US20020032463A1 - Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue - Google Patents
Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue Download PDFInfo
- Publication number
- US20020032463A1 US20020032463A1 US09/283,535 US28353599A US2002032463A1 US 20020032463 A1 US20020032463 A1 US 20020032463A1 US 28353599 A US28353599 A US 28353599A US 2002032463 A1 US2002032463 A1 US 2002032463A1
- Authority
- US
- United States
- Prior art keywords
- material according
- poly
- polymer
- peg
- cross
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 23
- 230000000740 bleeding effect Effects 0.000 title claims description 56
- 238000000034 method Methods 0.000 title claims description 27
- 239000000203 mixture Substances 0.000 title claims description 19
- 229920000642 polymer Polymers 0.000 claims abstract description 72
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 53
- 210000004369 blood Anatomy 0.000 claims abstract description 26
- 239000008280 blood Substances 0.000 claims abstract description 26
- 239000000017 hydrogel Substances 0.000 claims abstract description 23
- 150000001875 compounds Chemical class 0.000 claims abstract description 19
- 229940030225 antihemorrhagics Drugs 0.000 claims abstract description 17
- 239000002874 hemostatic agent Substances 0.000 claims abstract description 17
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 17
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 17
- 102000007562 Serum Albumin Human genes 0.000 claims abstract description 4
- 108010071390 Serum Albumin Proteins 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 115
- 239000000243 solution Substances 0.000 claims description 73
- -1 poly(ethylene glycol) Polymers 0.000 claims description 63
- 238000004132 cross linking Methods 0.000 claims description 47
- 102000009027 Albumins Human genes 0.000 claims description 43
- 108010088751 Albumins Proteins 0.000 claims description 43
- 238000002156 mixing Methods 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 37
- 239000007921 spray Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000000872 buffer Substances 0.000 claims description 19
- 239000012460 protein solution Substances 0.000 claims description 18
- 102000008100 Human Serum Albumin Human genes 0.000 claims description 14
- 108091006905 Human Serum Albumin Proteins 0.000 claims description 14
- 230000015556 catabolic process Effects 0.000 claims description 13
- 238000006731 degradation reaction Methods 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 12
- 150000002148 esters Chemical class 0.000 claims description 9
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 7
- 229920001436 collagen Polymers 0.000 claims description 5
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 5
- 210000002966 serum Anatomy 0.000 claims description 5
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 5
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 4
- 102000008186 Collagen Human genes 0.000 claims description 4
- 108010035532 Collagen Proteins 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 108010049003 Fibrinogen Proteins 0.000 claims description 3
- 102000008946 Fibrinogen Human genes 0.000 claims description 3
- 229940012952 fibrinogen Drugs 0.000 claims description 3
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 claims description 3
- JPNBVWIRDQVGAC-UHFFFAOYSA-N (2-nitrophenyl) hydrogen carbonate Chemical class OC(=O)OC1=CC=CC=C1[N+]([O-])=O JPNBVWIRDQVGAC-UHFFFAOYSA-N 0.000 claims description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims description 2
- 229920001661 Chitosan Polymers 0.000 claims description 2
- 102000016942 Elastin Human genes 0.000 claims description 2
- 108010014258 Elastin Proteins 0.000 claims description 2
- 108010010803 Gelatin Proteins 0.000 claims description 2
- GAAHQHNCMIAYEX-UWVGGRQHSA-N Gly-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN GAAHQHNCMIAYEX-UWVGGRQHSA-N 0.000 claims description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 2
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 claims description 2
- GHAZCVNUKKZTLG-UHFFFAOYSA-N N-ethyl-succinimide Natural products CCN1C(=O)CCC1=O GHAZCVNUKKZTLG-UHFFFAOYSA-N 0.000 claims description 2
- HDFGOPSGAURCEO-UHFFFAOYSA-N N-ethylmaleimide Chemical compound CCN1C(=O)C=CC1=O HDFGOPSGAURCEO-UHFFFAOYSA-N 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 229920002732 Polyanhydride Polymers 0.000 claims description 2
- 229920000954 Polyglycolide Polymers 0.000 claims description 2
- 229920001710 Polyorthoester Polymers 0.000 claims description 2
- 150000001299 aldehydes Chemical class 0.000 claims description 2
- HAXFWIACAGNFHA-UHFFFAOYSA-N aldrithiol Chemical compound C=1C=CC=NC=1SSC1=CC=CC=N1 HAXFWIACAGNFHA-UHFFFAOYSA-N 0.000 claims description 2
- 229920001400 block copolymer Polymers 0.000 claims description 2
- 150000001720 carbohydrates Chemical class 0.000 claims description 2
- 235000014633 carbohydrates Nutrition 0.000 claims description 2
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 claims description 2
- 229920002549 elastin Polymers 0.000 claims description 2
- 239000008273 gelatin Substances 0.000 claims description 2
- 229920000159 gelatin Polymers 0.000 claims description 2
- 235000019322 gelatine Nutrition 0.000 claims description 2
- 235000011852 gelatine desserts Nutrition 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims description 2
- 229920002674 hyaluronan Polymers 0.000 claims description 2
- 229960003160 hyaluronic acid Drugs 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 claims description 2
- LFKYBJLFJOOKAE-UHFFFAOYSA-N imidazol-2-ylidenemethanone Chemical compound O=C=C1N=CC=N1 LFKYBJLFJOOKAE-UHFFFAOYSA-N 0.000 claims description 2
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 claims description 2
- 239000012948 isocyanate Substances 0.000 claims description 2
- 150000002513 isocyanates Chemical class 0.000 claims description 2
- 229940012957 plasmin Drugs 0.000 claims description 2
- 229920001308 poly(aminoacid) Polymers 0.000 claims description 2
- 229920001042 poly(δ-valerolactone) Polymers 0.000 claims description 2
- 229920001282 polysaccharide Polymers 0.000 claims description 2
- 239000005017 polysaccharide Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 2
- 239000001384 succinic acid Substances 0.000 claims description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims 3
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 125000003277 amino group Chemical group 0.000 claims 1
- 150000002118 epoxides Chemical class 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 208000032843 Hemorrhage Diseases 0.000 description 53
- 210000001519 tissue Anatomy 0.000 description 30
- 210000004072 lung Anatomy 0.000 description 21
- 230000003872 anastomosis Effects 0.000 description 16
- 210000000056 organ Anatomy 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000001879 gelation Methods 0.000 description 14
- 238000011065 in-situ storage Methods 0.000 description 10
- 230000001010 compromised effect Effects 0.000 description 9
- 210000003734 kidney Anatomy 0.000 description 9
- 239000003894 surgical glue Substances 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 210000000988 bone and bone Anatomy 0.000 description 7
- 230000023597 hemostasis Effects 0.000 description 7
- 230000002439 hemostatic effect Effects 0.000 description 7
- 208000014674 injury Diseases 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 210000000952 spleen Anatomy 0.000 description 7
- 238000000889 atomisation Methods 0.000 description 6
- 239000011344 liquid material Substances 0.000 description 6
- 230000008733 trauma Effects 0.000 description 6
- 241001415846 Procellariidae Species 0.000 description 5
- 108090000190 Thrombin Proteins 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 210000004872 soft tissue Anatomy 0.000 description 5
- 229960004072 thrombin Drugs 0.000 description 5
- 210000003813 thumb Anatomy 0.000 description 5
- 239000008215 water for injection Substances 0.000 description 5
- NWAGXLBTAPTCPR-UHFFFAOYSA-N 5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentanoic acid Chemical compound OC(=O)CCCC(=O)ON1C(=O)CCC1=O NWAGXLBTAPTCPR-UHFFFAOYSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 4
- 230000015271 coagulation Effects 0.000 description 4
- 238000005345 coagulation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 4
- 235000017557 sodium bicarbonate Nutrition 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 238000011277 treatment modality Methods 0.000 description 3
- 229920003169 water-soluble polymer Polymers 0.000 description 3
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 2
- 229930182837 (R)-adrenaline Natural products 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 208000022211 Arteriovenous Malformations Diseases 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000005744 arteriovenous malformation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000011094 buffer selection Methods 0.000 description 2
- 238000007428 craniotomy Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229960005139 epinephrine Drugs 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000008223 sterile water Substances 0.000 description 2
- 210000000115 thoracic cavity Anatomy 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 208000012260 Accidental injury Diseases 0.000 description 1
- 206010050456 Anastomotic leak Diseases 0.000 description 1
- 206010002329 Aneurysm Diseases 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 206010018852 Haematoma Diseases 0.000 description 1
- 208000037062 Polyps Diseases 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010051297 Soft tissue haemorrhage Diseases 0.000 description 1
- 206010067979 Traumatic liver injury Diseases 0.000 description 1
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 238000002192 cholecystectomy Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 230000003480 fibrinolytic effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 238000002682 general surgery Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000011540 hip replacement Methods 0.000 description 1
- 230000000642 iatrogenic effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013150 knee replacement Methods 0.000 description 1
- 238000002684 laminectomy Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 210000004086 maxillary sinus Anatomy 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000013059 nephrectomy Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 210000003137 popliteal artery Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011471 prostatectomy Methods 0.000 description 1
- 238000002278 reconstructive surgery Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000002435 rhinoplasty Methods 0.000 description 1
- 210000003752 saphenous vein Anatomy 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000003718 sphenoid sinus Anatomy 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 210000001562 sternum Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 210000000798 superior sagittal sinus Anatomy 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 239000005526 vasoconstrictor agent Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00491—Surgical glue applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0662—Guide tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/421—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
- B01F25/423—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
- B01F25/4231—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/421—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
- B01F25/423—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components
- B01F25/4233—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path by means of elements placed in the receptacle for moving or guiding the components using plates with holes, the holes being displaced from one plate to the next one to force the flow to make a bending movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/50—Movable or transportable mixing devices or plants
- B01F33/501—Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use
- B01F33/5011—Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use portable during use, e.g. hand-held
- B01F33/50112—Movable mixing devices, i.e. readily shifted or displaced from one place to another, e.g. portable during use portable during use, e.g. hand-held of the syringe or cartridge type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B17/3415—Trocars; Puncturing needles for introducing tubes or catheters, e.g. gastrostomy tubes, drain catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1482—Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1487—Trocar-like, i.e. devices producing an enlarged transcutaneous opening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00491—Surgical glue applicators
- A61B2017/00495—Surgical glue applicators for two-component glue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00491—Surgical glue applicators
- A61B2017/005—Surgical glue applicators hardenable using external energy source, e.g. laser, ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00637—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for sealing trocar wounds through abdominal wall
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
- A61B2017/00646—Type of implements
- A61B2017/0065—Type of implements the implement being an adhesive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/34—Trocars; Puncturing needles
- A61B2017/348—Means for supporting the trocar against the body or retaining the trocar inside the body
- A61B2017/3492—Means for supporting the trocar against the body or retaining the trocar inside the body against the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/06—Measuring instruments not otherwise provided for
- A61B2090/064—Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
Definitions
- the invention generally relates systems and methods for arresting or controlling the bleeding or leakage of fluid in body tissues, e.g., diffuse organ bleeding, lung punctures, anastomotic leakage, and the like.
- Hemostatic barriers are routinely called upon to control bleeding.
- the bleeding may be caused by trauma, e.g. splenic, kidney, and liver lacerations, or may be caused during surgery, e.g. tumor removal or bone bleeding.
- Bleeding is conventionally controlled by the application of solid sheets of material, e.g. gauze, GelfoamTM material, or SurgicelTM material. These materials can be soaked with a hemostatic agent, such as thrombin or epinephrine, or sprayable formulations such as fibrin glue.
- a hemostatic agent such as thrombin or epinephrine
- sprayable formulations such as fibrin glue.
- hemostatic agents can include coagulation factors (e.g. thrombin), platelet activators (e.g. collagen), vasoconstrictors (epinephrine), or fibrinolytic inhibitors.
- coagulation factors e.g. thrombin
- platelet activators e.g. collagen
- vasoconstrictors epinephrine
- fibrinolytic inhibitors e.g. fibrinolytic inhibitors.
- bovine collagen and bovine thrombin to cause the desired clotting action.
- bovine spongiform encephalopathy also called “Mad Cow Disease”.
- bovine thrombin marketed today is relatively impure, and these impurities can lead to complications in certain patient populations.
- fibrin glue generally composed of purified fibrinogen and thrombin from pooled human blood, has safety and efficacy concerns as well.
- many products do not achieve hemostasis in a clinically acceptable period, particularly in cases of brisk bleeding.
- surgical sealants are also commonly used to control bleeding or fluid leakage along anastomoses formed by suture or staple lines, e.g., between blood vessels, bowel, or lung tissue.
- fibrin glue can be utilized to seal an anastomosis. Still, fibrin glue's lack of adhesion to moist tissue, safety concerns, and cost precludes its widespread use as a surgical sealant for blood vessel anastomoses.
- the invention provides compositions, instruments, systems, and methods, which arrest or control bleeding or leakage of fluid in body tissue.
- a biocompatible and biodegradable material which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests the flow of blood or fluid from body tissue.
- a biocompatible and biodegradable material which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests organ diffuse bleeding.
- a biocompatible and biodegradable material which comprises a protein solution and a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three, which, when mixed by instruments, systems, and methods that embody the invention, form a mechanical non-liquid covering structure that arrests the flow of blood or seals tissue.
- FIG. 1 is a plan view of a system for arresting or controlling bleeding or leakage of fluid in body tissue, showing the components of the system prepackaged in sterile kits;
- FIG. 2 is a diagrammatic view of a compromised tissue region, upon which a covering structure that embodies the features of the invention has been dispersed to arrest or control bleeding;
- FIG. 3 is a side view of the covering structure shown in FIG. 2, taken generally along line 3 - 3 in FIG. 2;
- FIG. 4 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached mixing spray head to disperse the solutions to form the covering structure shown in FIGS. 2 and 3;
- FIG. 5 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached cannula to disperse the solutions to form the covering structure shown in FIGS. 2 and 3;
- FIG. 6A is an exploded, perspective view of the kit shown in FIG. 1 that contains the liquid and solid components and syringe dispensers for the covering structure;
- FIG. 6B is an exploded, perspective view of the kit shown in FIG. 1 that contains the introducer/mixer shown in FIGS. 4 and 5, which receives the syringes shown in FIG. 6A during use;
- FIGS. 7A, 7B, and 7 C illustrate use of the system shown in FIG. 1 to control or arrest diffuse organ bleeding
- FIGS. 8A, 8B, and 8 C demonstrate use of the system shown in FIG. 1 to seal a puncture site in a lung
- FIGS. 9A, 9B, and 9 C illustrate use of the system shown in FIG. 1 to control or arrest bleeding through an anastomosis
- FIGS. 10A to 10 D are perspective views showing the manipulation of syringes contained in the kit shown in FIG. 6A, to create a liquid PEG solution for use with the system shown in FIG. 1.
- FIG. 1 shows a system 10 of functional instruments for arresting or controlling the loss of blood or other fluids in body tissue.
- the instruments of the system 10 are brought to a compromised tissue region (shown as an incision INC in FIGS. 2 and 3), where bleeding or loss of another body fluid is occurring, e.g., due to diffuse bleeding or anastomosis.
- the parts of the system 10 are manipulated by a physician or medical support personnel to create a liquid material, which is immediately dispersed as a spray directly onto the surface of the compromised tissue region.
- the liquid material transforms as it is being dispersed as a result of cross-linking into an in situ-formed non-liquid covering structure.
- the covering structure intimately adheres and conforms to the surface the compromised tissue region, as FIG. 3 best shows.
- the presence of the covering structure mechanically arrests or blocks further blood or fluid loss from the compromised tissue region, without need for a hemostatic agent.
- the covering structure exists long enough to prevent blood or fluid leakage while the compromised tissue region heals by natural processes.
- the covering structure is, over time, degraded by hydrolysis by in the host body and cleared by the kidneys from the blood stream and removed in the urine.
- the system 10 is consolidated in two functional kits 12 and 14 .
- the kit 12 houses the component assembly 18 , which contains the formative components from which the covering structure is created.
- the kit 12 holds the components in an unmixed condition until the instant of use.
- the kit 14 contains a dispersing assembly 16 .
- the dispersing assembly 16 brings the components in the assembly 18 , while in liquid form, into intimate mixing contact. At the same time, the assembly 16 disperses the liquid mixture onto the surface of the compromised tissue region, to ultimately form the in situ covering structure.
- the covering structure comprises a material that is chemically cross-linked, to form a non-liquid mechanical matrix or barrier.
- the material of the covering structure is a protein/polymer composite hydrogel.
- the material is most preferably formed from the mixture of a protein solution and a solution of an electrophilic derivative of a hydrophilic polymer with a functionality of at least three.
- the material is nontoxic, biodegradable, and possesses mechanical properties such as cohesive strength, adhesive strength, and elasticity sufficient to block or arrest diffuse organ bleeding, or to block or arrest seepage as a result of anastomosis, or to seal lung punctures.
- the material also permits the rate of cross-linking and gelation to be controlled through buffer selection and concentration.
- the rate of degradation after cross-linking can be controlled through the selection of a degradation control region.
- the component assembly 18 includes first and second dispensing syringes 60 and 62 , in which the formative components of the covering structure are stored prior to use.
- the first dispensing syringe 60 contains a concentration of buffered protein solution 100 .
- the protein solution is supplemented with the appropriate buffers, sterile filtered, aseptically filled into the syringe 60 , and the syringe 60 is capped for storage prior to use.
- Suitable proteins for incorporation into material include non-immunogenic, hydrophilic proteins. Examples include solutions of albumin, gelatin, antibodies, serum proteins, serum fractions, and serum. Also, water soluble derivatives of hydrophobic proteins can also be used. Examples include collagen, fibrinogen, elastin, chitosan, and hyaluronic acid.
- the protein can be produced from naturally occurring source or it may be recombinantly produced.
- the preferred protein solution is 25% human serum albumin, USP. Human serum albumin is preferred due to its biocompatibility and its ready availability.
- Buffer selection and concentration maintains the pH of the reactive mixture. Buffers that are well tolerated physiologically can be used. Examples include carbonate and phosphate buffer systems. Care should be taken to select buffers that do not participate in or interfere with the cross-linking reaction.
- the preferred range of buffer concentration is from about 0.03 M to about 0.4 M, and the preferred range of pH is from about 7.0 to about 10.0.
- a preferred buffer system for the covering structure is carbonate buffer at a concentration of 0.315 M at a pH value of about 9 to about 10. As will be described later, there is a relationship between pH and the time for cross-linking (also called “gelation”).
- the second dispensing syringe 62 contains an inert, electrophilic, water soluble polymer 102 .
- the polymer cross-links the protein to form an inert, three dimensional mechanical network or matrix.
- the matrix forms the mechanical covering structure.
- the covering structure adheres and conforms to the surface of the tissue region on which it is dispensed.
- the covering structure is, over time, resorbed.
- the polymer 102 comprises a hydrophilic, biocompatible polymer, which is electrophilically derivatized with a functionality of at least three.
- a number of polymers could be utilized, including poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(vinylpyrrolidone), poly(ethyloxazoline), and poly(ethylene glycol)-co-poly(propylene glycol) block copolymers.
- the polymer portion is not restricted to synthetic polymers as polysaccharides, carbohydrates, and proteins could also be electrophilically derivatized.
- the polymer 102 is comprised of poly(ethylene glycol) (PEG) with a molecular weight between 1,000 and 30,000 g/mole, more preferably between 2,000 and 15,000 g/mole, and most preferably between 10,000 and 15,000 g/mole.
- PEG poly(ethylene glycol)
- the preferred polymer can be generally expressed as compounds of the formula:
- DCR is a degradation control region.
- the preferred polymer is a multi-armed structure
- a linear polymer with a functionality of at least three can also be used.
- the desired functionality of the PEG polymer for forming the covering structure can be expressed in terms of (i) how quickly the polymer cross-links the protein and transforms to a nonfluent gel state (i.e., the mechanical material) (a preferred gelation time is under three seconds), and (ii) the mechanical properties of the covering structure after gelation in terms of its liquid sealing characteristics, physical strength, resistance to fragmentation (i.e., brittleness), and bioresorption.
- the optimization of both attributes (i) and (ii) is desirable.
- the inventors have discovered that the utility of a given PEG polymer significantly increases when the functionality is increased to be greater than or equal to three.
- the observed incremental increase in functionality occurs when the functionality is increased from two to three, and again when the functionality is increased from three to four. Further incremental increases are minimal when the functionality exceeds about four.
- the polymer 102 is initially packaged prior to use in the second dispensing syringe 62 in an inert atmosphere (e.g., argon) in a stable, powder form.
- the component assembly 18 includes a third syringe 104 , which contains sterile water 106 for dissolution of the powder polymer 102 just before mixing with the albumin component 100 .
- a stopcock valve 108 is secured to the luer fitting 88 at the dispensing end of the second dispensing syringe 62 .
- the dispensing end 110 of the water syringe 104 couples to the stopcock valve 108 , so that the water 106 can be mixed with the polymer 102 in the dispensing syringe 62 prior to use.
- the rate of degradation is controlled by the selection of chemical moiety in the degradation control region DCG. If degradation is desired, a hydrolytically or enzymatically degradable moiety can be selected,
- hydrolytically degradable moieties include saturated di-acids, unsaturated di-acids, poly(glycolic acid), poly(DL-lactic acid), poly(L-lactic acid), poly( ⁇ -caprolactone), poly( ⁇ -valerolactone), poly( ⁇ -butyrolactone), poly(amino acids), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), and poly(phosphoesters).
- Examples of enzymatically degradable regions include Leu-Glyc-Pro-Ala (collagenase sensitive linkage) and Gly-Pro-Lys (plasmin sensitive linkage).
- the preferred degradable control regions for degradable materials are ester containing linkages, as are present when succinic acid or glutaric acid are coupled to a PEG molecule.
- the preferred degradable control regions for nondegradable materials are ether containing linkages. The material can also be created without the introduction of a degradation control region.
- the cross-linking group is responsible for the cross-linking of the albumin, as well as the binding to the tissue substrate.
- the cross-linking group can be selected to selectively react with sulfhydryl groups, selectively react with amines, or can be selected to react with sulfhydryl, primary amino, and secondary amino groups.
- Cross-linking groups that react selectively with sulfhydryl groups include vinyl sulfone, N-ethyl maleimide, iodoacetamide, and orthopyridyl disulfide.
- Cross-linking groups specific to amines include aldehydes.
- Non-selective electrophilic cross-linking groups include active esters, epoxides, carbonylimidazole, nitrophenyl carbonates, tresylate, mesylate, tosylate, and isocyanate.
- the preferred cross-linking group is an active ester, specifically an ester of N-hydroxysuccinimide.
- the concentration of the cross-linking groups is preferably kept less than 5% of the total mass of the reactive solution, and more preferably about 1% or less.
- the low concentration of the cross-linking group is also beneficial so that the amount of the leaving group is also minimized.
- the cross-linking group portion comprising a N-hydroxysuccinimide ester has demonstrated ability to participate in the cross-linking reaction with albumin without presenting the risk of local or systemic immune responses in humans.
- the polymer is comprised of a 4-arm PEG with a molecular weight of about 10,000 g/mole, the degradation control region is comprised of glutaric acid, and the cross-linking group is comprised of a N-hydroxysuccinimide ester.
- a preferred polymer is poly(ethylene glycol) tetra-succinimidyl glutarate, which is available from Shearwater Polymers, Huntsville, Ala. The preferred polymer will, in shorthand, be called 4-PEG-SG.
- the polymer is dissolved in water prior to use. Preferred concentrations of the polymer are from 5% to 35% w/w in water.
- the solution of 4-PEG-SG mixes with 25% serum albumin to form a liquid solution that quickly cross-links to form a non-liquid, three dimensional network for the covering structure.
- the rate of reaction can be controlled by the pH of the reactive solution.
- An increase in temperature is not observed during formation of the covering structure network, due to the low concentration of reactive groups, which account for only about 1% of the total mass.
- about 50 mg of a non-toxic leaving group is produced during the cross-linking reaction, which is a further desired result.
- the resulting nonfluent material created by mixing 25% albumin and 4-PEG-SG is approximately 80% water, 13% albumin, and 7% PEG.
- the material is well tolerated by the body, without invoking a severe foreign body response. Over a controlled period of time, the material is degraded via hydrolysis. Histological studies have shown a foreign body response consistent with a biodegradable material, such as VICRYLTM sutures. As the material is degraded. the tissue returns to a quiescent state. The molecules of the degraded material are cleared from the bloodstream by the kidneys and eliminated from the body in the urine. In a preferred embodiment of the invention, the material loses its physical strength during the first twenty days, and total resorption occurs in about 4 weeks.
- Cross-linked covering structure networks were formed by the mixture of an 4-PEG-SG and albumin.
- a solution of 4-PEG-SG was prepared by dissolving 0.40 g in 2.0 mL of water.
- the albumin solution consisted 25% human serum alburmin, USP (Plasbumin-25, Bayer Corporation), as received.
- Dispensing syringes containing 2.0 mL of the polymer solution and 2.0 mL of albumin solution were connected to the joiner 84 , to which a spray head was coupled.
- the solutions were sprayed into a polystyrene weigh boat.
- a cross-linked covering structure network formed at room temperature in about 90 seconds.
- the rate of formation of the cross-linked covering structure network of 4-PEG-SG and albumin (i.e., gelation) can be controlled by the pH of the reactive solution.
- the pH of the solution is increased, and conversely, to decrease the rate of cross-linking, the pH of the solution is decreased.
- the pH of the solution is controlled by both the buffer strength and buffer pH.
- Table 1 shows the effect of buffer strength on the rate of gelation of 17% w/w 4-PEG-SG in water for injection and 25% human serum albumin, USP at room temperature.
- the rate of gelation can also be controlled by adjusting the pH of the buffer at a constant buffer concentration.
- the buffer was placed in the solution of albumin.
- the gelation time is the amount of time required for the formulation to transform from the liquid state to the cross-linked solid state.
- the dispersing assembly 16 comprises a material introducer/mixer 22 .
- the material introducer/mixer 22 receives the two dispensing syringes 60 and 62 .
- the material introducer/mixer 22 allows the physician to uniformly dispense the two components in a liquid state from the dispensing syringes 60 and 62 .
- the material introducer/mixer 22 also mixes the components while flowing in the liquid state from the dispensing syringes 60 and 62 .
- the material introducer/mixer 22 includes syringe support 64 .
- the support 64 includes side-by-side channels 66 (see FIG. 1, too).
- the channel 66 accommodates in a snap-friction-fit the barrels of the syringes 60 and 62 .
- the material introducer/mixer 22 also includes a syringe clip 68 .
- the syringe clip 68 includes spaced apart walls 70 forming an interior race 72 .
- the race 72 receives in a sliding friction fit the thumb rests 74 of the pistons 76 of the dispensing syringes 60 and 62 , in axial alignment with the syringe barrels carried by the syringe support 64 .
- the syringe clip 68 mechanically links the syringe pistons 76 together for common advancement inside their respective syringe barrels.
- the syringe support 64 includes opposed finger rests 80
- the syringe clip 68 includes a thumb rest 82 .
- the orientation of these rests 80 and 82 parallel the orientation of the finger rests and thumb rests of a single syringe. The physician is thereby able to hold and operate multiple syringes 60 and 62 in the same way as a single syringe.
- the material introducer/mixer 22 also includes a joiner 84 .
- the joiner 84 includes side by side female luer fittings 86 .
- the female luer fittings 86 each receives the threaded male luer fitting 88 at the dispensing end of the dispensing syringes 60 and 62 .
- the female luer fittings 86 are axially aligned with the barrels 78 of the dispensing syringes 60 and 62 carried in the syringe support 64 .
- the physician is thereby able to quickly and conveniently ready the dispensing syringes 60 and 62 for use by securing the dispensing syringes to the joiner 84 , snap fitting the syringe barrels 78 into the syringe support 64 , and slide fitting the syringe thumb rests 74 into the clip 68 .
- the joiner 84 includes interior channels 90 coupled to the female luer fittings 86 .
- the channels 90 merge at a Y-junction into a single outlet port 92 .
- the joiner 84 maintains two fluids dispensed by the syringes 60 and 62 separately until they leave the joiner 84 . This design minimizes plugging of the joiner 84 due to a mixing reaction between the two fluids.
- the syringe clip 68 ensures even application of individual solutions through the joiner 84 .
- the material introducer/mixer 22 further includes a mixing spray head 94 , which, in use, is coupled to the single outlet port 92 .
- the kit 14 contains several interchangeable mixing spray heads 94 , in case one mixing spray head 94 becomes clogged during use.
- the mixing spray head 94 may be variously constructed. It may, for example, comprise a spray head manufactured and sold by Hemaedics.
- the material introducer/mixer 22 can include a cannula 152 , which, in use, can be coupled to the outlet port 92 instead of the mixing spray head (see FIG. 5).
- the two components of the barrier material come into contact in the liquid state either in the mixing spray head 94 or the cannula 152 .
- Atomization of the two components occurs as they are dispersed through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
- Passage of the liquid components through the cannula 152 will channel-mix the materials. Either by atomization or channel mixing, the liquid components are sufficiently mixed to immediately initiate the cross-linking reaction.
- the parts of the introducer/mixer 22 are made, e.g., by molding medical grade plastic materials, such as polycarbonate and acrylic.
- each kit 12 and 14 includes an interior tray 112 made, e.g., from die cut cardboard, plastic sheet, or thermo-formed plastic material.
- the component assembly 18 is carried by the tray 112 in the kit 12 (see FIG. 6A).
- the dispersing assembly 16 is carried by the tray 112 in the kit 14 (see FIG. 6B).
- the kit 14 includes an inner wrap 114 , which is peripherally sealed by heat or the like, to enclose the tray 112 from contact with the outside environment.
- One end of the inner wrap 114 includes a conventional peel away seal 116 .
- the seal 116 provides quick access to the tray 112 at the instant of use, which preferably occurs in a suitable sterile environment.
- the kit 14 is further wrapped in an outer wrap 118 , which is also peripherally sealed by heat or the like, to enclose the interior tray 112 .
- One end of the inner wrap 118 includes a conventional peel away seal 120 , to provide quick access to the interior tray 112 and its contents.
- the outer wrap 118 and the inner wrap 114 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEKTM plastic material (available from DuPont). Kit 12 is sterilized utilizing ethylene oxide gas or electron beam irradiation.
- a material that is permeable to ethylene oxide sterilization gas e.g., TYVEKTM plastic material (available from DuPont).
- Kit 12 is sterilized utilizing ethylene oxide gas or electron beam irradiation.
- kit 12 includes a polymer package 138 (which contains the prefilled powder polymer syringe 62 and water syringe 104 ) and an albumin package 140 (which contains the prefilled albumin syringe 64 ).
- Each polymer package 138 and albumin package 140 includes an individual wrap 142 , which is peripherally sealed by heat or the like, to enclose package 138 and 140 from contact with the outside environment.
- One end of the individual wrap 142 includes a conventional peel away seal 144 , to provide quick access to the contents of the packages 138 and 140 at the instant of use.
- Polymer package 138 and albumin package 140 are further wrapped in an outer wrap 118 , which is also peripherally sealed by heat or the like.
- One end of the outer wrap 118 includes a conventional peel away seal 148 , to provide quick access to the packages 138 and 140 .
- the packages 138 and 140 and the tray 112 are further wrapped in container 146 for the user's convenience.
- the wraps 142 and 118 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEKTM plastic material (available from DuPont).
- the albumin package 140 is prepared, sterilized utilizing ethylene oxide gas, and placed into kit 14 .
- the polymer package 138 is prepared, sterilized utilizing electron beam irradiation, and place into kit 14 .
- each kit 12 and 14 also preferably includes directions 122 for using the contents of the kit to carry out a desired procedure.
- the directions 122 can, of course vary, according to the particularities of the desired procedure. Furthermore, the directions 122 need not be physically present in the kits 12 and 14 .
- the directions 122 can be embodied in separate instruction manuals, or in video or audio tapes.
- exemplary directions 122 are described, which instruct the physician how to use of the system 10 to arrest diffuse bleeding of an injured or compromised body organ.
- diffuse bleeding is shown to occur diagrammatically through an incision in the organ.
- the system 10 is applicable for use to control or arrest diffuse bleeding in diverse types of organs, e.g., the liver, spleen, kidney, or bone.
- the cause of diffuse bleeding that the system 10 controls or arrests can also vary.
- the diffuse bleeding can occur as a result of trauma or accidental injury.
- the diffuse bleeding can also occur during normal surgical intervention, e.g., by organ resection, or tumor excision, or (in the case of bone) by sternotomy, orthopedic procedure, or craniotomy.
- the diffuse bleeding can also occur through needle tracks formed during tissue biopsy, or by capillary bed bleeding, as a result of saphenous vein harvesting, adhesiolysis, or tumor removal. It should be appreciated that the effectiveness of the system 10 does not depend upon where the diffuse bleeding is occuring or its underlying cause.
- the outer wrap 118 of the kits 12 and 14 are removed.
- the trays 112 still contained in the inner wraps 118 , are placed in the sterile operating field.
- the physician opens the inner wrap 118 of the kit 12 to gain access the first, second, and third syringes 60 , 62 , and 104 .
- the directions 122 for use instruct the physician to remove from the kit tray 112 the second dispensing syringe 62 , which contains, in sterile powder form, a predetermined amount of the polymer 102 (e.g., about 0.3 to 0.5 g).
- the directions 122 also instruct the physician to remove from the kit 12 the third syringe 104 , which contains sterile water 106 (e.g., about 2 cc). Both are contained in the polymer package 138 .
- the directions 122 instruct the physician to couple the dispensing end of the water syringe 104 to the stopcock valve 108 on the second dispensing syringe 62 .
- the stopcock valve 108 is closed at this point.
- the physician opens the stopcock valve 108 (see FIG. 10B) and transfers water from the water syringe 104 into the powder 100 in the second dispensing syringe 62 (see FIG. 10C).
- the physician is instructed to repeatedly transfer the water and powder mixture between the two syringes 62 and 104 , to syringe-mix the powder and water until all solids are dissolved.
- the syringe-mixing places the water soluble, polymer material into solution.
- the syringe-mixing process generally takes about two minutes.
- the physician After syringe mixing, the physician, following the directions 122 , transfers the PEG solution 136 (about 2 cc) into one of the syringes (which, in the illustrated embodiment, is the second syringe 62 ). The physician waits for bubbles to dissipate, which generally takes about an additional two minutes.
- the physician now closes the stopcock valve 108 (as FIG. 10D shows).
- the physician removes the stopcock valve 108 by unscrewing it from the luer fitting on the dispensing end of the second syringe 62 .
- the PEG solution 136 is ready for use. Mixing of the PEG solution 136 should take place generally within one hour of use. If the PEG solution 136 remains unused over two hours after mixing, it should be discarded.
- the directions 122 instruct the physician to remove from the second kit tray 112 the dispensing syringe 60 containing the albumin 100 .
- the albumin 100 has been premixed in a buffered form to the desired concentration (e.g., 25%), then sterile filtered, and aseptically filled into the syringe 60 .
- a closure cap normally closes the dispensing end inside the tray 112 .
- the physician now, or at a previous time, opens the outer wrap 118 of the kit 14 to gain access to the material introducer/mixer 22 .
- the directions 122 instruct the physician to remove the closure cap and screw the dispensing end of the first syringe 60 to the luer fitting 86 on the joiner 84 .
- the physician is also instructed to screw the dispensing end of the second syringe 62 (now containing the mixed PEG solution 136 ) to the other luer fitting 86 on the joiner 84 .
- the physician snaps the barrels 78 of the syringes 60 and 62 to the holder channels 66 .
- the physician captures the thumb rests 74 of the two syringes 60 and 62 inside the race 72 of the syringe clip 68 .
- the directions 122 instruct the physician to attach the joiner 84 to the mixing spray head 94 .
- FIG. 7B shows, the physician is instructed to position the mixing spray head 94 in a close relationship with the exposed site of diffuse bleeding on the organ.
- the physician applies manual pressure to the dispensing syringes 60 and 62 .
- Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94 .
- Atomization of the liquid components occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
- the mixed liquids initiate the cross-linking reaction as they are dispersed onto the organ surface.
- the liquid material transforms by in situ cross-linking into a non-liquid structure covering the diffuse bleeding site.
- the covering structure adheres and conforms to the organ surface, including entry into any incision, blunt penetration, or other surface irregularity from which the diffuse bleeding emanates. Due to speed of cross-linking and the physical properties of the covering structure, diffuse bleeding does not wash away or dilute the liquid material as it transforms into the covering structure.
- the covering structure entraps diffused blood. Diffuse bleeding just as rapidly stops as the structure forms in situ, without need of any hemostatic agent.
- the covering structure forms an in situ barrier against further bleeding on the surface of the organ.
- the covering structure exists long enough to prevent further blood or fluid leakage while the compromised organ heals by natural processes.
- a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
- the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
- the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
- the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- the liver of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the liver. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure.
- the exemplary directions 122 just described can be modified to instruct the physician how to use of the system 10 to control or arrest the leakage of air through a perforation or puncture in the lung caused, e.g., by trauma (see FIG. 8A).
- the instructions 122 instruct the physician to prepare the dispensing syringes 60 and 62 and coupled them to the joiner 84 in the manner previously set forth.
- the physician is instructed to attach the mixing spray head 84 and position the mixing spray head 94 in a close relationship with lung puncture site.
- the lung is deflated (see FIG. 8B).
- the physician applies manual pressure to the dispensing syringes 60 and 62 (as FIG. 8B shows).
- Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94 .
- Atomization of the liquid components also occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
- the mixed liquids initiate the cross-linking reaction as they are dispersed into contact with tissue surrounding the the lung puncture site.
- the liquid material transforms by in situ cross-linking into a non-liquid structure covering the puncture site (see FIG. 8C). Air leaks through the puncture site stop as the structure forms in situ. The covering structure exists long enough to prevent further air leaks, while the lung tissue heals by natural processes.
- a solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection.
- the albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- the lung of a euthanized, intubated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the lung. An air leak was confirmed by manually inflated the lung and listening for the hissing sound of air leaks. The lung was deflated and the surgical sealant, consisting of the polymer and albumin syringes, was applied using digital pressure.
- the exemplary directions 122 just described can be modified to instruct the physician how to use of the system 10 as a surgical sealant along suture lines or about surgical staples, forming an anastomosis (see FIG. 9A).
- the sutures or staples can be used, e.g., to join blood vessels, bowels, ureter, or bladder.
- the sutures or staples can also be used in the course of neurosurgery or ear-nose-throat surgery.
- the instructions 122 instruct the physician to prepare the dispensing syringes 60 and 62 and coupled them to the joiner 84 in the manner previously set forth.
- the physician is instructed to attach the mixing spray head 84 and position the mixing spray head 94 in a close relationship with the anastomosis (as FIG. 9B shows).
- the physician applies manual pressure to the dispensing syringes 60 and 62 .
- Albumin 100 from the first dispensing syringe 60 contacts the PEG solution 136 from the second dispensing syringe 62 in the mixing spray head 94 .
- Atomization of the liquid components also occurs through the mixing spray head 94 under pressure from operation of the mechanically linked dispensing syringes 60 and 62 .
- the mixed liquids initiate the cross-linking reaction as they are dispersed into contact with tissue along the anastomosis (see FIG. 9B).
- the liquid material transforms by in situ cross-linking into a non-liquid structure covering the anastomosis (see FIG. 9C). Blood or fluid seepage through the anastomosis stop as the structure forms in situ.
- the covering structure exists long enough to prevent further blood or fluid leaks, while tissue along the anastomsis heals by natural processes.
- compositions, systems, and methods described are applicable for use to control or arrest bleeding or fluid leaks in tissue throughout the body, including by way of example, the following surgical sites and indications:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dispersion Chemistry (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Hematology (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Anesthesiology (AREA)
- Cardiology (AREA)
- Diabetes (AREA)
- Pharmacology & Pharmacy (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 09/188,083, filed Nov. 6, 1998 and entitled “Compositions, Systems, and Methods for Creating in Situ, Chemically Cross-linked, Mechanical Barriers.”
- The invention generally relates systems and methods for arresting or controlling the bleeding or leakage of fluid in body tissues, e.g., diffuse organ bleeding, lung punctures, anastomotic leakage, and the like.
- Hemostatic barriers are routinely called upon to control bleeding. The bleeding may be caused by trauma, e.g. splenic, kidney, and liver lacerations, or may be caused during surgery, e.g. tumor removal or bone bleeding.
- Bleeding is conventionally controlled by the application of solid sheets of material, e.g. gauze, Gelfoam™ material, or Surgicel™ material. These materials can be soaked with a hemostatic agent, such as thrombin or epinephrine, or sprayable formulations such as fibrin glue.
- Conventional treatment modalities require the use of these hemostatic agents in conjunction with pressure to achieve hemostasis. The various hemostatic agents can include coagulation factors (e.g. thrombin), platelet activators (e.g. collagen), vasoconstrictors (epinephrine), or fibrinolytic inhibitors.
- In some instances, conventional treatments achieve hemostasis in a clinically acceptable time. Still, there are a number of drawbacks.
- For example, many treatment modalities consist of bovine collagen and bovine thrombin to cause the desired clotting action. These products have the potential for the transmission to humans of bovine spongiform encephalopathy (also called “Mad Cow Disease”). Regardless, the bovine thrombin marketed today is relatively impure, and these impurities can lead to complications in certain patient populations. Furthermore, fibrin glue, generally composed of purified fibrinogen and thrombin from pooled human blood, has safety and efficacy concerns as well. Additionally, many products do not achieve hemostasis in a clinically acceptable period, particularly in cases of brisk bleeding.
- In addition to hemostatic agents, surgical sealants are also commonly used to control bleeding or fluid leakage along anastomoses formed by suture or staple lines, e.g., between blood vessels, bowel, or lung tissue. In cases of blood leakage, fibrin glue can be utilized to seal an anastomosis. Still, fibrin glue's lack of adhesion to moist tissue, safety concerns, and cost precludes its widespread use as a surgical sealant for blood vessel anastomoses.
- Conventional hemostatic agents and surgical sealants for blood vessel anastomoses achieve hemostasis using the application of pressure and by activating the coagulation pathway of the blood. Yet, many of the surgeries where hemostatic barriers and surgical sealants are required also require the administration of anti-coagulation therapies, such as heparin. The hemostatic barrier or surgical sealant, which is promoting coagulation, is hindered by the effect of the heparin, which is preventing coagulation.
- Despite conventional treatment modalities for hemostatic barriers and surgical sealants, there is a need for a biomaterial that safely, quickly, and reliably arrests or controls fluid leakage in body tissues through the application of pressure and without interaction with the patient's coagulation pathways.
- The invention provides compositions, instruments, systems, and methods, which arrest or control bleeding or leakage of fluid in body tissue.
- According to one aspect of the invention, a biocompatible and biodegradable material is provided which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests the flow of blood or fluid from body tissue.
- According to another aspect of the invention, a biocompatible and biodegradable material is provided which comprises a hydrogel compound free of a hemostatic agent and which, when applied by instruments, systems, and methods that embody the invention, arrests organ diffuse bleeding.
- According to another aspect of the invention, a biocompatible and biodegradable material is provided which comprises a protein solution and a polymer solution including a derivative of a hydrophilic polymer with a functionality of at least three, which, when mixed by instruments, systems, and methods that embody the invention, form a mechanical non-liquid covering structure that arrests the flow of blood or seals tissue.
- Features and advantages of the inventions are set forth in the following Description and Drawings, as well as in the appended claims.
- FIG. 1 is a plan view of a system for arresting or controlling bleeding or leakage of fluid in body tissue, showing the components of the system prepackaged in sterile kits;
- FIG. 2 is a diagrammatic view of a compromised tissue region, upon which a covering structure that embodies the features of the invention has been dispersed to arrest or control bleeding;
- FIG. 3 is a side view of the covering structure shown in FIG. 2, taken generally along line3-3 in FIG. 2;
- FIG. 4 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached mixing spray head to disperse the solutions to form the covering structure shown in FIGS. 2 and 3;
- FIG. 5 is a side view of an introducer/mixer, with the syringes containing a liquid albumin solution and a liquid PEG solution mounted and ready for use, the introducer mixer having an attached cannula to disperse the solutions to form the covering structure shown in FIGS.2 and 3;
- FIG. 6A is an exploded, perspective view of the kit shown in FIG. 1 that contains the liquid and solid components and syringe dispensers for the covering structure;
- FIG. 6B is an exploded, perspective view of the kit shown in FIG. 1 that contains the introducer/mixer shown in FIGS. 4 and 5, which receives the syringes shown in FIG. 6A during use;
- FIGS. 7A, 7B, and7C illustrate use of the system shown in FIG. 1 to control or arrest diffuse organ bleeding;
- FIGS. 8A, 8B, and8C demonstrate use of the system shown in FIG. 1 to seal a puncture site in a lung;
- FIGS. 9A, 9B, and9C illustrate use of the system shown in FIG. 1 to control or arrest bleeding through an anastomosis; and
- FIGS. 10A to10D are perspective views showing the manipulation of syringes contained in the kit shown in FIG. 6A, to create a liquid PEG solution for use with the system shown in FIG. 1.
- The invention may be embodied in several forms without departing from its spirit or essential characteristics. The scope of the invention is defined in the appended claims, rather than in the specific description preceding them. All embodiments that fall within the meaning and range of equivalency of the claims are therefore intended to be embraced by the claims.
- FIG. 1 shows a
system 10 of functional instruments for arresting or controlling the loss of blood or other fluids in body tissue. - During use, the instruments of the
system 10 are brought to a compromised tissue region (shown as an incision INC in FIGS. 2 and 3), where bleeding or loss of another body fluid is occurring, e.g., due to diffuse bleeding or anastomosis. The parts of thesystem 10 are manipulated by a physician or medical support personnel to create a liquid material, which is immediately dispersed as a spray directly onto the surface of the compromised tissue region. The liquid material transforms as it is being dispersed as a result of cross-linking into an in situ-formed non-liquid covering structure. The covering structure intimately adheres and conforms to the surface the compromised tissue region, as FIG. 3 best shows. - Due to the physical characteristics of the covering structure and the speed at which it forms in situ, the presence of the covering structure mechanically arrests or blocks further blood or fluid loss from the compromised tissue region, without need for a hemostatic agent. The covering structure exists long enough to prevent blood or fluid leakage while the compromised tissue region heals by natural processes. The covering structure is, over time, degraded by hydrolysis by in the host body and cleared by the kidneys from the blood stream and removed in the urine.
- In the illustrated embodiment (see FIG. 1), the
system 10 is consolidated in twofunctional kits - The
kit 12 houses thecomponent assembly 18, which contains the formative components from which the covering structure is created. Thekit 12 holds the components in an unmixed condition until the instant of use. - The
kit 14 contains a dispersingassembly 16. The dispersingassembly 16 brings the components in theassembly 18, while in liquid form, into intimate mixing contact. At the same time, theassembly 16 disperses the liquid mixture onto the surface of the compromised tissue region, to ultimately form the in situ covering structure. - I. The Covering Structure
- The covering structure comprises a material that is chemically cross-linked, to form a non-liquid mechanical matrix or barrier.
- In a preferred embodiment, the material of the covering structure is a protein/polymer composite hydrogel. The material is most preferably formed from the mixture of a protein solution and a solution of an electrophilic derivative of a hydrophilic polymer with a functionality of at least three. The material is nontoxic, biodegradable, and possesses mechanical properties such as cohesive strength, adhesive strength, and elasticity sufficient to block or arrest diffuse organ bleeding, or to block or arrest seepage as a result of anastomosis, or to seal lung punctures.
- The material also permits the rate of cross-linking and gelation to be controlled through buffer selection and concentration. The rate of degradation after cross-linking can be controlled through the selection of a degradation control region.
- A. Material Components
- In the illustrated embodiment (see FIG. 1), the
component assembly 18 includes first and second dispensingsyringes - (i) Natural Plasma-based Protein The
first dispensing syringe 60 contains a concentration of bufferedprotein solution 100. The protein solution is supplemented with the appropriate buffers, sterile filtered, aseptically filled into thesyringe 60, and thesyringe 60 is capped for storage prior to use. - Suitable proteins for incorporation into material include non-immunogenic, hydrophilic proteins. Examples include solutions of albumin, gelatin, antibodies, serum proteins, serum fractions, and serum. Also, water soluble derivatives of hydrophobic proteins can also be used. Examples include collagen, fibrinogen, elastin, chitosan, and hyaluronic acid. The protein can be produced from naturally occurring source or it may be recombinantly produced.
- The preferred protein solution is 25% human serum albumin, USP. Human serum albumin is preferred due to its biocompatibility and its ready availability.
- Buffer selection and concentration maintains the pH of the reactive mixture. Buffers that are well tolerated physiologically can be used. Examples include carbonate and phosphate buffer systems. Care should be taken to select buffers that do not participate in or interfere with the cross-linking reaction. The preferred range of buffer concentration is from about 0.03 M to about 0.4 M, and the preferred range of pH is from about 7.0 to about 10.0. A preferred buffer system for the covering structure is carbonate buffer at a concentration of 0.315 M at a pH value of about 9 to about 10. As will be described later, there is a relationship between pH and the time for cross-linking (also called “gelation”).
- (ii) Electrophilic Water Soluble Polymer
- In the illustrated embodiment (still referring principally to FIG. 1), the
second dispensing syringe 62 contains an inert, electrophilic, watersoluble polymer 102. The polymer cross-links the protein to form an inert, three dimensional mechanical network or matrix. The matrix forms the mechanical covering structure. The covering structure adheres and conforms to the surface of the tissue region on which it is dispensed. The covering structure is, over time, resorbed. - The
polymer 102 comprises a hydrophilic, biocompatible polymer, which is electrophilically derivatized with a functionality of at least three. A number of polymers could be utilized, including poly(ethylene glycol), poly(ethylene oxide), poly(vinyl alcohol), poly(vinylpyrrolidone), poly(ethyloxazoline), and poly(ethylene glycol)-co-poly(propylene glycol) block copolymers. The polymer portion is not restricted to synthetic polymers as polysaccharides, carbohydrates, and proteins could also be electrophilically derivatized. - Preferably, the
polymer 102 is comprised of poly(ethylene glycol) (PEG) with a molecular weight between 1,000 and 30,000 g/mole, more preferably between 2,000 and 15,000 g/mole, and most preferably between 10,000 and 15,000 g/mole. PEG has been demonstrated to be biocompatible and non-toxic in a variety of physiological applications. - The preferred polymer can be generally expressed as compounds of the formula:
- PEG-(DCR-CG)n
- where:
- DCR is a degradation control region.
- CG in a cross-linking group.
- n≧3
- While the preferred polymer is a multi-armed structure, a linear polymer with a functionality of at least three can also be used. The desired functionality of the PEG polymer for forming the covering structure can be expressed in terms of (i) how quickly the polymer cross-links the protein and transforms to a nonfluent gel state (i.e., the mechanical material) (a preferred gelation time is under three seconds), and (ii) the mechanical properties of the covering structure after gelation in terms of its liquid sealing characteristics, physical strength, resistance to fragmentation (i.e., brittleness), and bioresorption. The optimization of both attributes (i) and (ii) is desirable.
- The inventors have discovered that the utility of a given PEG polymer significantly increases when the functionality is increased to be greater than or equal to three. The observed incremental increase in functionality occurs when the functionality is increased from two to three, and again when the functionality is increased from three to four. Further incremental increases are minimal when the functionality exceeds about four.
- The use of PEG polymers with functionality of greater than three provides a surprising advantage. When cross-linked with higher functionality PEG polymers, the concentration of albumin can be reduced to 25% and below. Past uses of difunctional PEG polymers require concentrations of albumin well above 25%, e.g. 35% to 45%. Use of lower concentrations of albumin results in superior sealing properties with reduced brittleness, facilitating reentry through the nonfluid material, without fragmentation. Additionally, 25% human serum albumin, USP is commercially available from several sources, however higher concentrations of USP albumin are not commercially available. By using commercially available materials, the dialysis and ultrafiltration of the albumin solution, as disclosed in the prior art, is eliminated, significantly reducing the cost and complexity of the preparation of the albumin solution.
- In the illustrated embodiment, the
polymer 102 is initially packaged prior to use in thesecond dispensing syringe 62 in an inert atmosphere (e.g., argon) in a stable, powder form. In this arrangement, thecomponent assembly 18 includes athird syringe 104, which containssterile water 106 for dissolution of thepowder polymer 102 just before mixing with thealbumin component 100. - In facilitating mixing, a
stopcock valve 108 is secured to the luer fitting 88 at the dispensing end of thesecond dispensing syringe 62. The dispensingend 110 of thewater syringe 104 couples to thestopcock valve 108, so that thewater 106 can be mixed with thepolymer 102 in the dispensingsyringe 62 prior to use. - (a) Selection of the Degradation Control Region DCR
- The rate of degradation is controlled by the selection of chemical moiety in the degradation control region DCG. If degradation is desired, a hydrolytically or enzymatically degradable moiety can be selected,
- Examples of hydrolytically degradable moieties include saturated di-acids, unsaturated di-acids, poly(glycolic acid), poly(DL-lactic acid), poly(L-lactic acid), poly(ξ-caprolactone), poly(δ-valerolactone), poly(γ-butyrolactone), poly(amino acids), poly(anhydrides), poly(orthoesters), poly(orthocarbonates), and poly(phosphoesters).
- Examples of enzymatically degradable regions include Leu-Glyc-Pro-Ala (collagenase sensitive linkage) and Gly-Pro-Lys (plasmin sensitive linkage).
- The preferred degradable control regions for degradable materials are ester containing linkages, as are present when succinic acid or glutaric acid are coupled to a PEG molecule. The preferred degradable control regions for nondegradable materials are ether containing linkages. The material can also be created without the introduction of a degradation control region.
- (b) Selection of the Cross-linking Group CG
- The cross-linking group is responsible for the cross-linking of the albumin, as well as the binding to the tissue substrate. The cross-linking group can be selected to selectively react with sulfhydryl groups, selectively react with amines, or can be selected to react with sulfhydryl, primary amino, and secondary amino groups. Cross-linking groups that react selectively with sulfhydryl groups include vinyl sulfone, N-ethyl maleimide, iodoacetamide, and orthopyridyl disulfide. Cross-linking groups specific to amines include aldehydes. Non-selective electrophilic cross-linking groups include active esters, epoxides, carbonylimidazole, nitrophenyl carbonates, tresylate, mesylate, tosylate, and isocyanate. The preferred cross-linking group is an active ester, specifically an ester of N-hydroxysuccinimide.
- To minimize the liberation of heat during the cross-linking reaction, the concentration of the cross-linking groups is preferably kept less than 5% of the total mass of the reactive solution, and more preferably about 1% or less. The low concentration of the cross-linking group is also beneficial so that the amount of the leaving group is also minimized. In a preferred embodiment, the cross-linking group portion comprising a N-hydroxysuccinimide ester has demonstrated ability to participate in the cross-linking reaction with albumin without presenting the risk of local or systemic immune responses in humans.
- (c) Preferred Multiple Arm PEG Polymer
- In a preferred embodiment, the polymer is comprised of a 4-arm PEG with a molecular weight of about 10,000 g/mole, the degradation control region is comprised of glutaric acid, and the cross-linking group is comprised of a N-hydroxysuccinimide ester. Thus, a preferred polymer is poly(ethylene glycol) tetra-succinimidyl glutarate, which is available from Shearwater Polymers, Huntsville, Ala. The preferred polymer will, in shorthand, be called 4-PEG-SG. The polymer is dissolved in water prior to use. Preferred concentrations of the polymer are from 5% to 35% w/w in water.
- The solution of 4-PEG-SG mixes with 25% serum albumin to form a liquid solution that quickly cross-links to form a non-liquid, three dimensional network for the covering structure. With these material formulations, it is possible to intimately mix the water soluble polymer with the albumin protein using, e.g., atomization, or static mixing, or in-line channel mixing.
- As will be demonstrated later, the rate of reaction can be controlled by the pH of the reactive solution. An increase in temperature is not observed during formation of the covering structure network, due to the low concentration of reactive groups, which account for only about 1% of the total mass. In a typical clinical application, about 50 mg of a non-toxic leaving group is produced during the cross-linking reaction, which is a further desired result.
- The resulting nonfluent material created by mixing 25% albumin and 4-PEG-SG is approximately 80% water, 13% albumin, and 7% PEG. The material is well tolerated by the body, without invoking a severe foreign body response. Over a controlled period of time, the material is degraded via hydrolysis. Histological studies have shown a foreign body response consistent with a biodegradable material, such as VICRYL™ sutures. As the material is degraded. the tissue returns to a quiescent state. The molecules of the degraded material are cleared from the bloodstream by the kidneys and eliminated from the body in the urine. In a preferred embodiment of the invention, the material loses its physical strength during the first twenty days, and total resorption occurs in about 4 weeks.
- The following Examples demonstrate the superior features of the material of the invention.
- Preparation of Cross-linked Networks
- Cross-linked covering structure networks were formed by the mixture of an 4-PEG-SG and albumin. A solution of 4-PEG-SG was prepared by dissolving 0.40 g in 2.0 mL of water. The albumin solution consisted 25% human serum alburmin, USP (Plasbumin-25, Bayer Corporation), as received.
- Dispensing syringes containing 2.0 mL of the polymer solution and 2.0 mL of albumin solution were connected to the
joiner 84, to which a spray head was coupled. The solutions were sprayed into a polystyrene weigh boat. A cross-linked covering structure network formed at room temperature in about 90 seconds. - Control of the Rate of Gelation
- The rate of formation of the cross-linked covering structure network of 4-PEG-SG and albumin (i.e., gelation) can be controlled by the pH of the reactive solution. To increase the rate of cross-linking, the pH of the solution is increased, and conversely, to decrease the rate of cross-linking, the pH of the solution is decreased. The pH of the solution is controlled by both the buffer strength and buffer pH.
- Table 1 shows the effect of buffer strength on the rate of gelation of 17% w/w 4-PEG-SG in water for injection and 25% human serum albumin, USP at room temperature. The rate of gelation can also be controlled by adjusting the pH of the buffer at a constant buffer concentration. The buffer was placed in the solution of albumin. The gelation time is the amount of time required for the formulation to transform from the liquid state to the cross-linked solid state.
TABLE 1 Effect of Buffer Strength and Buffer pH on Gel Formation Buffer Concentration Buffer pH Gelation Time 300 mM 9 <1 sec 200 mM 9 5 sec 100mM 9 10 sec 50 mM 9 20 sec 0 mM 7 90 sec - II. The Dispersing assembly
- As FIG. 4 shows, the dispersing
assembly 16 comprises a material introducer/mixer 22. The material introducer/mixer 22 receives the two dispensingsyringes mixer 22 allows the physician to uniformly dispense the two components in a liquid state from the dispensingsyringes - The material introducer/
mixer 22 also mixes the components while flowing in the liquid state from the dispensingsyringes - To accomplish these functions (see FIG. 4), the material introducer/
mixer 22 includessyringe support 64. Thesupport 64 includes side-by-side channels 66 (see FIG. 1, too). Thechannel 66 accommodates in a snap-friction-fit the barrels of thesyringes - The material introducer/
mixer 22 also includes asyringe clip 68. Thesyringe clip 68 includes spaced apartwalls 70 forming aninterior race 72. Therace 72 receives in a sliding friction fit the thumb rests 74 of thepistons 76 of the dispensingsyringes syringe support 64. Thesyringe clip 68 mechanically links thesyringe pistons 76 together for common advancement inside their respective syringe barrels. - To faciliate handling, the
syringe support 64 includes opposed finger rests 80, and thesyringe clip 68 includes athumb rest 82. The orientation of these rests 80 and 82 parallel the orientation of the finger rests and thumb rests of a single syringe. The physician is thereby able to hold and operatemultiple syringes - The material introducer/
mixer 22 also includes ajoiner 84. Thejoiner 84 includes side by sidefemale luer fittings 86. Thefemale luer fittings 86 each receives the threaded male luer fitting 88 at the dispensing end of the dispensingsyringes female luer fittings 86 are axially aligned with the barrels 78 of the dispensingsyringes syringe support 64. - The physician is thereby able to quickly and conveniently ready the dispensing
syringes joiner 84, snap fitting the syringe barrels 78 into thesyringe support 64, and slide fitting the syringe thumb rests 74 into theclip 68. - The
joiner 84 includesinterior channels 90 coupled to thefemale luer fittings 86. Thechannels 90 merge at a Y-junction into asingle outlet port 92. Thejoiner 84 maintains two fluids dispensed by thesyringes joiner 84. This design minimizes plugging of thejoiner 84 due to a mixing reaction between the two fluids. Thesyringe clip 68 ensures even application of individual solutions through thejoiner 84. - The material introducer/
mixer 22 further includes a mixingspray head 94, which, in use, is coupled to thesingle outlet port 92. In FIG. 1, thekit 14 contains several interchangeable mixing spray heads 94, in case one mixingspray head 94 becomes clogged during use. - The mixing
spray head 94 may be variously constructed. It may, for example, comprise a spray head manufactured and sold by Hemaedics. - Alternatively, the material introducer/
mixer 22 can include acannula 152, which, in use, can be coupled to theoutlet port 92 instead of the mixing spray head (see FIG. 5). - Expressed in tandem from the dispensing
syringes joiner 84,support 64, andclip 68, the two components of the barrier material come into contact in the liquid state either in the mixingspray head 94 or thecannula 152. Atomization of the two components occurs as they are dispersed through the mixingspray head 94 under pressure from operation of the mechanically linked dispensingsyringes cannula 152 will channel-mix the materials. Either by atomization or channel mixing, the liquid components are sufficiently mixed to immediately initiate the cross-linking reaction. - The parts of the introducer/
mixer 22 are made, e.g., by molding medical grade plastic materials, such as polycarbonate and acrylic. - III. The Kits
- As FIGS. 6A and 6B show, in the illustrated embodiment, each
kit interior tray 112 made, e.g., from die cut cardboard, plastic sheet, or thermo-formed plastic material. - The
component assembly 18 is carried by thetray 112 in the kit 12 (see FIG. 6A). The dispersingassembly 16 is carried by thetray 112 in the kit 14 (see FIG. 6B). - As shown in FIG. 6B, the
kit 14 includes aninner wrap 114, which is peripherally sealed by heat or the like, to enclose thetray 112 from contact with the outside environment. One end of theinner wrap 114 includes a conventional peel awayseal 116. Theseal 116 provides quick access to thetray 112 at the instant of use, which preferably occurs in a suitable sterile environment. - The
kit 14 is further wrapped in anouter wrap 118, which is also peripherally sealed by heat or the like, to enclose theinterior tray 112. One end of theinner wrap 118 includes a conventional peel awayseal 120, to provide quick access to theinterior tray 112 and its contents. - The
outer wrap 118 and theinner wrap 114 are made, at least in part, from a material that is permeable to ethylene oxide sterilization gas, e.g., TYVEK™ plastic material (available from DuPont).Kit 12 is sterilized utilizing ethylene oxide gas or electron beam irradiation. - As shown in FIG. 6A,
kit 12 includes a polymer package 138 (which contains the prefilledpowder polymer syringe 62 and water syringe 104) and an albumin package 140 (which contains the prefilled albumin syringe 64). Eachpolymer package 138 andalbumin package 140 includes anindividual wrap 142, which is peripherally sealed by heat or the like, to enclosepackage individual wrap 142 includes a conventional peel awayseal 144, to provide quick access to the contents of thepackages -
Polymer package 138 andalbumin package 140 are further wrapped in anouter wrap 118, which is also peripherally sealed by heat or the like. One end of theouter wrap 118 includes a conventional peel awayseal 148, to provide quick access to thepackages packages tray 112 are further wrapped incontainer 146 for the user's convenience. - The
wraps albumin package 140 is prepared, sterilized utilizing ethylene oxide gas, and placed intokit 14. Thepolymer package 138 is prepared, sterilized utilizing electron beam irradiation, and place intokit 14. - In the illustrated embodiment, each
kit directions 122 for using the contents of the kit to carry out a desired procedure. Thedirections 122 can, of course vary, according to the particularities of the desired procedure. Furthermore, thedirections 122 need not be physically present in thekits directions 122 can be embodied in separate instruction manuals, or in video or audio tapes. - IV. Using the System
- A. Controlling or Arresting Diffuse Organ Bleeding
- In this embodiment,
exemplary directions 122 are described, which instruct the physician how to use of thesystem 10 to arrest diffuse bleeding of an injured or compromised body organ. In the illustrated embodiment (see FIG. 7A), diffuse bleeding is shown to occur diagrammatically through an incision in the organ. - The
system 10 is applicable for use to control or arrest diffuse bleeding in diverse types of organs, e.g., the liver, spleen, kidney, or bone. The cause of diffuse bleeding that thesystem 10 controls or arrests can also vary. The diffuse bleeding can occur as a result of trauma or accidental injury. The diffuse bleeding can also occur during normal surgical intervention, e.g., by organ resection, or tumor excision, or (in the case of bone) by sternotomy, orthopedic procedure, or craniotomy. The diffuse bleeding can also occur through needle tracks formed during tissue biopsy, or by capillary bed bleeding, as a result of saphenous vein harvesting, adhesiolysis, or tumor removal. It should be appreciated that the effectiveness of thesystem 10 does not depend upon where the diffuse bleeding is occuring or its underlying cause. - When use of the
system 10 is desired, theouter wrap 118 of thekits trays 112, still contained in theinner wraps 118, are placed in the sterile operating field. The physician opens theinner wrap 118 of thekit 12 to gain access the first, second, andthird syringes - The
directions 122 for use instruct the physician to remove from thekit tray 112 thesecond dispensing syringe 62, which contains, in sterile powder form, a predetermined amount of the polymer 102 (e.g., about 0.3 to 0.5 g). Thedirections 122 also instruct the physician to remove from thekit 12 thethird syringe 104, which contains sterile water 106 (e.g., about 2 cc). Both are contained in thepolymer package 138. - As FIG. 10A shows, the
directions 122 instruct the physician to couple the dispensing end of thewater syringe 104 to thestopcock valve 108 on thesecond dispensing syringe 62. Thestopcock valve 108 is closed at this point. As instructed by thedirections 122, the physician opens the stopcock valve 108 (see FIG. 10B) and transfers water from thewater syringe 104 into thepowder 100 in the second dispensing syringe 62 (see FIG. 10C). The physician is instructed to repeatedly transfer the water and powder mixture between the twosyringes - After syringe mixing, the physician, following the
directions 122, transfers the PEG solution 136 (about 2 cc) into one of the syringes (which, in the illustrated embodiment, is the second syringe 62). The physician waits for bubbles to dissipate, which generally takes about an additional two minutes. - According to the
directions 122, the physician now closes the stopcock valve 108 (as FIG. 10D shows). The physician removes thestopcock valve 108 by unscrewing it from the luer fitting on the dispensing end of thesecond syringe 62. ThePEG solution 136 is ready for use. Mixing of thePEG solution 136 should take place generally within one hour of use. If thePEG solution 136 remains unused over two hours after mixing, it should be discarded. - The
directions 122 instruct the physician to remove from thesecond kit tray 112 the dispensingsyringe 60 containing thealbumin 100. As before described, thealbumin 100 has been premixed in a buffered form to the desired concentration (e.g., 25%), then sterile filtered, and aseptically filled into thesyringe 60. A closure cap normally closes the dispensing end inside thetray 112. - The physician now, or at a previous time, opens the
outer wrap 118 of thekit 14 to gain access to the material introducer/mixer 22. Thedirections 122 instruct the physician to remove the closure cap and screw the dispensing end of thefirst syringe 60 to the luer fitting 86 on thejoiner 84. The physician is also instructed to screw the dispensing end of the second syringe 62 (now containing the mixed PEG solution 136) to the other luer fitting 86 on thejoiner 84. - Following the
directions 122, the physician snaps the barrels 78 of thesyringes holder channels 66. The physician captures the thumb rests 74 of the twosyringes race 72 of thesyringe clip 68. Thedirections 122 instruct the physician to attach thejoiner 84 to the mixingspray head 94. - As FIG. 7B shows, the physician is instructed to position the mixing
spray head 94 in a close relationship with the exposed site of diffuse bleeding on the organ. The physician applies manual pressure to the dispensingsyringes Albumin 100 from thefirst dispensing syringe 60 contacts thePEG solution 136 from thesecond dispensing syringe 62 in the mixingspray head 94. Atomization of the liquid components occurs through the mixingspray head 94 under pressure from operation of the mechanically linked dispensingsyringes - As cross linking rapidly occurs at the surface of the organ, the covering structure entraps diffused blood. Diffuse bleeding just as rapidly stops as the structure forms in situ, without need of any hemostatic agent. The covering structure forms an in situ barrier against further bleeding on the surface of the organ. The covering structure exists long enough to prevent further blood or fluid leakage while the compromised organ heals by natural processes.
- Control of Bleeding from a Kidney Incision
- A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- The kidney of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the kidney. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure.
- As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the bleeding kidney, the gelation of the solution occurred. The hydrogel adhered tenaciously to the surface of the kidney, preventing blood from flowing. The hydrogel also had sufficient cohesive strength to prevent rupture. Without the use of a hemostatic agent, hemostasis occurred instantaneously using the mechanical barrier of the hydrogel.
- Control of Bleeding from a Spleen Incision
- A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- The spleen of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the spleen. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure.
- As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the bleeding spleen, the gelation of the solution occurred. The hydrogel adhered tenaciously to the surface of the spleen, preventing blood from flowing. The hydrogel also had sufficient cohesive strength to prevent rupture. Without the use of a hemostatic agent, hemostasis occurred instantaneously using the mechanical barrier of the hydrogel.
- Control of Bleeding from a Liver Incision
- A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- The liver of a sedated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the liver. The continual flow of blood was temporarily collected with gauze. The gauze was then removed and the sprayable hemostatic solution, consisting of the polymer and albumin syringes, was applied using digital pressure.
- As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the bleeding liver, the gelation of the solution occurred. The hydrogel adhered tenaciously to the surface of the liver, preventing blood from flowing. The hydrogel also had sufficient cohesive strength to prevent rupture. Without the use of a hemostatic agent, hemostasis occurred instantaneously using the mechanical barrier of the hydrogel.
- B. controlling or Arresting Air Leaks From a Lung Incision
- The
exemplary directions 122 just described can be modified to instruct the physician how to use of thesystem 10 to control or arrest the leakage of air through a perforation or puncture in the lung caused, e.g., by trauma (see FIG. 8A). - In this embodiment, the
instructions 122 instruct the physician to prepare the dispensingsyringes joiner 84 in the manner previously set forth. The physician is instructed to attach the mixingspray head 84 and position the mixingspray head 94 in a close relationship with lung puncture site. The lung is deflated (see FIG. 8B). - In the manner previously described, the physician applies manual pressure to the dispensing
syringes 60 and 62 (as FIG. 8B shows).Albumin 100 from thefirst dispensing syringe 60 contacts thePEG solution 136 from thesecond dispensing syringe 62 in the mixingspray head 94. Atomization of the liquid components also occurs through the mixingspray head 94 under pressure from operation of the mechanically linked dispensingsyringes - Control of Air Leaks from a Lung Incision
- A solution of 4-arm PEG succinimidyl glutarate, MW 10,000 (Shearwater Polymers, Huntsville, Ala.) was prepared by dissolving 0.40 g in 2.0 mL of water for injection. The albumin solution consisted of 25% human serum albumin, USP (Plasbumin-25, Bayer Corporation), buffered with 195 mM sodium carbonate and 120 mM sodium bicarbonate. Syringes containing 2.0 mL of the polymer solution and 2.0 mL of the albumin solution were connected to a joiner and sprayhead (DuoFlow, Hemaedics, Brentwood, Calif.).
- The lung of a euthanized, intubated pig was exposed. An incision approximately an inch long and a quarter inch deep was made on the surface of the lung. An air leak was confirmed by manually inflated the lung and listening for the hissing sound of air leaks. The lung was deflated and the surgical sealant, consisting of the polymer and albumin syringes, was applied using digital pressure.
- As the two solutions were mixed in the sprayhead, the crosslinking reaction began. As the atomized, mixed fluid landed on the surface of the lung, the gelation of the solution occurred. The hydrogel was firmly adherent to the surface of the lung. After about 10 seconds, the lungs were manually inflated and examined for the presence of air leaks. The hydrogel remained firmly attached to the lung tissue, even during and after the expansion of the lungs. Air leaks were not present after the application of the hydrogel surgical sealant. The hydrogel showed sufficient adhesion, cohesion, and elasticity to seal air leaks of lung tissue.
- C. Sealing Anastomosis
- The
exemplary directions 122 just described can be modified to instruct the physician how to use of thesystem 10 as a surgical sealant along suture lines or about surgical staples, forming an anastomosis (see FIG. 9A). The sutures or staples can be used, e.g., to join blood vessels, bowels, ureter, or bladder. The sutures or staples can also be used in the course of neurosurgery or ear-nose-throat surgery. - In this embodiment, the
instructions 122 instruct the physician to prepare the dispensingsyringes joiner 84 in the manner previously set forth. The physician is instructed to attach the mixingspray head 84 and position the mixingspray head 94 in a close relationship with the anastomosis (as FIG. 9B shows). - In the manner previously described, the physician applies manual pressure to the dispensing
syringes Albumin 100 from thefirst dispensing syringe 60 contacts thePEG solution 136 from thesecond dispensing syringe 62 in the mixingspray head 94. Atomization of the liquid components also occurs through the mixingspray head 94 under pressure from operation of the mechanically linked dispensingsyringes - It should be appreciated that the compositions, systems, and methods described are applicable for use to control or arrest bleeding or fluid leaks in tissue throughout the body, including by way of example, the following surgical sites and indications:
- (i) In general surgery, such as in the liver (resection, tumor excision or trauma); in the spleen (trauma or iatrogenic capsular avlsion; oncology in general (excision of tumors); or laporoscopic cholecystectomy (Lapchole) (to control bleeding from the gall bladder bed);
- (ii) In vascular surgery, such as peripheral vascular procedures; anastomosis sites (carotid, femoral and popliteal arteries); or aneurysms;
- (iii) In the head, such as craniotomy (to control bone bleeding from cut bone edges or bleeding from soft tissue); or superior sagittal sinus (to control bleeding from damage to thin wall sinus and access to sinus);
- (iv) To treat arteriovenous malformation (AVM) (to control blood vessel bleeding from smaller vessels);
- (v) To treat tumor complications, such as tumor bed bleeding or damage to soft tissue due to excisions;
- (vi) To treat hematomas, such as in the control of bleeding in soft tissues and adjacent to vessels;
- (vii) In orthopedic applications, such as laminectomy or discectomy, to control bone bleeding from the vertebrae; or spinal reconstruction and a fusion, to control epidural vessels and vertabral bleeders; or in hip and knee replacements, to control of bleeding in smooth muscle tissue, soft tissue;
- (viii) In cardiovascular and thoracic surgery, such as control of anastomosis sites in coronary artery bypass graft (C.A.B.G.); aorta reconstruction and repair, to control bleeding in surrounding tissue; or chest cavity access through the sternum, to control bone bleeding or soft tissue bleeding;
- (ix) In urology, such as retropubic prostatectomy, to control bleeding in soft tissue; or partial nephrectomy, to control parenchymal bleeding; in bladder substitution, uretero-intestinal anastomosis; urethral surgery; open urethral surgery; or vasovasostomy;
- (x) In ear-neck-throat surgery, such as during clearing of the frontal, thmoid, sphenoid and maxillary sinuses; or in polyp removal;
- (xi) In plastic and reconstructive surgery, such as face lifts, rhinoplasty, blepharplasty, or breast surgery;
- (xii) In emergency procedures involving trauma, tissue fracture, or abrasions.
- The features of the invention are set forth in the following claims.
Claims (76)
Priority Applications (25)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/283,535 US6458147B1 (en) | 1998-11-06 | 1999-04-01 | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue |
AT99942511T ATE324831T1 (en) | 1998-08-26 | 1999-08-25 | KIT FOR THE IN-SITU GENERATION OF CHEMICALLY BONDED MECHANICAL BARRIERS OR COVERING STRUCTURES FOR A PUNCTURE SITE IN A BLOOD VESSEL |
JP2000571017A JP4860817B2 (en) | 1998-08-26 | 1999-08-25 | Compositions, systems and methods for in situ creation of chemically cross-linked mechanical barriers or coating structures |
CA002435050A CA2435050A1 (en) | 1998-11-06 | 1999-08-25 | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures |
EP99942511A EP1107813B1 (en) | 1998-08-26 | 1999-08-25 | Kit for creating in situ, chemically cross-linked, mechanical barriers or covering structures for vascular puncture sites |
CA002340648A CA2340648A1 (en) | 1998-08-26 | 1999-08-25 | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures |
AU55870/99A AU759991B2 (en) | 1998-08-26 | 1999-08-25 | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures |
PCT/US1999/019561 WO2000012018A1 (en) | 1998-08-26 | 1999-08-25 | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures |
DE69931170T DE69931170T2 (en) | 1998-08-26 | 1999-08-25 | KIT FOR THE IN-SITU PRODUCTION OF CHEMICALLY-LINKED MECHANICAL BARRIER OR COVER STRUCTURES FOR A POINTER IN A BLOOD VESSEL |
US09/520,856 US6899889B1 (en) | 1998-11-06 | 2000-03-07 | Biocompatible material composition adaptable to diverse therapeutic indications |
US09/780,843 US6949114B2 (en) | 1998-11-06 | 2001-02-09 | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US09/780,014 US6830756B2 (en) | 1998-11-06 | 2001-02-09 | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US10/141,510 US7279001B2 (en) | 1998-11-06 | 2002-05-08 | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US10/212,472 US7351249B2 (en) | 1998-11-06 | 2002-08-05 | Systems, methods, and compositions for achieving closure of suture sites |
US10/972,259 US7318933B2 (en) | 1998-11-06 | 2004-10-22 | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US11/002,837 US7247314B2 (en) | 1998-11-06 | 2004-12-02 | Biocompatible material composition adaptable to diverse therapeutic indications |
US11/716,266 US8802146B2 (en) | 1998-11-06 | 2007-03-09 | Systems, methods, and compositions for prevention of tissue adhesion |
US11/880,552 US20080175817A1 (en) | 1998-11-06 | 2007-07-23 | Biocompatible material composition adaptable to diverse therapeutic indications |
US11/973,526 US20080038313A1 (en) | 1998-11-06 | 2007-10-09 | Systems, methods, and compositions for mixing and applying lyophilized biomaterials |
US12/004,964 US8034367B2 (en) | 1998-11-06 | 2007-12-21 | Tissue adhering compositions |
US12/079,049 US8409249B2 (en) | 1998-11-06 | 2008-03-24 | Systems, methods, and compositions for achieving closure of suture sites |
US12/455,561 US8409605B2 (en) | 1998-11-06 | 2009-06-03 | Biocompatible material composition adaptable to diverse therapeutic indications |
US12/641,171 US8642085B2 (en) | 1998-11-06 | 2009-12-17 | Systems, methods, and compositions for prevention of tissue adhesion |
US12/641,215 US8383144B2 (en) | 1998-11-06 | 2009-12-17 | Tissue adhering compositions |
JP2011009210A JP2011120927A (en) | 1998-08-26 | 2011-01-19 | Composition, system, and method for creating in situ, chemically crosslinked, mechanical barrier or covering structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/188,083 US6371975B2 (en) | 1998-11-06 | 1998-11-06 | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers |
US09/283,535 US6458147B1 (en) | 1998-11-06 | 1999-04-01 | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/188,083 Continuation-In-Part US6371975B2 (en) | 1997-03-12 | 1998-11-06 | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers |
US09188033 Continuation-In-Part | 1998-11-06 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/520,856 Continuation-In-Part US6899889B1 (en) | 1998-11-06 | 2000-03-07 | Biocompatible material composition adaptable to diverse therapeutic indications |
US09/780,014 Continuation-In-Part US6830756B2 (en) | 1998-11-06 | 2001-02-09 | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US09/780,843 Continuation-In-Part US6949114B2 (en) | 1998-11-06 | 2001-02-09 | Systems, methods, and compositions for achieving closure of vascular puncture sites |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020032463A1 true US20020032463A1 (en) | 2002-03-14 |
US6458147B1 US6458147B1 (en) | 2002-10-01 |
Family
ID=56289900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/283,535 Expired - Lifetime US6458147B1 (en) | 1998-08-26 | 1999-04-01 | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue |
Country Status (1)
Country | Link |
---|---|
US (1) | US6458147B1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050125015A1 (en) * | 2003-12-04 | 2005-06-09 | Mcnally-Heintzelman Karen M. | Tissue-handling apparatus, system and method |
US20050125033A1 (en) * | 2003-12-04 | 2005-06-09 | Mcnally-Heintzelman Karen M. | Wound closure apparatus |
US20060253082A1 (en) * | 2005-04-21 | 2006-11-09 | Mcintosh Kevin D | Fluid dispenser |
US20070102453A1 (en) * | 2005-11-04 | 2007-05-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for delivery of medical agents |
US20080131476A1 (en) * | 2005-02-28 | 2008-06-05 | Masato Kanzaki | Cultured Cell Sheet, Production Method and Tissue Repair Method Using Thereof |
WO2009095223A1 (en) | 2008-01-28 | 2009-08-06 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen | Injectable biocompatible composition |
US20100184223A1 (en) * | 2007-07-13 | 2010-07-22 | Helmut Wurst | Biomaterial based on a hydrophilic polymeric carrier |
US20100312274A1 (en) * | 2009-06-09 | 2010-12-09 | Grifols, S.A. | Device for the application of fibrin adhesive |
US20130096062A1 (en) * | 2011-10-11 | 2013-04-18 | Baxter Healthcare S.A. | Hemostatic compositions |
US20130110161A1 (en) * | 2011-10-28 | 2013-05-02 | Medtronic Xomed, Inc. | Spray delivery system |
WO2013053759A3 (en) * | 2011-10-11 | 2013-11-07 | Baxter International Inc. | Hemostatic compositions |
WO2013053755A3 (en) * | 2011-10-11 | 2013-11-14 | Baxter International Inc. | Hemostatic compositions |
WO2013053749A3 (en) * | 2011-10-11 | 2013-11-14 | Baxter International Inc. | Hemostatic compositions |
US20140257375A1 (en) * | 2013-03-11 | 2014-09-11 | St. Jude Medical Puerto Rico Llc | Active securement detachable sealing tip for extra-vascular closure device and methods |
EP2946795A4 (en) * | 2013-01-18 | 2016-08-31 | Nat Inst For Materials Science | ADHESIVE FABRIC AND METHOD FOR PRODUCING THE SAME |
WO2019138019A2 (en) | 2018-01-10 | 2019-07-18 | The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin | System and methods for sealing a channel in tissue |
US10441959B2 (en) | 2011-10-28 | 2019-10-15 | Medtronic Xomed, Inc. | Multi-orifice spray head |
CN110801528A (en) * | 2019-10-30 | 2020-02-18 | 金路平 | Dura mater spinalis sealing hydrogel and preparation method and application thereof |
WO2020144372A1 (en) | 2019-01-10 | 2020-07-16 | The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin | Composite viscoelastic hydrogel, and uses thereof for sealing a channel in tissue |
WO2020172162A1 (en) * | 2019-02-19 | 2020-08-27 | Tc1 Llc | Vascular graft and methods for sealing a vascular graft |
CN112168329A (en) * | 2015-01-29 | 2021-01-05 | 波士顿科学医学有限公司 | Steam ablation system and method |
US11253391B2 (en) | 2018-11-13 | 2022-02-22 | Contraline, Inc. | Systems and methods for delivering biomaterials |
WO2022130103A1 (en) * | 2020-12-18 | 2022-06-23 | Ethicon, Inc. | Methods and devices for changing the flow rates of ph modifying fluids for controlling cross-linking rates of reactive components of biocompatible sealing compositions |
US11904068B2 (en) | 2015-11-12 | 2024-02-20 | University Of Virginia Patent Foundation | Occlusive implant compositions |
WO2024191453A1 (en) * | 2023-03-10 | 2024-09-19 | Clearstream Technologies Limited | Radiation spacer hydrogels, methods of forming, and methods of use |
WO2024191450A1 (en) * | 2023-03-10 | 2024-09-19 | Clearstream Technologies Limited | Radiation spacer hydrogels, methods of forming, and methods of use |
WO2024191451A1 (en) * | 2023-03-10 | 2024-09-19 | Clearstream Technologies Limited | Radiation spacer hydrogels, methods of forming, and methods of use |
Families Citing this family (527)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8003705B2 (en) | 1996-09-23 | 2011-08-23 | Incept Llc | Biocompatible hydrogels made with small molecule precursors |
US6152943A (en) * | 1998-08-14 | 2000-11-28 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
US6605294B2 (en) * | 1998-08-14 | 2003-08-12 | Incept Llc | Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels |
US7790192B2 (en) | 1998-08-14 | 2010-09-07 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
US7351249B2 (en) * | 1998-11-06 | 2008-04-01 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of suture sites |
US6830756B2 (en) * | 1998-11-06 | 2004-12-14 | Neomend, Inc. | Systems, methods, and compositions for achieving closure of vascular puncture sites |
US6899889B1 (en) * | 1998-11-06 | 2005-05-31 | Neomend, Inc. | Biocompatible material composition adaptable to diverse therapeutic indications |
AU2707500A (en) * | 1998-12-04 | 2000-06-26 | Incept Llc | Biocompatible crosslinked polymers |
US6592608B2 (en) * | 2001-12-07 | 2003-07-15 | Biopsy Sciences, Llc | Bioabsorbable sealant |
US8349348B2 (en) * | 2002-08-06 | 2013-01-08 | Matrix Medical, Llc | Biocompatible phase invertible proteinaceous compositions and methods for making and using the same |
US10098981B2 (en) | 2002-08-06 | 2018-10-16 | Baxter International Inc. | Biocompatible phase invertable proteinaceous compositions and methods for making and using the same |
US9101536B2 (en) * | 2002-08-06 | 2015-08-11 | Matrix Medical Llc | Biocompatible phase invertable proteinaceous compositions and methods for making and using the same |
JP4966494B2 (en) | 2002-08-06 | 2012-07-04 | マトリックス メディカル エルエルシー | Biocompatible phase-convertible proteinaceous composition and methods for making and using the same |
DE10236152A1 (en) * | 2002-08-07 | 2004-02-19 | Marker Deutschland Gmbh | Ski and ski binding combination |
US7074425B2 (en) * | 2002-09-26 | 2006-07-11 | Bonewax, Llc | Hemostatic compositions and methods |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7331979B2 (en) * | 2003-06-04 | 2008-02-19 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US9289195B2 (en) * | 2003-06-04 | 2016-03-22 | Access Closure, Inc. | Auto-retraction apparatus and methods for sealing a vascular puncture |
WO2005065079A2 (en) * | 2003-11-10 | 2005-07-21 | Angiotech International Ag | Medical implants and fibrosis-inducing agents |
US20070060950A1 (en) * | 2003-12-24 | 2007-03-15 | Farhad Khosravi | Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis |
US20050149117A1 (en) * | 2003-12-24 | 2005-07-07 | Farhad Khosravi | Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis |
US8048101B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US8048086B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US9238127B2 (en) | 2004-02-25 | 2016-01-19 | Femasys Inc. | Methods and devices for delivering to conduit |
US8052669B2 (en) | 2004-02-25 | 2011-11-08 | Femasys Inc. | Methods and devices for delivery of compositions to conduits |
US20050267520A1 (en) | 2004-05-12 | 2005-12-01 | Modesitt D B | Access and closure device and method |
US7678133B2 (en) * | 2004-07-10 | 2010-03-16 | Arstasis, Inc. | Biological tissue closure device and method |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8348971B2 (en) | 2004-08-27 | 2013-01-08 | Accessclosure, Inc. | Apparatus and methods for facilitating hemostasis within a vascular puncture |
ES2369473T3 (en) | 2004-10-07 | 2011-12-01 | Actamax Surgical Materials Llc | POLYMER TISSUE POLYMERIC BASED ADHESIVE FOR MEDICAL USE. |
US8262693B2 (en) | 2004-11-05 | 2012-09-11 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
US8663225B2 (en) | 2004-11-12 | 2014-03-04 | Medtronic, Inc. | Hydrogel bone void filler |
WO2006074044A2 (en) * | 2004-12-30 | 2006-07-13 | Neomend, Inc. | Method and apparatus for percutaneous wound sealing |
US7806856B2 (en) | 2005-04-22 | 2010-10-05 | Accessclosure, Inc. | Apparatus and method for temporary hemostasis |
AU2006247355B2 (en) | 2005-05-12 | 2013-01-10 | Arstasis, Inc. | Access and closure device and method |
US8741832B2 (en) * | 2005-06-10 | 2014-06-03 | Albert Einstein College Of Medicine Of Yeshiva University | Pegylated albumin and uses thereof |
WO2007058678A2 (en) * | 2005-06-10 | 2007-05-24 | Albert Einstein College Of Medicine Of Yeshiva University | Uses of pegylated albumin |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US20080125722A1 (en) * | 2006-09-15 | 2008-05-29 | Howmedica International S. De R.L. | Syringe and stand |
US20070185495A1 (en) * | 2006-01-30 | 2007-08-09 | Howmedica International S. De R. L. | Plug-in syringe stand |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US20110290856A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument with force-feedback capabilities |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8795709B2 (en) | 2006-03-29 | 2014-08-05 | Incept Llc | Superabsorbent, freeze dried hydrogels for medical applications |
WO2007127198A2 (en) | 2006-04-24 | 2007-11-08 | Incept, Llc | Protein crosslinkers, crosslinking methods and applications thereof |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US20080003193A1 (en) * | 2006-06-28 | 2008-01-03 | S.C. Johnson & Son, Inc. | Odor elimination and air sanitizing composition |
US7789893B2 (en) * | 2006-09-12 | 2010-09-07 | Boston Scientific Scimed, Inc. | Method and apparatus for promoting hemostasis of a blood vessel puncture |
WO2008033964A2 (en) | 2006-09-13 | 2008-03-20 | Accessclosure, Inc. | Apparatus for sealing a vascular puncture |
US8720766B2 (en) | 2006-09-29 | 2014-05-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments and staples |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
CN101541857B (en) * | 2006-11-27 | 2012-12-12 | 阿克塔马克斯手术器材有限责任公司 | Multi-functional polyalkylene oxide, hydrogel tissue adhesives |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US20080169332A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapling device with a curved cutting member |
US20090005809A1 (en) | 2007-03-15 | 2009-01-01 | Hess Christopher J | Surgical staple having a slidable crown |
US8932560B2 (en) | 2007-09-04 | 2015-01-13 | University of Maryland, College Parke | Advanced functional biocompatible polymeric matrix used as a hemostatic agent and system for damaged tissues and cells |
US9066885B2 (en) * | 2007-03-16 | 2015-06-30 | University Of Maryland, College Park | Advanced functional biocompatible polymeric matrix containing nano-compartments |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US8092837B2 (en) * | 2007-04-27 | 2012-01-10 | Biomet Manufacturing Corp | Fibrin based glue with functionalized hydrophilic polymer protein binding agent |
US20080287633A1 (en) * | 2007-05-18 | 2008-11-20 | Drumheller Paul D | Hydrogel Materials |
US11672531B2 (en) | 2007-06-04 | 2023-06-13 | Cilag Gmbh International | Rotary drive systems for surgical instruments |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US20090035249A1 (en) * | 2007-08-02 | 2009-02-05 | Bhatia Sujata K | Method of inhibiting proliferation of Escherichia coli |
US8067028B2 (en) * | 2007-08-13 | 2011-11-29 | Confluent Surgical Inc. | Drug delivery device |
US7993367B2 (en) | 2007-09-28 | 2011-08-09 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
JP2011502582A (en) | 2007-11-02 | 2011-01-27 | インセプト,エルエルシー | Device and method for blocking vascular puncture |
US8545457B2 (en) * | 2007-11-08 | 2013-10-01 | Terumo Kabushiki Kaisha | Sprayer |
EP2214731B1 (en) * | 2007-11-14 | 2014-05-14 | Actamax Surgical Materials LLC | Oxidized cationic polysaccharide-based polymer tissue adhesive for medical use |
HUE025522T2 (en) | 2007-12-03 | 2016-02-29 | Tenaxis Medical Inc | Biocompatible phase invertible proteinaceous compositions |
US7862538B2 (en) * | 2008-02-04 | 2011-01-04 | Incept Llc | Surgical delivery system for medical sealant |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
JP5410110B2 (en) | 2008-02-14 | 2014-02-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Surgical cutting / fixing instrument with RF electrode |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US20130153641A1 (en) | 2008-02-15 | 2013-06-20 | Ethicon Endo-Surgery, Inc. | Releasable layer of material and surgical end effector having the same |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9364206B2 (en) | 2008-04-04 | 2016-06-14 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US8029533B2 (en) | 2008-04-04 | 2011-10-04 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
US20100015231A1 (en) * | 2008-07-17 | 2010-01-21 | E.I. Du Pont De Nemours And Company | Low swell, long-lived hydrogel sealant |
US8551136B2 (en) | 2008-07-17 | 2013-10-08 | Actamax Surgical Materials, Llc | High swell, long-lived hydrogel sealant |
CA2731435A1 (en) | 2008-07-21 | 2010-01-28 | Arstasis, Inc. | Devices, methods, and kits for forming tracts in tissue |
EP2430982B1 (en) | 2008-08-26 | 2020-06-24 | St. Jude Medical, Inc. | System for sealing percutaneous punctures |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US12171463B2 (en) | 2008-10-03 | 2024-12-24 | Femasys Inc. | Contrast agent generation and injection system for sonographic imaging |
US10070888B2 (en) | 2008-10-03 | 2018-09-11 | Femasys, Inc. | Methods and devices for sonographic imaging |
US9554826B2 (en) | 2008-10-03 | 2017-01-31 | Femasys, Inc. | Contrast agent injection system for sonographic imaging |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
WO2010056915A1 (en) | 2008-11-12 | 2010-05-20 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
EP2349357B1 (en) * | 2008-11-19 | 2012-10-03 | Actamax Surgical Materials LLC | Hydrogel tissue adhesive formed from aminated polysaccharide and aldehyde-functionalized multi-arm polyether |
US8466327B2 (en) | 2008-11-19 | 2013-06-18 | Actamax Surgical Materials, Llc | Aldehyde-functionalized polyethers and method of making same |
US20100160960A1 (en) * | 2008-12-19 | 2010-06-24 | E. I. Du Pont De Nemours And Company | Hydrogel tissue adhesive having increased degradation time |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
BRPI1008667A2 (en) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | improvement of the operated surgical stapler |
AU2010213612B2 (en) | 2009-02-12 | 2015-04-30 | Incept, Llc | Drug delivery through hydrogel plugs |
CN102361911A (en) | 2009-03-27 | 2012-02-22 | 阿克塔马克斯手术器材有限责任公司 | Polyglycerol aldehydes |
US8404779B2 (en) | 2009-03-27 | 2013-03-26 | Actamax Surgical Materials Llc | Tissue adhesive and sealant comprising polyglycerol aldehyde |
US20100256671A1 (en) * | 2009-04-07 | 2010-10-07 | Biomedica Management Corporation | Tissue sealant for use in noncompressible hemorrhage |
US8951989B2 (en) | 2009-04-09 | 2015-02-10 | Actamax Surgical Materials, Llc | Hydrogel tissue adhesive having reduced degradation time |
US9155815B2 (en) | 2009-04-17 | 2015-10-13 | Tenaxis Medical, Inc. | Biocompatible phase invertible proteinaceous compositions and methods for making and using the same |
CA2977830C (en) | 2009-05-04 | 2019-09-17 | Incept, Llc | Biomaterials for track and puncture closure |
WO2011002956A1 (en) | 2009-07-02 | 2011-01-06 | E. I. Du Pont De Nemours And Company | Aldehyde-functionalized polysaccharides |
JP5872463B2 (en) | 2009-07-02 | 2016-03-01 | アクタマックス サージカル マテリアルズ リミテッド ライアビリティカンパニー | Hydrogel tissue adhesive for medical use |
US8796242B2 (en) | 2009-07-02 | 2014-08-05 | Actamax Surgical Materials, Llc | Hydrogel tissue adhesive for medical use |
US8580950B2 (en) | 2009-07-02 | 2013-11-12 | Actamax Surgical Materials, Llc | Aldehyde-functionalized polysaccharides |
CA2780898A1 (en) | 2009-11-13 | 2011-05-19 | University Of Maryland, College Park | Advanced functional biocompatible foam used as a hemostatic agent for compressible and non-compressible acute wounds |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
ES2755034T3 (en) | 2010-04-05 | 2020-04-21 | Neomend Inc | Systems, devices, and methods for administering self-purging hydrogel compositions to prevent clogging |
CA2795261C (en) | 2010-04-05 | 2020-08-25 | Neomend, Inc. | Method and apparatus for wound sealant application |
US8603036B2 (en) * | 2010-07-01 | 2013-12-10 | Cook Medical Technologies Llc | Vascular introducer and method of using same |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
WO2012021877A2 (en) | 2010-08-13 | 2012-02-16 | University Of Maryland, College Park | Method and system for reversal of interactions between hydrophobically modified biopolymers and vesicles or cell membranes |
US8961501B2 (en) | 2010-09-17 | 2015-02-24 | Incept, Llc | Method for applying flowable hydrogels to a cornea |
US9232941B2 (en) | 2010-09-30 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a reservoir |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US11925354B2 (en) | 2010-09-30 | 2024-03-12 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US12213666B2 (en) | 2010-09-30 | 2025-02-04 | Cilag Gmbh International | Tissue thickness compensator comprising layers |
US9211120B2 (en) | 2011-04-29 | 2015-12-15 | Ethicon Endo-Surgery, Inc. | Tissue thickness compensator comprising a plurality of medicaments |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9700317B2 (en) | 2010-09-30 | 2017-07-11 | Ethicon Endo-Surgery, Llc | Fastener cartridge comprising a releasable tissue thickness compensator |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
WO2012075457A2 (en) | 2010-12-02 | 2012-06-07 | University Of Maryland, College Park | Method and system for capture and use of intact vesicles on electrodeposited hydrophobically modified biopolymer films |
US10182800B2 (en) | 2011-01-19 | 2019-01-22 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US9820728B2 (en) | 2011-01-19 | 2017-11-21 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
AU2012250197B2 (en) | 2011-04-29 | 2017-08-10 | Ethicon Endo-Surgery, Inc. | Staple cartridge comprising staples positioned within a compressible portion thereof |
US9386968B2 (en) | 2011-05-11 | 2016-07-12 | Access Closure, Inc. | Apparatus and methods for sealing a vascular puncture |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US10226417B2 (en) | 2011-09-16 | 2019-03-12 | Peter Jarrett | Drug delivery systems and applications |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US11571493B2 (en) | 2012-03-19 | 2023-02-07 | Neomend, Inc. | Co-precipitation method |
US9757105B2 (en) | 2012-03-23 | 2017-09-12 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
US8721680B2 (en) | 2012-03-23 | 2014-05-13 | Accessclosure, Inc. | Apparatus and methods for sealing a vascular puncture |
RU2639857C2 (en) | 2012-03-28 | 2017-12-22 | Этикон Эндо-Серджери, Инк. | Tissue thickness compensator containing capsule for medium with low pressure |
MX358135B (en) | 2012-03-28 | 2018-08-06 | Ethicon Endo Surgery Inc | Tissue thickness compensator comprising a plurality of layers. |
CN104379068B (en) | 2012-03-28 | 2017-09-22 | 伊西康内外科公司 | Holding device assembly including tissue thickness compensation part |
US20130317481A1 (en) | 2012-05-25 | 2013-11-28 | Arstasis, Inc. | Vascular access configuration |
US20130317438A1 (en) | 2012-05-25 | 2013-11-28 | Arstasis, Inc. | Vascular access configuration |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US11278284B2 (en) | 2012-06-28 | 2022-03-22 | Cilag Gmbh International | Rotary drive arrangements for surgical instruments |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US20140005678A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Rotary drive arrangements for surgical instruments |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
CN104487005B (en) | 2012-06-28 | 2017-09-08 | 伊西康内外科公司 | Empty squeeze latching member |
US9649111B2 (en) | 2012-06-28 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Replaceable clip cartridge for a clip applier |
US8859705B2 (en) | 2012-11-19 | 2014-10-14 | Actamax Surgical Materials Llc | Hydrogel tissue adhesive having decreased gelation time and decreased degradation time |
MX364729B (en) | 2013-03-01 | 2019-05-06 | Ethicon Endo Surgery Inc | Surgical instrument with a soft stop. |
MX368026B (en) | 2013-03-01 | 2019-09-12 | Ethicon Endo Surgery Inc | Articulatable surgical instruments with conductive pathways for signal communication. |
CA2914610C (en) | 2013-03-13 | 2022-08-02 | University Of Maryland | Advanced functional biocompatible polymer putty used as a hemostatic agent for treating damaged tissue and cells |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9687230B2 (en) | 2013-03-14 | 2017-06-27 | Ethicon Llc | Articulatable surgical instrument comprising a firing drive |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US10136887B2 (en) | 2013-04-16 | 2018-11-27 | Ethicon Llc | Drive system decoupling arrangement for a surgical instrument |
US20160184474A1 (en) | 2013-07-29 | 2016-06-30 | Actamax Surgical Materials, Llc | Low swell tissue adhesive and sealant formulations |
US20150053743A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Error detection arrangements for surgical instrument assemblies |
CN106028966B (en) | 2013-08-23 | 2018-06-22 | 伊西康内外科有限责任公司 | For the firing member restoring device of powered surgical instrument |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
CN106232029B (en) | 2014-02-24 | 2019-04-12 | 伊西康内外科有限责任公司 | Fastening system including firing member locking piece |
US9750499B2 (en) | 2014-03-26 | 2017-09-05 | Ethicon Llc | Surgical stapling instrument system |
US10004497B2 (en) | 2014-03-26 | 2018-06-26 | Ethicon Llc | Interface systems for use with surgical instruments |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US12232723B2 (en) | 2014-03-26 | 2025-02-25 | Cilag Gmbh International | Systems and methods for controlling a segmented circuit |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
BR112016023807B1 (en) | 2014-04-16 | 2022-07-12 | Ethicon Endo-Surgery, Llc | CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT |
US10542988B2 (en) | 2014-04-16 | 2020-01-28 | Ethicon Llc | End effector comprising an anvil including projections extending therefrom |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10327764B2 (en) | 2014-09-26 | 2019-06-25 | Ethicon Llc | Method for creating a flexible staple line |
WO2015200582A1 (en) | 2014-06-25 | 2015-12-30 | Neomend, Inc. | Pleural air leak test system |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US20160066913A1 (en) | 2014-09-05 | 2016-03-10 | Ethicon Endo-Surgery, Inc. | Local display of tissue parameter stabilization |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
BR112017005981B1 (en) | 2014-09-26 | 2022-09-06 | Ethicon, Llc | ANCHOR MATERIAL FOR USE WITH A SURGICAL STAPLE CARTRIDGE AND SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US9295752B1 (en) | 2014-09-30 | 2016-03-29 | Covidien Lp | Bioadhesive for occluding vessels |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9968355B2 (en) | 2014-12-18 | 2018-05-15 | Ethicon Llc | Surgical instruments with articulatable end effectors and improved firing beam support arrangements |
RU2703684C2 (en) | 2014-12-18 | 2019-10-21 | ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи | Surgical instrument with anvil which is selectively movable relative to staple cartridge around discrete fixed axis |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US9931118B2 (en) | 2015-02-27 | 2018-04-03 | Ethicon Endo-Surgery, Llc | Reinforced battery for a surgical instrument |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US10736633B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Compressible adjunct with looping members |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10307160B2 (en) | 2015-09-30 | 2019-06-04 | Ethicon Llc | Compressible adjunct assemblies with attachment layers |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10413291B2 (en) | 2016-02-09 | 2019-09-17 | Ethicon Llc | Surgical instrument articulation mechanism with slotted secondary constraint |
CN108882932B (en) | 2016-02-09 | 2021-07-23 | 伊西康有限责任公司 | Surgical instrument with asymmetric articulation configuration |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10485542B2 (en) | 2016-04-01 | 2019-11-26 | Ethicon Llc | Surgical stapling instrument comprising multiple lockouts |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US10258337B2 (en) | 2016-04-20 | 2019-04-16 | Ethicon Llc | Surgical staple cartridge with severed tissue edge adjunct |
US10500000B2 (en) | 2016-08-16 | 2019-12-10 | Ethicon Llc | Surgical tool with manual control of end effector jaws |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10517595B2 (en) | 2016-12-21 | 2019-12-31 | Ethicon Llc | Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector |
US10835245B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
JP7010957B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | Shaft assembly with lockout |
US10835246B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
MX2019007310A (en) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Surgical stapling systems. |
US10667809B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Staple cartridge and staple cartridge channel comprising windows defined therein |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
JP7086963B2 (en) | 2016-12-21 | 2022-06-20 | エシコン エルエルシー | Surgical instrument system with end effector lockout and launch assembly lockout |
US10682138B2 (en) | 2016-12-21 | 2020-06-16 | Ethicon Llc | Bilaterally asymmetric staple forming pocket pairs |
US10881401B2 (en) | 2016-12-21 | 2021-01-05 | Ethicon Llc | Staple firing member comprising a missing cartridge and/or spent cartridge lockout |
JP2020501779A (en) | 2016-12-21 | 2020-01-23 | エシコン エルエルシーEthicon LLC | Surgical stapling system |
US10537325B2 (en) | 2016-12-21 | 2020-01-21 | Ethicon Llc | Staple forming pocket arrangement to accommodate different types of staples |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10980536B2 (en) | 2016-12-21 | 2021-04-20 | Ethicon Llc | No-cartridge and spent cartridge lockout arrangements for surgical staplers |
US11160551B2 (en) | 2016-12-21 | 2021-11-02 | Cilag Gmbh International | Articulatable surgical stapling instruments |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10779823B2 (en) | 2016-12-21 | 2020-09-22 | Ethicon Llc | Firing member pin angle |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10722384B2 (en) * | 2017-03-01 | 2020-07-28 | Nordson Corporation | Medical material mixer and transfer apparatus and method for using the same |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11141154B2 (en) | 2017-06-27 | 2021-10-12 | Cilag Gmbh International | Surgical end effectors and anvils |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10695057B2 (en) | 2017-06-28 | 2020-06-30 | Ethicon Llc | Surgical instrument lockout arrangement |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
EP4070740B1 (en) | 2017-06-28 | 2025-03-26 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11179152B2 (en) | 2017-12-21 | 2021-11-23 | Cilag Gmbh International | Surgical instrument comprising a tissue grasping system |
US10980913B2 (en) | 2018-03-05 | 2021-04-20 | Ethicon Llc | Sealant foam compositions for lung applications |
WO2019231763A1 (en) | 2018-05-27 | 2019-12-05 | Christos Angeletakis | Tissue adhesives and sealants using naturally derived aldehydes |
US10960259B2 (en) * | 2018-06-08 | 2021-03-30 | Timothy J. Huntington | Hip-stretching device |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US20200054321A1 (en) | 2018-08-20 | 2020-02-20 | Ethicon Llc | Surgical instruments with progressive jaw closure arrangements |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
CN114025706A (en) | 2019-06-26 | 2022-02-08 | 达沃有限公司 | Reactive dry powder hemostatic material comprising a nucleophile and a multifunctional modified polyethylene glycol-based cross-linker |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11350938B2 (en) | 2019-06-28 | 2022-06-07 | Cilag Gmbh International | Surgical instrument comprising an aligned rfid sensor |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
CN115515653B (en) | 2020-03-20 | 2024-08-23 | 巴德外周血管股份有限公司 | Reactive hydrogel-forming formulations and related methods |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
US12161777B2 (en) | 2020-07-02 | 2024-12-10 | Davol Inc. | Flowable hemostatic suspension |
US11739166B2 (en) | 2020-07-02 | 2023-08-29 | Davol Inc. | Reactive polysaccharide-based hemostatic agent |
US20220031320A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with flexible firing member actuator constraint arrangements |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
WO2022146917A1 (en) | 2020-12-28 | 2022-07-07 | Davol Inc. | Reactive dry powdered hemostatic materials comprising a protein and a multifunctionalized modified polyethylene glycol based crosslinking agent |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11723662B2 (en) | 2021-05-28 | 2023-08-15 | Cilag Gmbh International | Stapling instrument comprising an articulation control display |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US12239317B2 (en) | 2021-10-18 | 2025-03-04 | Cilag Gmbh International | Anvil comprising an arrangement of forming pockets proximal to tissue stop |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US20240066052A1 (en) * | 2022-08-30 | 2024-02-29 | Ethicon, Inc. | Biodegradable lung sealants |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4464468A (en) | 1968-03-29 | 1984-08-07 | Agence Nationale De Valorisation De La Recherche (Anvar) | Immobilization of active protein by cross-linking to inactive protein |
IL47468A (en) | 1975-06-12 | 1979-05-31 | Rehovot Res Prod | Process for the cross-linking of proteins using water soluble cross-linking agents |
CH625702A5 (en) | 1977-01-18 | 1981-10-15 | Delalande Sa | |
US4839345A (en) | 1985-03-09 | 1989-06-13 | Nippon Oil And Fats Co., Ltd. | Hydrated adhesive gel and method for preparing the same |
WO1988006457A1 (en) | 1987-03-04 | 1988-09-07 | Nippon Hypox Laboratories Incorporated | Medicinal composition containing albumin as carrier and process for its preparation |
US5936035A (en) | 1988-11-21 | 1999-08-10 | Cohesion Technologies, Inc. | Biocompatible adhesive compositions |
US5318524A (en) * | 1990-01-03 | 1994-06-07 | Cryolife, Inc. | Fibrin sealant delivery kit |
US5071417A (en) | 1990-06-15 | 1991-12-10 | Rare Earth Medical Lasers, Inc. | Laser fusion of biological materials |
US5391183A (en) | 1990-09-21 | 1995-02-21 | Datascope Investment Corp | Device and method sealing puncture wounds |
US5108421A (en) | 1990-10-01 | 1992-04-28 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5626863A (en) | 1992-02-28 | 1997-05-06 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5410016A (en) | 1990-10-15 | 1995-04-25 | Board Of Regents, The University Of Texas System | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5252714A (en) | 1990-11-28 | 1993-10-12 | The University Of Alabama In Huntsville | Preparation and use of polyethylene glycol propionaldehyde |
US5419765A (en) | 1990-12-27 | 1995-05-30 | Novoste Corporation | Wound treating device and method for treating wounds |
US5129882A (en) | 1990-12-27 | 1992-07-14 | Novoste Corporation | Wound clotting device and method of using same |
JPH06505656A (en) * | 1991-02-13 | 1994-06-30 | フュージョン メデイカル テクノロジーズ インコーポレーテッド | Filler material for tissue welding |
US5676689A (en) | 1991-11-08 | 1997-10-14 | Kensey Nash Corporation | Hemostatic puncture closure system including vessel location device and method of use |
US5282827A (en) | 1991-11-08 | 1994-02-01 | Kensey Nash Corporation | Hemostatic puncture closure system and method of use |
US5573934A (en) * | 1992-04-20 | 1996-11-12 | Board Of Regents, The University Of Texas System | Gels for encapsulation of biological materials |
CA2117588C (en) | 1992-02-28 | 1998-08-25 | Jeffrey A. Hubbell | Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers |
US5403278A (en) | 1992-04-15 | 1995-04-04 | Datascope Investment Corp. | Device and method for treating hematomas and false aneurysms |
US5514379A (en) | 1992-08-07 | 1996-05-07 | The General Hospital Corporation | Hydrogel compositions and methods of use |
US5520885A (en) | 1993-01-19 | 1996-05-28 | Thermogenesis Corporation | Fibrinogen processing apparatus, method and container |
US5800373A (en) | 1995-03-23 | 1998-09-01 | Focal, Inc. | Initiator priming for improved adherence of gels to substrates |
US5626601A (en) | 1995-10-27 | 1997-05-06 | Gary Gershony | Vascular sealing apparatus and method |
US5951583A (en) | 1993-05-25 | 1999-09-14 | Vascular Solutions, Inc. | Thrombin and collagen procoagulant and process for making the same |
US5383896A (en) | 1993-05-25 | 1995-01-24 | Gershony; Gary | Vascular sealing device |
US5843124A (en) | 1993-09-28 | 1998-12-01 | Hemodynamics, Inc. | Surface opening adhesive sealer |
US5653730A (en) | 1993-09-28 | 1997-08-05 | Hemodynamics, Inc. | Surface opening adhesive sealer |
US5383899A (en) | 1993-09-28 | 1995-01-24 | Hammerslag; Julius G. | Method of using a surface opening adhesive sealer |
US5759194A (en) | 1993-09-28 | 1998-06-02 | Hemodynamics, Inc. | Vascular patch applicator |
US5446090A (en) | 1993-11-12 | 1995-08-29 | Shearwater Polymers, Inc. | Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules |
EP0705298B1 (en) | 1993-12-01 | 2002-03-27 | Bioartificial Gel Technologies Inc. | Albumin based hydrogel |
US5583114A (en) | 1994-07-27 | 1996-12-10 | Minnesota Mining And Manufacturing Company | Adhesive sealant composition |
EP1004293A3 (en) | 1994-10-12 | 2001-10-04 | Focal, Inc. | Targeted delivery via biodegradable polymers |
FR2726571B1 (en) | 1994-11-03 | 1997-08-08 | Izoret Georges | BIOLOGICAL GLUE, PREPARATION METHOD AND APPLICATION DEVICE FOR BIOLOGICAL GLUE, AND HARDENERS FOR BIOLOGICAL GLUE |
US5932462A (en) | 1995-01-10 | 1999-08-03 | Shearwater Polymers, Inc. | Multiarmed, monofunctional, polymer for coupling to molecules and surfaces |
US5900245A (en) | 1996-03-22 | 1999-05-04 | Focal, Inc. | Compliant tissue sealants |
US5672662A (en) | 1995-07-07 | 1997-09-30 | Shearwater Polymers, Inc. | Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications |
EP2111876B1 (en) | 1995-12-18 | 2011-09-07 | AngioDevice International GmbH | Crosslinked polymer compositions and methods for their use |
AU712953B2 (en) | 1996-03-11 | 1999-11-18 | Focal, Inc. | Polymeric delivery of radionuclides and radiopharmaceuticals |
US5791352A (en) | 1996-06-19 | 1998-08-11 | Fusion Medical Technologies, Inc. | Methods and compositions for inhibiting tissue adhesion |
US20020064546A1 (en) | 1996-09-13 | 2002-05-30 | J. Milton Harris | Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor |
ZA978537B (en) | 1996-09-23 | 1998-05-12 | Focal Inc | Polymerizable biodegradable polymers including carbonate or dioxanone linkages. |
US5782860A (en) | 1997-02-11 | 1998-07-21 | Biointerventional Corporation | Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method |
US5951589A (en) | 1997-02-11 | 1999-09-14 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
US5990237A (en) | 1997-05-21 | 1999-11-23 | Shearwater Polymers, Inc. | Poly(ethylene glycol) aldehyde hydrates and related polymers and applications in modifying amines |
ZA987019B (en) | 1997-08-06 | 1999-06-04 | Focal Inc | Hemostatic tissue sealants |
EP1411075B1 (en) | 1998-03-12 | 2008-07-02 | Nektar Therapeutics Al, Corporation | Method for preparing polymer conjugates |
US6179862B1 (en) | 1998-08-14 | 2001-01-30 | Incept Llc | Methods and apparatus for in situ formation of hydrogels |
US6514534B1 (en) | 1998-08-14 | 2003-02-04 | Incept Llc | Methods for forming regional tissue adherent barriers and drug delivery systems |
US6152943A (en) | 1998-08-14 | 2000-11-28 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
ATE502670T1 (en) | 1998-08-14 | 2011-04-15 | Incept Llc | APPARATUS FOR IN-SITU FORMATION OF HYDROGELS |
US6022361A (en) | 1998-10-09 | 2000-02-08 | Biointerventional Corporation | Device for introducing and polymerizing polymeric biomaterials in the human body and method |
AU2707500A (en) | 1998-12-04 | 2000-06-26 | Incept Llc | Biocompatible crosslinked polymers |
US6312725B1 (en) | 1999-04-16 | 2001-11-06 | Cohesion Technologies, Inc. | Rapid gelling biocompatible polymer composition |
-
1999
- 1999-04-01 US US09/283,535 patent/US6458147B1/en not_active Expired - Lifetime
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050125033A1 (en) * | 2003-12-04 | 2005-06-09 | Mcnally-Heintzelman Karen M. | Wound closure apparatus |
US20050125015A1 (en) * | 2003-12-04 | 2005-06-09 | Mcnally-Heintzelman Karen M. | Tissue-handling apparatus, system and method |
US20080131476A1 (en) * | 2005-02-28 | 2008-06-05 | Masato Kanzaki | Cultured Cell Sheet, Production Method and Tissue Repair Method Using Thereof |
US9889228B2 (en) | 2005-02-28 | 2018-02-13 | Cellseed Inc. | Cultured cell sheet, production method, and tissue repair method using thereof |
US20100076399A1 (en) * | 2005-04-21 | 2010-03-25 | Arteriocyte Medical Systems, Inc. | Fluid dispenser |
US7635343B2 (en) * | 2005-04-21 | 2009-12-22 | Arteriocyte Medical Systems, Inc. | Fluid dispenser |
US8088099B2 (en) * | 2005-04-21 | 2012-01-03 | Arteriocyte Medical Systems, Inc. | Fluid dispenser |
US20060253082A1 (en) * | 2005-04-21 | 2006-11-09 | Mcintosh Kevin D | Fluid dispenser |
US7673783B2 (en) * | 2005-11-04 | 2010-03-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for delivery of medical agents |
US20070102453A1 (en) * | 2005-11-04 | 2007-05-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for delivery of medical agents |
US20100184223A1 (en) * | 2007-07-13 | 2010-07-22 | Helmut Wurst | Biomaterial based on a hydrophilic polymeric carrier |
US10196602B2 (en) * | 2007-07-13 | 2019-02-05 | Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen | Biomaterial based on a hydrophilic polymeric carrier |
WO2009095223A1 (en) | 2008-01-28 | 2009-08-06 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen | Injectable biocompatible composition |
US20100322993A1 (en) * | 2008-01-28 | 2010-12-23 | Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen | Injectable biocompatible composition |
US10500154B2 (en) | 2008-01-28 | 2019-12-10 | Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universitaet Tuebingen | Injectable biocompatible composition |
US20100312274A1 (en) * | 2009-06-09 | 2010-12-09 | Grifols, S.A. | Device for the application of fibrin adhesive |
US8376188B2 (en) * | 2009-06-09 | 2013-02-19 | Grifols, S.A. | Device for the application of fibrin adhesive |
US9821025B2 (en) | 2011-10-11 | 2017-11-21 | Baxter International Inc. | Hemostatic compositions |
US10322170B2 (en) | 2011-10-11 | 2019-06-18 | Baxter International Inc. | Hemostatic compositions |
WO2013053749A3 (en) * | 2011-10-11 | 2013-11-14 | Baxter International Inc. | Hemostatic compositions |
CN103957949A (en) * | 2011-10-11 | 2014-07-30 | 巴克斯特国际公司 | Hemostatic compositions |
EP4137166A1 (en) * | 2011-10-11 | 2023-02-22 | Baxter International Inc | Hemostatic compositions |
AU2012318258B2 (en) * | 2011-10-11 | 2015-07-09 | Baxter Healthcare S.A. | Hemostatic compositions |
EP4137165A1 (en) * | 2011-10-11 | 2023-02-22 | Baxter International Inc. | Hemostatic compositions |
AU2012318257B2 (en) * | 2011-10-11 | 2015-10-01 | Baxter Healthcare S.A. | Hemostatic compositions |
AU2012318256B2 (en) * | 2011-10-11 | 2015-10-01 | Baxter Healthcare S.A. | Hemostatic composition |
EP4137164A1 (en) * | 2011-10-11 | 2023-02-22 | Baxter International Inc. | Hemostatic compositions |
WO2013053755A3 (en) * | 2011-10-11 | 2013-11-14 | Baxter International Inc. | Hemostatic compositions |
WO2013053753A3 (en) * | 2011-10-11 | 2013-11-07 | Baxter International Inc. | Hemostatic composition |
WO2013053759A3 (en) * | 2011-10-11 | 2013-11-07 | Baxter International Inc. | Hemostatic compositions |
US20130096062A1 (en) * | 2011-10-11 | 2013-04-18 | Baxter Healthcare S.A. | Hemostatic compositions |
US9486190B2 (en) * | 2011-10-28 | 2016-11-08 | Medtronic Xomed, Inc. | Spray delivery system |
US10441959B2 (en) | 2011-10-28 | 2019-10-15 | Medtronic Xomed, Inc. | Multi-orifice spray head |
US20130110161A1 (en) * | 2011-10-28 | 2013-05-02 | Medtronic Xomed, Inc. | Spray delivery system |
EP2946795A4 (en) * | 2013-01-18 | 2016-08-31 | Nat Inst For Materials Science | ADHESIVE FABRIC AND METHOD FOR PRODUCING THE SAME |
US20140257375A1 (en) * | 2013-03-11 | 2014-09-11 | St. Jude Medical Puerto Rico Llc | Active securement detachable sealing tip for extra-vascular closure device and methods |
US9107646B2 (en) * | 2013-03-11 | 2015-08-18 | St. Jude Medical Puerto Rico Llc | Active securement detachable sealing tip for extra-vascular closure device and methods |
US11559345B2 (en) * | 2015-01-29 | 2023-01-24 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
US12232793B2 (en) | 2015-01-29 | 2025-02-25 | Boston Scientific Scimed, Inc. | Vapor ablation systems and methods |
CN112168329A (en) * | 2015-01-29 | 2021-01-05 | 波士顿科学医学有限公司 | Steam ablation system and method |
US11904068B2 (en) | 2015-11-12 | 2024-02-20 | University Of Virginia Patent Foundation | Occlusive implant compositions |
US12193654B2 (en) | 2018-01-10 | 2025-01-14 | The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin | System and methods for sealing a channel in tissue |
WO2019138019A2 (en) | 2018-01-10 | 2019-07-18 | The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin | System and methods for sealing a channel in tissue |
EP4368217A2 (en) | 2018-01-10 | 2024-05-15 | The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin | System and methods for sealing a channel in tissue |
US11951032B2 (en) | 2018-11-13 | 2024-04-09 | Contraline, Inc. | Systems and methods for delivering biomaterials |
US11253391B2 (en) | 2018-11-13 | 2022-02-22 | Contraline, Inc. | Systems and methods for delivering biomaterials |
US11318040B2 (en) * | 2018-11-13 | 2022-05-03 | Contraline, Inc. | Systems and methods for delivering biomaterials |
US11510807B2 (en) | 2018-11-13 | 2022-11-29 | Contraline, Inc. | Systems and methods for delivering biomaterials |
US11957616B2 (en) | 2018-11-13 | 2024-04-16 | Contraline, Inc. | Systems and methods for delivering biomaterials |
WO2020144372A1 (en) | 2019-01-10 | 2020-07-16 | The Provost, Fellows, Scholars And Other Members Of Board Of Trinity College Dublin | Composite viscoelastic hydrogel, and uses thereof for sealing a channel in tissue |
WO2020172162A1 (en) * | 2019-02-19 | 2020-08-27 | Tc1 Llc | Vascular graft and methods for sealing a vascular graft |
CN113557042A (en) * | 2019-02-19 | 2021-10-26 | Tc1有限责任公司 | Vascular prosthesis and method for sealing a vascular prosthesis |
CN110801528A (en) * | 2019-10-30 | 2020-02-18 | 金路平 | Dura mater spinalis sealing hydrogel and preparation method and application thereof |
WO2022130103A1 (en) * | 2020-12-18 | 2022-06-23 | Ethicon, Inc. | Methods and devices for changing the flow rates of ph modifying fluids for controlling cross-linking rates of reactive components of biocompatible sealing compositions |
WO2024191453A1 (en) * | 2023-03-10 | 2024-09-19 | Clearstream Technologies Limited | Radiation spacer hydrogels, methods of forming, and methods of use |
WO2024191450A1 (en) * | 2023-03-10 | 2024-09-19 | Clearstream Technologies Limited | Radiation spacer hydrogels, methods of forming, and methods of use |
WO2024191451A1 (en) * | 2023-03-10 | 2024-09-19 | Clearstream Technologies Limited | Radiation spacer hydrogels, methods of forming, and methods of use |
Also Published As
Publication number | Publication date |
---|---|
US6458147B1 (en) | 2002-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6458147B1 (en) | Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue | |
AU759991B2 (en) | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures | |
US6371975B2 (en) | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers | |
US6994686B2 (en) | Systems for applying cross-linked mechanical barriers | |
EP1263327B1 (en) | Biocompatible material composition adaptable to diverse therapeutic indications | |
US8802146B2 (en) | Systems, methods, and compositions for prevention of tissue adhesion | |
Alving et al. | Fibrin sealant: summary of a conference on characteristics and clinical uses | |
US5951583A (en) | Thrombin and collagen procoagulant and process for making the same | |
US20110104280A1 (en) | Wound treatment systems, devices, and methods using biocompatible synthetic hydrogel compositions | |
WO2010134988A1 (en) | Wound treatment systems, devices, and methods using biocompatible synthetic hydrogel compositions | |
Takeuchi et al. | Reduction of adhesions with fibrin glue after laparoscopic excision of large ovarian endometriomas | |
WO1999018931A1 (en) | Use of fibrin sealant to maintain hemostasis, lymphostasis and prevent local accumulation of body fluids | |
CA2435050A1 (en) | Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers or covering structures | |
US20230047711A1 (en) | Flowable collagen colloid and method of forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ADVANCED CLOSURE SYSTEMS, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CRUISE, GREGORY M.;HNOJEWY, OLEXANDER;REEL/FRAME:010374/0594 Effective date: 19991103 |
|
AS | Assignment |
Owner name: NEOMEND, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ADVANCED CLOSURE SYSTEMS, INC.;REEL/FRAME:012848/0941 Effective date: 20000313 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |