due to the diversity of MHC haplotypes in outbred populations.
- Benvenisty, N., and Reshef, L. [PNAS 83, 9551-9555, (1986)] showed that CaCl2 precipitated DNA introduced into mice intraperitoneally (i.p.), intravenously (i.v.) or intramuscularly (i.m.) could be expressed. The intramuscular (i.m.) injection of DNA expression vectors in mice has been demonstrated to result in the uptake of DNA by the muscle cells and expression of the protein encoded by the DNA [J. A. Wolff et al., Science 247, 1465 (1990); G. Ascadi et al., Nature 352, 815 (1991)]. The plasmids were shown to be maintained episomally and did not replicate. Subsequently, persistent expression has been observed after i.m. injection in skeletal muscle of rats, fish and primates, and cardiac muscle of rats [H. Lin et al., Circulation 82, 2217 (1990); R. N. Kitsis et al., Proc. Natl. Acad. Sci. (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1991); S. Jiao et al., Hum. Gene Therapy 3, 21 (1992); J. A. Wolff et al., Human Mol. Genet. 1, 363 (1992)]. The technique of using nucleic acids as therapeutic agents was reported in WO90/11092 (Oct. 4, 1990), in which naked polynucleotides were used to vaccinate vertebrates.
- Recently, the coordinate roles of B7 and the major histocompatibility complex (MHC) presentation of epitopes on the surface of antigen presenting cells in activating CTLs for the elimination of tumors was reviewed [Edgington,Biotechnology 11, 1117-1119, 1993]. Once the MHC molecule on the surface of an antigen presenting cell (APC) presents an epitope to a T-cell receptor (TCR), B7 expressed on the surface of the same APC acts as a second signal by binding to CTLA-4 or CD28. The result is rapid division of CD4+ helper T-cells which signal CD8+ T-cells to proliferate and kill the APC.
- It is not necessary for the success of the method that immunization be intramuscular. Thus, Tang et al., [Nature, 356, 152-154 (1992)] disclosed that introduction of gold microprojectiles coated with DNA encoding bovine growth hormone (BGH) into the skin of mice resulted in production of anti-BGH antibodies in the mice. Furth et al., [Analytical Biochemistry, 205, 365-368, (1992)] showed that a jet injector could be used to transfect skin, muscle, fat, and mammary tissues of living animals. Various methods for introducing nucleic acids was recently reviewed [Friedman, T., Science, 244, 1275-1281 (1989)]. See also Robinson et al., [Abstracts of Papers Presented at the 1992 meeting on Modern Approaches to New Vaccines, Including Prevention of AIDS, Cold Spring Harbor, p92; Vaccine 11, 957 (1993)], where the im, ip, and iv administration of avian influenza DNA into chickens was alleged to have provided protection against lethal challenge. Intravenous injection of a DNA:cationic liposome complex in mice was shown by Zhu et al., [Science 261, 209-211 (9 July 1993); see also WO93/24640, Dec. 9, 1993] to result in systemic expression of a cloned transgene. Recently, Ulmer et al., [Science 259, 1745-1749, (1993)] reported on the heterologous protection against influenza virus infection by injection of DNA encoding influenza virus proteins.
- Wang et al., [P.N.A.S. USA 90, 4156-4160 (May, 1993)] reported on elicitation of immune responses in mice against HIV by intramuscular inoculation with a cloned, genomic (unspliced) HIV gene. However, the level of immune responses achieved was very low, and the system utilized portions of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) promoter and portions of the simian virus 40 (SV40) promoter and terminator. SV40 is known to transform cells, possibly through integration into host cellular DNA. Thus, the system described by Wang et al., is wholly inappropriate for administration to humans, which is one of the objects of the instant invention.
- WO 93/17706 describes a method for vaccinating an animal against a virus, wherein carrier particles were coated with a gene construct and the coated particles are accelerated into cells of an animal.
- Studies by Wolff et al. (supra) originally demonstrated that intramuscular injection of plasmid DNA encoding a reporter gene results in the expression of that gene in myocytes at and near the site of injection. Recent reports demonstrated the successful immunization of mice against influenza by the injection of plasmids encoding influenza A hemagglutinin (Montgomery, D. L. et al., 1993, Cell Biol., 12, pp.777-783), or nucleoprotein (Montgomery, D. L. et al., supra; Ulmer, J. B. et al., 1993, Science, 259, pp.1745-1749). The first use of DNA immunization for a herpes virus has been reported (Cox et al., 1993, J.Virol., 67, pp.5664-5667). Injection of a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein g IV gave rise to anti-g IV antibodies in mice and calves. Upon intranasal challenge with BHV-1, immunized calves showed reduced symptoms and shed substantially less virus than controls.
- Tuberculosis (TB) is a chronic infectious disease of the lung caused by the pathogenMycobacterium tuberculosis. TB is one of the most clinically significant infections worldwide, with an incidence of 3 million deaths and 10 million new cases each year. It has been estimated that as much as one third of the world's population may be infected and, in developing countries, 55 million cases of active TB have been reported. Until the turn of the century, TB was the leading cause of death in the United States. But, with improved sanitary conditions and the advent of antimicrobial drugs, the incidence of mortality steadily declined to the point where it was predicted that the disease would be eradicated by the
year 2000. However, in most developed countries, the number of cases of active TB has risen each year since the mid-1980's. Part of this resurgence has been attributed to immigration and the growing number of immunocompromised, HIV-infected individuals. If left unabated, it is predicted that TB will claim more than 30 million human lives in the next ten years. As alarming as these figures may seem, it is of even greater concern that multidrug-resistant (MDR) strains of M. tuberculosis have arisen. These MDR strains are not tractable by traditional drug therapy and have been responsible for several recent outbreaks of TB, particularly in urban centers. Therefore, one of the key components in the management of TB in the long-term will be an effective vaccine [for review see Bloom and Murray, 1993, Science 257, 1055]. -
- Immunity to TB involves several types of effector cells. Activation of macrophages by cytokines, such as interferon-γ, is an effective means of minimizing intracellular mycobacterial multiplication. However, complete eradication of the bacilli by this means is often not achieved. Acquisition of protection against TB requires T lymphocytes. Among these, both CD8+ and CD4+ T cells seem to be important [Orme et al, 1993, J. Infect. Dis. 167, 1481]. These cell types secrete interferon-γ in response to mycobacteria, indicative of a
T h1 immune response, and possess cytotoxic activity to mycobacteria-pulsed target cells. In recent studies using β-2 microglobulin- and CD8-deficient mice, CTL responses have been shown to be critical in providing protection against M. tuberculosis [Flynn et al, 1992, Proc. Natl. Acad. Sci. USA 89, 12013; Flynn et al, 1993, J. Exp. Med. 178, 2249; Cooper et al, 1993, J. Exp. Med. 178, 2243]. In contrast, B lymphocytes do not seem to be involved, and passive transfer of anti-mycobacterial antibodies does not provide protection. Therefore, effective vaccines against TB must generate cell-mediated immune responses. - Antigenic stimulation of T cells requires presentation by MHC molecules. In order for mycobacterial antigens to gain access to the antigen presentation pathway they must be released from the bacteria. In infected macrophages, this could be accomplished by secretion or bacterial lysis. Mycobacteria possess many potential T-cell antigens and several have now been identified [Andersen 1994, Dan. Med. Bull. 41, 205]. Some of these antigens are secreted by the bacteria. It is generally believed that immunity against TB is mediated by CD8+ and CD4+ T cells directed toward these secreted antigens. In mouse and guinea pig models of TB, protection from bacterial challenge, as measured by reduced weight loss, has been achieved using a mixture of secreted mycobacterial antigens [Pal and Horowitz, 1992 Infect. Immunity 60, 4781; Andersen 1994, Infect. Immunity 62, 2536; Collins, 1994, Veterin. Microbiol. 40, 95].
- Several potentially protective T cell antigens have been identified inM. tuberculosis and some of these are being investigated as vaccine targets. Recent work has indicated that the predominant T-cell antigens are those proteins that are secreted by mycobacteria during their residence in macrophages, such as: i) the
antigen 85 complex of proteins (85A, 85B, 85C) [Wiker and Harboe, 1992, Microbiol. Rev. 56, 648], ii) a 6 kDa protein termed ESAT-6 [Andersen 1994, Infect. Immunity 62, 2536], iii) a 38 kDa lipoprotein with homology to PhoS [Young and Garbe, 1991, Res. Microbiol. 142, 55; Andersen, 1992, J. Infect. Dis. 166, 874], iv) the 65 kDa GroEL heat-shock protein [Siva and Lowrie, 1994, Immunol. 82, 244], v) a 55 kDa protein rich in proline and threonine [Romain et al, 1993, Proc. Natl. Acad. Sci. USA 90, 5322], and vi) a 19 kDa lipoprotein [Faith et al, 1991, Immunol. 74, 1]. - The genes for each of the three
antigen 85 proteins (A, B, and C) have been cloned and sequenced [Borremans et al, 1989, Infect. Immunity 57, 3123; Content et al, Infect. Immunity 59, 3205; DeWit et al 1994, DNA Seq. 4, 267]. In addition, these structurally-related proteins are targets for strong T-cell responses after both infection and vaccination [Huygen et al, 1988, Scand. J. Immunol. 27, 187; Launois et al, 1991, Clin. Exp. Immunol. 86, 286; Huygen et al, 1992, Infect. Immunity 60, 2880; Munk et al, 1994, Infect. Immunity 62, 726; Launois et al, 1994, Infect. Immunity 62, 3679]. Therefore, theantigen 85 proteins are considered to be good vaccine targets. - To test the efficacy of DNA immunization in the prevention ofM.tb disease, M.tb protein-coding DNA sequences were cloned into eukaryotic expression vectors. These DNA constructions elicit an immune response when injected into animals. Immunized animals are infected with mycobacteria to evaluate whether or not direct DNA immunization with the gene (or other M.tb genes) could protect them from disease. Nucleic acids, including DNA constructs and RNA transcripts, capable of inducing in vivo expression of M.tb proteins upon direct introduction into animal tissues via injection or otherwise are therefore disclosed. Injection of these nucleic acids may elicit immune responses which result in the production of cytotoxic T lymphocytes (CTLs) specific for M.tb antigens, as well as the generation of M.tb-specific helper T lymphocyte responses, which are protective upon subsequent challenge. These nucleic acids are useful as vaccines for inducing immunity to M.tb, which can prevent infection and/or ameliorate M.tb-related disease.
- FIG. 1. General principle for cloningM.tb genes into expression vectors is shown.
- FIG. 2. Vector map of V1Jns.tPA85A.C1 is shown.
- FIG. 3. Vector map of V1Jns.85A.C2 is shown.
- FIG. 4. Vector map of V1Jns.85A.C3 is shown.
- FIG. 5. Vector map of V1Jns.tPA85B.C1 is shown.
- FIG. 6. Vector map of V1Jns.tPA85C.C1 is shown.
- FIG. 7 N-Terminal sequence verification of constructs is shown.
- FIG. 8 Expression ofM.tb proteins in tissue culture is shown.
- FIG. 9 Production of
antigen 85A-specific antibodies in DNA-vaccinated mice is shown. - FIG. 10 IL-2 production in BALB/c mice by a Tb DNA vaccine is shown.
- FIG. 11 IL-2 production in C57BL/6 mice by a Tb DNA vaccine is shown.
- FIG. 12 IFN-β production in BALB/c mice by a Tb DNA vaccine is shown.
- FIG. 13 IFN-γ production in C57BL/6 mice by a Tb DNA vaccine is shown.
- FIG. 14 Lack of IL-4 production in BALB/c mice by a Tb DNA vaccine is shown.
- FIG. 15 Lack of IL-6 production in mice by a Tb DNA vaccine is shown.
- FIG. 16 Lack of IL-10 production in mice by a Tb DNA vaccine is shown.
- FIG. 17 Reduction of BCG multiplication in lungs of C57BL/6 mice vaccinated with a Tb DNA vaccine is shown.
- FIG. 18 Reduction of BCG multiplication in lungs of BALB/c mice vaccinated with a Tb DNA vaccine is shown.
- FIG. 19 Reduction of BCG multiplication in spleens of BALB/c mice vaccinated with a Tb DNA vaccine is shown.
- FIG. 20 Reduction of BCG multiplication in spleens of C57BL/6 mice vaccinated with a Tb DNA vaccine is shown.
- This invention provides polynucleotides which, when directly introduced into a vertebrate in vivo, including mammals such as humans, induces the expression of encoded proteins within the animal. As used herein, a polynucleotide is a nucleic acid which contains essential regulatory elements such that upon introduction into a living vertebrate cell, and is able to direct the cellular machinery to produce translation products encoded by the genes comprising the polynucleotide. In one embodiment of the invention, the polynucleotide is a polydeoxyribonucleic acid comprisingMycobacterium tuberculosis (M.tb) genes operatively linked to a transcriptional promoter. In another embodiment of the invention the polynucleotide vaccine comprises polyribonucleic acid encoding M.tb genes which are amenable to translation by the eukaryotic cellular machinery (ribosomes, tRNAs, and other translation factors). Where the protein encoded by the polynucleotide is one which does not normally occur in that animal except in pathological conditions, (i.e. an heterologous protein) such as proteins associated with M.tb, the animals' immune system is activated to launch a protective immune response. Because these exogenous proteins are produced by the animals' own tissues, the expressed proteins are processed by the major histocompatibility system (MHC) in a fashion analogous to when an actual M.tb infection occurs. The result, as shown in this disclosure, is induction of immune responses against M.tb. Polynucleotides for the purpose of generating immune responses to an encoded protein are referred to herein as polynucleotide vaccines or PNV.
- There are many embodiments of the instant invention which those skilled in the art can appreciate from the specification. Thus, different transcriptional promoters, terminators, carrier vectors or specific gene sequences may be used successfully.
- The instant invention provides a method for using a polynucleotide which, upon introduction into mammalian tissue, induces the expression, in vivo, of the polynucleotide thereby producing the encoded protein. It is readily apparent to those skilled in the art that variations or derivatives of the nucleotide sequence encoding a protein can be produced which alter the amino acid sequence of the encoded protein. The altered expressed protein may have an altered amino acid sequence, yet still elicits immune responses which react with the mycobacterial protein, and are considered functional equivalents. In addition, fragments of the full length genes which encode portions of the full length protein may also be constructed. These fragments may encode a protein or peptide which elicits antibodies which react with the mycobacterial protein, and are considered functional equivalents.
- In one embodiment of this invention, a gene encoding anM.tb gene product is incorporated in an expression vector. The vector contains a transcriptional promoter recognized by eukaryotic RNA polymerase, and a transcriptional terminator at the end of the M.tb gene coding sequence. In a preferred embodiment, the promoter is the cytomegalovirus promoter with the intron A sequence (CMV-intA), although those skilled in the art will recognize that any of a number of other known promoters such as the strong immunoglobulin, or other eukaryotic gene promoters may be used. A preferred transcriptional terminator is the bovine growth hormone terminator. The combination of CMVintA-BGH terminator is preferred. In addition, to assist in preparation of the polynucleotides in prokaryotic cells, an antibiotic resistance marker is also optionally included in the expression vector under transcriptional control of a suitable prokaryotic promoter. Ampicillin resistance genes, neomycin resistance genes or any other suitable antibiotic resistance marker may be used. In a preferred embodiment of this invention, the antibiotic resistance gene encodes a gene product for neomycin/kanamycin resistance. Further, to aid in the high level production of the polynucleotide by growth in prokaryotic organisms, it is advantageous for the vector to contain a prokaryotic origin of replication and be of high copy number. Any of a number of commercially available prokaryotic cloning vectors provide these elements. In a preferred embodiment of this invention, these functionalities are provided by the commercially available vectors known as the pUC series. It may be desirable, however, to remove non-essential DNA sequences. Thus, the lacZ and lacI coding sequences of pUC may be removed. It is also desirable that the vectors are not able to replicate in eukaryotic cells. This minimizes the risk of integration of polynucleotide vaccine sequences into the recipients' genome.
- In another embodiment, the expression vector pnRSV is used, wherein the Rous sarcoma virus (RSV) long terminal repeat (LTR) is used as the promoter. In yet another embodiment, V1, a mutated pBR322 vector into which the CMV promoter and the BGH transcriptional terminator were cloned is used. In a preferred embodiment of this invention, the elements of V1 and pUC19 have been been combined to produce an expression vector named V1J.
- Into V1J, V1JtPA or another desirable expression vector is cloned anM.tb gene, such as one of the
antigen 85 complex genes, or any other M.tb gene which can induce anti-M.tb immune responses (CTLs, helper T lymphocytes and antibodies). In another embodiment, the ampicillin resistance gene is removed from V1J and replaced with a neomycin resistance gene, to generate V1J-neo, into which any of a number of different M.tb genes may be cloned for use according to this invention. In yet another embodiment, the vector is V1Jns, which is the same as V1Jneo except that a unique Sfil restriction site has been engineered into the single Kpn1 site at position 2114 of V1J-neo. The incidence of Sfi1 sites in human genomic DNA is very low (approximately 1 site per 100,000 bases). Thus, this vector allows careful monitoring for expression vector integration into host DNA, simply by Sfi1 digestion of extracted genomic DNA. In a further embodiment, the vector is V1R. In this vector, as much non-essential DNA as possible is “trimmed” to produce a highly compact vector. This vector allows larger inserts to be used, with less concern that undesirable sequences are encoded and optimizes uptake by cells when the construct encoding specific virus genes is introduced into surrounding tissue. The methods used in producing the foregoing vector modifications and development procedures may be accomplished according to methods known by those skilled in the art. - From this work those skilled in the art will recognize that one of the utilities of the instant invention is to provide a system for in vivo as well as in vitro testing and analysis so that a correlation ofM.tb sequence diversity with CTL and T-cell proliferative responses, as well as other parameters can be made. The isolation and cloning of these various genes may be accomplished according to methods known to those skilled in the art. This invention further provides a method for systematic identification of M.tb strains and sequences for vaccine production. Incorporation of genes from primary isolates of M.tb strains provides an immunogen which induces immune responses against clinical isolates of the organism and thus meets a need as yet unmet in the field. Furthermore, if the virulent isolates change, the immunogen may be modified to reflect new sequences as necessary.
- In one embodiment of this invention, a gene encoding anM.tb protein is directly linked to a transcriptional promoter. The use of tissue-specific promoters or enhancers, for example the muscle creatine kinase (MCK) enhancer element may be desirable to limit expression of the polynucleotide to a particular tissue type. For example, myocytes are terminally differentiated cells which do not divide. Integration of foreign DNA into chromosomes appears to require both cell division and protein synthesis. Thus, limiting protein expression to non-dividing cells such as myocytes may be preferable. However, use of the CMV promoter is adequate for achieving expression in many tissues into which the PNV is introduced.
-
- The protective efficacy of polynucleotideM.tb immunogens against subsequent challenge is demonstrated by immunization with the DNA of this invention. This is advantageous since no infectious agent is involved, no assembly/replication of bacteria is required, and determinant selection is permitted. Furthermore, because the sequence of mycobacterial gene products may be conserved among various strains of M.tb, protection against subsequent challenge by another strain of M.tb is obtained.
- The injection of a DNA expression
vector encoding antigen 85A, B or C may result in the generation of significant protective immunity against subsequent challenge. In particular, specific CTLs and helper T lymphocyte responses may be produced. - Because each of theM.tb gene products exhibit a high degree of conservation among the various strains of M.tb and because immune responses may be generated in response to intracellular expression and MHC processing, it is expected that many different M.tb PNV constructs may give rise to cross reactive immune responses.
- The invention offers a means to induce heterologous protective immunity without the need for self-replicating agents or adjuvants. The generation of high titer antibodies against expressed proteins after injection of viral protein and human growth hormone DNA, [Tang et al.,Nature 356, 152, 1992], indicates this is a facile and highly effective means of making antibody-based vaccines, either separately or in combination with cytotoxic T-lymphocyte and helper T lymphocyte vaccines targeted towards conserved antigens.
- The ease of producing and purifying DNA constructs compares favorably with traditional protein purification, facilitating the generation of combination vaccines. Thus, multiple constructs, for
example encoding antigen 85 complex genes and any other M.tb gene also including non-M.tb genes may be prepared, mixed and co-administered. Additionally, protein expression is maintained following DNA injection [H. Lin et al., Circulation 82, 2217 (1990); R. N. Kitsis et al., Proc. Natl. Acad. Sci. (USA) 88, 4138 (1991); E. Hansen et al., FEBS Lett. 290, 73 (1991); S. Jiao et al., Hum.Gene Therapy 3, 21 (1992); J. A. Wolff et al., Human Mol. Genet. 1, 363 (1992)], the persistence of B- and T-cell memory may be enhanced [D. Gray and P. Matzinger, J. Exp. Med. 174, 969 (1991); S. Oehen et al., ibid. 176, 1273 (1992)], thereby engendering long-lived humoral and cell-mediated immunity. - The amount of expressible DNA or transcribed RNA to be introduced into a vaccine recipient will have a very broad dosage range and may depend on the strength of the transcriptional and translational promoters used. In addition, the magnitude of the immune response may depend on the level of protein expression and on the immunogenicity of the expressed gene product. In general, an effective dose ranges of about 1 ng to 5 mg, 100 ng to 2.5 mg, 1 μg to 750 μg, and preferably about 10 μg to 300 μg of DNA is administered directly into muscle tissue. Subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, or inhalation delivery are also suitable. It is also contemplated that booster vaccinations may be provided. Following vaccination withM.tb polynucleotide immunogen, boosting with M.tb protein immunogens such as the
antigen 85 complex gene products is also contemplated. Parenteral administration, such as intravenous, intramuscular, subcutaneous or other means of administration of interleukin-12 protein (or other cytokines, e.g. GM-CSF), concurrently with or subsequent to parenteral introduction of the PNV of this invention may be advantageous. - The polynucleotide may be naked, that is, unassociated with any proteins, adjuvants or other agents which affect the recipients' immune system. In this case, it is desirable for the polycucleotide to be in a physiologically acceptable solution, such as, but not limited to, sterile saline or sterile buffered saline. Alternatively, the DNA may be associated with liposomes, such as lecithin liposomes or other liposomes known in the art, as a DNA-liposome mixture, or the DNA may be associated with an adjuvant known in the art to boost immune responses, such as a protein or other carrier. Agents which assist in the cellular uptake of DNA, such as, but not limited to, calcium ions, may also be used. These agents are generally referred to herein as transfection facilitating reagents and pharmaceutically acceptable carriers. Techniques for coating microprojectiles coated with polynucleotide are known in the art and are also useful in connection with this invention. For DNA intended for human use it may be useful to have the final DNA product in a pharmaceutically acceptable carrier or buffer solution. Pharmaceutically acceptable carriers or buffer solutions are known in the art and include those described in a variety of texts such as Remington's Pharmaceutical Sciences.
- In another embodiment, the invention is a polynucleotide which comprises contiguous nucleic acid sequences capable of being expressed to produce a gene product upon introduction of said polynucleotide into eukaryotic tissues in vivo. The encoded gene product preferably either acts as an immunostimulant or as an antigen capable of generating an immune response. Thus, the nucleic acid sequences in this embodiment encode anM.tb immunogenic epitope, and optionally a cytokine or a T-cell costimulatory element, such as a member of the B7 family of proteins.
- There are several advantages of immunization with a gene rather than its gene product. The first is the relative simplicity with which native or nearly native antigen can be presented to the immune system. Mammalian proteins expressed recombinantly in bacteria, yeast, or even mammalian cells often require extensive treatment to insure appropriate antigenicity. A second advantage of DNA immunization is the potential for the immunogen to enter the MHC class I pathway and evoke a cytotoxic T cell response. Immunization of mice with DNA encoding the influenza A nucleoprotein (NP) elicited a CD8+ response to NP that protected mice against challenge with heterologous strains of flu. (Montgomery, D. L. et al., supra; Ulmer, J. et al., supra)
- There is strong evidence that cell-mediated immunity is important in controllingM.tb infection [Orme et al, 1993, J. Infect. Dis. 167, 1481; Cooper et al 1993, J. Exp. Med. 178, 2243; Flynn et al, 1993, J. Exp. Med. 178, 2249; Orme et al, 1993, J. Immunol. 151, 518]. Since DNA immunization can evoke both humoral and cell-mediated immune responses, its greatest advantage may be that it provides a relatively simple method to survey a large number of M.tb genes for their vaccine potential.
- Immunization by DNA injection also allows, as discussed above, the ready assembly of multicomponent subunit vaccines. Simultaneous immunization with multiple influenza genes has recently been reported. (Donnelly, J. et al., 1994, Vaccines, pp 55-59). The inclusion in anM.tb vaccine of genes whose products activate different arms of the immune system may also provide thorough protection from subsequent challenge.
- The vaccines of the present invention are useful for administration to domesticated or agricultural animals, as well as humans. Vaccines of the present invention may be used to prevent and/or combat infection of any agricultural animals, including but not limited to, dairy cattle, which are susceptible to Mycobacterial infection. The techniques for administering these vaccines to animals and humans are known to those skilled in the veterinary and human health fields, respectively.
- The following examples are provided to illustrate the present invention without, however, limiting the same thereto.
- Vectors for Vaccine Production
- A) V1 Expression Vector
- The expression vector V1 was constructed from pCMVIE-AKI-DHFR [Y. Whang et al.,J. Virol. 61, 1796 (1987)]. The AKI and DHFR genes were removed by cutting the vector with EcoR I and self-ligating. This vector does not contain intron A in the CMV promoter, so it was added as a PCR fragment that had a deleted internal Sac I site [at 1855 as numbered in B. S. Chapman et al., Nuc. Acids Res. 19, 3979 (1991)]. The template used for the PCR reactions was pCMVintA-Lux, made by ligating the Hind III and Nhe I fragment from pCMV6a12O [see B. S. Chapman et al., ibid.,] which includes hCMV-IE1 enhancer/promoter and intron A, into the Hind III and Xba I sites of pBL3 to generate pCMVIntBL. The 1881 base pair luciferase gene fragment (Hind III-Sma I Klenow filled-in) from RSV-Lux [J. R. de Wet et al., Mol. Cell Biol. 7, 725, 1987] was cloned into the Sal I site of pCMVIntBL, which was Klenow filled-in and phosphatase treated.
- The primers that spanned intron A are:
- 5′ primer, SEQ. ID:1: 5′-CTATATAAGCAGAG CTCGTTTAG-3′; The 3′ primer, SEQ ID:2: 5′-GTAGCAAAGATCTAAGGACGGTGA CTGCAG-3′.
- The primers used to remove the Sac I site are:
- sense primer, SEQ ID:3: 5-GTATGTGTCTGAAAATGAGCGTGGAGATTGGGCTCGCAC-3′ and the antisense primer, SEQ ID:4: 5′-GTGCGAGCCCAATCTCCACGCTCATTTTCAGACACA TAC-3′.
- The PCR fragment was cut with Sac I and Bgl II and inserted into the vector which had been cut with the same enzymes.
- B) V1J Expression Vector
- The purpose in creating V1J was to remove the promoter and transcription termination elements from vector V1 in order to place them within a more defined context, create a more compact vector, and to improve plasmid purification yields.
- V1J is derived from vectors V1 and pUC18, a commercially available plasmid. V1 was digested with SspI and EcoRI restriction enzymes producing two fragments of DNA. The smaller of these fragments, containing the CMVintA promoter and Bovine Growth Hormone (BGH) transcription termination elements which control the expression of heterologous genes, was purified from an agarose electrophoresis gel. The ends of this DNA fragment were then “blunted” using the T4 DNA polymerase enzyme in order to facilitate its ligation to another “blunt-ended” DNA fragment.
- pUC18 was chosen to provide the “backbone” of the expression vector. It is known to produce high yields of plasmid, is well-characterized by sequence and function, and is of small size. The entire lac operon was removed from this vector by partial digestion with the HaeII restriction enzyme. The remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase treated with calf intestinal alkaline phosphatase, and ligated to the CMVintA/BGH element described above. Plasmids exhibiting either of two possible orientations of the promoter elements within the pUC backbone were obtained. One of these plasmids gave much higher yields of DNA inE. coli and was designated V1J. This vector's structure was verified by sequence analysis of the junction regions and was subsequently demonstrated to give comparable or higher expression of heterologous genes compared with V1.
- C) V1Jneo Expression Vector
- It was necessary to remove the ampr gene used for antibiotic selection of bacteria harboring V1J because ampicillin may not be desirable in large-scale fermenters. The ampr gene from the pUC backbone of V1J was removed by digestion with SspI and Eam1 1051 restriction enzymes. The remaining plasmid was purified by agarose gel electrophoresis, blunt-ended with T4 DNA polymerase, and then treated with calf intestinal alkaline phosphatase. The commercially available kanr gene, derived from transposon 903 and contained within the pUC4K plasmid, was excised using the PstI restriction enzyme, purified by agarose gel electrophoresis, and blunt-ended with T4 DNA polymerase. This fragment was ligated with the V1J backbone and plasmids with the kanr gene in either orientation were derived which were designated as V1Jneo #'s 1 and 3. Each of these plasmids was confirmed by restriction enzyme digestion analysis, DNA sequencing of the junction regions, and was shown to produce similar quantities of plasmid as V1J. Expression of heterologous gene products was also comparable to V1J for these V1Jneo vectors.
V1Jneo# 3, referred to as V1Jneo hereafter, was selected which contains the kanr gene in the same orientation as the ampr gene in V1J as the expression construct. - D) V1Jns Expression Vector
- An Sfi I site was added to V1Jneo to facilitate integration studies. A commercially available 13 base pair Sfi I linker (New England BioLabs) was added at the Kpn I site within the BGH sequence of the vector. V1Jneo was linearized with Kpn I, gel purified, blunted by T4 DNA polymerase, and ligated to the blunt Sfi I linker. Clonal isolates were chosen by restriction mapping and verified by sequencing through the linker. The new vector was designated V1Jns. Expression of heterologous genes in V1Jns (with Sfi I) was comparable to expression of the same genes in V1Jneo (with Kpn I).
- E) V1Jns-tPA
- In order to provide an heterologous leader peptide sequence to secreted and/or membrane proteins, V1Jns was modified to include the human tissue-specific plasminogen activator (tPA) leader. Two synthetic complementary oligomers were annealed and then ligated into V1Jn which had been BglII digested. The sense and antisense oligomers were 5′-GATCACC ATG GAT GCA ATG AAG AGA GGG CTC TGC TGT GTG CTG CTG CTG TGT GGA GCA GTC TTC GTT TCG CCC AGC GA-3′, SEQ. ID:5:, and 5′-GAT CTC GCT GGG CGA AAC GAA GAC TGC TCC ACA CAG CAG CAG CAC ACA GCA GAG CCC TCT CTT CAT TGC ATC CAT GGT-3′, SEQ. ID:6. The Kozak sequence is underlined in the sense oligomer. These oligomers have overhanging bases compatible for ligation to BglII-cleaved sequences. After ligation the upstream BglII site is destroyed while the downstream BglII is retained for subsequent ligations. Both the junction sites as well as the entire tPA leader sequence were verified by DNA sequencing. Additionally, in order to conform with the consensus optimized vector V1Jns (=V1Jneo with an SfiI site), an SfiI restriction site was placed at the KpnI site within the BGH terminator region of V1Jn-tPA by blunting the KpnI site with T4 DNA polymerase followed by ligation with an SfiI linker (catalogue #1138, New England Biolabs). This modification was verified by restriction digestion and agarose gel electrophoresis.
- F) pGEM-3-X-IRES-B7
- (where X=any antigenic gene) As an example of a dicistronic vaccine construct which provides coordinate expression of a gene encoding an immunogen and a gene encoding an immuno-stimulatory protein, the murine B7 gene was PCR amplified from the B lymphoma cell line CH1 (obtained from the ATCC). B7 is a member of a family of proteins which provide essential costimulation T cell activation by antigen in the context of major histocompatibility complexes I and II. CH1 cells provide a good source of B7 mRNA because they have the phenotype of being constitutively activated and B7 is expressed primarily by activated antigen presenting cells such as B cells and macrophages. These cells were further stimulated in vitro using cAMP or IL-4 and mRNA prepared using standard guanidinium thiocyanate procedures. cDNA synthesis was performed using this mRNA using the GeneAmp RNA PCR kit (Perkin-Elmer Cetus) and a priming oligomer (5′-GTA CCT CAT GAG CCA CAT AAT ACC ATG-3′, SEQ. ID:7: ) specific for B7 located downstream of the B7 translational open reading frame. B7 was amplified by PCR using the following sense and antisense PCR oligomers: 5′-GGT ACA AGA TCT ACC ATG GCT TGC AAT TGT CAG TTG ATG C-3′, SEQ. ID:8:, and 5′-CCA CAT AGA TCT CCA TGG GAA CTA AAG GAA GAC GGT CTG TTC-3′, SEQ. ID:9:, respectively. These oligomers provide BglII restriction enzyme sites at the ends of the insert as well as a Kozak translation initiation sequence containing an NcoI restriction site and an additional NcoI site located immediately prior to the 3′-terminal BglII site. NcoI digestion yielded a fragment suitable for cloning into pGEM-3-IRES which had been digested with NcoI. The resulting vector, pGEM-3-IRES-B7, contains an IRES-B7 cassette which can easily be transferred to V1Jns-X, where X represents an antigen-encoding gene.
- G) pGEM-3-X-IRES-GM-CSF
- (where X=any antigenic gene) This vector contains a cassette analogous to that described in item C above except that the gene for the immunostimulatory cytokine, GM-CSF, is used rather than B7. GM-CSF is a macrophage differentiation and stimulation cytokine which has been shown to elicit potent anti-tumor T cell activities in vivo [G. Dranoff et al.,Proc. Natl. Acad. Sci. USA, 90, 3539 (1993).
- H) pGEM-3-X-IRES-IL-12
- (where X=any antigenic gene) This vector contains a cassette analogous to that described in item C above except that the gene for the immunostimulatory cytokine, IL-12, is used rather than B7. IL-12 has been demonstrated to have an influential role in shifting immune responses towards cellular, T cell-dominated pathways as opposed to humoral responses [L. Alfonso et al., Science, 263, 235, 1994].
- Vector V1R Preparation
- In an effort to continue to optimize the basic vaccination vector, a derivative of V1Jns, designated V1R, was prepared. The purpose for this vector construction was to obtain a minimum-sized vaccine vector without unneeded DNA sequences, which still retained the overall optimized heterologous gene expression characteristics and high plasmid yields that V1J and V1Jns afford. It was determined from the literature as well as by experiment that (1) regions within the pUC backbone comprising theE. coli origin of replication could be removed without affecting plasmid yield from bacteria; (2) the 3′-region of the kanr gene following the kanamycin open reading frame could be removed if a bacterial terminator was inserted in its place; and, (3) ˜300 bp from the 3′-half of the BGH terminator could be removed without affecting its regulatory function (following the original KpnI restriction enzyme site within the BGH element).
- V1R was constructed by using PCR to synthesize three segments of DNA from V1Jns representing the CMVintA promoter/BGH terminator, origin of replication, and kanamycin resistance elements, respectively. Restriction enzymes unique for each segment were added to each segment end using the PCR oligomers: SspI and XhoI for CMVintA/BGH; EcoRV and BamHI for the kanr gene; and, BclI and SalI for the orir. These enzyme sites were chosen because they allow directional ligation of each of the PCR-derived DNA segments with subsequent loss of each site: EcoRV and SspI leave blunt-ended DNAs which are compatible for ligation while BamHI and BclI leave complementary overhangs as do SalI and XhoI. After obtaining these segments by PCR each segment was digested with the appropriate restriction enzymes indicated above and then ligated together in a single reaction mixture containing all three DNA segments. The 5′-end of the orir was designed to include the T2 rho independent terminator sequence that is normally found in this region so that it could provide termination information for the kanamycin resistance gene. The ligated product was confirmed by restriction enzyme digestion (>8 enzymes) as well as by DNA sequencing of the ligation junctions. DNA plasmid yields and heterologous expression using viral genes within V1R appear similar to V1Jns. The net reduction in vector size achieved was 1346 bp (V1Jns=4.86 kb; V1R=3.52 kb).
- PCR oligomer sequences used to synthesize V1R (restriction enzyme sites are underlined and identified in brackets following sequence):
- (1) 5′-GGT ACAAAT ATT GG CTA TTG GCC ATT GCA TAC G-3′ [SspI], SEQ.ID:10:,
- (2) 5′-CCA CATCTC GAG GAA CCG GGT CAA TTC TTC AGC ACC-3′ [XhoI], SEQ.ID:11:
- (for CMVintA/BGH segment)
- (3) 5′-GGT ACAGAT ATC GGA AAG CCA CGT TGT GTC TCA AAA TC-3′[EcoRV], SEQ.ID:12:
- (4) 5′-CCA CATGGA TCC G TAA TGC TCT GCC AGT GTT ACA ACC-3′ [BamHI], SEQ.ID:13:
- (for kanamycin resistance gene segment)
- (5) 5′-GGT ACATGA TCA CGT AGA AAA GAT CAA AGG ATC TTC TTG-3′[BclI], SEQ.ID:14:,
- (6) 5′-CCA CATGTC GAC CC GTA AAA AGG CCG CGT TGC TGG-3′ [SalI], SEQ.ID:15:
- (forE. coli origin of replication)
- Cell Culture and Transfection
- For preparation of stably transfected cell lines expressingM.tb antigens RD cells (human rhabdomyosarcoma ATCC CCL 136) were grown at 37° C., 5% CO2 in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% heat inactivated fetal bovine serum, 20 mM HEPES, 4 mM L-glutamine, and 100 μg/mL each of penicillin and streptomycin. Cells were seeded at 1.5×106 cells/100 mm2 plate and grown for 18 hours. Cell were transfected with 10 μg/plate of the TB construct and 10 μg of co-transfected Cat construct using the CellPhect kit (Pharmacia), and glycerol shocked (15% glycerol in PBS, pH 7.2 for 2.5 min) 5 hours after DNA was added to the cells. Cultures were harvested 72 hours after transfection by washing the
plates 2×-10 mL of cold PBS, pH 7.2, adding 5 mL of cold TEN buffer (40 mM TRIS-Cl, pH 7.5, 1 mM EDTA, 150 mM NaCl) and scraping. For analysis of protein expression, cell pellets were lysed in 50 μL of Single Detergent Lysis Buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 0.02% NaN3, 1%Nonidet P-40, 100 mM PMSF, 2 μg/mL aprotinin, 2 μg/mL leupeptin, and 1 μg/mL Pepstatin A) and sonicated on ice (2-15 second bursts). Lysates were centrifuged at 13,000× g, 4° C., for 10 minutes. Protein concentration was determined by the Bradford method and 20 μg of cell extract protein per lane was applied to a 10% TRIS-glycine polyacrylamide gel (Novex), then transferred to inmobilon P (Millipore) membrane. Immunoblots were reacted overnight with a 1:20 dilution of the mouse monoclonal antibody TD 17-4 [Huygen et al, 1994, Infect. Immunity 62, 363], followed by a 1.5 hours reaction with a 1:1000 dilution of goat anti-mouse IgGFc peroxidase (Jackson). The blots were developed using the ECL kit (Amersham). - Cloning and DNA preparation
- 1. Construction of V1Jns-tPA-85A (contains mature Ag85A with tPA signal sequence) was done using the following primers:
- sense 85A.C1 primer [SEQ.ID.NO.:16]
- GGAAG ATC TTT TCC CGG CCG GGC TTG CCG
- Bgl II
- antisense 85A primer [SEQ.ID.NO.:17]
- GGAAGATCTTGTCTGTTCGGAGCTAGGC.
- The Ag85A fromM. tuberculosis was amplified from plasmid p85A.tub, which was prepared by ligating an 800 bp HindIII fragment to a 1600 bp HindIII-SphII fragment from FIG. 2 of Borremans et al, 1989 [Infect. Immunity 57, 3123]. The resulting 2400 bp insert was subcloned in the HindIII and SphI sites of the
BlueScribe Ml 3+. The entire coding sequence and flanking regions in BlueScribe M13+ (VCS/Stratagene) were amplified by PCR with the indicated primers in the following conditions. Each 100 μl reaction contains 2.5 Units Cloned Pfu DNA Polymerase (Stratagene), 200 mM dNTP, 0.5 μg of each primer and 250 ng of template DNA in the reaction buffer supplied with the enzyme (Stratagene). The Hybaid Thermal Reactor was programmed as follows: 5 minutes denaturation at 94° C. followed by 25 cycles (1 minute at 94° C., 2 minutes at 55° C. and 3 minutes at 72° C.) ending with 10 minutes extension at 72° C. - Amplified DNA was digested with 50 μg/ml Proteinase K (Boehringer Mannheim) for 30 minutes at 37° C., heated 10 minutes at 95° C. followed by 2 phenol (Chloroform-Isoamyl alcohol) extractions and precipitated with 1 volume of isopropanol, washed twice with 70% ethanol, dried and dissolved in 20 μl H2O. 3 μg of amplified DNA was digested with 40 Units of Bgl II (Boehringer Mannheim) and the 907 bp fragment (in the case of 85A-C1) was isolated on a 1% agarose gel and extracted on “Prep a Gene” (BioRad) following the manufacturer's instructions.
- Fifty ng of this fragment was ligated to 20 ng of the Bgl II digested and dephosphorylated V1Jns.tPA vector in a 10 μl reaction containing 2.5 Units T4 DNA ligase (Amersham) in ligation buffer for 16 hours at 14° C., transformed into competent DH5E. coli (BRL) and plated on Kanamycin (50 μg/ml) containing LB Agar medium. Transformants were picked up and their plasmidic DNA was restricted with Bgl II (to confirm the presence of insert) and with Pvu II to define its orientation.
- 2. Construction of V1Jns-85A [C2] (contains mature Ag85A with no signal sequence) was done using the following primers:
-
Sense 85A C2 [SEQ.ID.NO.:18] - GGAAGATCTACC ATG GGC TTT TCC CGG CCG GGC TTG C
- Antisense 85A [SEQ.ID.NO.:17]
- GGAAGATCTTGCTGTTCGGAGCTAGGC.
- The same procedure as 1 above was followed, except that cloning was in V1Jns.
-
-
Sense 85A C3 [SEQ.ID.NO.:19] - GGAAGATCTACC ATG GCA CAG CTT GTT GAC AGG GTT
- Antisense 85A [SEQ.ID.NO.:17]
- GGAAGATCTTGCTGTTCGGAGCTAGGC.
- The same procedure as 1 above was followed, except that cloning was in V1Jns.
- 4. Construction of V1Jns-tPA-85B [C1] (contains Ag85B with tPA signal sequence) was done using the following primers:
-
Sense 85B [C1] [SEQ.ID.NO.:20] - GGAAG ATC TCC TTC TCC CGG CCG GGG CTG CCG GTC GAG
- Antisense 85B [SEQ.ID.NO.:21]
- GGAAGATCTAACCTTCGGTTGATCCCGTCAGCC.
- The same procedure as 1 above was followed, except that the template for PCR was p85B.tub.
- 5. Construction of V1Jns-tPA-85C [C1] (contains Ag85C with tPA signal sequence) was done using the following primers:
-
Sense 85C [C1] [SEQ.ID.NO.:22] - GGAAG ATC TCC TTC TCT AGG CCC GGT CTT CCA
- Antisense 85C [SEQ.ID.NO.:23]
- GGAAGATCTTGCCGATGCTGGCTTGCTGGCTCAGGC.
- The same procedure as 1 above was followed, except that the template for PCR was p85C.tub.
- 6. Construction of V1Jns-85B [C2] (contains Ag85B with no signal sequence) is done using the following primers:
-
Sense 85B [C2] [SEQ.ID.NO.:24] - GGA AGA TCT ACC ATG GGC TTC TCC CGG CCG GGG CTG C
- Antisense 85B [SEQ.ID.NO.:21]
- GGAAGATCTAACCTCGGTTGATCCCGTCAGCC.
- The same procedure as 1 above is followed, except that template for PCR is p85B.tub and that cloning is in V1Jns.
- 7. Construction of V1Jns-85C [C2] (contains Ag85C with no signal sequence) is done using the following primers:
-
Sense 85C [C2] [SEQ.ID.NO.:25] - GGA AGA TCT ACC ATG GGC TTC TCT AGG CCC GGT CTT C
- Antisense 85C [SEQ.ID.NO.:23]
- GGAAGATCTTGCCGATGCTGGCTTGCTGGCTCAGGC.
- The same procedure as 1 above is followed, except that template for PCR is p85C.tub and that cloning is in V1Jns.
- After restriction analysis all of the constructions are partially sequenced across the vector junctions. Large scale DNA preparation was essentially as described (Montgomery, D. L. et al., supra).
- The plasmid constructions were characterized by restriction mapping and sequence analysis of the vector-insert junctions (see FIGS.1-6). Results were consistent with published M.tb sequence data and showed that the initiation codon was intact for each construct (FIG. 7). Also shown are the various additional amino acid residues unrelated to M.tb Ag85 that were inserted as a result of cloning.
- Expression ofM.tb Proteins from V1Jns.tPA Plasmids
- Rhabdomyosarcoma cells (ATCC CCL136) were planted one day before use at a density of 1.2×106 cells per 9.5 cm2 well in six-well tissue culture clusters in high glucose DMEM supplemented with 10% heat-inactivated fetal calf serum, 2 mM L-glutamine, 25 mM HEPES, 50 U/ml penicillin and 50 μg/ml streptomycin. (All from BRL-Gibco) Phenol chloroform extracted cesium chloride purified plasmid DNA was precipitated with calcium phosphate using Pharmacia CellPhect reagents according to the kit instructions except that 5-15 μg is used for each 9.5 cm2 well of RD cells. Cultures were glycerol shocked six hours post addition of calcium phosphate-DNA precipate; after refeeding, cultures were incubated for two days prior to harvest.
- Lysates of transfected cultures were prepared in 1× RIPA (0.5% SDS, 1.0% TRITON X-100, 1% sodium deoxycholate, 1 mM EDTA, 150 mM NaCl, 25 mM TRIS-HCl pH 7.4) supplemented with 1 μM leupeptin, 1 μM pepstatin, 300 nM aprotinin, and 10 μM TLCK, and sonicated briefly to reduce viscosity. Lysates were resolved by electrophoresis on 10% Tricine gels (Novex) and then transferred to nitrocellulose membranes. Immunoblots were processed withM.tb monoclonal antibodies 17/4 and 32/15 [Huygen et al, 1994, Infect. Immunity 62, 363] and developed with the ECL detection kit (Amersham).
- Expression of
M.tb antigen 85 complex genes was demonstrated by transient transfection of RD cells. Lysates of transfected or mock transfected cells were fractionated by SDS PAGE and analyzed by immunoblotting. FIG. 8 shows that V1Jns.tPA-85A(C1), V1Jns.tPA-85A(C2), V1Jns.tPA-85A(C3), and V1Jns.tPA-85B(C1) transfected RD cells express an immunoreactive protein with an apparent molecular weight of approximately 30-32 kDa. - Immunization with PNV and Expression of
Antigen 85 Proteins in Vivo - Five- to six-week-old female BALB/c and C57BL/6 mice were anesthetized by intraperitoneal (i.p.) injection of a mixture of 5 mg ketamine HCl (Aveco, Fort Dodge, Iowa) and 0.5 mg xylazine (Mobley Corp., Shawnee, Kans.) in saline. The hind legs were washed with 70% ethanol. Animals were injected three times with 100 μl of DNA (2 mg/ml) suspended in saline: 50 μl each leg. At 17-18 days after immunization, serum samples were collected and analyzed for the presence of anti-Ag85 antibodies. FIG. 9 shows specific immunoblot reactivity of sera from Ag85 DNA-injected mice (C1) but not from mice that received a control DNA not containing a gene insert (V1J). Reactivity was detected to a serum dilution of at least 1:160 against 300 ng of
purified antigen 85A (FIG. 9b). This demonstrates that injection of Ag85 DNA resulted in Ag85 expression in vivo such that it was available for the generation of antibody responses in both BALB/c and C57BL/6 (B6) mice. - Antigen 85-Specific T-Cell Responses
- Spleen cells from vaccinated mice were analyzed for cytokine secretion in response to specific antigen restimulation as described in Huygen et al, 1992 [Infect. Immunity 60, 2880]. Specifically, spleen cells were incubated with culture filtrate (CF) proteins fromM. bovis BCG purified
antigen 85A or a 20-mer peptide (p25) corresponding to a known T-cell epitope for C57BL/6 mice (amino acids 241-260). Mice were immunized with V1Jns.tPA85A (C1) (100 μg) three times with three week intervals and analyzed 17 days after the final injection. Cytokines were assayed using bio-assays for IL-2, interferon-γ (IFN-γ) and IL-6, and by ELISA for IL-4 and IL-10. Substantial IL-2 and IFN-γ production was observed in both BALB/c and C57BL/6 mice vaccinated with V1Jns.tPA85A (Cl) (FIGS. 10-13). Furthermore, C57BL/6 mice also reacted to the H-2b-restricted T-cell epitope (FIG. 13). IL-4, IL-6 and IL-10 levels were not increased in V1Jns.tPA85A-vaccinated mice (FIGS. 14-16). These results indicate that aT h1 type of helper T-cell response was generated by the DNA vaccine. - Protection from Mycobacterial Challenge
- To test the efficacy of anM.tb DNA vaccine, mice were challenged with an intravenous injection of live M. bovis BCG (0.5 mg) and BCG multiplication was analyzed in the spleens and lungs. As controls, BCG multiplication was measured in challenged naive mice (primary infection) and challenged mice that were vaccinated with BCG at the time of DNA injection (secondary infection). The number of colony-forming units (CFU) in lungs of V1Jns.tPA85A (C1)-vaccinated mice was substantially reduced compared to mice with primary infection or mice vaccinated with control DNA V1J. In C57BL/6 mice, CFU were reduced by 83% on
day 8 after challenge (FIG. 17) and in BALB/c mice CFU was reduced by 65% on day 20 (FIG. 18). In spleen, CFU was reduced by approximately 40% atday 20 after challenge in BALB/c mice (FIG. 19) andday 8 in C57BL/6 mice (FIG. 20). Therefore, the immune responses observed after injection of an M.tb DNA vaccine provided protection in a live M. bovis challenge model. -
1 25 23 base pairs nucleic acid single linear DNA (genomic) 1 CTATATAAGC AGAGCTCGTT TAG 23 30 base pairs nucleic acid single linear DNA (genomic) 2 GTAGCAAAGA TCTAAGGACG GTGACTGCAG 30 39 base pairs nucleic acid single linear DNA (genomic) 3 GTATGTGTCT GAAAATGAGC GTGGAGATTG GGCTCGCAC 39 39 base pairs nucleic acid single linear DNA (genomic) 4 GTGCGAGCCC AATCTCCACG CTCATTTTCA GACACATAC 39 78 base pairs nucleic acid single linear DNA (genomic) 5 GATCACCATG GATGCAATGA AGAGAGGGCT CTGCTGTGTG CTGCTGCTGT GTGGAGCAGT 60 CTTCGTTTCG CCCAGCGA 78 78 base pairs nucleic acid single linear DNA (genomic) 6 GATCTCGCTG GGCGAAACGA AGACTGCTCC ACACAGCAGC AGCACACAGC AGAGCCCTCT 60 CTTCATTGCA TCCATGGT 78 27 base pairs nucleic acid single linear DNA (genomic) 7 GTACCTCATG AGCCACATAA TACCATG 27 40 base pairs nucleic acid single linear DNA (genomic) 8 GGTACAAGAT CTACCATGGC TTGCAATTGT CAGTTGATGC 40 42 base pairs nucleic acid single linear DNA (genomic) 9 CCACATAGAT CTCCATGGGA ACTAAAGGAA GACGGTCTGT TC 42 33 base pairs nucleic acid single linear DNA (genomic) 10 GGTACAAATA TTGGCTATTG GCCATTGCAT ACG 33 36 base pairs nucleic acid single linear DNA (genomic) 11 CCACATCTCG AGGAACCGGG TCAATTCTTC AGCACC 36 38 base pairs nucleic acid single linear DNA (genomic) 12 GGTACAGATA TCGGAAAGCC ACGTTGTGTC TCAAAATC 38 37 base pairs nucleic acid single linear DNA (genomic) 13 CCACATGGAT CCGTAATGCT CTGCCAGTGT TACAACC 37 39 base pairs nucleic acid single linear DNA (genomic) 14 GGTACATGAT CACGTAGAAA AGATCAAAGG ATCTTCTTG 39 35 base pairs nucleic acid single linear DNA (genomic) 15 CCACATGTCG ACCCGTAAAAA GGCCGCGTTG CTGG 35 29 base pairs nucleic acid single linear DNA (genomic) 16 GGAAGATCTT TTCCCGGCCG GGCTTGCCG 29 28 base pairs nucleic acid single linear DNA (genomic) 17 GGAAGATCTT GTCTGTTCGG AGCTAGGC 28 37 base pairs nucleic acid single linear DNA (genomic) 18 GGAAGATCTA CCATGGGCTT TTCCCGGCCG GGCTTGC 37 36 base pairs nucleic acid single linear DNA (genomic) 19 GGAAGATCTA CCATGGCACA GCTTGTTGAC AGGGTT 36 38 base pairs nucleic acid single linear DNA (genomic) 20 GGAAGATCTC CTTCTCCCGG CCGGGGCTGC CGGTCGAG 38 33 base pairs nucleic acid single linear DNA (genomic) 21 GGAAGATCTA ACCTTCGGTT GATCCCGTCA GCC 33 32 base pairs nucleic acid single linear DNA (genomic) 22 GGAAGATCTC CTTCTCTAGG CCCGGTCTTC CA 32 36 base pairs nucleic acid single linear DNA (genomic) 23 GGAAGATCTT GCCGATGCTG GCTTGCTGGC TCAGGC 36 37 base pairs nucleic acid single linear DNA (genomic) 24 GGAAGATCTA CCATGGGCTT CTCCCGGCCG GGGCTGC 37 37 base pairs nucleic acid single linear DNA (genomic) 25 GGAAGATCTA CCATGGGCTT CTCTAGGCCC GGTCTTC 37
Claims (22)
1. A polynucleotide which induces upon introduction into vertebrate tissue, one or more anti-Mycobacterial immune responses selected from antibodies, CTL, helper T lymphocyte responses and protective immune responses, wherein said polynucleotide comprises one or more genes encoding one or more Mycobacterial proteins or functional equivalents thereof, said genes being operably linked to a transcription promoter.
2. The polynucleotide of claim 1 , wherein said gene encodes a Mycobacterium tuberculosis protein, and functional equivalents thereof.
3. The polynucleotide of claim 2 , wherein said gene encodes a protein selected from a group consisting of antigen 85A, B, and/or C, and functional equivalents thereof.
4. A method for inducing immune responses in a vertebrate against Mycobacterial epitopes, comprising introducing between 1 ng and 5 mg of a polynucleotide according to claim 1 into a tissue of a vertebrate.
5. The method of claim 4 , wherein said gene encodes a Mycobacterium tuberculosis protein, and functional equivalents thereof.
6. The method of claim 5 , wherein said gene encodes a protein selected from a group consisting of antigen 85A, B, and C, and functional equivalents thereof.
7. A vaccine for inducing immune responses against Mycobacterial antigens, comprising the polynucleotide of claim 1 and a pharmaceutically acceptable carrier.
8. The vaccine of claim 7 , wherein said antigen is a Mycobacterium tuberculosis antigen, and functional equivalents thereof.
9. The vaccine of claim 8 , wherein said antigen is a protein selected from a group consisting of antigen 85A, B, and C, and functional equivalents thereof.
10. A method for inducing immune responses against mycobacterial antigens, comprising introducing into a tissue of a vertebrate one or more isolated and purified mycobacterial genes eliciting an immune response which prevents mycobacterial infection and/or ameliorates mycobacterial disease.
11. The method of claim 10 , wherein said gene encodes a Mycobacterium tuberculosis protein, and functional equivalents thereof.
12. The method of claim 11 , wherein said gene encodes a protein selected from a group consisting of antigen 85A, B, and C, and functional equivalents thereof.
13. A polynucleotide comprising:
a) a eukaryotic transcription promoter;
b) an open reading frame operably linked to said promoter encoding one or more mycobacterial epitopes, and a translation termination signal; and
c) optionally containing one or more operably linked IRES, one or more open reading frames encoding one or more additional genes, and one or more transcription termination signals.
14. The polynucleotide of claim 13 wherein said additional genes of c) are immunomodulatory or immunostimulatory genes selected from a group consisting of GM-CSF, IL-12, interferon, and a member of the B7 family of T-cell costimulatory proteins.
15. The polynucleotide of claim 13 wherein said mycobacterial gene of a) encodes a Mycobacterium tuberculosis protein, and functional equivalents thereof.
16. The polynucleotide of claim 15 wherein said mycobacterial gene of a) encodes a Mycobacterium tuberculosis protein selected from a group consisting of antigen 85A, B, and C, and functional equivalents thereof.
17. The polynucleotide of claim 13 wherein said additional genes of c) are Mycobacterium tuberculosis genes selected from a group consisting of antigen 85A, B, and C, and functional equivalents thereof.
18. A method of treating a patient in need of such treatment with a polynucleotide which induces upon introduction into vertebrate tissue, one or more anti-mycobacterial immune responses selected from antibodies, CTL, helper T lymphocyte responses and protective immune responses, wherein said polynucleotide comprises a gene encoding one or more mycobacterial proteins or functional equivalents thereof, said gene being operably linked to a transcription promoter.
19. The method of claim 18 , wherein said gene encodes a Mycobacterium tuberculosis protein, and functional equivalents thereof.
20. The method of claim 19 wherein said gene encodes one or more proteins selected from a group consisting of antigen 85A, B, and C, and functional equivalents thereof.
21. The method of claim 10 wherein said patient is a domestic animal or livestock.
22. A vaccine for inducing immune responses against Mycobacterial infection in domesticated or agricultural animals comprising the polynucleotide of claim 1 and a pharmaceutically acceptable carrier.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/010,733 US6384018B1 (en) | 1994-11-14 | 1998-01-22 | Polynucleotide tuberculosis vaccine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/338,992 US5736524A (en) | 1994-11-14 | 1994-11-14 | Polynucleotide tuberculosis vaccine |
US09/010,733 US6384018B1 (en) | 1994-11-14 | 1998-01-22 | Polynucleotide tuberculosis vaccine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/338,992 Division US5736524A (en) | 1994-11-14 | 1994-11-14 | Polynucleotide tuberculosis vaccine |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020032162A1 true US20020032162A1 (en) | 2002-03-14 |
US6384018B1 US6384018B1 (en) | 2002-05-07 |
Family
ID=23326996
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/338,992 Expired - Fee Related US5736524A (en) | 1994-11-14 | 1994-11-14 | Polynucleotide tuberculosis vaccine |
US09/010,733 Expired - Fee Related US6384018B1 (en) | 1994-11-14 | 1998-01-22 | Polynucleotide tuberculosis vaccine |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/338,992 Expired - Fee Related US5736524A (en) | 1994-11-14 | 1994-11-14 | Polynucleotide tuberculosis vaccine |
Country Status (23)
Country | Link |
---|---|
US (2) | US5736524A (en) |
EP (1) | EP0792358B1 (en) |
JP (1) | JP3881014B2 (en) |
KR (1) | KR970707281A (en) |
CN (1) | CN1171814A (en) |
AT (1) | ATE296882T1 (en) |
AU (1) | AU715067B2 (en) |
CZ (1) | CZ289383B6 (en) |
DE (1) | DE69534250T2 (en) |
DK (1) | DK0792358T3 (en) |
ES (1) | ES2242193T3 (en) |
FI (1) | FI972034L (en) |
HU (1) | HU222369B1 (en) |
IL (1) | IL115883A0 (en) |
MX (1) | MX9703606A (en) |
NO (1) | NO972196L (en) |
NZ (1) | NZ296477A (en) |
PL (1) | PL184839B1 (en) |
PT (1) | PT792358E (en) |
RU (1) | RU2186109C2 (en) |
SK (1) | SK283254B6 (en) |
WO (1) | WO1996015241A2 (en) |
ZA (1) | ZA959608B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004110482A1 (en) * | 2003-06-13 | 2004-12-23 | Isis Innovation Limited | Improved vaccines |
US20090170120A1 (en) * | 2006-03-17 | 2009-07-02 | Ajit Lalvani | Clinical Correlates |
US20110076297A1 (en) * | 2009-09-30 | 2011-03-31 | Saint Louis University | Peptides for Inducing Heterosubtypic Influenza T Cell Responses |
US20110081377A1 (en) * | 2008-03-21 | 2011-04-07 | The United States, as represented by the Secretary Department of Health and Human Services | Aerosolized genetic vaccines and methods of use |
US12247053B2 (en) | 2018-10-26 | 2025-03-11 | Saint Louis University | Peptides for inducing heterosubtypic influenza T cell responses |
Families Citing this family (318)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2711670B1 (en) | 1993-10-22 | 1996-01-12 | Pasteur Institut | Nucleotide vector, composition containing it and vaccine for immunization against hepatitis. |
US6995008B1 (en) * | 1994-03-07 | 2006-02-07 | Merck & Co., Inc. | Coordinate in vivo gene expression |
US6727230B1 (en) | 1994-03-25 | 2004-04-27 | Coley Pharmaceutical Group, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
US5736524A (en) * | 1994-11-14 | 1998-04-07 | Merck & Co.,. Inc. | Polynucleotide tuberculosis vaccine |
FR2732895B1 (en) * | 1995-04-11 | 1997-05-16 | Pasteur Merieux Serums Vacc | USE OF A CATIONIC AMPHIPATHIC COMPOUND AS A TRANSFECTING AGENT, AS A VACCINE ADDITIVE, OR AS A MEDICINAL PRODUCT |
US6290969B1 (en) * | 1995-09-01 | 2001-09-18 | Corixa Corporation | Compounds and methods for immunotherapy and diagnosis of tuberculosis |
US6458366B1 (en) | 1995-09-01 | 2002-10-01 | Corixa Corporation | Compounds and methods for diagnosis of tuberculosis |
US6592877B1 (en) | 1995-09-01 | 2003-07-15 | Corixa Corporation | Compounds and methods for immunotherapy and diagnosis of tuberculosis |
US6338852B1 (en) | 1995-09-01 | 2002-01-15 | Corixa Corporation | Compounds and methods for diagnosis of tuberculosis |
US20020165183A1 (en) * | 1999-11-29 | 2002-11-07 | Hans Herweijer | Methods for genetic immunization |
US20070021364A1 (en) * | 1995-12-13 | 2007-01-25 | Hans Herweijer | Methods for genetic immunization |
ZA973642B (en) * | 1996-04-26 | 1997-11-25 | Merck & Co Inc | DNA vaccine formulations. |
US5846946A (en) * | 1996-06-14 | 1998-12-08 | Pasteur Merieux Serums Et Vaccins | Compositions and methods for administering Borrelia DNA |
FR2751225B1 (en) * | 1996-07-19 | 1998-11-27 | Rhone Merieux | AVIAN POLYNUCLEOTIDE VACCINE FORMULA |
FR2751228B1 (en) * | 1996-07-19 | 1998-11-20 | Rhone Merieux | BOVINE POLYNUCLEOTIDE VACCINE FOR INTRADERMAL ROUTE |
JP2001500738A (en) * | 1996-09-17 | 2001-01-23 | カイロン コーポレイション | Compositions and methods for treating intracellular diseases |
US20060002959A1 (en) * | 1996-11-14 | 2006-01-05 | Government Of The United States | Skin-sctive adjuvants for transcutaneous immuization |
US5980898A (en) | 1996-11-14 | 1999-11-09 | The United States Of America As Represented By The U.S. Army Medical Research & Material Command | Adjuvant for transcutaneous immunization |
US20060002949A1 (en) * | 1996-11-14 | 2006-01-05 | Army Govt. Of The Usa, As Rep. By Secretary Of The Office Of The Command Judge Advocate, Hq Usamrmc. | Transcutaneous immunization without heterologous adjuvant |
US6797276B1 (en) * | 1996-11-14 | 2004-09-28 | The United States Of America As Represented By The Secretary Of The Army | Use of penetration enhancers and barrier disruption agents to enhance the transcutaneous immune response |
AU6148798A (en) * | 1997-02-07 | 1998-08-26 | Vanderbilt University | Synthetic genes for recombinant mycobacterium proteins |
US6261281B1 (en) * | 1997-04-03 | 2001-07-17 | Electrofect As | Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells |
US20040258703A1 (en) * | 1997-11-14 | 2004-12-23 | The Government Of The Us, As Represented By The Secretary Of The Army | Skin-active adjuvants for transcutaneous immunization |
WO1999052463A1 (en) * | 1998-04-14 | 1999-10-21 | Merck & Co., Inc. | Needleless administration of polynucleotide formulations |
AU6480999A (en) | 1998-11-04 | 2000-05-22 | Isis Innovation Limited | Tuberculosis diagnostic test |
US8197461B1 (en) | 1998-12-04 | 2012-06-12 | Durect Corporation | Controlled release system for delivering therapeutic agents into the inner ear |
US6465633B1 (en) | 1998-12-24 | 2002-10-15 | Corixa Corporation | Compositions and methods of their use in the treatment, prevention and diagnosis of tuberculosis |
US7022320B1 (en) | 1999-02-09 | 2006-04-04 | Powderject Vaccines, Inc. | Mycobacterium tuberculosis immunization |
EP2368575B1 (en) * | 1999-04-08 | 2014-10-01 | Intercell USA, Inc. | Dry formulation for transcutaneous immunization |
US20040265285A1 (en) * | 1999-04-15 | 2004-12-30 | Monash University | Normalization of defective T cell responsiveness through manipulation of thymic regeneration |
US20040241842A1 (en) * | 1999-04-15 | 2004-12-02 | Monash University | Stimulation of thymus for vaccination development |
US20040258672A1 (en) * | 1999-04-15 | 2004-12-23 | Monash University | Graft acceptance through manipulation of thymic regeneration |
US20050020524A1 (en) * | 1999-04-15 | 2005-01-27 | Monash University | Hematopoietic stem cell gene therapy |
US20070274946A1 (en) * | 1999-04-15 | 2007-11-29 | Norwood Immunoloty, Ltd. | Tolerance to Graft Prior to Thymic Reactivation |
US20040259803A1 (en) * | 1999-04-15 | 2004-12-23 | Monash University | Disease prevention by reactivation of the thymus |
AUPR074500A0 (en) * | 2000-10-13 | 2000-11-09 | Monash University | Treatment of t cell disorders |
US20060073150A1 (en) | 2001-09-06 | 2006-04-06 | Mary Faris | Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer |
WO2001000665A2 (en) * | 1999-06-28 | 2001-01-04 | Oklahoma Medical Research Foundation | Inhibitors of memapsin 2 and use thereof |
US6514948B1 (en) | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
US20050100928A1 (en) * | 1999-09-16 | 2005-05-12 | Zycos Inc., A Delaware Corporation | Nucleic acids encoding polyepitope polypeptides |
EP2278022A3 (en) * | 1999-11-01 | 2011-05-18 | Novartis Vaccines and Diagnostics, Inc. | Expression vectors, transfection systems, and method of use thereof |
EP1230268B1 (en) | 1999-11-18 | 2009-10-14 | Pharmexa Inc. | Heteroclitic analogs of class i epitopes |
WO2001045639A2 (en) * | 1999-12-22 | 2001-06-28 | The Ohio State University Research Foundation | Methods for protecting against lethal infection with bacillus anthracis |
FR2804028B1 (en) * | 2000-01-21 | 2004-06-04 | Merial Sas | IMPROVED DNA VACCINES FOR PENSION ANIMALS |
EP1253947A4 (en) * | 2000-01-31 | 2005-01-05 | Univ California | IMMUNOMODULATED POLYNUCLEOTIDES FOR THE TREATMENT OF INFECTIONS BY INTRA-CELLULAR DISEASES |
US20030130217A1 (en) * | 2000-02-23 | 2003-07-10 | Eyal Raz | Method for treating inflammatory bowel disease and other forms of gastrointestinal inflammation |
EP1259264A4 (en) * | 2000-02-23 | 2005-08-31 | Univ California | METHOD FOR THE TREATMENT OF INFLAMMATORY ENDURANCE AND OTHER FORMS OF GASTROINTESTINAL DEFICIENCY |
AU2001259291B2 (en) * | 2000-04-28 | 2006-11-23 | Aventis Pasteur Limited | Improved immunogenicity using a combination of DNA and vaccinia virus vector vaccines |
US6590087B1 (en) * | 2000-05-25 | 2003-07-08 | Johns Hopkins University | whmD, an essential cell division gene from mycobacteria |
US7288261B2 (en) * | 2000-07-10 | 2007-10-30 | Colorado State University Research Foundation | Mid-life vaccine and methods for boosting anti-mycobacterial immunity |
ATE429643T1 (en) | 2000-07-12 | 2009-05-15 | Agensys Inc | NEW TUMOR ANTIGEN THAT CAN BE USED FOR DIAGNOSIS AND THERAPY OF BLADDER, OVARY, LUNG AND KIDNEY CANCER |
WO2002018578A2 (en) | 2000-08-28 | 2002-03-07 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 85p1b3 useful in treatment and detection of cancer |
US20060088512A1 (en) * | 2001-10-15 | 2006-04-27 | Monash University | Treatment of T cell disorders |
AU2001298049A1 (en) | 2000-10-19 | 2003-05-19 | Epimmune Inc. | Hla class i and ii binding peptides and their uses |
US7829084B2 (en) | 2001-01-17 | 2010-11-09 | Trubion Pharmaceuticals, Inc. | Binding constructs and methods for use thereof |
US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
AU2002250071B2 (en) * | 2001-02-13 | 2008-02-14 | Government Of The United States, As Represented By The Secretary Of The Army | Vaccine for transcutaneous immunization |
US7491394B2 (en) | 2001-02-15 | 2009-02-17 | The Board Of Trustees Of The University Of Illinois | Cytotoxic factors for modulating cell death |
US6924358B2 (en) | 2001-03-05 | 2005-08-02 | Agensys, Inc. | 121P1F1: a tissue specific protein highly expressed in various cancers |
US7271240B2 (en) | 2001-03-14 | 2007-09-18 | Agensys, Inc. | 125P5C8: a tissue specific protein highly expressed in various cancers |
US20040242523A1 (en) * | 2003-03-06 | 2004-12-02 | Ana-Farber Cancer Institue And The Univiersity Of Chicago | Chemo-inducible cancer gene therapy |
US8034791B2 (en) | 2001-04-06 | 2011-10-11 | The University Of Chicago | Activation of Egr-1 promoter by DNA damaging chemotherapeutics |
CA2442971C (en) * | 2001-04-06 | 2011-06-07 | University Of Chicago | Chemotherapeutic induction of egr-1 promoter activity |
AU2002318112B2 (en) | 2001-04-10 | 2007-12-06 | Agensys, Inc. | Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers |
US20030191073A1 (en) | 2001-11-07 | 2003-10-09 | Challita-Eid Pia M. | Nucleic acid and corresponding protein entitled 161P2F10B useful in treatment and detection of cancer |
US7013940B2 (en) * | 2001-04-19 | 2006-03-21 | Michelin Recherche Et Technique S.A. | Device for attenuating cavity noise in a tire and wheel |
JP4338402B2 (en) | 2001-05-22 | 2009-10-07 | ユニバーシティ オブ シカゴ | N4 virus single-stranded DNA-dependent RNA polymerase |
EP1497654A4 (en) * | 2001-08-13 | 2006-06-07 | Chen Swey Shen Alex | Immunoglobulin e vaccines and methods of use thereof |
US7338656B2 (en) | 2001-10-26 | 2008-03-04 | Baylor College Of Medicine | Composition and method to alter lean body mass and bone properties in a subject |
MXPA04005713A (en) | 2001-12-11 | 2005-06-06 | Baylor College Medicine | Growth hormone releasing hormone suplementation for treating chronically ill subjects. |
EP1470161A1 (en) * | 2002-01-18 | 2004-10-27 | Inovio AS | Bispecific antibody dna constructs for intramuscular administration |
WO2003104428A2 (en) | 2002-01-21 | 2003-12-18 | Vaccinex, Inc. | Gene differentially expressed in breast and bladder cancer and encoded polypeptides |
US20060009409A1 (en) | 2002-02-01 | 2006-01-12 | Woolf Tod M | Double-stranded oligonucleotides |
EP1572902B1 (en) | 2002-02-01 | 2014-06-11 | Life Technologies Corporation | HIGH POTENCY siRNAS FOR REDUCING THE EXPRESSION OF TARGET GENES |
US20050267025A1 (en) * | 2002-02-01 | 2005-12-01 | Ho John L | Compositions and methods for treatment of infectious and inflammatory diseases |
AU2003210818A1 (en) * | 2002-02-01 | 2003-09-02 | Cornell Research Foundation, Inc. | Compositions and methods for treatment of infectious and inflammatory diseases |
EP1478656B1 (en) | 2002-02-01 | 2009-09-16 | Life Technologies Corporation | Oligonucleotide compositions with enhanced efficiency |
US20050222060A1 (en) * | 2002-03-15 | 2005-10-06 | Bot Adrian L | Compositions and methods to initiate or enhance antibody and major-histocompatibility class I or class II-restricted t cell responses by using immunomodulatory, non-coding rna motifs |
EP2258712A3 (en) | 2002-03-15 | 2011-05-04 | Multicell Immunotherapeutics, Inc. | Compositions and Methods to Initiate or Enhance Antibody and Major-histocompatibility Class I or Class II-restricted T Cell Responses by Using Immunomodulatory, Non-coding RNA Motifs |
US20070037769A1 (en) * | 2003-03-14 | 2007-02-15 | Multicell Immunotherapeutics, Inc. | Compositions and methods to treat and control tumors by loading antigen presenting cells |
US7078037B2 (en) * | 2002-04-19 | 2006-07-18 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Peptides and DNA encoding the peptides useful for immunizations against Coccidioides spp. infections |
AU2003301841A1 (en) * | 2002-05-01 | 2004-06-07 | National Institutes Of Health | Immunotherapy regimens in hiv-infected patients |
EP1575500A4 (en) * | 2002-07-12 | 2007-01-03 | Univ Johns Hopkins | MESOTHELIN VACCINES AND MODEL SYSTEMS |
US20090110702A1 (en) | 2002-07-12 | 2009-04-30 | The Johns Hopkins University | Mesothelin Vaccines and Model Systems and Control of Tumors |
US9200036B2 (en) | 2002-07-12 | 2015-12-01 | The Johns Hopkins University | Mesothelin vaccines and model systems |
EP1636561B1 (en) | 2002-07-15 | 2011-02-09 | Board Of Regents, The University Of Texas System | Combinatorial protein library screening by periplasmic expression |
US20040029275A1 (en) * | 2002-08-10 | 2004-02-12 | David Brown | Methods and compositions for reducing target gene expression using cocktails of siRNAs or constructs expressing siRNAs |
KR101170653B1 (en) | 2002-08-12 | 2012-08-03 | 제네렉스, 인코포레이티드 | Methods and compositions concerning poxviruses and cancer |
AU2003243151A1 (en) | 2002-08-16 | 2004-03-03 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 251p5g2 useful in treatment and detection of cancer |
US20060247190A1 (en) * | 2002-10-21 | 2006-11-02 | Kathleen Beach | Compositions and methods for treating human papillomavirus mediated disease |
CA2503346C (en) | 2002-11-27 | 2014-03-18 | Agensys, Inc. | Nucleic acid and corresponding protein entitled 24p4c12 useful in treatment and detection of cancer |
EP1903056A3 (en) | 2002-12-10 | 2008-05-07 | Idm Pharma, Inc. | HLA-A1, -A2 -A3, -A24, -B7, and -B44 binding peptides comprising tumor associated antigen epitopes, and compositions thereof |
RU2242245C2 (en) * | 2003-01-10 | 2004-12-20 | Государственный научный центр вирусологии и биотехнологии "Вектор" | Artificial mycobacterial particles and anti-tuberculosis vaccine composition based on thereof |
EP1594892A2 (en) | 2003-02-10 | 2005-11-16 | Agensys, Inc. | Nucleic acid and corresponding protein named 158p1d7 useful in the treatment and detection of bladder and other cancers |
US7262027B2 (en) * | 2003-03-14 | 2007-08-28 | Medical College Of Ohio | Polypeptide and DNA immunization against Coccidioides spp. infections |
CN1795274A (en) * | 2003-03-26 | 2006-06-28 | 多单元免疫治疗公司 | Selected rna motifs to include cell death and/or apoptosis |
TW200424214A (en) * | 2003-04-21 | 2004-11-16 | Advisys Inc | Plasmid mediated GHRH supplementation for renal failures |
WO2004105681A2 (en) * | 2003-04-28 | 2004-12-09 | Innogenetics N.V. | Cd4+ human papillomavirus (hpv) epitopes |
ATE541052T1 (en) | 2003-05-30 | 2012-01-15 | Agensys Inc | VARIANTS OF PROSTATE STEM CELL ANTIGEN (PSCA) AND PARTIAL SEQUENCES THEREOF |
CN1894581B (en) | 2003-07-09 | 2012-02-01 | 生命技术公司 | Methods for detecting protein-protein interactions |
US20070224615A1 (en) * | 2003-07-09 | 2007-09-27 | Invitrogen Corporation | Methods for assaying protein-protein interactions |
WO2005025497A2 (en) * | 2003-09-05 | 2005-03-24 | Genencor International, Inc. | Hpv cd8+ t-cell epitopes |
US20080279812A1 (en) * | 2003-12-05 | 2008-11-13 | Norwood Immunology, Ltd. | Disease Prevention and Vaccination Prior to Thymic Reactivation |
RU2262351C1 (en) * | 2003-12-26 | 2005-10-20 | ООО "Фирма "БиоМедИнвест" | Vaccine composition for prophylaxis and treatment of tuberculosis infection and genetic constructions for preparing acting components of this composition |
CA2555013C (en) * | 2004-02-11 | 2013-10-15 | Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. | Carcinoembryonic antigen fusions and uses thereof |
CA2559586A1 (en) * | 2004-03-18 | 2005-09-29 | Fred Hutchinson Cancer Research Center | Methods and compositions involving s-ship promoter regions |
EP2428522A1 (en) | 2004-05-28 | 2012-03-14 | Agensys, Inc. | Antibodies that bind to PSCA proteins for diagnosis of cancer |
US20090221440A1 (en) * | 2004-07-12 | 2009-09-03 | Board Of Regents, The University Of Texas System | Methods and compositions related to identifying protein-protein interactions |
US7572600B2 (en) | 2004-08-04 | 2009-08-11 | Chemocentryx, Inc. | Enzymatic activities in chemokine-mediated inflammation |
ES2534301T3 (en) | 2004-11-12 | 2015-04-21 | Asuragen, Inc. | Procedures and compositions involving miRNA and miRNA inhibitor molecules |
CN101090974B (en) | 2004-11-16 | 2011-05-11 | 克鲁塞尔荷兰公司 | Multivalent vaccines comprising recombinant viral vectors |
AU2005312062B2 (en) * | 2004-12-01 | 2011-11-17 | Aeras Global Tb Vaccine Foundation | Electroporation of Mycobacterium and overexpression of antigens in Mycobacteria |
WO2006086284A2 (en) * | 2005-02-11 | 2006-08-17 | Merck & Co., Inc. | Adenovirus serotype 26 vectors, nucleic acid and viruses produced thereby |
PL2325305T3 (en) | 2005-02-25 | 2014-07-31 | Oncotherapy Science Inc | Peptide vaccines for lung cancers expressing TTK, URLC10 or KOC1 polypeptides |
DK2289533T3 (en) | 2005-02-28 | 2013-12-02 | Oncotherapy Science Inc | Epitope peptides derived from carendothelial growth factor receptor-1 as well as vaccines containing these peptides |
EP1863848A4 (en) | 2005-03-31 | 2009-09-23 | Agensys Inc | Antibodies and related molecules that bind to 161p2f10b proteins |
BRPI0614184A8 (en) | 2005-07-25 | 2017-10-10 | Aptevo Res & Development Llc | B CELL REDUCTION WITH THE USE OF CD37-SPECIFIC AND CD20-SPECIFIC BINDERS |
KR20130087639A (en) | 2005-07-27 | 2013-08-06 | 온코세라피 사이언스 가부시키가이샤 | Colon cancer related gene tom34 |
WO2007021886A2 (en) * | 2005-08-10 | 2007-02-22 | Oklahoma Medical Research Foundation | Truncated memapsin 2 for use for treating alzheimer's disease |
US8980246B2 (en) | 2005-09-07 | 2015-03-17 | Sillajen Biotherapeutics, Inc. | Oncolytic vaccinia virus cancer therapy |
AU2006287441B2 (en) * | 2005-09-07 | 2012-09-06 | Sillajen Biotherapeutics, Inc. | Systemic treatment of metastatic and/or systemically-disseminated cancers using GM-CSF-expressing poxviruses |
US7919258B2 (en) * | 2005-10-07 | 2011-04-05 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Rapid tuberculosis detection method |
EP2368569A3 (en) | 2006-01-18 | 2012-05-02 | University Of Chicago | Compositions and methods related to staphylococcal bacterium proteins |
EP2441469A1 (en) | 2006-03-14 | 2012-04-18 | Oregon Health and Science University | Methods for producing an immune response to tuberculosis |
CA2654317A1 (en) | 2006-06-12 | 2007-12-21 | Trubion Pharmaceuticals, Inc. | Single-chain multivalent binding proteins with effector function |
CA2658952A1 (en) | 2006-07-27 | 2008-01-31 | Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Cellular receptor for antiproliferative factor |
CA2921063C (en) | 2006-09-15 | 2020-01-28 | Ottawa Hospital Research Institute | Oncolytic rhabdovirus |
ES2545817T3 (en) | 2006-10-17 | 2015-09-16 | Oncotherapy Science, Inc. | Peptide vaccines for cancers that express MPHOSPH1 polypeptides |
EP2087096A4 (en) * | 2006-10-20 | 2009-11-25 | Univ Arizona | MODIFIED CYANOBACTERY |
EP2102239B1 (en) | 2006-11-30 | 2012-04-25 | Research Development Foundation | Improved immunoglobulin libraries |
TWI494319B (en) | 2007-02-21 | 2015-08-01 | Oncotherapy Science Inc | Peptide vaccine for cancers exhibiting tumor-associated antigens |
KR20080084528A (en) | 2007-03-15 | 2008-09-19 | 제네렉스 바이오테라퓨틱스 인크. | Oncolytic Vaccinia Virus Cancer Treatment |
TW201425333A (en) | 2007-04-11 | 2014-07-01 | Oncotherapy Science Inc | TEM8 peptides and vaccines comprising the same |
CA2685675C (en) | 2007-05-01 | 2016-02-16 | Research Development Foundation | Immunoglobulin fc libraries |
AU2008287195A1 (en) * | 2007-07-06 | 2009-02-19 | Emergent Product Development Seattle, Llc | Binding peptides having a C-terminally disposed specific binding domain |
KR20100072228A (en) | 2007-08-31 | 2010-06-30 | 유니버시티 오브 시카고 | Methods and compositions related to immunizing against staphylococcal lung diseases and conditions |
EP3085707B1 (en) | 2007-11-01 | 2019-02-27 | Mayo Foundation for Medical Education and Research | Hla-dr binding peptides and their uses |
JP5677703B2 (en) | 2008-01-10 | 2015-02-25 | リサーチ ディベロップメント ファウンデーション | Vaccine and diagnosis for Ehrlichia chaffiensis |
WO2009092382A1 (en) * | 2008-01-23 | 2009-07-30 | Rigshospitalet, Region Hovedstaden | Classification of individuals suffering from cardiovascular diseases according to survival prognoses as found by measuring the levels of biomarker ykl-40 |
PL2245464T3 (en) | 2008-01-25 | 2017-08-31 | Multivir Inc. | P53 biomarkers |
BRPI0908708A2 (en) | 2008-03-17 | 2019-09-24 | Scripps Research Inst | methods for producing pluripotent stem cells induced from non-pluripotent mammalian cells, to screen for agents that induce reprogramming or de-differentiation of mammalian cells within pluripotent stem cells, to screen for mammalian cells with pluripotent stem cell characteristics , to induce oct4 expression in a cell and to induce non-pluripotent cells in pluripotent cells, mixing, mammalian cell, methods for producing pluripotent stem cells induced from non-pluripotent mammalian cells, to screen for agents that induce reprogramming or de-differentiating mammalian cells within pluripotent stem cells, to screen for mammalian cells with pluripotent stem cell characteristics, to induce oct4 expression in a cell, and to induce non-pluripotent cells in pluripotent cells, mixing, cell mammal crib composition and kit |
EP2132228B1 (en) * | 2008-04-11 | 2011-06-22 | Emergent Product Development Seattle, LLC | Cd37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof |
US9017660B2 (en) | 2009-11-11 | 2015-04-28 | Advaxis, Inc. | Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors |
ES2741730T3 (en) | 2008-05-19 | 2020-02-12 | Advaxis Inc | Double administration system for heterologous antigens comprising a recombinant Listeria strain attenuated by the dal / dat mutation and the ActA deletion comprising a nucleic acid molecule encoding a listeriolysin fusion protein O - prostate specific antigen |
US9650639B2 (en) | 2008-05-19 | 2017-05-16 | Advaxis, Inc. | Dual delivery system for heterologous antigens |
AU2009256202B2 (en) | 2008-06-04 | 2014-07-03 | FUJIFILM Cellular Dynamics, Inc. | Methods for the production of IPS cells using non-viral approach |
BRPI0904621A2 (en) * | 2008-07-25 | 2015-06-30 | Dept Of Biotechnology India | Recombinant DNA construct chimera |
JP2012500005A (en) | 2008-08-12 | 2012-01-05 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Method for generating iPS cells |
CA2734325A1 (en) | 2008-08-18 | 2010-02-25 | University Of Maryland, Baltimore | Derivatives of apf and methods of use |
EP2329044B1 (en) | 2008-08-27 | 2016-05-18 | Oncotherapy Science, Inc. | Prmt1 for target genes of cancer therapy and diagnosis |
BRPI0920041A2 (en) | 2008-10-06 | 2017-06-27 | Univ Chicago | bacterial eap, emp and / or adsa protein compositions and processes |
EP2352747A1 (en) * | 2008-10-23 | 2011-08-10 | Intervet International BV | Lawsonia intracellularis vaccines |
TWI539160B (en) | 2008-12-05 | 2016-06-21 | 腫瘤療法 科學股份有限公司 | WDRPUH epitope peptide and vaccine containing the peptide |
EP2370568B1 (en) | 2008-12-10 | 2017-07-19 | Dana-Farber Cancer Institute, Inc. | Mek mutations conferring resistance to mek inhibitors |
EP2373784B1 (en) | 2008-12-17 | 2017-10-25 | The Scripps Research Institute | Generation and maintenance of stem cells |
EP2379720B1 (en) | 2009-01-20 | 2016-08-17 | Alona Zilberberg | Mir-21 promoter driven targeted cancer therapy |
TWI469791B (en) | 2009-02-18 | 2015-01-21 | Oncotherapy Science Inc | Foxm1 peptides and vaccines containing the same |
HUE030856T2 (en) | 2009-03-18 | 2017-06-28 | Oncotherapy Science Inc | Neil3 peptides and vaccines including the same |
PL3281947T3 (en) | 2009-04-03 | 2020-07-27 | The University Of Chicago | Compositions and methods related to protein a (spa) variants |
EP3061766B1 (en) | 2009-04-28 | 2019-12-25 | Vanderbilt University | Compositions and methods for the treatment of disorders involving epithelial cell apoptosis |
TWI507204B (en) | 2009-05-26 | 2015-11-11 | Oncotherapy Science Inc | CDC45L peptide and vaccine containing this peptide |
CN103087991B (en) | 2009-06-05 | 2018-06-12 | 富士胶片细胞动力公司 | Reprogram T cell and the method for hematopoietic cell |
US20110053803A1 (en) | 2009-08-26 | 2011-03-03 | Xin Ge | Methods for creating antibody libraries |
KR101759888B1 (en) | 2009-09-14 | 2017-07-20 | 신라젠(주) | Oncolytic vaccinia virus combination cancer therapy |
AU2010298025B2 (en) | 2009-09-25 | 2016-04-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Neutralizing antibodies to HIV-1 and their use |
CA3091210C (en) | 2009-10-16 | 2023-04-04 | The Scripps Research Institute | Induction of pluripotent cells |
US10016617B2 (en) | 2009-11-11 | 2018-07-10 | The Trustees Of The University Of Pennsylvania | Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers |
AU2010329551B2 (en) | 2009-12-10 | 2016-02-11 | Turnstone Limited Partnership | Oncolytic rhabdovirus |
TW201136604A (en) | 2009-12-14 | 2011-11-01 | Oncotherapy Science Inc | TMEM22 peptides and vaccines including the same |
US10080799B2 (en) | 2010-02-12 | 2018-09-25 | Arizona Board Of Regents On Behalf Of Arizona State University | Methods and compositions related to glycoprotein-immunoglobulin fusions |
CN103002894B (en) | 2010-02-25 | 2016-04-06 | 达纳-法伯癌症研究所公司 | BRAF inhibitor is had to the BRAF sudden change of resistance |
WO2011106705A2 (en) | 2010-02-26 | 2011-09-01 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Dna-protein vaccination protocols |
WO2011108930A1 (en) | 2010-03-04 | 2011-09-09 | Interna Technologies Bv | A MiRNA MOLECULE DEFINED BY ITS SOURCE AND ITS DIAGNOSTIC AND THERAPEUTIC USES IN DISEASES OR CONDITIONS ASSOCIATED WITH EMT |
MX344579B (en) | 2010-03-11 | 2016-12-19 | Oncotherapy Science Inc * | Hjurp peptides and vaccines including the same. |
JP5909482B2 (en) | 2010-03-31 | 2016-04-26 | ザ スクリプス リサーチ インスティテュート | Cell reprogramming |
TWI538685B (en) | 2010-04-02 | 2016-06-21 | 腫瘤療法 科學股份有限公司 | Ect2 peptides and vaccines including the same |
JP2013523818A (en) | 2010-04-05 | 2013-06-17 | ザ・ユニバーシティー・オブ・シカゴ | Compositions and methods relating to protein A (SpA) antibodies as enhancers of immune responses |
US9249195B2 (en) | 2010-04-07 | 2016-02-02 | Vanderbilt University | Reovirus vaccines and methods of use therefor |
US8785385B2 (en) | 2010-04-19 | 2014-07-22 | Research Development Foundation | RTEF-1 variants and uses thereof |
PL2580322T3 (en) | 2010-06-09 | 2018-09-28 | Dana-Farber Cancer Institute, Inc. | A mek 1 mutation conferring resistance to raf and mek inhibitors |
WO2011159726A2 (en) | 2010-06-14 | 2011-12-22 | The Scripps Research Institute | Reprogramming of cells to a new fate |
JP2013530699A (en) | 2010-06-15 | 2013-08-01 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Overview of ready-made stem cell models for investigating biological responses |
KR101861168B1 (en) | 2010-06-15 | 2018-05-31 | 후지필름 셀룰러 다이내믹스, 인코포레이티드 | Generation of induced pluripotent stem cells from small volumes of peripheral blood |
KR20130093084A (en) | 2010-07-02 | 2013-08-21 | 더 유니버시티 오브 시카고 | Compositions and methods related to protein a(spa) variants |
EP3369817A1 (en) | 2010-07-06 | 2018-09-05 | InteRNA Technologies B.V. | Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma , or in diseases or conditions with activated braf pathway |
JP5897002B2 (en) | 2010-07-07 | 2016-04-13 | セルラー ダイナミクス インターナショナル, インコーポレイテッド | Endothelial cell production by programming |
CA2806858C (en) | 2010-08-04 | 2021-06-15 | Cellular Dynamics International, Inc. | Reprogramming immortalized b cells |
US9095540B2 (en) | 2010-09-09 | 2015-08-04 | The University Of Chicago | Methods and compositions involving protective staphylococcal antigens |
CN103501803B (en) | 2010-09-22 | 2015-12-02 | 科罗拉多大学董事会 | The treatment use of SMAD7 |
US20130267029A1 (en) | 2010-10-01 | 2013-10-10 | Fundacion Centro Nacional de Ivestigaciones Oncologicas, Carlos | Manipulation of stem cell function by p53 isoforms |
US9226958B2 (en) | 2010-10-01 | 2016-01-05 | University Of Georgia Research Foundation, Inc. | Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals |
WO2012087965A2 (en) | 2010-12-22 | 2012-06-28 | Fate Therapauetics, Inc. | Cell culture platform for single cell sorting and enhanced reprogramming of ipscs |
KR101942237B1 (en) | 2011-01-04 | 2019-01-25 | 신라젠(주) | Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus |
EP2474617A1 (en) | 2011-01-11 | 2012-07-11 | InteRNA Technologies BV | Mir for treating neo-angiogenesis |
RU2539035C2 (en) * | 2011-01-13 | 2015-01-10 | Амир Закиевич Максютов | Preventive or therapeutic polyepitopic anti-tuberculosis vaccine construction providing induction of cellular immune response of cd4+ or cd8+ t-lymphocytes |
US8952132B2 (en) | 2011-02-07 | 2015-02-10 | Research Development Foundation | Engineered immunoglobulin FC polypeptides |
US9574179B2 (en) | 2011-02-08 | 2017-02-21 | Cellular Dynamics International, Inc. | Hematopoietic precursor cell production by programming |
EP3332804A1 (en) | 2011-03-11 | 2018-06-13 | Advaxis, Inc. | Listeria-based adjuvants |
US9085631B2 (en) | 2011-04-08 | 2015-07-21 | Nov Vac APS | Proteins and nucleic acids useful in vaccines targeting Staphylococcus aureus |
US8945588B2 (en) | 2011-05-06 | 2015-02-03 | The University Of Chicago | Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides |
WO2012156535A1 (en) | 2011-05-19 | 2012-11-22 | Fundación Progreso Y Salud | Highly inducible dual-promoter lentiviral tet-on system |
US9364532B2 (en) | 2011-06-08 | 2016-06-14 | Children's Hospital Of Eastern Ontario Research Institute Inc. | Compositions and methods for glioblastoma treatment |
EP2732029B1 (en) | 2011-07-11 | 2019-01-16 | FUJIFILM Cellular Dynamics, Inc. | Methods for cell reprogramming and genome engineering |
EP2738255B1 (en) | 2011-07-29 | 2016-11-23 | Tokushima University | Erap1-derived peptide and use thereof |
CA2842887C (en) | 2011-08-12 | 2021-01-19 | Oncotherapy Science, Inc. | Mphosph1 peptides and vaccines including the same |
WO2013025834A2 (en) | 2011-08-15 | 2013-02-21 | The University Of Chicago | Compositions and methods related to antibodies to staphylococcal protein a |
US20130101664A1 (en) | 2011-08-18 | 2013-04-25 | Donald W. Kufe | Muc1 ligand traps for use in treating cancers |
JP2013046596A (en) * | 2011-08-29 | 2013-03-07 | Alpha-Nano-Medica Co Ltd | New complex, medicine including the same and method of treatment for cancer |
US9273102B2 (en) | 2011-10-12 | 2016-03-01 | Niels Iversen Møller | Peptides derived from Campylobacter jejuni and their use in vaccination |
CN107759661B (en) | 2011-10-28 | 2021-03-23 | 肿瘤疗法科学股份有限公司 | TOPK peptides and vaccines comprising the same |
WO2013095132A1 (en) | 2011-12-22 | 2013-06-27 | Interna Technologies B.V. | Mirna for treating head and neck cancer |
SG11201405605VA (en) | 2012-03-12 | 2014-10-30 | Advaxis Inc | SUPPRESSOR CELL FUNCTION INHIBITION FOLLOWING <i>LISTERIA</i> VACCINE TREATMENT |
JP6670106B2 (en) | 2012-04-26 | 2020-03-18 | ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago | Staphylococcal coagulase antigen and method of use |
EP2841101B1 (en) | 2012-04-26 | 2019-08-07 | University Of Chicago | Compositions and methods related to antibodies that neutralize coagulase activity during staphylococcus aureus disease |
US9561265B2 (en) | 2012-07-10 | 2017-02-07 | Oncotherapy Science, Inc. | KIF20A epitope peptides for TH1 cells and vaccines containing the same |
JP6255594B2 (en) | 2012-07-10 | 2018-01-10 | オンコセラピー・サイエンス株式会社 | LY6K epitope peptide of Th1 cell and vaccine containing the same |
RU2663350C2 (en) | 2012-09-11 | 2018-08-03 | Онкотерапи Сайенс, Инк. | Ube2t peptide and vaccines containing the same |
US9890216B2 (en) | 2012-10-23 | 2018-02-13 | Board Of Regents, The University Of Texas System | Antibodies with engineered IgG Fc domains |
EP3800256A1 (en) | 2012-11-06 | 2021-04-07 | InteRNA Technologies B.V. | Combination to be used in therapeutic use against diseases or conditions associated with melanoma, or in diseases or conditions associated with activated b-raf pathway |
US10125373B2 (en) | 2013-01-22 | 2018-11-13 | Arizona Board Of Regents On Behalf Of Arizona State University | Geminiviral vector for expression of rituximab |
CN105121631B (en) | 2013-02-20 | 2019-04-19 | 瑞泽恩制药公司 | Genetic modification of rats |
AU2014221143B2 (en) | 2013-02-21 | 2019-02-07 | Turnstone Limited Partnership | Vaccine composition |
AU2014218807A1 (en) | 2013-02-22 | 2015-09-03 | Cellular Dynamics International, Inc. | Hepatocyte production via forward programming by combined genetic and chemical engineering |
EP2961386B1 (en) | 2013-02-28 | 2019-07-10 | The General Hospital Corporation | Mirna profiling compositions and methods of use |
US10456448B2 (en) | 2013-03-08 | 2019-10-29 | The Regents Of The University Of Colorado, A Body Corporate | PTD-SMAD7 therapeutics |
TWI658049B (en) | 2013-03-12 | 2019-05-01 | 腫瘤療法 科學股份有限公司 | KNTC2 peptide and vaccine containing the peptide |
WO2014140301A1 (en) * | 2013-03-15 | 2014-09-18 | Université De Genève | Anti-mycobacterial vaccines |
ES2702622T3 (en) | 2013-03-27 | 2019-03-04 | Immunovaccine Technologies Inc | Method to improve the effectiveness of a survivin vaccine in the treatment of cancer |
RU2520078C1 (en) * | 2013-04-25 | 2014-06-20 | Федеральное государственное бюджетное учреждение "Научно-исследовательский институт эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи" Министерства здравоохранения Российской Федерации (ФГБУ "НИИЭМ им. Н.Ф. Гамалеи" Минздрава России) | METHOD FOR OBTAINING IMMUNOGENIC COMPOSITION BASED ON Ag85A-DBD HYBRID PROTEIN AND DEXTRANE; pAg85A-DBD RECOMBINANT PLASMIDE; Escherichia coli [pREP4, pAg85A-DBD] STRAIN; Ag85A-DBD CHIMERIC PROTEIN |
CA2923857A1 (en) | 2013-09-09 | 2015-03-12 | Figene, Llc | Gene therapy for the regeneration of chondrocytes or cartilage type cells |
WO2015070009A2 (en) | 2013-11-08 | 2015-05-14 | The Board Of Regents Of The University Of Texas System | Vh4 antibodies against gray matter neuron and astrocyte |
EP3065706A4 (en) | 2013-11-08 | 2017-11-29 | Baylor Research Institute | Nuclear localization of glp-1 stimulates myocardial regeneration and reverses heart failure |
EP4227685A3 (en) | 2013-12-03 | 2024-02-28 | Evaxion Biotech A/S | Proteins and nucleic acids useful in vaccines targeting staphylococcus aureus |
ES2794088T3 (en) | 2014-01-29 | 2020-11-17 | Dana Farber Cancer Inst Inc | Antibodies against the extracellular domain of MUC1-C (MUC1-C / ECD) |
EP3105332A4 (en) | 2014-02-14 | 2018-01-10 | University of Utah Research Foundation | Methods and compositions for inhibiting retinopathy of prematurity |
WO2015130783A1 (en) | 2014-02-25 | 2015-09-03 | Research Development Foundation | Sty peptides for inhibition of angiogenesis |
EP3604499A1 (en) | 2014-03-04 | 2020-02-05 | Fate Therapeutics, Inc. | Improved reprogramming methods and cell culture platforms |
WO2015164228A1 (en) | 2014-04-21 | 2015-10-29 | Cellular Dynamics International, Inc. | Hepatocyte production via forward programming by combined genetic and chemical engineering |
EP3590954A3 (en) | 2014-08-04 | 2020-03-25 | OncoTherapy Science, Inc. | Koc1-derived peptide and vaccine including same |
BR112017002212A2 (en) | 2014-08-04 | 2017-11-21 | Oncotherapy Science Inc | cdca1-derived peptide and vaccine containing the same |
ES2856834T3 (en) | 2014-08-04 | 2021-09-28 | Oncotherapy Science Inc | URLC10 derived peptide and vaccine containing the same |
WO2016025510A1 (en) | 2014-08-12 | 2016-02-18 | Rappolee Daniel A | Systems and methods to detect stem cell stress and uses thereof |
US20180169211A1 (en) | 2014-11-13 | 2018-06-21 | Evaxion Biotech Aps | Peptides derived from acinetobacter baumannii and their use in vaccination |
CN107531736B (en) | 2015-01-06 | 2022-04-15 | 免疫疫苗科技公司 | Lipid A mimetics, methods of making and uses thereof |
EP3485907B1 (en) | 2015-01-12 | 2023-06-28 | Evaxion Biotech ApS | Treatment and prophylaxis of k. pneumoniae infection |
EP3250675A1 (en) | 2015-01-28 | 2017-12-06 | SABIC Global Technologies B.V. | Methods and compositions for high-efficiency production of biofuel and/or biomass |
EP3256490A1 (en) | 2015-02-09 | 2017-12-20 | Research Development Foundation | Engineered immunoglobulin fc polypeptides displaying improved complement activation |
EP3259346B1 (en) | 2015-02-20 | 2024-08-07 | Baylor College of Medicine | P63 inactivation for the treatment of heart failure |
EP4276106A3 (en) | 2015-05-13 | 2024-01-24 | The United States of America as represented by the Secretary of the Department of Health and Human Services | Methods and compositions for inducing an immune response using conserved element constructs |
WO2016196366A1 (en) | 2015-05-29 | 2016-12-08 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Extension of replicative lifespan in diseases of premature aging using p53 isoforms |
EP3317295B1 (en) | 2015-07-04 | 2022-05-18 | Evaxion Biotech A/S | Proteins and nucleic acids useful in vaccines targeting pseudomonas aeruginosa |
US10526408B2 (en) | 2015-08-28 | 2020-01-07 | Research Development Foundation | Engineered antibody FC variants |
CN108367004B (en) | 2015-09-21 | 2022-09-13 | 阿帕特夫研究和发展有限公司 | CD3 binding polypeptides |
CN108137652B (en) | 2015-10-08 | 2021-08-03 | 肿瘤疗法科学股份有限公司 | FOXM1-derived peptides and vaccines containing them |
JP7263005B2 (en) | 2015-10-16 | 2023-04-24 | フェイト セラピューティクス,インコーポレイテッド | A platform for the induction and maintenance of ground-state pluripotency |
WO2017070333A1 (en) | 2015-10-20 | 2017-04-27 | Cellular Dynamics International, Inc. | Multi-lineage hematopoietic precursor cell production by genetic programming |
SG11201803419PA (en) | 2015-10-30 | 2018-05-30 | The Regents Of The Universtiy Of California | Methods of generating t-cells from stem cells and immunotherapeutic methods using the t-cells |
ES2892972T3 (en) | 2015-11-02 | 2022-02-07 | Univ Texas | Methods of CD40 activation and immune checkpoint blockade |
KR20180104597A (en) | 2015-11-07 | 2018-09-21 | 멀티비르 인코포레이티드 | Compositions comprising tumor suppressor gene therapy and immune blockade for cancer therapy |
HUE067793T2 (en) | 2015-11-09 | 2024-11-28 | Childrens Hospital Philadelphia | Glypican 2 as a cancer marker and therapeutic target |
EP3419654B1 (en) | 2016-02-22 | 2022-04-27 | Evaxion Biotech A/S | Proteins and nucleic acids useful in vaccines targeting staphylococcus aureus |
CA3019635A1 (en) | 2016-03-31 | 2017-10-05 | Baylor Research Institute | Angiopoietin-like protein 8 (angptl8) |
WO2017216384A1 (en) | 2016-06-17 | 2017-12-21 | Evaxion Biotech Aps | Vaccination targeting ichthyophthirius multifiliis |
WO2017223146A1 (en) * | 2016-06-22 | 2017-12-28 | Aeras | Recombinant cytomegalovirus vectors as vaccines for tuberculosis |
WO2017220787A1 (en) | 2016-06-24 | 2017-12-28 | Evaxion Biotech Aps | Vaccines against aearomonas salmonicida infection |
EP3478325B1 (en) | 2016-07-01 | 2024-07-17 | Research Development Foundation | Elimination of proliferating cells from stem cell-derived grafts |
WO2018015575A1 (en) | 2016-07-22 | 2018-01-25 | Evaxion Biotech Aps | Chimeric proteins for inducing immunity towards infection with s. aureus |
WO2018035429A1 (en) | 2016-08-18 | 2018-02-22 | Wisconsin Alumni Research Foundation | Peptides that inhibit syndecan-1 activation of vla-4 and igf-1r |
KR20190057308A (en) | 2016-09-02 | 2019-05-28 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | Methods and compositions comprising interleukin-6 receptor alpha-binding single chain variable fragments |
DK3523423T3 (en) | 2016-10-05 | 2024-09-02 | Fujifilm Cellular Dynamics Inc | METHODS FOR THE TARGETED DIFFERENTIATION OF PLURIPOTENT STEM CELLS TO HLA HOMOZYGOTE IMMUNE CELLS |
DK3523422T3 (en) | 2016-10-05 | 2025-03-03 | Fujifilm Cellular Dynamics Inc | GENERATION OF MATURE LINES FROM INDUCED PLURIPOTENT STEM CELLS WITH MECP2 DISRUPTION |
WO2018111902A1 (en) | 2016-12-12 | 2018-06-21 | Multivir Inc. | Methods and compositions comprising viral gene therapy and an immune checkpoint inhibitor for treatment and prevention of cancer and infectious diseases |
EP3565576A1 (en) | 2017-01-05 | 2019-11-13 | Evaxion Biotech ApS | Vaccines targeting pseudomonas aeruginosa |
SG11201909331UA (en) | 2017-04-18 | 2019-11-28 | Fujifilm Cellular Dynamics Inc | Antigen-specific immune effector cells |
WO2019086603A1 (en) | 2017-11-03 | 2019-05-09 | Interna Technologies B.V. | Mirna molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation |
US11612618B2 (en) | 2017-11-14 | 2023-03-28 | Henry Ford Health System | Compositions for use in the treatment and prevention of cardiovascular disorders resulting from cerebrovascular injury |
AU2019205037A1 (en) | 2018-01-05 | 2020-08-20 | Ottawa Hospital Research Institute | Modified vaccinia vectors |
WO2019145399A1 (en) | 2018-01-24 | 2019-08-01 | Evaxion Biotech Aps | Vaccines for prophylaxis of s. aureus infections |
KR20200135986A (en) | 2018-03-19 | 2020-12-04 | 멀티비르 인코포레이티드 | Methods and compositions for cancer treatment comprising tumor suppressor gene therapy and CD122/CD132 agonists |
WO2019186274A2 (en) | 2018-03-30 | 2019-10-03 | University Of Geneva | Micro rna expression constructs and uses thereof |
TW202023581A (en) | 2018-08-02 | 2020-07-01 | 日商腫瘤療法 科學股份有限公司 | Cdca1-derived peptide and vaccine containing same |
AU2019333315B2 (en) | 2018-08-30 | 2022-09-29 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with myocardin and ASCL1 |
US20220000932A1 (en) | 2018-09-28 | 2022-01-06 | Henry Ford Health System | Use of extracellular vesicles in combination with tissue plasminogen activator and/or thrombectomy to treat stroke |
EP3870207A1 (en) | 2018-10-22 | 2021-09-01 | Evaxion Biotech ApS | Vaccines targeting m. catharrhalis |
EP3889264A4 (en) | 2018-11-30 | 2022-10-12 | Tokushima University | BREAST CANCER THERAPEUTIC WITH BIG3-PHB2 INTERACTION INHIBITING PEPTIDE FROM PHB2 |
WO2020171889A1 (en) | 2019-02-19 | 2020-08-27 | University Of Rochester | Blocking lipid accumulation or inflammation in thyroid eye disease |
WO2020174044A1 (en) | 2019-02-27 | 2020-09-03 | Evaxion Biotech Aps | Vaccines targeting h. influenzae |
SG10201905939WA (en) | 2019-06-26 | 2021-01-28 | Cell Mogrify Australia Pty Ltd | Cell culture methods and compositions |
WO2021007515A1 (en) | 2019-07-11 | 2021-01-14 | Tenaya Therapeutics, Inc. | Cardiac cell reprogramming with micrornas and other factors |
AU2020317009A1 (en) | 2019-07-19 | 2022-02-03 | The Board Of Trustees Of The Leland Stanford Junior University | Chimeric antigen receptors containing Glypican 2 binding domains |
WO2021076930A1 (en) | 2019-10-18 | 2021-04-22 | The Regents Of The University Of California | Plxdc activators and their use in the treatment of blood vessel disorders |
KR102237349B1 (en) | 2019-10-23 | 2021-04-07 | 한국과학기술연구원 | Pharmaceutical composition for the treatment or prevention of nicotine addiction and withdrawal comprising miRNA |
WO2021113644A1 (en) | 2019-12-05 | 2021-06-10 | Multivir Inc. | Combinations comprising a cd8+ t cell enhancer, an immune checkpoint inhibitor and radiotherapy for targeted and abscopal effects for the treatment of cancer |
US20230050225A1 (en) | 2020-01-06 | 2023-02-16 | Evaxion Biotech A/S | Vaccines targeting Neisseria gonorrhoeae |
CN115552022A (en) | 2020-03-02 | 2022-12-30 | 特纳亚治疗股份有限公司 | Gene vectors controlled by microRNAs expressed in cardiomyocytes |
JP2023520359A (en) | 2020-03-25 | 2023-05-17 | エラスムス・ユニヴァーシティ・メディカル・センター・ロッテルダム | Reporter system for radionuclide imaging |
CA3179599A1 (en) | 2020-05-27 | 2021-12-02 | Marco ALESSANDRINI | Adapter molecules to re-direct car t cells to an antigen of interest |
US20230201267A1 (en) | 2020-05-29 | 2023-06-29 | FUJIFILM Cellular Dynamics, Inc. | Retinal pigmented epithelium and photoreceptor dual cell aggregates and methods of use thereof |
CN116323677A (en) | 2020-05-29 | 2023-06-23 | 富士胶片细胞动力公司 | Retinal pigment epithelium and photoreceptor bilayer and uses thereof |
WO2022053130A1 (en) | 2020-09-09 | 2022-03-17 | Sid Alex Group, S.R.O. | Antago-mir-155 for treatment of v-src, c-src-tyrosine kinase-induced cancers |
EP4291216A1 (en) | 2021-02-09 | 2023-12-20 | University of Houston System | Oncolytic virus for systemic delivery and enhanced anti-tumor activities |
US20240122865A1 (en) | 2021-02-19 | 2024-04-18 | Pfizer Inc. | Methods of Protecting RNA |
EP4334437A1 (en) | 2021-05-03 | 2024-03-13 | Astellas Institute for Regenerative Medicine | Methods of generating mature corneal endothelial cells |
CN117716020A (en) | 2021-05-07 | 2024-03-15 | 安斯泰来再生医药协会 | Methods of generating mature hepatocytes |
KR20240011831A (en) | 2021-05-26 | 2024-01-26 | 후지필름 셀룰러 다이내믹스, 인코포레이티드 | Methods for preventing rapid silencing of genes in pluripotent stem cells |
CA3224564A1 (en) | 2021-07-05 | 2023-01-12 | Andreas Holm MATTSSON | Vaccines targeting neisseria gonorrhoeae |
WO2023089556A1 (en) | 2021-11-22 | 2023-05-25 | Pfizer Inc. | Reducing risk of antigen mimicry in immunogenic medicaments |
WO2023144779A1 (en) | 2022-01-28 | 2023-08-03 | Pfizer Inc. | Coronavirus antigen variants |
US20230295661A1 (en) | 2022-03-16 | 2023-09-21 | University Of Houston System | Persistent hsv gene delivery system |
GB202205265D0 (en) | 2022-04-11 | 2022-05-25 | Mogrify Ltd | Cell conversion |
AU2022457212A1 (en) | 2022-05-04 | 2024-11-14 | Evaxion Biotech A/S | Staphylococcal protein variants and truncates |
GB202206507D0 (en) | 2022-05-04 | 2022-06-15 | Antion Biosciences Sa | Expression construct |
WO2023239940A1 (en) | 2022-06-10 | 2023-12-14 | Research Development Foundation | Engineered fcriib selective igg1 fc variants and uses thereof |
KR20250038661A (en) | 2022-06-29 | 2025-03-19 | 후지필름 홀딩스 아메리카 코포레이션 | IPSC-derived stellate cells and methods of using them |
WO2024130212A1 (en) | 2022-12-16 | 2024-06-20 | Turnstone Biologics Corp. | Recombinant vaccinia virus encoding one or more natural killer cell and t lymphocyte inhibitors |
WO2024186630A1 (en) | 2023-03-03 | 2024-09-12 | Henry Ford Health System | Use of extracellular vesicles for the treatment of cancer |
GB202306619D0 (en) | 2023-05-04 | 2023-06-21 | Antion Biosciences Sa | Cell |
WO2025050009A2 (en) | 2023-09-01 | 2025-03-06 | Children's Hospital Medical Center | Identification of targets for immunotherapy in melanoma using splicing-derived neoantigens |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5591632A (en) * | 1987-03-02 | 1997-01-07 | Beth Israel Hospital | Recombinant BCG |
US5807830A (en) * | 1987-12-30 | 1998-09-15 | Cytoven J.V. | Method for treatment of purulent inflammatory diseases |
JP3250802B2 (en) * | 1989-03-21 | 2002-01-28 | バイカル・インコーポレイテッド | Expression of exogenous polynucleotide sequences in vertebrates |
DD295869A5 (en) * | 1989-09-19 | 1991-11-14 | �K�K@������������@�K�Kk�� | RECOMBINANT POLYPEPTIDES AND PEPTIDES, THESE CODING NUCLEINE ACIDS, AND THE USE OF THESE POLYPEPTIDES AND PEPTIDES IN THE DIAGNOSIS OF TUBERCULOSIS |
EP0499003A1 (en) * | 1991-02-14 | 1992-08-19 | N.V. Innogenetics S.A. | Polypeptides and peptides, particularly recombinant polypeptides and peptides, nucleic acids coding for the same and use of these polypeptides and peptides in the diagnosis of tuberculosis |
US5643578A (en) * | 1992-03-23 | 1997-07-01 | University Of Massachusetts Medical Center | Immunization by inoculation of DNA transcription unit |
IL108915A0 (en) * | 1993-03-18 | 1994-06-24 | Merck & Co Inc | Polynucleotide vaccine against influenza virus |
US5955077A (en) * | 1993-07-02 | 1999-09-21 | Statens Seruminstitut | Tuberculosis vaccine |
IL113817A (en) * | 1994-06-30 | 2001-03-19 | Merck & Co Inc | Polynucleotide vaccne for papillomavirus |
US5736524A (en) * | 1994-11-14 | 1998-04-07 | Merck & Co.,. Inc. | Polynucleotide tuberculosis vaccine |
AU6280596A (en) * | 1995-06-15 | 1997-01-15 | University Of Victoria Innovation And Development Corporation | Mycobacterium tuberculosis dna sequences encoding immunostimlatory peptides |
US6160093A (en) * | 1996-08-29 | 2000-12-12 | Genesis Researth And Development Corporation Limited | Compounds and methods for treatment and diagnosis of mycobacterial infections |
-
1994
- 1994-11-14 US US08/338,992 patent/US5736524A/en not_active Expired - Fee Related
-
1995
- 1995-11-06 IL IL11588395A patent/IL115883A0/en unknown
- 1995-11-13 SK SK597-97A patent/SK283254B6/en not_active IP Right Cessation
- 1995-11-13 AT AT95939161T patent/ATE296882T1/en not_active IP Right Cessation
- 1995-11-13 RU RU97110087/13A patent/RU2186109C2/en not_active IP Right Cessation
- 1995-11-13 WO PCT/US1995/014899 patent/WO1996015241A2/en not_active Application Discontinuation
- 1995-11-13 EP EP95939161A patent/EP0792358B1/en not_active Expired - Lifetime
- 1995-11-13 AU AU41102/96A patent/AU715067B2/en not_active Ceased
- 1995-11-13 PL PL95320091A patent/PL184839B1/en not_active IP Right Cessation
- 1995-11-13 ES ES95939161T patent/ES2242193T3/en not_active Expired - Lifetime
- 1995-11-13 PT PT95939161T patent/PT792358E/en unknown
- 1995-11-13 CN CN95197250A patent/CN1171814A/en active Pending
- 1995-11-13 DK DK95939161T patent/DK0792358T3/en active
- 1995-11-13 KR KR1019970703204A patent/KR970707281A/en not_active Ceased
- 1995-11-13 ZA ZA959608A patent/ZA959608B/en unknown
- 1995-11-13 NZ NZ296477A patent/NZ296477A/en not_active IP Right Cessation
- 1995-11-13 JP JP51633096A patent/JP3881014B2/en not_active Expired - Fee Related
- 1995-11-13 HU HU9701841A patent/HU222369B1/en not_active IP Right Cessation
- 1995-11-13 CZ CZ19971451A patent/CZ289383B6/en not_active IP Right Cessation
- 1995-11-13 DE DE69534250T patent/DE69534250T2/en not_active Expired - Fee Related
-
1997
- 1997-05-13 FI FI972034A patent/FI972034L/en not_active IP Right Cessation
- 1997-05-13 NO NO972196A patent/NO972196L/en not_active Application Discontinuation
- 1997-05-14 MX MX9703606A patent/MX9703606A/en not_active IP Right Cessation
-
1998
- 1998-01-22 US US09/010,733 patent/US6384018B1/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004110482A1 (en) * | 2003-06-13 | 2004-12-23 | Isis Innovation Limited | Improved vaccines |
US20060240039A1 (en) * | 2003-06-13 | 2006-10-26 | Isis Innovation Limited | Vaccines |
US20090170120A1 (en) * | 2006-03-17 | 2009-07-02 | Ajit Lalvani | Clinical Correlates |
US8765366B2 (en) | 2006-03-17 | 2014-07-01 | Ajit Lalvani | Clinical correlates |
US20110081377A1 (en) * | 2008-03-21 | 2011-04-07 | The United States, as represented by the Secretary Department of Health and Human Services | Aerosolized genetic vaccines and methods of use |
US20110076297A1 (en) * | 2009-09-30 | 2011-03-31 | Saint Louis University | Peptides for Inducing Heterosubtypic Influenza T Cell Responses |
WO2011041490A1 (en) * | 2009-09-30 | 2011-04-07 | Saint Louis University | Peptides for inducing heterosubtypic influenza t cell responses |
US9265822B2 (en) | 2009-09-30 | 2016-02-23 | Saint Louis University | Peptides for inducing heterosubtypic influenza T cell responses |
US12247053B2 (en) | 2018-10-26 | 2025-03-11 | Saint Louis University | Peptides for inducing heterosubtypic influenza T cell responses |
Also Published As
Publication number | Publication date |
---|---|
NZ296477A (en) | 1999-04-29 |
PL320091A1 (en) | 1997-09-15 |
FI972034L (en) | 1997-07-11 |
EP0792358A2 (en) | 1997-09-03 |
DE69534250T2 (en) | 2006-05-04 |
ATE296882T1 (en) | 2005-06-15 |
US6384018B1 (en) | 2002-05-07 |
HUT77028A (en) | 1998-03-02 |
US5736524A (en) | 1998-04-07 |
AU715067B2 (en) | 2000-01-13 |
DK0792358T3 (en) | 2005-08-29 |
WO1996015241A3 (en) | 1996-11-07 |
PT792358E (en) | 2005-09-30 |
AU4110296A (en) | 1996-06-06 |
ES2242193T3 (en) | 2005-11-01 |
RU2186109C2 (en) | 2002-07-27 |
NO972196D0 (en) | 1997-05-13 |
IL115883A0 (en) | 1996-01-31 |
DE69534250D1 (en) | 2005-07-07 |
PL184839B1 (en) | 2002-12-31 |
KR970707281A (en) | 1997-12-01 |
JPH10508753A (en) | 1998-09-02 |
WO1996015241A2 (en) | 1996-05-23 |
EP0792358B1 (en) | 2005-06-01 |
ZA959608B (en) | 1996-05-29 |
MX9703606A (en) | 1998-07-31 |
SK283254B6 (en) | 2003-04-01 |
HU222369B1 (en) | 2003-06-28 |
JP3881014B2 (en) | 2007-02-14 |
CN1171814A (en) | 1998-01-28 |
FI972034A0 (en) | 1997-05-13 |
CZ145197A3 (en) | 1997-10-15 |
SK59797A3 (en) | 1998-01-14 |
NO972196L (en) | 1997-07-11 |
CZ289383B6 (en) | 2002-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6384018B1 (en) | Polynucleotide tuberculosis vaccine | |
US7097965B2 (en) | Targeting antigens to the MHC class I processing pathway with an anthrax toxin fusion protein | |
AU743616B2 (en) | Synthetic HIV gag genes | |
US6504020B1 (en) | Isolated nucleic acids comprising Listeria dal and dat genes | |
EP0620277A1 (en) | Nucleic acid pharmaceuticals | |
AU9519398A (en) | Coordinate in vivo gene expression | |
JP2007332149A (en) | Vaccines against mycobacterial infections | |
US7094767B2 (en) | Polynucleotide herpes virus vaccine | |
AU708460B2 (en) | A polynucleotide herpes virus vaccine | |
CA2205175C (en) | A polynucleotide tuberculosis vaccine | |
CA2267645A1 (en) | A polynucleotide herpes virus vaccine | |
AU738835B2 (en) | A polynucleotide herpes virus vaccine | |
Deshpande | Host-pathogen interaction in bovine respiratory disease:(1) DNA immunization against bovine herpesvirus-1.(2) Role of CD18 in Mannheimia haemolytica leukotoxin-induced cytolysis of bovine leukocytes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100507 |