+

US20020028897A1 - Copolymers of ethylene and selected acrylate esters - Google Patents

Copolymers of ethylene and selected acrylate esters Download PDF

Info

Publication number
US20020028897A1
US20020028897A1 US09/870,596 US87059601A US2002028897A1 US 20020028897 A1 US20020028897 A1 US 20020028897A1 US 87059601 A US87059601 A US 87059601A US 2002028897 A1 US2002028897 A1 US 2002028897A1
Authority
US
United States
Prior art keywords
copolymer
acrylate
ethylene
substituted
acrylate esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/870,596
Other languages
English (en)
Inventor
Lynda Johnson
Lin Wang
Elizabeth McCord
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/870,596 priority Critical patent/US20020028897A1/en
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCCORD, ELIZABETH FORRESTER, JOHNSON, LYNDA KAYE, WANG, LIN
Publication of US20020028897A1 publication Critical patent/US20020028897A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/46Phosphinous acids [R2POH], [R2P(= O)H]: Thiophosphinous acids including[R2PSH]; [R2P(=S)H]; Aminophosphines [R2PNH2]; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5004Acyclic saturated phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/5004Acyclic saturated phosphines
    • C07F9/5009Acyclic saturated phosphines substituted by B, Si, P or a metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/12Olefin polymerisation or copolymerisation
    • B01J2231/122Cationic (co)polymerisation, e.g. single-site or Ziegler-Natta type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond

Definitions

  • Copolymers of ethylene and selected acrylate esters may be readily analyzed for the presence of acrylate ester homo-polymers, thereby rendering quality control during their manufacture cheaper and faster.
  • a process for copolymer manufacture is also disclosed.
  • the copolymers are useful for films and as molding resins.
  • R 1 is —CH 2 CH 2 X, an n-alkyl containing 6 or more carbon atoms, or —CH 2 R 2 ;
  • X is aryl, substituted aryl, hydrocarbyloxy, substituted hydrocarbyloxy, fluoro or fluoroalkyl
  • R 2 is an alkyl containing at least one quaternary carbon atom, or having a grouping within R 2 having an E s of about ⁇ 1.0 or less, or both.
  • R 1 is —(CH 2 CH 2 )X, n-alkyl containing 6 or more carbon atoms, or —CH 2 R 2 ;
  • X is aryl, substituted aryl, hydrocarbyloxy, substituted hydrocarbyloxy, fluoro, or fluoroalkyl;
  • R 2 is alkyl containing at least one quaternary carbon atom, or having a grouping within R 2 having an E s of about ⁇ 1.0 or less, or both.
  • FIG. 1 shows the 1 H-NMR spectrum of a mixture of an EGPEA homopolymer in a mixture with an EGPEA compolymer with ethylene, produced as described in Example 1 while making the copolymer with a nickel containing olefin polymerization catalyst. The assignments of some of the various peaks are shown.
  • FIG. 2 shows a typical 1 H-NMR of the polymer product from copolymerization of ethylene and methyl acrylate using a nickel containing polymerization catalyst. There is both copolymer and homopolymer present. The homopolymer peak partially lies under a copolymer peak, and the black shaded portion is an illustration (probably not accurate) showing the actual size of the homopolymer peak.
  • FIG. 3 shows a typical 1 H-NMR of the polymer product from copolymerization of ethylene and n-hexyl acrylate using a nickel containing polymerization catalyst. There is both copolymer and homopolymer present. The homopolymer peak partially lies under a copolymer peak, but it is easier to estimate the amount of homopolymer present than in the methyl acrylate case.
  • quaternary carbon atom a carbon atom which is bound to 4 other carbon atoms.
  • An example of a quaternary carbon atom is found in the neopentyl group, —CH 2 C (CH 3 ) 3 .
  • aryl is meant a monovalent group in which the free valence is to a carbon atom of an aromatic ring.
  • the aromatic ring may be a carbocyclic ring or a heterocyclic ring.
  • the aryl group may have one or more aromatic rings, which may be fused, connected by single bonds or other groups.
  • hydrocarbyl group is a univalent group containing only carbon and hydrogen.
  • hydrocarbyls may be mentioned unsubstituted alkyls, cycloalkyls and aryls. If not otherwise stated, it is preferred that hydrocarbyl groups (and alkyl groups) herein contain 1 to about 30 carbon atoms.
  • fluoroalkyl an alkyl group substituted with one or more fluorine atoms (and may be perfluoroalkyl). Preferably there is at least one fluorine atom alpha or beta, more preferably alpha, to the free valence of the alkyl group.
  • substituted herein is meant a group which contains one or more substituent groups which are inert under the process conditions to which the compound containing these groups is subjected.
  • the substituent groups also do not substantially interfere with the process. Included in the meaning of “substituted” are heteroaromatic rings. In substituted groups all of the hydrogens (which may be present) may be substituted, as in trifluoromethyl.
  • (inert) functional group herein is meant a group which is inert under the process conditions to which the compound containing the group is subjected. That is, the functional groups do not substantially interfere with any process described herein that the compound in which they are present may take part in.
  • functional groups include halo (fluoro, chloro, bromo and iodo), ether such as —OR 22 , thioether such as —SR 22 and amine such as —NR 2 22 wherein each R 22 is independently hydrocarbyl or substituted hydro-carbyl.
  • the functional group may be near a transition metal atom the functional group should not coordinate to the metal atom more strongly than the groups in those compounds are shown as coordinating to the metal atom, that is they should not displace the desired coordinating group.
  • under polymerization conditions is meant the conditions for a polymerization that are usually used for the particular polymerization catalyst system being used. These conditions include parameters such as pressure, temperature, catalyst and cocatalyst (if present) concentrations, the type of process such as batch, semibatch, continuous, gas phase, solution or liquid slurry etc. Conditions normally done or used with the particular polymerization catalyst system, such as the use of hydrogen for polymer molecular weight control, are also considered “under polymerization conditions”. Other polymerization conditions such as presence of hydrogen for molecular weight control, other polymerization catalysts, etc., are applicable with this polymerization process and may be found in the references cited herein.
  • copolymerizable olefin an olefin which, when using the particular polymerization catalyst system chosen, will copolymerize with ethylene and the acrylate ester(s) used, as well as any other comonomers present.
  • E s values are those for o-substituted benzoates described in these publications. If the value for E s for any particular group is not known, it can be determined by methods described in these publications.
  • the value of hydrogen is defined to be the same as for methyl.
  • R 2 having a certain E s By a group contained within R 2 having a certain E s is meant that any portion or all of R 2 may be arbitrarily chosen (this may be done multiple times), and if that portion has an E s . of about ⁇ 1.0 or less, it meets this limitation. For example, if R 2 was 2,4,4-trimethylpentyl (or in other words the ester was an ester of 3,5,5-trimethylhexan-1-ol), the group —CH 2 C(CH 3 ) 3 is found within 2,4,4-trimethylpentyl, and so it would meet the limitation on E s .
  • Preferred transition metals herein are in Groups 3 - 11 and the lanthanides (IUPAC notation), more preferably Groups 8 - 11 , and especially preferably Group 10 .
  • Specific preferred transition metals are Ni, Pd and Cu, and Ni is especially preferred.
  • R 1 is —CH 2 CH 2 X, wherein X is hydrocarbyloxy or substituted hydrocarbyloxy, preferably aryloxy and substituted aryloxy, and especially phenoxy; or
  • R 1 is —CH 2 CH 2 X, wherein X is aryl or substituted aryl, preferably X is phenyl; or
  • R 1 is n-alkyl containing 6-12 carbon atoms, more preferably R 1 is n-hexyl; or
  • R 1 is —CH 2 R 2 wherein R contains a quaternary carbon atom, more preferably R 2 is 2,4,4-trimethylpentyl; or
  • R 1 is —CH 2 R 2 wherein R contains a group having an E s of about ⁇ 1.0 or less, more preferably about ⁇ 1.5 or less, and especially preferably about ⁇ 1.7 or less.
  • copolymers described herein have the following features:
  • R 1 is —(CH 2 CH 2 )X or n-alkyl containing 6 or more carbon atoms
  • analysis of the polymer for acrylate ester homopolymer byproduct is relatively easy by 1 H-NMR, since certain peaks in the NMR spectrum for homopolymer and desired copolymer are separated, see FIG. 1 herein which is a 1 H-NMR of such a mixture.
  • a more “commonly used” acrylate ester, such as methyl acrylate is used, the peaks overlap greatly making accurate analysis impossible, as shown in FIG. 2.
  • the polymers of the present invention are useful as molding resins and for films. They are also (depending on their molecular weight and physical properties) useful as:
  • Tackifiers for low strength adhesives (U, vol. A1, p. 235-236) are a use for these polymers. Elastomeric and/or relatively low molecular weight polymers are preferred.
  • the polymers are useful as base resins for hot melt adhesives (U, vol. A1, p. 233-234), pressure sensitive adhesives (U, vol. Al, p. 235-236) or solvent applied adhesives.
  • Thermoplastics are preferred for hot melt adhesives.
  • the polymers may also be used in a carpet installation adhesive.
  • Base polymer for caulking of various kinds is another use.
  • An elastomer is preferred.
  • Lower molecular weight polymers are often used.
  • the polymers may be used for modifying asphalt, to improve the physical properties of the asphalt and/or extend the life of asphalt paving, see U.S. Pat. No. 3,980,598.
  • Wire insulation and jacketing may be made from any of the polymers (see EPSE, vol. 17, p. 828-842). In the case of elastomers it may be preferable to crosslink the polymer after the insulation or jacketing is formed, for example by free radicals.
  • the polymers, especially the branched polymers, are useful as base resins for carpet backing, especially for automobile carpeting.
  • the polymers may be used for extrusion or coextrusion coatings onto plastics, metals, textiles or paper webs.
  • the polymers may be used as a laminating adhesive for glass.
  • the polymers are useful for blown or cast films or as sheet (see EPSE, vol. 7 p. 88-106; ECT4, vol. 11, p. 843-856; PM, p. 252 and p. 432ff).
  • the films may be single layer or multilayer, the multilayer films may include other polymers, adhesives, etc.
  • the films may be stretch-wrap, shrink-wrap or cling wrap.
  • the films are useful for many applications such as packaging foods, geomembranes and pond liners. It is preferred that these polymers have some crystallinity.
  • the polymers may be used to form flexible or rigid foamed objects, such as cores for various sports items such as surf boards and liners for protective headgear. Structural foams may also be made. It is preferred that the polymers have some crystallinity.
  • the polymer of the foams may be crosslinked.
  • the polymers may be used to coat objects by using plasma, flame spray or fluidized bed techniques.
  • Extruded films may be formed from these polymers, and these films may be treated, for example drawn. Such extruded films are useful for packaging of various sorts.
  • the polymers especially those that are elastomeric, may be used in various types of hoses, such as automotive heater hose.
  • the polymers may be used as reactive diluents in automotive finishes, and for this purpose it is preferred that they have a relatively low molecular weight and/or have some crystallinity.
  • the polymers can be converted to ionomers, which when they possess crystallinity can be used as molding resins.
  • ionomeric molding resins are golf ball covers, perfume caps, sporting goods, film packaging applications, as tougheners in other polymers, and (usually extruded) detonator cords.
  • the functional groups on the polymers can be used to initiate the polymerization of other types of monomers or to copolymerize with other types of monomers. If the polymers are elastomeric, they can act as toughening agents.
  • the polymers can act as compatibilizing agents between various other polymers.
  • the polymers can act as tougheners for various other polymers, such as thermoplastics and thermosets, particularly if the olefin/polar monomer polymers are elastomeric.
  • the polymers may act as internal plasticizers for other polymers in blends.
  • a polymer which may be plasticized is poly(vinyl chloride).
  • the polymers can serve as adhesives between other polymers.
  • the polymers may serve as curing agents for other polymers with complimentary functional groups (i.e., the functional groups of the two polymers react with each other).
  • the polymers are useful as pour point depressants for fuels and oils.
  • Lubricating oil additives as Viscosity Index Improvers for multigrade engine oil (ECT3, Vol 14, p. 495-496) are another use. Branched polymers are preferred. Ethylene copolymer with acrylates or other polar monomers will also function as Viscosity Index Improvers for multigrade engine oil with the additional advantage of providing some dispersancy.
  • the polymers may be used for roofing membranes.
  • the polymers may be used as additives to various molding resins such as the so-called thermoplastic olefins to improve paint adhesion, as in automotive uses.
  • a flexible pouch made from a single layer or multilayer film (as described above) which may be used for packaging various liquid products such as milk, or powder such as hot chocolate mix.
  • the pouch may be heat sealed. It may also have a barrier layer, such as a metal foil layer.
  • a wrap packaging film having differential cling is provided by a film laminate, comprising at least two layers; an outer reverse which is a polymer (or a blend thereof) described herein, which contains a tackifier in sufficient amount to impart cling properties; and an outer obverse which has a density of at least about 0.916 g/mL which has little or no cling, provided that a density of the outer reverse layer is at least 0.008 g/mL less than that of the density of the outer obverse layer. It is preferred that the outer obverse layer is linear low density polyethylene, and the polymer of the outer obverse layer have a density of less than 0.90 g/mL. All densities are measured at 25° C.
  • Fine denier fibers and/or multifilaments These may be melt spun. They may be in the form of a filament bundle, a non-woven web, a woven fabric, a knitted fabric or staple fiber.
  • a composition comprising a mixture of the polymers herein and an antifogging agent. This composition is especially useful in film or sheet form because of its antifogging properties.
  • polymers are functionalized with monomers such as fluoroalkyl acrylate esters or other fluorine-containing monomers, they are useful for selectively imparting surface activity to polyolefins. This would be of use reducing fluid penetration in flash-spun polyolefin films for medical and other applications.
  • the fluoro-functionalized polyolefins would also be useful for dispersing fluoropolymers in lubricant applications.
  • EG—end-group refers to the ester group of the acrylate being located in an unsaturated end group of the ethylene copolymer
  • Ets-Bu(%) percent of ethyl branches occurring in secbutyl-ended branches
  • IC—in-chain refers to the ester group of the acrylate being bound to the main-chain of the ethylene copolymer
  • M.W. molecular weight
  • PDI polydispersity
  • PE polyethylene
  • Total methyls per 1000 CH 2 are measured using different NMR resonances in 1 H and 13C NMR spectra. Because of accidental overlaps of peaks and different methods of correcting the calculations, the values measured by 1 H and 13 C NMR spectroscopy will not be exactly the same, but they will be close, normally within 10-20% at low levels of acrylate comonomer. In 13 C NMR spectra, the total methyls per 1000 CH 2 are the sums of the 1B 11 , 1B 2 , 1B 3 , and 1B 4 +, EOC resonances per 1000 CH 2 , where the CH 2 's do not include the CH 2 's in the alcohol portions of the ester group.
  • the total methyls measured by 13 C NMR spectroscopy do not include the minor amounts of methyls from the methyl vinyl ends nor the methyls in the alcohol portion of the ester group.
  • the total methyls are measured from the integration of the resonances from 0.6 to 1.08 ppm and the CH 2 's are determined from the integral of the region from 1.08 to 2.49 ppm. It is assumed that there is 1 methine for every methyl group, and 1 ⁇ 3of the methyl integral is subtracted from the methylene integral to remove the methine contribution.
  • the methyl and methylene integrals are also usually corrected to exclude the values of the methyls and methylenes in the alcohol portion of the ester group, if this is practical. Because of the low levels of incorporation, this is usually a minor correction. Corrections are also made to exclude any contributions from acrylate homopolymer to the methyl or methylene integrals in both the 13 C and 1 H spectra where this is warranted.
  • GPC molecular weights are reported versus polystyrene standards. Unless noted otherwise, GPC's were run with RI detection at a flow rate of 1 mL/min at 135° C. with a run time of 30 min. Two columns were used: AT-806MS and WA/P/N 34200. A Waters RI detector was used and the solvent was TCB with 5 grams of BHT per gallon. Dual UV/RI detection GPC was run in THF at rt using a Waters 2690 separation module with a Waters 2410 RI detector and a Waters 2487 dual absorbance detector. Two Shodex columns, KF-806M, were used along with one guard column, KF-G.
  • a 40 mL glass insert was loaded with the nickel compound and, optionally, a Lewis acid (e.g., BPh 3 or B(C 6 F 5 ) 3 ) and borate (e.g., NaBAF or LiBArF), and any other specified cocatalysts and other additives.
  • a Lewis acid e.g., BPh 3 or B(C 6 F 5 ) 3
  • borate e.g., NaBAF or LiBArF
  • Examples 1-5 are listed in Tables 1 and 2 below. Figures for compounds 1 through 4 are shown above.
  • the polymerizations were carried out according to General Procedure A. Varying amounts of acrylate homopolymer are present in the isolated polymers.
  • Table 1 the yield of the polymer is reported in grams and includes the yield of the dominant ethylene/acrylate copolymer as well as the yield of any acrylate homopolymer that was formed.
  • Molecular weights were determined by GPC, unless indicated otherwise.
  • Mole percent acrylate incorporation and total Me were determined by 1 H NMR spectroscopy, unless indicated otherwise.
  • Mole percent acrylate incorporation is typically predominantly IC, unless indicated otherwise.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US09/870,596 2000-05-31 2001-05-31 Copolymers of ethylene and selected acrylate esters Abandoned US20020028897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/870,596 US20020028897A1 (en) 2000-05-31 2001-05-31 Copolymers of ethylene and selected acrylate esters

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US20808700P 2000-05-31 2000-05-31
US21160100P 2000-06-15 2000-06-15
US21403600P 2000-06-23 2000-06-23
US26453701P 2001-01-26 2001-01-26
US09870596 2001-05-31
US09/870,596 US20020028897A1 (en) 2000-05-31 2001-05-31 Copolymers of ethylene and selected acrylate esters

Publications (1)

Publication Number Publication Date
US20020028897A1 true US20020028897A1 (en) 2002-03-07

Family

ID=27498711

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/870,596 Abandoned US20020028897A1 (en) 2000-05-31 2001-05-31 Copolymers of ethylene and selected acrylate esters
US09/871,099 Expired - Fee Related US6897275B2 (en) 2000-05-31 2001-05-31 Catalysts for olefin polymerization
US09/870,597 Expired - Fee Related US6541585B2 (en) 2000-05-31 2001-05-31 Polymerization of olefins
US10/943,199 Expired - Fee Related US7439314B2 (en) 2000-05-31 2004-09-16 Catalysts for olefin polymerization
US12/184,467 Expired - Fee Related US7998895B2 (en) 2000-05-31 2008-08-01 Catalysts for olefin polymerization
US12/779,182 Abandoned US20100222531A1 (en) 2000-05-31 2010-05-13 Catalysts for olefin polymerization

Family Applications After (5)

Application Number Title Priority Date Filing Date
US09/871,099 Expired - Fee Related US6897275B2 (en) 2000-05-31 2001-05-31 Catalysts for olefin polymerization
US09/870,597 Expired - Fee Related US6541585B2 (en) 2000-05-31 2001-05-31 Polymerization of olefins
US10/943,199 Expired - Fee Related US7439314B2 (en) 2000-05-31 2004-09-16 Catalysts for olefin polymerization
US12/184,467 Expired - Fee Related US7998895B2 (en) 2000-05-31 2008-08-01 Catalysts for olefin polymerization
US12/779,182 Abandoned US20100222531A1 (en) 2000-05-31 2010-05-13 Catalysts for olefin polymerization

Country Status (10)

Country Link
US (6) US20020028897A1 (fr)
EP (2) EP1292623A2 (fr)
JP (2) JP2004502652A (fr)
KR (1) KR20030007830A (fr)
CN (2) CN100384892C (fr)
AU (4) AU2001265260A1 (fr)
BR (1) BR0111657A (fr)
CA (1) CA2408937A1 (fr)
MX (1) MXPA02011836A (fr)
WO (3) WO2001092342A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040181018A1 (en) * 2003-03-10 2004-09-16 Thomas Weiss Process for the production of an azo-catalyst for the polymerization of olefins
US20040186007A1 (en) * 2003-02-03 2004-09-23 Thomas Weiss Monometallic azo complexes of late transition metals for the polymerization of olefins
US11578152B2 (en) 2018-04-05 2023-02-14 Lg Chem, Ltd. Cationic metal complex, organometal catalyst having borate-based bulky anion, method for preparing the same, and method for preparing oligomer or polymer using the same

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245871B1 (en) * 1997-04-18 2001-06-12 Eastman Chemical Company Group 8-10 transition metal olefin polymerization catalysts
JP2004506745A (ja) 1999-02-22 2004-03-04 イーストマン ケミカル カンパニー N−ピロリル置換窒素供与体を含む触媒
US6545108B1 (en) 1999-02-22 2003-04-08 Eastman Chemical Company Catalysts containing N-pyrrolyl substituted nitrogen donors
US6579823B2 (en) * 2000-02-18 2003-06-17 Eastman Chemical Company Catalysts containing per-ortho aryl substituted aryl or heteroaryl substituted nitrogen donors
US6605677B2 (en) 2000-02-18 2003-08-12 Eastman Chemical Company Olefin polymerization processes using supported catalysts
US7056996B2 (en) 2000-02-18 2006-06-06 E. I. Du Pont De Nemours And Company Productivity catalysts and microstructure control
JP2003535107A (ja) * 2000-05-31 2003-11-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー オレフィンの重合
JP2004502652A (ja) * 2000-05-31 2004-01-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー オレフィン重合用触媒
US6706891B2 (en) 2000-11-06 2004-03-16 Eastman Chemical Company Process for the preparation of ligands for olefin polymerization catalysts
DE10140203A1 (de) * 2001-08-16 2003-02-27 Bayer Ag Katalysatoren für die Olefinpolymerisation
US20030130452A1 (en) * 2001-10-12 2003-07-10 Johnson Lynda Kaye Copolymers of ethylene with various norbornene derivatives
US7022785B2 (en) 2002-03-01 2006-04-04 Equistar Chemicals L.P. Diimine complexes for olefin polymerization
AU2003213742A1 (en) 2002-03-06 2003-09-22 E.I. Du Pont De Nemours And Company Catalysts for olefin polymerization
SG130016A1 (en) * 2002-09-24 2007-03-20 Sumitomo Chemical Co Modified particle, catalyst component for addition polymerization, catalyst for addition polymerization and process for producing addition polymer
US7176158B2 (en) 2002-10-25 2007-02-13 Exxonmobil Chemical Patents Inc. Polymerization catalyst composition
US7037990B2 (en) * 2003-01-03 2006-05-02 Nippon Synthetic Chemical Company Transition metal complexes in the controlled synthesis of polyolefins substituted with functional groups
US20040132610A1 (en) * 2003-01-03 2004-07-08 Tagge Christopher D. Transition metal complexes in the controlled synthesis of polyolefins substituted with functional groups
US7674847B2 (en) * 2003-02-21 2010-03-09 Promerus Llc Vinyl addition polycyclic olefin polymers prepared with non-olefinic chain transfer agents and uses thereof
US7825200B2 (en) * 2003-02-28 2010-11-02 The Regents Of The University Of California Controlled free radical grafting from polyolefins
US7259214B2 (en) * 2003-02-28 2007-08-21 The Regents Of The University Of California Metal catalyst for olefin polymerization and co-polymerization with functional monomers
US7094848B2 (en) * 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
US7087687B2 (en) * 2003-08-21 2006-08-08 Rohm And Haas Company Catalytic composition and its preparation and use for preparing polymers from ethylenically unsaturated monomers
US7005489B2 (en) * 2003-09-29 2006-02-28 Equistar Chemicals, Lp Zwitterionic Metallocycles
US7211639B2 (en) * 2003-10-03 2007-05-01 General Electric Company Composition comprising functionalized poly(arylene ether) and ethylene-alkyl (meth)acrylate copolymer, method for the preparation thereof, and articles prepared therefrom
US6903169B1 (en) 2003-12-30 2005-06-07 Equistar Chemicals, Lp LTMC polymerization of unsaturated monomers
US7172986B2 (en) * 2004-06-14 2007-02-06 Rohm And Haas Company Catalytic composition and its preparation and use for preparing polymers from ethylenically unsaturated monomers
US7199074B2 (en) 2004-06-14 2007-04-03 Rohm And Haas Company Catalytic composition and its preparation and use for preparing polymers from ethylenically unsaturated monomers
EP1846426A1 (fr) 2005-02-01 2007-10-24 ExxonMobil Chemical Patents Inc. Catalyseurs de polymérisation à base d'un métal de transition, synthèse de ceux-ci et utilisation de ceux-ci dans une polymérisation d'oléfines
US7544757B2 (en) * 2005-06-30 2009-06-09 E. I. Du Pont De Nemours And Company Ethylene/alkyl acrylate copolymers and compounds, vulcanizates and articles thereof
US7737234B2 (en) 2005-08-04 2010-06-15 The Regents Of The University Of Colorado, A Body Corporate Catalysts for radical polymerization
US7635739B2 (en) * 2005-08-31 2009-12-22 Rohm And Haas Company Substantially linear polymers and methods of making and using same
TWI359822B (en) * 2006-06-16 2012-03-11 Lg Chemical Ltd Method for polymerizing cyclic olefin having polar
WO2008038173A2 (fr) * 2006-09-26 2008-04-03 Sasol Technology (Pty) Limited polymÉrisation (y compris oligomÉrisation) de composÉs olÉfiniques en prÉsence d'un catalyseur et d'un activateur de catalyseur comprenant un groupe organique halogÉnÉ
US8125060B2 (en) 2006-12-08 2012-02-28 Infineon Technologies Ag Electronic component with layered frame
JP5111145B2 (ja) * 2007-02-28 2012-12-26 ローム アンド ハース カンパニー 非環式脂肪族オレフィンの重合
JP5016512B2 (ja) * 2007-02-28 2012-09-05 ローム アンド ハース カンパニー 実質的に線状のコポリマーおよびその製造方法
TW200911821A (en) * 2007-06-08 2009-03-16 Solvay Light emitting material
FR2937643B1 (fr) 2008-10-27 2011-10-14 Arkema France Nouveaux copolymeres a blocs d'olefines polaires et apolaires
CN102050840B (zh) * 2010-12-04 2013-06-05 西北师范大学 含萘环的α-二亚胺镍(Ⅱ)配合物及其制备和应用
US8920263B2 (en) * 2012-08-13 2014-12-30 Nike, Inc. Golf ball with resin inner core and specified inner core and ball compression
CN103833792B (zh) * 2012-11-22 2016-09-07 中国石油天然气股份有限公司 一种芘-4,5-二酮卤化镍金属配合物及其制备与应用
CN103418435B (zh) * 2013-08-22 2015-06-10 东北石油大学 一种超支化镍系烯烃聚合催化剂
CN104151455B (zh) * 2014-07-21 2016-08-24 中国石油天然气集团公司 一种中性α-胺基亚胺镍催化剂及其制备方法和应用
CN105524208B (zh) * 2015-09-17 2017-11-21 韶关欧文化学工业有限公司 一种含氟丙烯酸酯共聚物流平剂的制备方法
JP2017208319A (ja) * 2016-05-17 2017-11-24 矢崎総業株式会社 自動車用電線及びそれを用いたワイヤーハーネス
IT201700006307A1 (it) 2017-01-20 2018-07-20 Versalis Spa Complesso osso-azotato di ferro, sistema catalitico comprendente detto complesso osso-azotato di ferro e procedimento per la (co)polimerizzazione di dieni coniugati
US11015140B2 (en) * 2017-03-31 2021-05-25 Uchicago Argonne, Llc Catalytically active lubricants
US11352453B2 (en) * 2017-11-09 2022-06-07 The University Of Tokyo Catalyst for olefin polymerization and production method for polar group-containing olefin-based polymers
CN107755812A (zh) * 2017-11-22 2018-03-06 湖州织里川蜀机械有限公司 一种带有锯切装置且锯切方式可变的铝型材牵引机
CN108264593B (zh) * 2018-02-13 2020-08-04 吉林大学 受阻Lewis酸碱对--FLP催化乙烯基极性单体的活性聚合方法
CN112020520B (zh) * 2018-04-25 2023-03-10 国立大学法人东京大学 具有极性基的烯丙基单体共聚物的制造方法
US11091567B2 (en) 2019-04-15 2021-08-17 Exxonmobil Chemical Patents Inc. Amido-benzoquinone catalyst systems and processes thereof
CN110483586B (zh) * 2019-08-27 2021-07-09 中国科学技术大学 大位阻酮亚胺镍催化剂及其配体化合物、制备方法和应用
EP4126992B1 (fr) * 2020-03-31 2024-10-02 Dow Global Technologies LLC Catalyseurs au nickel(ii) ou au palladium(ii) supportés par des phosphine-amides à empêchement stérique pour la copolymérisation de l'éthylène et de comonomères polaires
KR102486720B1 (ko) 2021-02-09 2023-01-10 경북대학교 산학협력단 극성 비닐기를 가진 단량체의 부가중합용 이민계 리간드 함유 착체 촉매 및 이를 이용한 극성 비닐기를 가진 단량체의 중합체 제조방법
KR102520078B1 (ko) 2021-02-09 2023-04-10 경북대학교 산학협력단 극성 비닐기를 가진 단량체의 부가중합용 촉매 및 이를 이용한 극성 비닐기를 가진 단량체의 중합체 제조방법
JP2022159228A (ja) 2021-03-31 2022-10-17 日本ポリケム株式会社 オレフィン系重合体の重合触媒
KR102513130B1 (ko) 2021-05-13 2023-03-23 경북대학교 산학협력단 극성 비닐기를 가진 단량체의 부가중합용 아민계 리간드 함유 착체 촉매 및 이를 이용한 극성 비닐기를 가진 단량체의 중합체 제조방법
CN114605581B (zh) * 2022-03-11 2023-07-14 中国科学院青岛生物能源与过程研究所 一种功能化极性聚烯烃聚合物及其制备方法和应用
CN119998304A (zh) 2022-09-30 2025-05-13 三菱化学株式会社 化合物、金属络合物、烯烃聚合用催化剂组合物、烯烃聚合用催化剂和烯烃系聚合物的制造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1073311A (en) * 1963-03-25 1967-06-21 Ici Ltd Non-ionic organopolysiloxanes
US3481908A (en) 1965-08-02 1969-12-02 Monsanto Co Terpolymers of ethylene,a mono-olefin,and an unsaturated amide
US3278495A (en) 1966-04-12 1966-10-11 Huels Chemische Werke Ag Terpolymer of ethylene, propylene, and an unsaturated acid derivative from the classof amides, nitriles, anhydrides, esters, and the hydrolysis products thereof
US4698403A (en) * 1985-10-15 1987-10-06 E. I. Du Pont De Nemours And Company Nickel-catalyzed copolymerization of ethylene
EP0816386B1 (fr) * 1993-03-23 1998-12-16 Asahi Kasei Kogyo Kabushiki Kaisha Catalyseur de polymérisation d'oléfines possédant un ligand multidenté
US5880241A (en) 1995-01-24 1999-03-09 E. I. Du Pont De Nemours And Company Olefin polymers
US5714556A (en) 1995-06-30 1998-02-03 E. I. Dupont De Nemours And Company Olefin polymerization process
DE19548146C1 (de) * 1995-12-21 1997-11-20 Basf Ag Tris(pyrazolyl)boratmetallkomplex-Katalysatoren und deren Verwendung
US5766877A (en) * 1996-05-10 1998-06-16 Amgen Inc. Genes encoding art, an agouti-related transcript
WO1997048737A1 (fr) 1996-06-17 1997-12-24 Exxon Chemical Patents Inc. Procedes de polymerisation a pression elevee a systemes de catalyseur a base de metal de transition retardee
US6174975B1 (en) 1998-01-13 2001-01-16 E.I. Du Pont De Nemours And Company Polymerization of olefins
TR199901645T2 (xx) * 1997-01-14 2000-04-21 E.I. Du Pont De Nemours And Company Olefinlerin polimerizasyonu.
KR20000070111A (ko) * 1997-01-14 2000-11-25 메리 이. 보울러 에틸렌의 중합 방법
JP2002514252A (ja) * 1997-03-10 2002-05-14 イーストマン ケミカル カンパニー 第8〜10族遷移金属を含むオレフィン重合触媒、二座配位子、このような触媒の使用方法及びそれから得られるポリマー
US6103658A (en) 1997-03-10 2000-08-15 Eastman Chemical Company Olefin polymerization catalysts containing group 8-10 transition metals, processes employing such catalysts and polymers obtained therefrom
DE69823988D1 (de) 1997-04-18 2004-06-24 Eastman Chem Co Gruppe 8-10 übergangsmetallkatalysator für die polymerisation von olefinen
DE69818061T2 (de) 1997-07-23 2004-06-03 E.I. Du Pont De Nemours And Co., Wilmington Polymerisation von olefinen
US6114483A (en) * 1997-08-27 2000-09-05 E. I. Du Pont De Nemours And Company Polymerization of olefins
WO1999030822A1 (fr) * 1997-12-16 1999-06-24 Exxon Research And Engineering Company Catalyseurs d'amine de metal de transition du groupe 11 pour polymerisation olefinique
PL342450A1 (en) * 1998-02-20 2001-06-04 Dow Chemical Co Catalyst activators containing expanded anions
JPH11292918A (ja) 1998-04-08 1999-10-26 Mitsui Chem Inc オレフィン・極性モノマー共重合体の製造方法
US6133387A (en) * 1998-11-17 2000-10-17 Nova Chemicals (International) S.A. Group 8, 9 or 10 olefin copolymerization catalyst
JP2004506745A (ja) 1999-02-22 2004-03-04 イーストマン ケミカル カンパニー N−ピロリル置換窒素供与体を含む触媒
JP2004502652A (ja) * 2000-05-31 2004-01-29 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー オレフィン重合用触媒

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186007A1 (en) * 2003-02-03 2004-09-23 Thomas Weiss Monometallic azo complexes of late transition metals for the polymerization of olefins
US7098165B2 (en) 2003-02-03 2006-08-29 Bayer Aktiengesellschaft Monometallic azo complexes of late transition metals for the polymerization of olefins
US20040181018A1 (en) * 2003-03-10 2004-09-16 Thomas Weiss Process for the production of an azo-catalyst for the polymerization of olefins
US7214748B2 (en) 2003-03-10 2007-05-08 Lanxess Deutschland Gmbh Process for the production of an azo-catalyst for the polymerization of olefins
US11578152B2 (en) 2018-04-05 2023-02-14 Lg Chem, Ltd. Cationic metal complex, organometal catalyst having borate-based bulky anion, method for preparing the same, and method for preparing oligomer or polymer using the same

Also Published As

Publication number Publication date
CN100384892C (zh) 2008-04-30
US20020037982A1 (en) 2002-03-28
US20020032289A1 (en) 2002-03-14
MXPA02011836A (es) 2003-05-14
AU2001265260A1 (en) 2001-12-11
CN100369940C (zh) 2008-02-20
US6897275B2 (en) 2005-05-24
EP1292623A2 (fr) 2003-03-19
EP1292624A2 (fr) 2003-03-19
US20100222531A1 (en) 2010-09-02
AU7507001A (en) 2001-12-11
KR20030007830A (ko) 2003-01-23
WO2001092354A3 (fr) 2003-01-16
AU2001266635A1 (en) 2001-12-11
BR0111657A (pt) 2003-10-07
WO2001092342A3 (fr) 2003-01-16
US7439314B2 (en) 2008-10-21
CN1626558A (zh) 2005-06-15
CN1444606A (zh) 2003-09-24
US6541585B2 (en) 2003-04-01
WO2001092347A3 (fr) 2003-01-16
WO2001092347A2 (fr) 2001-12-06
WO2001092354A2 (fr) 2001-12-06
AU2001275070B2 (en) 2005-11-10
WO2001092342A2 (fr) 2001-12-06
US7998895B2 (en) 2011-08-16
US20100029469A1 (en) 2010-02-04
CA2408937A1 (fr) 2001-12-06
JP2004502652A (ja) 2004-01-29
US20050043496A1 (en) 2005-02-24
JP2003535190A (ja) 2003-11-25

Similar Documents

Publication Publication Date Title
US20020028897A1 (en) Copolymers of ethylene and selected acrylate esters
KR100964093B1 (ko) 폴리올레핀 및 이의 제조방법
KR101025038B1 (ko) 올레핀계 중합체 및 이를 포함하는 섬유
US8821995B2 (en) Fiber, tapes, monofilaments based on ethylene copolymers with alfa-olefins
KR101397077B1 (ko) 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법
US20100016526A1 (en) Process for the preparation of multimodal polyethylene resins
EP1838744B1 (fr) Film et procédé pour sa préparation
US20100130705A1 (en) Ziegler-Natta Catalyst and Its Use To Prepare Multimodal Polyolefin
EP2228394A1 (fr) Procédé en plusieurs étapes pour la production d'un polymère de polyéthylène de faible densité
KR20100102854A (ko) 낙추 충격강도와 투명도가 우수한 필름용 폴리에틸렌 및 이의 제조방법
EP0680491A1 (fr) Copolymeres elastiques d'alpha-olefine et d'olefine cyclique
JP5986630B2 (ja) エチレン系ポリマーおよびそれを作製する方法
KR101362992B1 (ko) 다정 분자량 분포를 가지는 폴리올레핀 및 이를 포함하는 파이프
EP0468418B1 (fr) Copolymère de l'éthylène et son procédé de préparation
EP2398834B1 (fr) Copolymères éthyléniques, système catalytique et leur procédé de préparation
KR101205473B1 (ko) 파이프용 올레핀계 중합체 수지 조성물 및 이로부터 제조되는 파이프
CN111971313B (zh) 乙烯/α-烯烃共聚物及其制备方法
KR20190025438A (ko) 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
US20230365792A1 (en) Copolymers of ethylene with (meth) acrylic ester functionalized polysiloxane
US6608156B1 (en) Process for preparing interpolymers of ethylene and 2,3-dihydrofuran, or a heteroatom substituted olefin monomer and ethylene interpolymers
WO2018111638A1 (fr) Compositions d'interpolymère d'éthylène/alpha-oléfine
KR102117623B1 (ko) 올레핀계 공중합체 및 이의 제조방법
CN104507981B (zh) 使用烷基化苯酚制备基于乙烯的聚合物的自由基方法
WO2005000919A1 (fr) Polyolefines presentant des taux eleves de ramifications a chaines longues
WO2019166652A1 (fr) Procédé

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOHNSON, LYNDA KAYE;WANG, LIN;MCCORD, ELIZABETH FORRESTER;REEL/FRAME:012143/0733;SIGNING DATES FROM 20010813 TO 20010815

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载