US20020016596A1 - Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices - Google Patents
Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices Download PDFInfo
- Publication number
- US20020016596A1 US20020016596A1 US09/978,415 US97841501A US2002016596A1 US 20020016596 A1 US20020016596 A1 US 20020016596A1 US 97841501 A US97841501 A US 97841501A US 2002016596 A1 US2002016596 A1 US 2002016596A1
- Authority
- US
- United States
- Prior art keywords
- polymeric matrix
- absorbable polymeric
- amorphous
- group
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 59
- 229920000642 polymer Polymers 0.000 title description 38
- 230000000007 visual effect Effects 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims description 31
- 229920001577 copolymer Polymers 0.000 claims description 26
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 20
- VPVXHAANQNHFSF-UHFFFAOYSA-N 1,4-dioxan-2-one Chemical compound O=C1COCCO1 VPVXHAANQNHFSF-UHFFFAOYSA-N 0.000 claims description 17
- 239000000178 monomer Substances 0.000 claims description 17
- -1 polytrimethylene carbonate Polymers 0.000 claims description 17
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 claims description 13
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 13
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 10
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 claims description 9
- 229920003232 aliphatic polyester Polymers 0.000 claims description 9
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 claims description 8
- 235000014655 lactic acid Nutrition 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 6
- 229920000954 Polyglycolide Polymers 0.000 claims description 5
- 239000000316 bone substitute Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 5
- 230000004888 barrier function Effects 0.000 claims description 4
- 230000007547 defect Effects 0.000 claims description 4
- 239000000945 filler Substances 0.000 claims description 4
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 4
- 229920001610 polycaprolactone Polymers 0.000 claims description 4
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 4
- 210000000988 bone and bone Anatomy 0.000 claims description 3
- 210000000845 cartilage Anatomy 0.000 claims description 3
- 230000002439 hemostatic effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000002407 tissue scaffold Substances 0.000 claims description 3
- 230000002792 vascular Effects 0.000 claims description 3
- 206010019909 Hernia Diseases 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- 230000023597 hemostasis Effects 0.000 claims description 2
- 239000007943 implant Substances 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 claims description 2
- 239000002609 medium Substances 0.000 claims description 2
- 239000001993 wax Substances 0.000 claims description 2
- 230000001815 facial effect Effects 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 11
- 230000008018 melting Effects 0.000 abstract description 11
- 239000000560 biocompatible material Substances 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract 1
- 230000011664 signaling Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000003814 drug Substances 0.000 description 11
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 9
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 229920002959 polymer blend Polymers 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- 229920000249 biocompatible polymer Polymers 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000010907 mechanical stirring Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000000812 cholinergic antagonist Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 230000000399 orthopedic effect Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZNLAHAOCFKBYRH-UHFFFAOYSA-N 1,4-dioxane-2,3-dione Chemical compound O=C1OCCOC1=O ZNLAHAOCFKBYRH-UHFFFAOYSA-N 0.000 description 1
- SJDLIJNQXLJBBE-UHFFFAOYSA-N 1,4-dioxepan-2-one Chemical compound O=C1COCCCO1 SJDLIJNQXLJBBE-UHFFFAOYSA-N 0.000 description 1
- AOLNDUQWRUPYGE-UHFFFAOYSA-N 1,4-dioxepan-5-one Chemical compound O=C1CCOCCO1 AOLNDUQWRUPYGE-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- QMDUQRDPJXKZAO-UHFFFAOYSA-N 3,3-diethyl-1,4-dioxane-2,5-dione Chemical compound CCC1(CC)OC(=O)COC1=O QMDUQRDPJXKZAO-UHFFFAOYSA-N 0.000 description 1
- FQFQWTFNRFUWKM-UHFFFAOYSA-N 3,3-diethyloxetan-2-one Chemical compound CCC1(CC)COC1=O FQFQWTFNRFUWKM-UHFFFAOYSA-N 0.000 description 1
- ULKFLOVGORAZDI-UHFFFAOYSA-N 3,3-dimethyloxetan-2-one Chemical compound CC1(C)COC1=O ULKFLOVGORAZDI-UHFFFAOYSA-N 0.000 description 1
- MVXNGTMKSZHHCO-UHFFFAOYSA-N 3-methyl-1,4-dioxane-2,5-dione Chemical compound CC1OC(=O)COC1=O MVXNGTMKSZHHCO-UHFFFAOYSA-N 0.000 description 1
- YKVIWISPFDZYOW-UHFFFAOYSA-N 6-Decanolide Chemical compound CCCCC1CCCCC(=O)O1 YKVIWISPFDZYOW-UHFFFAOYSA-N 0.000 description 1
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical class O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 1
- 229940127291 Calcium channel antagonist Drugs 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 239000000150 Sympathomimetic Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000002269 analeptic agent Substances 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 230000000578 anorexic effect Effects 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000000507 anthelmentic effect Effects 0.000 description 1
- 239000000921 anthelmintic agent Substances 0.000 description 1
- 230000003288 anthiarrhythmic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000002456 anti-arthritic effect Effects 0.000 description 1
- 230000001142 anti-diarrhea Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000000118 anti-neoplastic effect Effects 0.000 description 1
- 229940035678 anti-parkinson drug Drugs 0.000 description 1
- 230000001139 anti-pruritic effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 239000003416 antiarrhythmic agent Substances 0.000 description 1
- 229940124346 antiarthritic agent Drugs 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 239000000935 antidepressant agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 229940125714 antidiarrheal agent Drugs 0.000 description 1
- 239000003793 antidiarrheal agent Substances 0.000 description 1
- 229940124538 antidiuretic agent Drugs 0.000 description 1
- 239000003160 antidiuretic agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229960005475 antiinfective agent Drugs 0.000 description 1
- 229940005486 antimigraine preparations Drugs 0.000 description 1
- 239000002579 antinauseant Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 239000003908 antipruritic agent Substances 0.000 description 1
- 239000000164 antipsychotic agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 229940097320 beta blocking agent Drugs 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000000480 calcium channel blocker Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229940037530 cough and cold preparations Drugs 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 229940124581 decongestants Drugs 0.000 description 1
- 206010061428 decreased appetite Diseases 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940030606 diuretics Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229940083747 low-ceiling diuretics xanthine derivative Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- JMRZMIFDYMSZCB-UHFFFAOYSA-N morpholine-2,5-dione Chemical compound O=C1COC(=O)CN1 JMRZMIFDYMSZCB-UHFFFAOYSA-N 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002445 parasympatholytic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PHUTUTUABXHXLW-UHFFFAOYSA-N pindolol Chemical compound CC(C)NCC(O)COC1=CC=CC2=NC=C[C]12 PHUTUTUABXHXLW-UHFFFAOYSA-N 0.000 description 1
- 229960002508 pindolol Drugs 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000003368 psychostimulant agent Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229940125723 sedative agent Drugs 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 229920006126 semicrystalline polymer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000001975 sympathomimetic effect Effects 0.000 description 1
- 229940064707 sympathomimetics Drugs 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 239000003106 tissue adhesive Substances 0.000 description 1
- 229940075469 tissue adhesives Drugs 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 229940124549 vasodilator Drugs 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/26—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
- A61L29/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
Definitions
- the general field to which the invention relates to is devices made of absorbable polymer matrices.
- absorbable polyester matrices for use in a thermally deformable plating system for the fixation of bone and cartilage, especially hard tissue of the cranium.
- Synthetic absorbable biocompatible polymers are well known in the art. Such polymers are typically used to manufacture medical devices, which are implanted in body tissue and absorb over time. Synthetic absorbable biocompatible polymers include homopolymers, copolymers (random, block, segmented and graft) of monomers such as glycolic acid, glycolide (d, l, meso and mixtures thereof), lactic acid, lactide, ⁇ -caprolactone, trimethylene carbonate and p-dioxanone. Numerous U.S. patents describe these polymers including U.S. Pat. Nos. 5,431,679; 5,403,347; 5,314,989; 5,431,679; 5,403,347; and 5,502,159.
- the surgical devices of the present invention provide a visual cue to surgeons indicating when the surgical device may be contoured or shaped.
- an absorbable polymeric matrix that provides a visual cue when heated that the absorbable polymeric matrix may be deformed without significantly reducing the strength (due to internal stress concentration) of a device made from the polymeric matrix.
- These polymeric matrices are especially well suited for use in implantable surgical devices such as plates, pins, rods and the like that need to be shaped during medical procedures to accommodate the patient.
- the method of shaping a surgical article containing these absorbable polymeric matrices comprises heating the surgical article until a visual cue is provided by the absorbable polymeric matrix that the portion of the surgical article made from the absorbable polymeric matrix may be safely shaped, then shaping that portion of the surgical article to the desired final shape and allowing the surgical article to cool.
- FIG. 1 photographically illustrates the visual cue of the device of the present invention.
- the burr hole cover plate on the left is opaque at room temperature, while the plate on the right has been heated to 55° C. is nearly transparent.
- the biocompatible polymeric materials described herein are matrices having a continuous phase and a disperse phase.
- the continuous phase is generally composed of an amorphous biocompatible polymeric material.
- the dispersed phase is composed of a biocompatible material with a low melting point.
- the dispersed phase is believed to provide scattering centers in the matrix that when heated become transparent. This provides the surgeon a visual cue of when to bend and shape the medical device formed from the matrix.
- the present invention is far superior to the devices disclosed in the prior art.
- the polymeric materials of the present invention are formed of a polymeric matrix with a continuous phase and a dispersed phase of a lower melting crystalline material forming a second distinct phase.
- the continuous phase is preferably formed from amorphous biocompatible polymers.
- Suitable amorphous biocompatible polymers include, but are not limited to, amorphous aliphatic ester polymers selected from the group consisting of amorphous polylactide (including D-lactide, L-lactide, mixtures of D-lactide and L-lactide, as well as, lactic acid polymers), amorphous polyglycolide (including polyglycolic acid polymers), amorphous poly-1,4-dioxan-2-one, amorphous polytrimethylene carbonate (also known as poly-1,3-dioxan-2-one) and copolymers and blends thereof.
- amorphous aliphatic ester polymers selected from the group consisting of amorphous polylactide (including D-lactide, L-lactide, mixtures of D-lactide and L-lactide, as well as, lactic acid polymers), amorphous polyglycolide (including polyglycolic acid polymers), amorphous poly-1
- the dispersed phase is a semi-crystalline polymer that will form a separate phase in the continuous matrix and melt at a temperature between about 40° C. to about 65° C., and most preferably will melt at a temperature in the range of from about 40° C. to about 55° C.
- Suitable absorbable biocompatible polymers that may used especially in association with the aliphatic ester polymers listed for the dispersed phase include, but are not limited to, biocompatible absorbable polymers selected from the group consisting of poly( ⁇ caprolactone); copolymers of ⁇ -caprolactone and with up to 40 mole percent of a second monomer selected from the group consisting of lactide (lactic acid), glycolide (glycolic acid), 1,4-dioxan-2-one, and trimethylene carbonate; and copolymers of ⁇ -caprolactone or trimethylene carbonate with greater than 60 mole percent 1,4-dioxan-2-one, but less than 90 mole percent.
- biocompatible absorbable polymers selected from the group consisting of poly( ⁇ caprolactone); copolymers of ⁇ -caprolactone and with up to 40 mole percent of a second monomer selected from the group consisting of lactide (lactic acid), glycolide (glycolic acid), 1,4-dioxan
- the dispersed phase may be formed from low melting biocompatible organic molecules of an appropriate size to act as scattering sites that may be blended with the matrix without adversely affecting the chemical or mechanical properties of the matrix polymer for its intended use.
- a suitable organic material is polyethylene glycol (PEG).
- the continuous phase and the dispersed phase could also be provided by using block copolymers composed of the continuous phase and dispersed phase polymers described above, provided that the block copolymers formed two distinct phases, wherein the dispersed phase block forms scattering sites and the dispersed phase has a melting point in the temperature range previously described.
- the amount of biocompatible material in the dispersed phase will be that amount sufficient to provide a visual cue when the biocompatible materials in the dispersed phase become transparent or melt or otherwise visually changes during heating of the device.
- the weight percent of dispersed polymer comprise in the range of from about 1 to about 50 and most preferable from about 2 to about 20. The weight percentages being based on the total weight percent of the matrix polymers equaling 100 percent.
- the device will be shaped to accommodate the patients individual anatomy or the particular surgical requirements.
- the medical device would be heated preferably in a liquid media until the medical device provides a visible cue that it may be shaped (without imparting undue stress to the medical device).
- the absorbable polymer matrices under goes a reversible visual change when a substantial amount of the dispersed polymer phase becomes clear by melting.
- the scattering sites when transparent no longer scatter light and the absorbable polymeric matrix will appear clear as long as the dispersed phase remains above its melting point.
- the surgeon would heat the matrix to a temperature from about 40° C. to about 65° C. until it becomes nearly transparent. While the matrix appears clear the surgeon will be able to safely shape the device.
- the polymers of the present invention will typically be synthesized in a ring opening polymerization. That is, the aliphatic lactone monomers lactide, glycolide, ⁇ -caprolactone, p-dioxanone, and trimethylene carbonate are polymerized in the presence of an organometallic catalyst and an initiator at elevated temperatures.
- the organometallic catalyst is preferably tin based, e.g., stannous octoate, and is present in the monomer mixture at a molar ratio of monomer to catalyst ranging from about 10,000/1 to about 100,000/1.
- the initiator is typically an alkanol (including diols and polyols), a glycol, a hydroxyacid, or an amine, and is present in the monomer mixture at a molar ratio of monomer to initiator ranging from about 100/1 to about 5000/1.
- the polymerization is typically carried out at a temperature range from about 80° C. to about 240° C., preferably from about 100° C. to about 220° C., until the desired molecular weight and viscosity are achieved.
- the polymer blends of the present invention are manufactured in a conventional manner, preferably in the following manner.
- the homopolymers and copolymers, prepared as described above, are individually charged into a conventional mixing vessel or reactor vessel having a conventional mixing device mounted therein, such as an impeller or equivalents thereof.
- the polymers and copolymers are mixed at a temperature of about 100° C. to about 230° C., more preferably from about 160° C. to about 200° C., for about 5 to about 90 minutes, more preferably for about 10 to about 45 minutes, until a uniformly dispersed polymer blend is obtained.
- the polymer blend is further processed by removing it from the mixing device, cooling to room temperature, grinding, and drying under pressures below atmospheric at elevated temperatures for a period of time using conventional apparatuses and processes.
- the polymers and blends composed of glycolide, ⁇ -caprolactone, p-dioxanone, lactide and trimethylene carbonate will typically have a weight average molecular weight of about 20,000 grams per mole to about 300,000 grams per mole, more typically about 40,000 grams per mole to about 200,000 grams per mole, and preferably about 60,000 grams per mole to about 150,000 grams per mole.
- molecular weights provide an inherent viscosity between about 0.5 to about 4.0 deciliters per gram (dL/g), more typically about 0.7 to about 3.5 dL/g, and most preferably about 1.0 to about 3.0 dL/g as measured in a 0.1 g/dL solution of hexafluoroisopropanol (HFIP) at 25° C. Also, it should be noted that under the above described conditions, the residual monomer content would be less than about 5 weight percent.
- dL/g deciliters per gram
- HFIP hexafluoroisopropanol
- Articles such as medical devices are molded from the polymers and blends of the present invention by use of various injection and extrusion molding equipment equipped with dry nitrogen atmospheric chamber(s) at temperatures ranging from about 100° C. to about 230° C., more preferably 140° C. to about 200° C., with residence times of about 1 to about 20 minutes, more preferably about 2 to about 10 minutes.
- the polymers and blends of the present invention can be melt processed by numerous methods to prepare a vast array of useful devices. These materials can be injection or compression molded to make implantable medical and surgical devices, including wound closure devices. The preferred devices are orthopedic plates, pins and rods.
- the blends and polymers can be extruded to prepare fibers.
- the materials of the present invention may also be spun as multifilament yarn and woven or knitted to form sponges or gauze, (or non-woven sheets may be prepared) or used in conjunction with other molded compressive structures such as prosthetic devices within the body of a human or animal where it is desirable that the structure have high tensile strength and desirable levels of compliance and/or ductility.
- Useful embodiments include tubes, including branched tubes, for artery, vein or intestinal repair, nerve splicing, tendon splicing, sheets for tying up and supporting damaged surface abrasions, particularly major abrasions, or areas where the skin and underlying tissues are damaged or surgically removed.
- the polymers and blends can be molded to form films which, when sterilized, are useful as adhesion prevention barriers.
- the polymers and blends can be used as a drug delivery matrix.
- the polymer would be mixed with a therapeutic agent.
- the variety of different therapeutic agents that can be used in conjunction with the polymers of the present invention is vast.
- therapeutic agents which may be administered via the pharmaceutical compositions of the invention include, without limitation: antiinfectives such as antibiotics and antiviral agents; analgesics and analgesic combinations; anorexics; antihelmintics; antiarthritics; antiasthmatic agents; anticonvulsants; antidepressants; antidiuretic agents; antidiarrheals; antihistamines; antiinflammatory agents; antimigraine preparations; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics, antispasmodics; anticholinergics; sympathomimetics; xanthine derivatives; cardiovascular preparations including calcium channel blockers and beta-blockers such as pindolol and antiarrhythmics; antihypertensives; diuretics; vasodilators including general coronary, peripheral and cerebral; central nervous system stimulants; cough and cold preparations, including decongestants; hormones such as estradio
- the drug delivery matrix may be administered orally, parenterally, subcutaneously, vaginally or anally.
- Matrix formulations may be formulated by mixing one or more therapeutic agents with the polymer.
- the therapeutic agent may be present as a liquid, a finely divided solid, or any other appropriate physical form.
- the matrix will include one or more additives, such as diluents, carriers, excipients, stabilizers or the like.
- the amount of therapeutic agent will depend on the particular drug being employed and medical condition being treated. Typically, the amount of drug represents about 0.001% to about 70%, more typically about 0.001% to about 50%, most typically about 0.001% to about 20% by weight of the matrix.
- the quantity and type of polymer incorporated into the drug delivery matrix will vary depending on the release profile desired and the amount of drug employed.
- the polymer Upon contact with body fluids, the polymer undergoes gradual degradation (mainly through hydrolysis) with concomitant release of the dispersed drug for a sustained or extended period. This can result in prolonged delivery (over, say 1 to 5,000 hours, preferably 2 to 800 hours) of effective amounts (say, 0.0001 mg/kg/hour to 10 mg/kg/hour) of the drug.
- This dosage form can be administered as is necessary depending on the subject being treated, the severity of the affliction, the judgment of the prescribing physician, and the like.
- polymers and blends of the present invention can be processed by conventional techniques to form foams, which are useful as hemostatic barriers, bone substitutes, and tissue scaffolds.
- the surgical and medical uses of the filaments, films, foams and molded articles of the present invention include, but are not necessarily limited to knitted products, woven or non-woven, and molded products including:
- the examples describe an opaque plating system that comprises a polymer or polymer blends that when heated is transparent then opaque again upon cooling to body temperature.
- the high molecular weight aliphatic polyesters are prepared by a method consisting of reacting lactone monomers via a ring opening polymerization at temperatures of 100° C. to 230° C. for 2 to 24 hours under an inert nitrogen atmosphere until the desired molecular weight and viscosity are achieved.
- the polymer blends of the present invention are prepared by individually charging the synthesized aliphatic homo- and co-polyesters into a conventional mixing vessel.
- the homopolymers and copolymers are mixed at a temperature of 100° C. to 230° C., for 5 to 90 minutes until a uniformly dispersed polymer blend is obtained.
- the blends, polymers and monomers were characterized for chemical composition and purity (NMR, FT-IR), thermal analysis (DSC), melt rheology (melt stability and viscosity), molecular weight (inherent viscosity), and baseline mechanical properties (Instron stress/strain).
- Inherent viscosities (I.V., dL/g) of the blends and polymers were measured using a 50 bore Cannon-Ubbelhode dilution viscometer immersed in a thermostatically controlled water bath at 25° C. utilizing chloroform or HFIP (hexafluoroisopropanol) as the solvent at a concentration of 0.1 g/dL.
- the assembly was then placed in a high temperature oil bath at 185° C.
- the stirred monomers quickly began to melt.
- the low viscosity melt quickly increased in viscosity.
- Mechanical stirring of the high viscosity melt was continued for a total reaction time of 4 hours.
- the assembly is then placed in a high temperature oil bath at 190° C.
- the stirred monomers quickly began to melt.
- the low viscosity melt quickly increased in viscosity.
- Mechanical stirring of the high viscosity melt is continued for a total reaction time of 24 hours.
- the 60:40 (mol/mol) poly( ⁇ -caprolactone-co-L-lactide) copolymer is removed from the bath, cooled to room temperature under a stream of nitrogen, isolated and ground. The polymer is then dried under vacuum at 40° C. for 24 hours. Inherent viscosity using HFIP as a solvent is 1.92 dL/g.
- a circular burr hole cover plate (as illustrated in FIG. 1) was manufactured from the matrix described in Example 3 by the injection molding process described in Example 7. The plate was then immersed in a vessel containing a biocompatible heat transfer medium (i.e. warm water, . . . at a temperature of about 50-60° C., until the plate became clear. This visual cue signals the surgeon that the plate may be removed from the vessel and shaped by bending it without causing damage to the plate. The surgeon would then secure the plate to a fracture site in a conventional manner using conventional fasteners (i.e. rivets, pins and screws).
- a biocompatible heat transfer medium i.e. warm water, . . . at a temperature of about 50-60° C.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Transplantation (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Materials For Medical Uses (AREA)
- Polyesters Or Polycarbonates (AREA)
- Surgical Instruments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
An absorbable biocompatible polymeric matrix is described. The matrix has a continuous phase that is preferably amorphous. The matrix also has a disperse phase of low melting biocompatible material that acts as scattering centers for light and melts at a temperature lower than the continuous phase of the matrix. This matrix is especially useful in a variety of medical devices. When this matrix is heated to about the melting temperature of the dispersed phase the matrix undergoes a visual change. This provides a visual cue to a surgeon using the medical devices as to when the device can be safely shaped or manipulated without imparting undue stress to the device. As the medical device cools below the temperature at which it may be safely deformed the matrix resumes its original appearance signalling that it may no longer be safely shaped or manipulated.
Description
- The general field to which the invention relates to is devices made of absorbable polymer matrices. Specifically, absorbable polyester matrices for use in a thermally deformable plating system for the fixation of bone and cartilage, especially hard tissue of the cranium.
- Synthetic absorbable biocompatible polymers are well known in the art. Such polymers are typically used to manufacture medical devices, which are implanted in body tissue and absorb over time. Synthetic absorbable biocompatible polymers include homopolymers, copolymers (random, block, segmented and graft) of monomers such as glycolic acid, glycolide (d, l, meso and mixtures thereof), lactic acid, lactide, ε-caprolactone, trimethylene carbonate and p-dioxanone. Numerous U.S. patents describe these polymers including U.S. Pat. Nos. 5,431,679; 5,403,347; 5,314,989; 5,431,679; 5,403,347; and 5,502,159.
- There is a constant need in this art for new polymer compositions having improved physical properties when molded or extruded into medical devices and further having excellent in vivo properties. For example, it is known that copolymers of lactide and glycolide have good in vivo properties (U.S. Pat. No. 5,569,250). These materials are also generally known in the art to be single phase, amorphous or semi-crystalline copolymers with melting points exceeding 100° C., and no low melting or immiscible component.
- Heat deforming of absorbable devices, such as plates, has also been described in U.S. Pat. No. 5,569,250. However, one drawback of such devices is their lack of a visual cue to aid the surgeon in knowing the precise time that they can begin deforming the device. This is critical to the device, because premature bending or otherwise manipulating it before it has relaxed (i.e., heated above its Tg or Tm) can cause stresses to form in the part, weakening it, especially in clinical situations.
- Unfortunately, U.S. Pat. No. 5,569,250 does not recognize that absorbable plates, rods and pins, for example, could be manufactured from a polymeric material that provides a visual cue to a surgeon during surgery to assist him/her in appropriately applying the device to the surgical site.
- Therefore, what is needed in this art is a novel device that provides a visual cue during its application (i.e., deformation during heating) to indicate when it can be safely manipulated or shaped.
- The surgical devices of the present invention provide a visual cue to surgeons indicating when the surgical device may be contoured or shaped.
- We have discovered an absorbable polymeric matrix that provides a visual cue when heated that the absorbable polymeric matrix may be deformed without significantly reducing the strength (due to internal stress concentration) of a device made from the polymeric matrix. These polymeric matrices are especially well suited for use in implantable surgical devices such as plates, pins, rods and the like that need to be shaped during medical procedures to accommodate the patient. The method of shaping a surgical article containing these absorbable polymeric matrices comprises heating the surgical article until a visual cue is provided by the absorbable polymeric matrix that the portion of the surgical article made from the absorbable polymeric matrix may be safely shaped, then shaping that portion of the surgical article to the desired final shape and allowing the surgical article to cool.
- The foregoing and other features and advantages of the invention will become more apparent from the following description and accompanying examples.
- FIG. 1 photographically illustrates the visual cue of the device of the present invention. The burr hole cover plate on the left is opaque at room temperature, while the plate on the right has been heated to 55° C. is nearly transparent.
- The biocompatible polymeric materials described herein are matrices having a continuous phase and a disperse phase. The continuous phase is generally composed of an amorphous biocompatible polymeric material. The dispersed phase is composed of a biocompatible material with a low melting point. The dispersed phase is believed to provide scattering centers in the matrix that when heated become transparent. This provides the surgeon a visual cue of when to bend and shape the medical device formed from the matrix. In applications that require shaping the device, such as cranial plating over a variety of bony contours, the present invention is far superior to the devices disclosed in the prior art.
- The polymeric materials of the present invention are formed of a polymeric matrix with a continuous phase and a dispersed phase of a lower melting crystalline material forming a second distinct phase. The continuous phase is preferably formed from amorphous biocompatible polymers. Suitable amorphous biocompatible polymers include, but are not limited to, amorphous aliphatic ester polymers selected from the group consisting of amorphous polylactide (including D-lactide, L-lactide, mixtures of D-lactide and L-lactide, as well as, lactic acid polymers), amorphous polyglycolide (including polyglycolic acid polymers), amorphous poly-1,4-dioxan-2-one, amorphous polytrimethylene carbonate (also known as poly-1,3-dioxan-2-one) and copolymers and blends thereof. For crystalline compositions the polymers will have a melting point above 80° C. and most preferably above 70° C.
- The dispersed phase is a semi-crystalline polymer that will form a separate phase in the continuous matrix and melt at a temperature between about 40° C. to about 65° C., and most preferably will melt at a temperature in the range of from about 40° C. to about 55° C. Suitable absorbable biocompatible polymers that may used especially in association with the aliphatic ester polymers listed for the dispersed phase include, but are not limited to, biocompatible absorbable polymers selected from the group consisting of poly(εcaprolactone); copolymers of ε-caprolactone and with up to 40 mole percent of a second monomer selected from the group consisting of lactide (lactic acid), glycolide (glycolic acid), 1,4-dioxan-2-one, and trimethylene carbonate; and copolymers of ε-caprolactone or trimethylene carbonate with greater than 60 mole percent 1,4-dioxan-2-one, but less than 90 mole percent.
- Additionally, the dispersed phase may be formed from low melting biocompatible organic molecules of an appropriate size to act as scattering sites that may be blended with the matrix without adversely affecting the chemical or mechanical properties of the matrix polymer for its intended use. One suitable organic material is polyethylene glycol (PEG).
- Additionally, the continuous phase and the dispersed phase could also be provided by using block copolymers composed of the continuous phase and dispersed phase polymers described above, provided that the block copolymers formed two distinct phases, wherein the dispersed phase block forms scattering sites and the dispersed phase has a melting point in the temperature range previously described.
- Generally, the amount of biocompatible material in the dispersed phase will be that amount sufficient to provide a visual cue when the biocompatible materials in the dispersed phase become transparent or melt or otherwise visually changes during heating of the device. By way of a guideline, but not limiting the scope of the present invention, for the combination of the continuous phase aliphatic polyesters previously listed with the dispersed phase biocompatible absorbable polymers previously listed, it is preferred that the weight percent of dispersed polymer comprise in the range of from about 1 to about 50 and most preferable from about 2 to about 20. The weight percentages being based on the total weight percent of the matrix polymers equaling 100 percent.
- In a medical procedure the device will be shaped to accommodate the patients individual anatomy or the particular surgical requirements. The medical device would be heated preferably in a liquid media until the medical device provides a visible cue that it may be shaped (without imparting undue stress to the medical device). In one preferred embodiment of the present invention when heated the absorbable polymer matrices under goes a reversible visual change when a substantial amount of the dispersed polymer phase becomes clear by melting. The scattering sites when transparent no longer scatter light and the absorbable polymeric matrix will appear clear as long as the dispersed phase remains above its melting point. For the absorbable polymeric matrix described above the surgeon would heat the matrix to a temperature from about 40° C. to about 65° C. until it becomes nearly transparent. While the matrix appears clear the surgeon will be able to safely shape the device.
- The polymers of the present invention will typically be synthesized in a ring opening polymerization. That is, the aliphatic lactone monomers lactide, glycolide, ε-caprolactone, p-dioxanone, and trimethylene carbonate are polymerized in the presence of an organometallic catalyst and an initiator at elevated temperatures. The organometallic catalyst is preferably tin based, e.g., stannous octoate, and is present in the monomer mixture at a molar ratio of monomer to catalyst ranging from about 10,000/1 to about 100,000/1. The initiator is typically an alkanol (including diols and polyols), a glycol, a hydroxyacid, or an amine, and is present in the monomer mixture at a molar ratio of monomer to initiator ranging from about 100/1 to about 5000/1. The polymerization is typically carried out at a temperature range from about 80° C. to about 240° C., preferably from about 100° C. to about 220° C., until the desired molecular weight and viscosity are achieved.
- The polymer blends of the present invention are manufactured in a conventional manner, preferably in the following manner. The homopolymers and copolymers, prepared as described above, are individually charged into a conventional mixing vessel or reactor vessel having a conventional mixing device mounted therein, such as an impeller or equivalents thereof. Then, the polymers and copolymers are mixed at a temperature of about 100° C. to about 230° C., more preferably from about 160° C. to about 200° C., for about 5 to about 90 minutes, more preferably for about 10 to about 45 minutes, until a uniformly dispersed polymer blend is obtained. Then, the polymer blend is further processed by removing it from the mixing device, cooling to room temperature, grinding, and drying under pressures below atmospheric at elevated temperatures for a period of time using conventional apparatuses and processes.
- Additionally, a minor amount (less than 5, preferably less than 3 weight percent weight percent) of additional lactone monomers selected from the group consisting of 1,3-dioxan-2-one, p-dioxanone, delta-valerolactone, beta-butyrolactone, epsilon-decalactone, 2,5-diketomorpholine, pivalolactone, alpha, alpha-diethylpropiolactone, ethylene carbonate, ethylene oxalate, 3-methyl-1,4-dioxane-2,5-dione, 3,3-diethyl-1,4-dioxan-2,5-dione, gamma-butyrolactone, 1,4-dioxepan-2-one, 1,5-dioxepan-2-one, 6,6-dimethyl-dioxepan-2-one, 6,8-dioxabicycloctane-7-one and combinations of two or more thereof may be added.
- Under the above described conditions, the polymers and blends composed of glycolide, ε-caprolactone, p-dioxanone, lactide and trimethylene carbonate will typically have a weight average molecular weight of about 20,000 grams per mole to about 300,000 grams per mole, more typically about 40,000 grams per mole to about 200,000 grams per mole, and preferably about 60,000 grams per mole to about 150,000 grams per mole. These molecular weights provide an inherent viscosity between about 0.5 to about 4.0 deciliters per gram (dL/g), more typically about 0.7 to about 3.5 dL/g, and most preferably about 1.0 to about 3.0 dL/g as measured in a 0.1 g/dL solution of hexafluoroisopropanol (HFIP) at 25° C. Also, it should be noted that under the above described conditions, the residual monomer content would be less than about 5 weight percent.
- Articles such as medical devices are molded from the polymers and blends of the present invention by use of various injection and extrusion molding equipment equipped with dry nitrogen atmospheric chamber(s) at temperatures ranging from about 100° C. to about 230° C., more preferably 140° C. to about 200° C., with residence times of about 1 to about 20 minutes, more preferably about 2 to about 10 minutes.
- The polymers and blends of the present invention can be melt processed by numerous methods to prepare a vast array of useful devices. These materials can be injection or compression molded to make implantable medical and surgical devices, including wound closure devices. The preferred devices are orthopedic plates, pins and rods.
- Alternatively, the blends and polymers can be extruded to prepare fibers. The materials of the present invention may also be spun as multifilament yarn and woven or knitted to form sponges or gauze, (or non-woven sheets may be prepared) or used in conjunction with other molded compressive structures such as prosthetic devices within the body of a human or animal where it is desirable that the structure have high tensile strength and desirable levels of compliance and/or ductility. Useful embodiments include tubes, including branched tubes, for artery, vein or intestinal repair, nerve splicing, tendon splicing, sheets for tying up and supporting damaged surface abrasions, particularly major abrasions, or areas where the skin and underlying tissues are damaged or surgically removed.
- Additionally, the polymers and blends can be molded to form films which, when sterilized, are useful as adhesion prevention barriers.
- In another embodiment of the present invention, the polymers and blends can be used as a drug delivery matrix. To form this matrix, the polymer would be mixed with a therapeutic agent. The variety of different therapeutic agents that can be used in conjunction with the polymers of the present invention is vast. In general, therapeutic agents which may be administered via the pharmaceutical compositions of the invention include, without limitation: antiinfectives such as antibiotics and antiviral agents; analgesics and analgesic combinations; anorexics; antihelmintics; antiarthritics; antiasthmatic agents; anticonvulsants; antidepressants; antidiuretic agents; antidiarrheals; antihistamines; antiinflammatory agents; antimigraine preparations; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics, antispasmodics; anticholinergics; sympathomimetics; xanthine derivatives; cardiovascular preparations including calcium channel blockers and beta-blockers such as pindolol and antiarrhythmics; antihypertensives; diuretics; vasodilators including general coronary, peripheral and cerebral; central nervous system stimulants; cough and cold preparations, including decongestants; hormones such as estradiol and other steroids, including corticosteroids; hypnotics; immunosuppressives; muscle relaxants; parasympatholytics; psychostimulants; sedatives; and tranquilizers; and naturally derived or genetically engineered proteins, polysaccharides, glycoproteins, or lipoproteins.
- The drug delivery matrix may be administered orally, parenterally, subcutaneously, vaginally or anally. Matrix formulations may be formulated by mixing one or more therapeutic agents with the polymer. The therapeutic agent, may be present as a liquid, a finely divided solid, or any other appropriate physical form. Typically, but optionally, the matrix will include one or more additives, such as diluents, carriers, excipients, stabilizers or the like.
- The amount of therapeutic agent will depend on the particular drug being employed and medical condition being treated. Typically, the amount of drug represents about 0.001% to about 70%, more typically about 0.001% to about 50%, most typically about 0.001% to about 20% by weight of the matrix.
- The quantity and type of polymer incorporated into the drug delivery matrix will vary depending on the release profile desired and the amount of drug employed.
- Upon contact with body fluids, the polymer undergoes gradual degradation (mainly through hydrolysis) with concomitant release of the dispersed drug for a sustained or extended period. This can result in prolonged delivery (over, say 1 to 5,000 hours, preferably 2 to 800 hours) of effective amounts (say, 0.0001 mg/kg/hour to 10 mg/kg/hour) of the drug. This dosage form can be administered as is necessary depending on the subject being treated, the severity of the affliction, the judgment of the prescribing physician, and the like.
- Following this or similar procedures, those skilled in the art will be able to prepare a variety of formulations.
- Furthermore, the polymers and blends of the present invention can be processed by conventional techniques to form foams, which are useful as hemostatic barriers, bone substitutes, and tissue scaffolds.
- In more detail, the surgical and medical uses of the filaments, films, foams and molded articles of the present invention include, but are not necessarily limited to knitted products, woven or non-woven, and molded products including:
- a. burn dressings
- b. hernia patches
- c. medicated dressings
- d. fascial substitutes
- e. gauze, fabric, sheet, felt or sponge for liver hemostasis
- f. gauze bandages
- g. arterial graft or substitutes
- h. bandages for skin surfaces
- i. burn dressings
- j. bone substitutes
- k. needles
- l. intrauterine devices
- m. draining or testing tubes or capillaries
- n. surgical instruments
- o. vascular implants or supports
- p. vertebral discs
- q. extracorporeal tubing for kidney and heart-lung machines
- r. artificial skin and others
- s. stents
- t. suture anchors
- u. injectable defect fillers
- v. preformed defect fillers
- w. tissue adhesives and sealants
- x. bone waxes
- y. cartilage replacements
- z. hemostatic barriers
- aa. tissue scaffolds
- bb. monofilament and braided sutures
- cc. orthopedic, spinal and nuerosurgical plates, rods and pins.
- The following non-limiting examples are illustrative of the principles and practice of this invention. Numerous additional embodiments within the scope and spirit of the invention will become apparent to those skilled in the art.
- The examples describe an opaque plating system that comprises a polymer or polymer blends that when heated is transparent then opaque again upon cooling to body temperature.
- In the synthetic process, the high molecular weight aliphatic polyesters are prepared by a method consisting of reacting lactone monomers via a ring opening polymerization at temperatures of 100° C. to 230° C. for 2 to 24 hours under an inert nitrogen atmosphere until the desired molecular weight and viscosity are achieved.
- In the blending process, the polymer blends of the present invention are prepared by individually charging the synthesized aliphatic homo- and co-polyesters into a conventional mixing vessel. The homopolymers and copolymers are mixed at a temperature of 100° C. to 230° C., for 5 to 90 minutes until a uniformly dispersed polymer blend is obtained.
- In the examples which follow, the blends, polymers and monomers were characterized for chemical composition and purity (NMR, FT-IR), thermal analysis (DSC), melt rheology (melt stability and viscosity), molecular weight (inherent viscosity), and baseline mechanical properties (Instron stress/strain).
- Inherent viscosities (I.V., dL/g) of the blends and polymers were measured using a 50 bore Cannon-Ubbelhode dilution viscometer immersed in a thermostatically controlled water bath at 25° C. utilizing chloroform or HFIP (hexafluoroisopropanol) as the solvent at a concentration of 0.1 g/dL.
- Several examples will be described in the following few pages. Parts and percentages where used are parts and percentages as specified as weight or moles.
- Synthesis of a 85:15 (mol/mol) poly(lactide-co-glycolide) copolymer
- The method described below and utilized in this example is similar to those described in U.S. Pat. Nos. 4,643,191, 4,653,497, 5,007,923, 5,047,048 which are incorporated by reference, and is known to those skilled in the art.
- To a flame dried 500 mL 1-neck round bottom flask equipped with an overhead mechanical stirrer and nitrogen inlet, 268 grams (1.86 moles) of L(-) lactide, 38.4 grams (0.330 moles) of glycolide, 0.53 grams (7×10 −3 moles) of glycolic acid initiator, and 131 microliters of a 0.33 M solution of stannous octoate catalyst were added.
- The assembly was then placed in a high temperature oil bath at 185° C. The stirred monomers quickly began to melt. The low viscosity melt quickly increased in viscosity. Mechanical stirring of the high viscosity melt was continued for a total reaction time of 4 hours.
- The 85:15 (mol/mol) poly(lactide-co-glycolide) copolymer was removed from the bath, cooled to room temperature under a stream of nitrogen, isolated and ground. The polymer was then dried under vacuum at 110° C. for 24 hours. Inherent viscosity using HFIP as a solvent was 1.90 dL/g.
- Synthesis of a 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer
- The method described below in this example is similar to those described in U.S. Pat. Nos. 4,643,191, 4,653,497, 5,007,923, 5,047,048 which are incorporated by reference, and is known to those skilled in the art.
- To a flame dried 500 mL 1-neck round bottom flask equipped with an overhead mechanical stirrer and nitrogen inlet, 262.43 grams (2.3 moles) of ε-caprolactone, 12.38 grams (0.12 moles) of p-dioxanone, 0.84 grams (0.011 moles) of glycolic acid initiator, and 147 microliters of a 0.33 M solution of stannous octoate catalyst were added.
- The assembly was then placed in a high temperature oil bath at 190° C. The stirred monomers quickly began to melt. The low viscosity melt quickly increased in viscosity. Mechanical stirring of the high viscosity melt was continued for a total reaction time of 24 hours.
- The 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer was removed from the bath, cooled to room temperature under a stream of nitrogen, isolated and ground. The polymer was then dried under vacuum at 40° C. for 24 hours. Inherent viscosity using HFIP as a solvent was 1.77 dL/g.
- Blending of a 85:15 (mol/mol) poly(lactide-co-glycolide) copolymer with a 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer at a blended weight ratio of 95:5
- 29.45 grams of a 85:15 (mol/mol) poly(lactide-co-glycolide) prepared as described in Example 1 was melt blended with 1.55 grams of the 95:5 (mol/mol) poly(εcaprolactone-co-p-dioxanone) copolymer of Example 2 at a weight ratio of 95:5 in a Brabender Plasti-corder mixer at a temperature of 170° C. for 23 minutes. The resulting blend was removed from the Brabender mixer, cooled, ground and dried under vacuum at 50° C. for 24 hours. Inherent viscosity using HFIP as a solvent was 1.90 dL/g.
- Blending of a 85:15 (mol/mol) poly(lactide-co-glycolide) copolymer with a 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer at a blended weight ratio of 80:20
- 24.8 grams of a 85:15 (mol/mol) poly(lactide-co-glycolide) prepared as described in Example 1 was melt blended with 6.2 grams of the 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer of Example 2 at a weight ratio of 80:20 in a Brabender Plasti-corder mixer at a temperature of 170° C. for 23 minutes. The resulting blend was removed from the Brabender mixer, cooled, ground and dried under vacuum at 50° C. for 24 hours. Inherent viscosity using HFIP as a solvent was 1.83 dL/g.
- Blending of a 85:15 (mol/mol) poly(lactide-co-glycolide) copolymer with a 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer at a blended weight ratio of 60:40
- 18.6 grams of a 85:15 (mol/mol) poly(lactide-co-glycolide) prepared as described in Example 1 was melt blended with 12.4 grams of the 95:5 (mol/mol) poly(ε-caprolactone-co-p-dioxanone) copolymer of Example 2 at a weight ratio of 60:40 in a Brabender Plasti-corder mixer at a temperature of 170° C. for 23 minutes. The resulting blend was removed from the Brabender mixer, cooled, ground and dried under vacuum at 50° C. for 24 hours. Inherent viscosity using HFIP as a solvent was 1.80 dL/g.
- Synthesis of a 60:40 (mol/mol) poly(ε-caprolactone-co-L-lactide) copolymer
- The method described below in this example is similar to those described in U.S. Pat. Nos. 4,643,191, 4,653,497, 5,007,923, 5,047,048 which are incorporated by reference, and is known to those skilled in the art.
- To a flame dried 500 mL 1-neck round bottom flask equipped with an overhead mechanical stirrer and nitrogen inlet, 165.75 grams (1.45 moles) of ε-caprolactone, 139.68 grams (0.97 moles) of L-lactide, 0.84 grams (0.011 moles) of glycolic acid initiator, and 147 microliters of a 0.33 M solution of stannous octoate catalyst are added.
- The assembly is then placed in a high temperature oil bath at 190° C. The stirred monomers quickly began to melt. The low viscosity melt quickly increased in viscosity. Mechanical stirring of the high viscosity melt is continued for a total reaction time of 24 hours.
- The 60:40 (mol/mol) poly(ε-caprolactone-co-L-lactide) copolymer is removed from the bath, cooled to room temperature under a stream of nitrogen, isolated and ground. The polymer is then dried under vacuum at 40° C. for 24 hours. Inherent viscosity using HFIP as a solvent is 1.92 dL/g.
- Injection molding a circular plate (of FIG. 1) of a blend of 85:15 poly(lactide-co-glycolide) copolymer and 95:5 poly(ε-caprolactone-co-p-dioxanone) copolymer at a blended weight ratio of 95:5
- 1.5 Kg of a blend as formed in Example 3 was added to a nitrogen purged hopper of a 28 ton Engel injection molder equipped with an 18 mm diameter barrel to form a circular plate as shown in FIG. 1. Three heating zones of 180, 170, and 140° C. were employed to melt the blend as it entered the barrel. A nozzle temperature of 185° C. with an injection pressure of 700 psi and a speed of 2 in/s were used to feed the molten material down the barrel. Each injection produced a single part in a single cavity mold. A temperature of 45° C. was used in the mold to optimize the stress levels in the part. Using this process 2 parts are formed per minute.
- A circular burr hole cover plate (as illustrated in FIG. 1) was manufactured from the matrix described in Example 3 by the injection molding process described in Example 7. The plate was then immersed in a vessel containing a biocompatible heat transfer medium (i.e. warm water, . . . at a temperature of about 50-60° C., until the plate became clear. This visual cue signals the surgeon that the plate may be removed from the vessel and shaped by bending it without causing damage to the plate. The surgeon would then secure the plate to a fracture site in a conventional manner using conventional fasteners (i.e. rivets, pins and screws).
Claims (20)
1. An absorbable polymeric matrix for use in medical devices that provides a visual cue when heated so that the absorbable polymeric matrix may be deformed without significantly reducing the strength of a device made from the absorbable polymeric matrix.
2. The absorbable polymeric matrix of claim 1 wherein the absorbable polymeric matrix is made from biocompatible aliphatic polyesters.
3. The absorbable polymeric matrix of claim 1 wherein the absorbable polymeric matrix comprises a continuous phase and a dispersed phase.
4. The absorbable polymeric matrix of claim 3 wherein the continuous phase is an amorphous aliphatic polyester selected from the group consisting of amorphous polylactide, amorphous polyglycolide, amorphous poly-1,4-dioxan-2-one, amorphous polytrimethylene carbonate and miscible blends thereof.
5. The absorbable polymeric matrix of claim 3 wherein the dispersed phase is an aliphatic polyester selected from the group consisting of poly(ε-caprolactone); copolymers of ε-caprolactone and with up to 40 mole percent of a second monomer selected from the group consisting of lactide, lactic acid, glycolide, glycolic acid, 1,4-dioxan-2-one, and trimethylene carbonate; copolymers of ε-caprolactone or trimethylene carbonate with greater than 60 mole percent 1,4-dioxan-2-one but less than 90 mole percent and blends thereof.
6. The absorbable polymeric matrix of claim 3 wherein the dispersed phase comprises from about 1 to about 50 weight percent of the absorbable polymeric matrix.
7. The absorbable polymeric matrix of claim 6 wherein the dispersed phase comprises from about 2 to about 20 weight percent of the absorbable polymeric matrix.
8. A medical device that at least a portion thereof is formed from an absorbable polymeric matrix that provides a visual cue when heated that the absorbable polymeric matrix may be deformed without significantly reducing the strength of the portions of the medical device made from the absorbable polymeric matrix wherein the visual cue disappears when the absorbable polymeric matrix cools to a temperature at which deformation would reduce the strength of the absorbable polymeric matrix.
9. The medical device of claim 8 wherein the medical device is selected from the group consisting of burn dressings, hernia patches, medicated dressings, facial substitutes, gauze, fabric, sheet, felt, sponge for liver hemostasis, gauze bandages, arterial graft or substitutes, bandages for skin surfaces, burn dressings, bone substitutes, needles, intrauterine devices, tubes, surgical instruments, vascular implants, vascular supports, vertebral discs, extracorporeal tubing, artificial skin, stents, suture anchors, injectable defect fillers, preformed defect fillers, bone waxes, cartilage replacements, hemostatic barriers, tissue scaffolds, monofilament sutures and braided sutures, pins, rods and plates.
10. The medical device of claim 8 wherein the medical device is selected from the group consisting, bone substitutes, vertebral discs, pins, rods and plates.
11. The medical device of claim 8 wherein the absorbable polymeric matrix comprises a continuous phase and a dispersed phase.
12. The medical device of claim 11 wherein the continuous phase is an amorphous aliphatic polyester selected from the group consisting of amorphous polylactide, amorphous polyglycolide, amorphous poly-1,4-dioxan-2-one, amorphous polytrimethylene carbonate and miscible blends thereof.
13. The medical device of claim 12 wherein the dispersed phase is an aliphatic polyester selected from the group consisting of poly(ε-caprolactone); copolymers of ε-caprolactone and with up to 40 mole percent of a second monomer selected from the group consisting of lactide, lactic acid, glycolide, glycolic acid, 1,4-dioxan-2-one, and trimethylene carbonate; copolymers of ε-caprolactone or trimethylene carbonate with greater than 60 mole percent 1,4-dioxan-2-one but less than 90 mole percent and blends thereof.
14. A method of shaping a surgical article having a portion thereof formed from an absorbable polymeric matrix comprises heating that portion of the surgical article that is formed from the absorbable polymeric matrix until a visual cue is provided by the absorbable polymeric matrix that the portion of the surgical article made from the absorbable polymeric matrix may be safely shaped, then shaping that portion of the surgical article to the desired final shape while the visual cue is present and allowing the surgical article to cool.
15. The process of claim 14 wherein the surgical article is heated to a temperature in the range of from about 40° C. to about 65° C.
16. The process of claim 14 wherein the surgical article is heated in a biocompatible liquid medium.
17. The process of claim 14 wherein the surgical article is selected from the group consisting, bone substitutes, vertebral discs, pins, rods and plates.
18. The process of claim 14 wherein the absorbable polymeric matrix has a continuous phase that is an amorphous aliphatic polyester selected from the group consisting of amorphous polylactide, amorphous polyglycolide, amorphous poly-1,4-dioxan-2-one, amorphous polytrimethylene carbonate and miscible blends thereof.
19. The process of claim 18 wherein the absorbable polymeric matrix has a dispersed phase that is an aliphatic polyester selected from the group consisting of poly(εcaprolactone); copolymers of ε-caprolactone and with up to 40 mole percent of a second monomer selected from the group consisting of lactide, lactic acid, glycolide, glycolic acid, 1,4-dioxan-2-one, and trimethylene carbonate; copolymers of e-caprolactone or trimethylene carbonate with greater than 60 mole percent 1,4-dioxan-2-one but less than 90 mole percent and blends thereof.
20. The process of claim 19 wherein the dispersed phase comprises from about 2 to about 20 weight percent of the absorbable polymeric matrix.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/978,415 US20020016596A1 (en) | 1998-04-06 | 2001-10-16 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US5534298A | 1998-04-06 | 1998-04-06 | |
| US09/497,060 US6332884B1 (en) | 1998-04-06 | 2000-02-02 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
| US09/978,415 US20020016596A1 (en) | 1998-04-06 | 2001-10-16 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/497,060 Division US6332884B1 (en) | 1998-04-06 | 2000-02-02 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020016596A1 true US20020016596A1 (en) | 2002-02-07 |
Family
ID=21997215
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/497,060 Expired - Lifetime US6332884B1 (en) | 1998-04-06 | 2000-02-02 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
| US09/978,415 Abandoned US20020016596A1 (en) | 1998-04-06 | 2001-10-16 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/497,060 Expired - Lifetime US6332884B1 (en) | 1998-04-06 | 2000-02-02 | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US6332884B1 (en) |
| EP (1) | EP0949299B1 (en) |
| JP (1) | JPH11332975A (en) |
| DE (1) | DE69925775T2 (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020193819A1 (en) * | 2001-05-29 | 2002-12-19 | Porter Stephen Christopher | Injection molded vaso-occlusive elements |
| US6623487B1 (en) * | 2001-02-13 | 2003-09-23 | Biomet, Inc. | Temperature sensitive surgical fastener |
| US20040044397A1 (en) * | 2002-08-28 | 2004-03-04 | Stinson Jonathan S. | Medical devices and methods of making the same |
| US20050163954A1 (en) * | 2004-01-22 | 2005-07-28 | Shaw William J. | Medical devices |
| US20070225695A1 (en) * | 2004-05-03 | 2007-09-27 | Woodwelding Ag | Light Diffuser and Process for Producing the Same |
| US20080015686A1 (en) * | 2006-07-17 | 2008-01-17 | Gale David C | Controlled degradation of stents |
| US20090318912A1 (en) * | 2004-05-03 | 2009-12-24 | Woodwelding Ag | Light diffuser and process for producing the same |
| US20210161690A1 (en) * | 2016-12-29 | 2021-06-03 | Boston Scientific Scimed, Inc. | Medical devices formed from polymer filaments |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB9814609D0 (en) * | 1998-07-07 | 1998-09-02 | Smith & Nephew | Polymers |
| US8262963B2 (en) | 2002-10-04 | 2012-09-11 | Tyco Healthcare Group Lp | Process of making bioabsorbable filaments |
| US7931695B2 (en) * | 2003-07-15 | 2011-04-26 | Kensey Nash Corporation | Compliant osteosynthesis fixation plate |
| US8846069B2 (en) * | 2003-11-20 | 2014-09-30 | Abbott Cardiovascular Systems Inc. | Coatings for implantable devices comprising polymers of lactic acid and methods for fabricating the same |
| CN101035574B (en) | 2004-04-20 | 2011-05-11 | 根茨美公司 | Surgical mesh-like implant |
| JP5288370B2 (en) * | 2006-12-27 | 2013-09-11 | 独立行政法人産業技術総合研究所 | Resin composition containing physiologically active substance and method for producing the same |
| US9040072B2 (en) * | 2007-12-07 | 2015-05-26 | Ethicon, Inc. | Use of coupling agents to improve the interface in absorbable polymer composites |
| US9173978B2 (en) | 2010-09-22 | 2015-11-03 | Ethicon, Inc. | Bioabsorbable polymeric compositions, processing methods, and medical devices therefrom |
| JP6901721B2 (en) * | 2017-03-30 | 2021-07-14 | 国立大学法人東海国立大学機構 | Bone marrow hemostatic agent |
| US12383246B2 (en) | 2020-10-12 | 2025-08-12 | Abbott Cardiovascular Systems, Inc. | Vessel closure device with improved safety and tract hemostasis |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2091185T3 (en) * | 1984-03-06 | 1996-11-01 | United States Surgical Corp | A PROCEDURE FOR THE PREPARATION OF TWO-PHASE COMPOSITIONS FOR ABSORBABLE SURGICAL DEVICES. |
| DE3708916A1 (en) * | 1987-03-19 | 1988-09-29 | Boehringer Ingelheim Kg | METHOD FOR CLEANING RESORBABLE POLYESTERS |
| US4844854A (en) * | 1987-09-22 | 1989-07-04 | United States Surgical Corporation | Process for making a surgical device using two-phase compositions |
| US5080665A (en) | 1990-07-06 | 1992-01-14 | American Cyanamid Company | Deformable, absorbable surgical device |
| US5320624A (en) | 1991-02-12 | 1994-06-14 | United States Surgical Corporation | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made therefrom |
| CA2079274C (en) | 1991-09-30 | 2004-11-30 | Donald S. Kaplan | Blends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made therefrom |
| JPH06192527A (en) * | 1992-12-25 | 1994-07-12 | Nichiyu Giken Kogyo Kk | Temperature sensitive material composition |
| US5569250A (en) * | 1994-03-01 | 1996-10-29 | Sarver; David R. | Method and apparatus for securing adjacent bone portions |
| US5641501A (en) | 1994-10-11 | 1997-06-24 | Ethicon, Inc. | Absorbable polymer blends |
| US5612052A (en) * | 1995-04-13 | 1997-03-18 | Poly-Med, Inc. | Hydrogel-forming, self-solvating absorbable polyester copolymers, and methods for use thereof |
-
1999
- 1999-04-01 DE DE69925775T patent/DE69925775T2/en not_active Expired - Lifetime
- 1999-04-01 EP EP99302598A patent/EP0949299B1/en not_active Expired - Lifetime
- 1999-04-05 JP JP11098078A patent/JPH11332975A/en active Pending
-
2000
- 2000-02-02 US US09/497,060 patent/US6332884B1/en not_active Expired - Lifetime
-
2001
- 2001-10-16 US US09/978,415 patent/US20020016596A1/en not_active Abandoned
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6623487B1 (en) * | 2001-02-13 | 2003-09-23 | Biomet, Inc. | Temperature sensitive surgical fastener |
| US6921410B2 (en) * | 2001-05-29 | 2005-07-26 | Scimed Life Systems, Inc. | Injection molded vaso-occlusive elements |
| US20020193819A1 (en) * | 2001-05-29 | 2002-12-19 | Porter Stephen Christopher | Injection molded vaso-occlusive elements |
| US20060116755A1 (en) * | 2002-08-28 | 2006-06-01 | Stinson Jonathan S | Medical devices and methods of making the same |
| US7029495B2 (en) | 2002-08-28 | 2006-04-18 | Scimed Life Systems, Inc. | Medical devices and methods of making the same |
| US20040044397A1 (en) * | 2002-08-28 | 2004-03-04 | Stinson Jonathan S. | Medical devices and methods of making the same |
| US7993391B2 (en) | 2002-08-28 | 2011-08-09 | Boston Scientific Scimed, Inc. | Medical devices and methods of making the same |
| US20050163954A1 (en) * | 2004-01-22 | 2005-07-28 | Shaw William J. | Medical devices |
| US8048143B2 (en) | 2004-01-22 | 2011-11-01 | Boston Scientific Scimed, Inc. | Medical devices |
| US7854756B2 (en) | 2004-01-22 | 2010-12-21 | Boston Scientific Scimed, Inc. | Medical devices |
| US20070225695A1 (en) * | 2004-05-03 | 2007-09-27 | Woodwelding Ag | Light Diffuser and Process for Producing the Same |
| US9931165B2 (en) | 2004-05-03 | 2018-04-03 | Woodwelding Ag | Light diffuser and process for producing the same |
| US20090318912A1 (en) * | 2004-05-03 | 2009-12-24 | Woodwelding Ag | Light diffuser and process for producing the same |
| US8568395B2 (en) | 2004-05-03 | 2013-10-29 | Woodwelding Ag | Light diffuser and process for producing the same |
| US7794495B2 (en) * | 2006-07-17 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Controlled degradation of stents |
| US8267990B2 (en) | 2006-07-17 | 2012-09-18 | Advanced Cardiovascular Systems, Inc. | Controlled degradation of stents |
| US20110098803A1 (en) * | 2006-07-17 | 2011-04-28 | Advanced Cardiovascular Systems, Inc. | Controlled Degradation Of Stents |
| US20080015686A1 (en) * | 2006-07-17 | 2008-01-17 | Gale David C | Controlled degradation of stents |
| US20210161690A1 (en) * | 2016-12-29 | 2021-06-03 | Boston Scientific Scimed, Inc. | Medical devices formed from polymer filaments |
| US12150874B2 (en) * | 2016-12-29 | 2024-11-26 | Boston Scientific Scimed, Inc. | Medical devices formed from polymer filaments |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0949299B1 (en) | 2005-06-15 |
| JPH11332975A (en) | 1999-12-07 |
| US6332884B1 (en) | 2001-12-25 |
| EP0949299A3 (en) | 2001-01-17 |
| DE69925775T2 (en) | 2006-04-27 |
| EP0949299A2 (en) | 1999-10-13 |
| DE69925775D1 (en) | 2005-07-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5951997A (en) | Aliphatic polyesters of ε-caprolactone, p-dioxanone and gycolide | |
| EP0707044B1 (en) | Absorbable polymer blends | |
| US5854383A (en) | Aliphatic polyesters of trimethylene carbonate epsilon-caprolactone and glycolide | |
| US6332884B1 (en) | Two phase thermally deformable biocompatible absorbable polymer matrix for use in medical devices | |
| DE60311741T2 (en) | Alkyd-lactone copolymers for medical applications | |
| AU708214B2 (en) | Absorbable copolymers and blends of 6,6-dialkyl-1,4- dioxepan-2-one and its cyclic dimer | |
| KR101019374B1 (en) | Medical Cationic Alkyd Polyester | |
| EP0768329B1 (en) | High strength, melt processable, lactide-rich, poly(lactide-co-p-dioxanone) copolymers | |
| KR101061376B1 (en) | Medical Amphiphilic Polymer | |
| US5633343A (en) | High strength, fast absorbing, melt processable, gycolide-rich, poly(glycolide-co-p-dioxanone) copolymers | |
| MXPA97001690A (en) | Mixtures containing polyoxamides absorbib | |
| JPH08295730A (en) | Poly(alkylene diglycolate),copolymer,blend,their production and medical implement made thereof | |
| US8575301B2 (en) | Absorbable polymer formulations | |
| MXPA97001991A (en) | Copolymer and absorbable mixes of 6,6-dialquil-1,4-dioxepan-2-ona and its dimero cicl | |
| MXPA97001689A (en) | Absorbib polioxaesters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |