US20020016432A1 - Preparation of allylic copolymers of broad molecular weight distributions - Google Patents
Preparation of allylic copolymers of broad molecular weight distributions Download PDFInfo
- Publication number
- US20020016432A1 US20020016432A1 US09/970,321 US97032101A US2002016432A1 US 20020016432 A1 US20020016432 A1 US 20020016432A1 US 97032101 A US97032101 A US 97032101A US 2002016432 A1 US2002016432 A1 US 2002016432A1
- Authority
- US
- United States
- Prior art keywords
- weight
- mono
- monomer
- allylic
- ethylenic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001577 copolymer Polymers 0.000 title claims abstract description 46
- 238000009826 distribution Methods 0.000 title claims abstract description 19
- 238000002360 preparation method Methods 0.000 title description 5
- 239000000178 monomer Substances 0.000 claims abstract description 87
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims description 27
- -1 C20 aryl acrylates Chemical class 0.000 claims description 26
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 20
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 13
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 10
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical group C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 9
- 229920002554 vinyl polymer Polymers 0.000 claims description 9
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 7
- 150000001993 dienes Chemical class 0.000 claims description 4
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 4
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 2
- 125000004386 diacrylate group Chemical group 0.000 claims description 2
- 125000005395 methacrylic acid group Chemical class 0.000 claims description 2
- 229920001567 vinyl ester resin Polymers 0.000 claims description 2
- 125000006353 oxyethylene group Chemical group 0.000 claims 1
- 229920005989 resin Polymers 0.000 abstract description 16
- 239000011347 resin Substances 0.000 abstract description 16
- 150000003254 radicals Chemical class 0.000 abstract description 4
- 238000007334 copolymerization reaction Methods 0.000 abstract 1
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 32
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000006116 polymerization reaction Methods 0.000 description 11
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000004808 allyl alcohols Chemical class 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 4
- 125000000746 allylic group Chemical group 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 3
- VXDHQYLFEYUMFY-UHFFFAOYSA-N 2-methylprop-2-en-1-amine Chemical compound CC(=C)CN VXDHQYLFEYUMFY-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 125000005394 methallyl group Chemical group 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JKLUVCHKXQJGIG-UHFFFAOYSA-N 2-Methylenebutan-1-ol Chemical compound CCC(=C)CO JKLUVCHKXQJGIG-UHFFFAOYSA-N 0.000 description 1
- FHVRTMVXBVDWCK-UHFFFAOYSA-N 2-methyl-2-prop-2-enoxypropane Chemical compound CC(C)(C)OCC=C FHVRTMVXBVDWCK-UHFFFAOYSA-N 0.000 description 1
- IVKYUXHYUAMPMT-UHFFFAOYSA-N 2-methylprop-2-enyl acetate Chemical compound CC(=C)COC(C)=O IVKYUXHYUAMPMT-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- IFUHHVOEHBXDPB-UHFFFAOYSA-N 3-methoxy-2-methylprop-1-ene Chemical compound COCC(C)=C IFUHHVOEHBXDPB-UHFFFAOYSA-N 0.000 description 1
- FASUFOTUSHAIHG-UHFFFAOYSA-N 3-methoxyprop-1-ene Chemical compound COCC=C FASUFOTUSHAIHG-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- ZMFWTUBNIJBJDB-UHFFFAOYSA-N 6-hydroxy-2-methylquinoline-4-carboxylic acid Chemical compound C1=C(O)C=CC2=NC(C)=CC(C(O)=O)=C21 ZMFWTUBNIJBJDB-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LYJHVEDILOKZCG-UHFFFAOYSA-N Allyl benzoate Chemical compound C=CCOC(=O)C1=CC=CC=C1 LYJHVEDILOKZCG-UHFFFAOYSA-N 0.000 description 1
- RMZIOVJHUJAAEY-UHFFFAOYSA-N Allyl butyrate Chemical compound CCCC(=O)OCC=C RMZIOVJHUJAAEY-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 159000000032 aromatic acids Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- BGSFCOHRQUBESL-UHFFFAOYSA-N ethyl prop-2-enyl carbonate Chemical compound CCOC(=O)OCC=C BGSFCOHRQUBESL-UHFFFAOYSA-N 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- JFZUABNDWZQLIJ-UHFFFAOYSA-N methyl 2-[(2-chloroacetyl)amino]benzoate Chemical compound COC(=O)C1=CC=CC=C1NC(=O)CCl JFZUABNDWZQLIJ-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GBCKRQRXNXQQPW-UHFFFAOYSA-N n,n-dimethylprop-2-en-1-amine Chemical compound CN(C)CC=C GBCKRQRXNXQQPW-UHFFFAOYSA-N 0.000 description 1
- RHUCQDQRNUUMKY-UHFFFAOYSA-N n-benzylprop-2-en-1-amine Chemical compound C=CCNCC1=CC=CC=C1 RHUCQDQRNUUMKY-UHFFFAOYSA-N 0.000 description 1
- IOXXVNYDGIXMIP-UHFFFAOYSA-N n-methylprop-2-en-1-amine Chemical compound CNCC=C IOXXVNYDGIXMIP-UHFFFAOYSA-N 0.000 description 1
- SNAUETXKUXDMFB-UHFFFAOYSA-N n-prop-2-enylbutan-1-amine Chemical compound CCCCNCC=C SNAUETXKUXDMFB-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
Definitions
- the invention relates to allylic copolymers. More particularly, the invention relates to allylic copolymers that have broad molecular weight distributions. The copolymers are particularly useful, for example, as toner resins.
- Allyl alcohol and allyl alcohol alkoxylates are useful, unique, hydroxyl functional monomers. They readily copolymerize with most commonly used monomers, e.g., vinyl aromatics, acrylates and methacrylates, vinyl ethers and esters, vinyl halides, conjugated dienes, and many others. These allylic monomers not only contribute hydroxyl functionality to the copolymers, but they also regulate the molecular weight of the copolymers and control the polymerization rate. When even a small portion of allylic monomer is used, a low molecular weight polymer is produced.
- U.S. Pat. No. 5,382,642 teaches how to prepare copolymers of vinyl aromatics and allyl alcohol propoxylates.
- the copolymers have hydroxyl numbers of 80-260 mg KOH/g, and number average molecular weights from 500 to 3500. They are particularly useful for polyurethane, alkyd, and melamine coatings.
- U.S. Pat. No. 5,451,652 teaches how to prepare homopolymers of allyl alcohol propoxylates, and copolymers of allyl alcohol and allyl alcohol propoxylates. These polymers are highly hydroxyl-functionalized, and are particularly useful as crosslinking agents.
- U.S. Pat. No. 5,475,073 teaches how to prepare hydroxyl acrylic resins by substituting allyl alcohol and allyl alcohol propoxylates for hydroxyalkyl acrylates or methacrylates.
- allylic monomers By using the allylic monomers, low molecular weight resins are advantageously produced without the need for a chain transfer agent or solvent.
- the resins have hydroxyl numbers from 50 to 450 mg KOH/g, and number average molecular weights from 500 to 10,000. They are particularly useful for acrylic-urethane and acrylic-melamine coatings.
- U.S. Pat. No. 5,480,954 teaches how to prepare copolymers of allyl esters with allyl alcohol or allyl alcohol propoxylates. Compared with the polymers taught in U.S. Pat. No. 5,451,652, these copolymers have lower hydroxyl numbers, improved solubility in organic solvents, and better compatibility with other resins.
- U.S. Pat. No. 5,646,225 teaches how to prepare water-soluble or water-dispersible resins. These resins are prepared by copolymerizing an allyl alcohol propoxylate, a vinyl aromatic monomer, and acrylic acid. They are particularly useful in water-borne coatings and inks.
- Allylic copolymers having high molecular weights and broad molecular weight distributions are needed, for example, in toner resins. However, they are difficult to prepare.
- toner resins are high molecular weight copolymers of styrene and butadiene, or styrene and acrylates. Usually, they are prepared by suspension or emulsion polymerization. Toner resins usually require broad molecular weight distributions or bimodal distributions because the low molecular weight portion gives the toner low melt viscosity and good flexibility, while the high molecular weight portion improves anti-offset and anti-winding characteristics.
- U.S. Pat. No. 5,219,947 teaches how to prepare a toner resin by a two-stage polymerization process.
- a low molecular weight polymer is formed in a solution polymerization.
- the low molecular weight polymer from the first stage is dissolved in a monomer, and the monomer is then polymerized by a suspension polymerization.
- the preparation is rather complicated not only because there are two different polymerization processes involved, but also because both the organic solvent from the first stage and water from the second stage must be removed from the product.
- Copending application Ser. No. 09/085,039 teaches how to prepare high molecular weight, broad molecular weight distribution, allylic copolymers. These copolymers are particularly useful as toner resins. They are prepared by copolymerizing an ethylenic monomer, a monofunctional allyl monomer, and a multifunctional allyl monomer. No solvent is needed in the preparation. However, removing the unreacted multifunctional allyl monomer, such as diallyl phthalate, is found to be very difficult.
- the invention is a process for preparing an allylic copolymer that has a broad molecular weight distribution.
- the process comprises free radically copolymerizing a mixture of a mono-ethylenic monomer, a multi-ethylenic monomer, and a mono-allylic monomer to produce an allylic copolymer that has a high molecular weight, a broad molecular weight distribution, and a low gel content.
- the invention includes an allylic copolymer that comprises about 0.1% by weight to about 10% by weight of multi-ethylenic monomeric units, about 5% by weight to about 40% by weight of mono-allylic monomeric units, and about 50% by weight to about 95% by weight of mono-ethylenic monomeric units.
- the polymer has a weight average molecular weight greater than about 10,000, a molecular weight distribution (Mw/Mn) greater than about 5, and a gel content less than about 10% by weight. It is particularly useful as a toner resin.
- the process of the invention comprises free radically copolymerizing a monomer mixture containing: a) a mono-ethylenic monomer; b) a multi-ethylenic monomer; and c) a mono-allylic monomer.
- the mono-ethylenic monomer suitable for use in the invention has one free radically polymerizable group.
- the group is —CR ⁇ CH 2 , wherein R is hydrogen, or C 1 to C 10 alkyl.
- suitable mono-ethylenic monomers are vinyl aromatics, vinyl halides, vinyl ethers, vinyl esters, unsaturated nitriles, acrylic and methacrylic acids and their esters, conjugated dienes, and the like, and mixtures thereof.
- Preferred mono-ethylenic monomers are vinyl aromatics, C 1 to C 10 alkyl acylates and methacrylates, and conjugated dienes.
- styrene particularly preferred are styrene, methyl methacrylate, butyl methacrylate, butyl acrylate, isoprene, and butadiene. More preferred are mixtures of styrene with butyl acrylate, and styrene with butadiene.
- the mono-ethylenic monomer is the major component of the monomer mixture.
- the amount used is determined by many factors, particularly the desired glass transition temperature (T g ) of the copolymer.
- T g glass transition temperature
- the copolymer is required to have a T g greater than about 50° C.
- the T g of the copolymer is essentially determined by the monomeric type and comonomer ratio. For example, when a low T g mono-allylic monomer is used, a relatively large amount of a high T g mono-ethylenic monomer is required to achieve a high T g copolymer.
- the mono-ethylenic monomer is usually used in an amount greater than about 50% by weight of the copolymer composition.
- the multi-ethylenic monomer suitable for use in the invention contains more than one free radically polymerizable ethylenic group as defined above.
- examples are divinyl aromatics, diacrylates, and dimethacrylates.
- Preferred multi-ethylenic monomers are divinyl benzene (DVB), and ethylene glycol dimethacrylate.
- the amount of multi-ethylenic monomer used is important because it determines the molecular weight of the copolymer.
- the multi-ethylenic monomer has two or more reactive carbon-carbon double bonds that participate in the polymerization. This results in polymeric chain branching and an increase in copolymer molecular weight.
- Using too much multi-ethylenic monomer causes gel formation during polymerization. Gel formation is undesirable because it causes difficulty in product isolation and reactor cleaning-up.
- the highly crosslinked copolymer is less desirable in toner applications.
- the amount of the multi-ethylenic monomer used depends on the amount of mono-allylic monomer used.
- the multi-ethylenic monomer is usually used in an amount less than 15% by weight of the copolymer composition. More preferably, it is used in an amount less than 10% by weight of the copolymer composition.
- Mono-allylic monomers suitable for use in the invention contain a single allylic double bond.
- Suitable mono-allylic monomers include allylic alcohols, alkoxylated allylic alcohols, allyl ethers, allyl esters, allyl amines, allyl carbonates, and the like, and mixtures thereof.
- allylic alcohols are allyl alcohol, methallyl alcohol, and 2-ethyl-2-propen-1-ol. Allyl alcohol is preferred because it is commercially available.
- Alkoxylated allylic alcohols suitable for use in the invention include alkoxylation products of allyl alcohol and methallyl alcohol with ethylene oxide, propylene oxide, and the like, and mixtures thereof. Preferred alkoxylated allylic alcohols have less than 10 units of oxyalkylene. Preferred alkoxylated allylic alcohols include allyl alcohol monopropoxylate and allyl alcohol monoethoxylate because they have relatively low boiling points and easier to remove from the copolymer product after polymerization.
- allyl ethers include C 1 -C 10 alkyl and aryl allyl ethers and methallyl ethers.
- suitable allyl ethers are allyl methyl ether, methallyl methyl ether, allyl ethyl ether, allyl t-butyl ether, and the like, and mixtures thereof.
- allyl esters include allyl esters and methallyl esters of C 1 -C 12 aliphatic or aromatic acids.
- suitable allyl esters are allyl acetate, methallyl acetate, allyl butyrate, allyl formate, allyl benzoate, and the like, and mixtures thereof.
- allyl amines include allyl amine, methallyl amine, C 1 -C 12 alkyl or aryl N-substituted allyl amines or methallyl amines, and the like, and mixtures thereof.
- suitable allyl amines are allyl amine, methallyl amine, N-methyl allyl amine, N-butyl allyl amine, N-benzyl allyl amine, N,N-dimethyl allyl amine, N,N-dibutyl methallyl amine, and the like, and mixtures thereof.
- Preferred allyl carbonates include C 1 -C 12 alkyl and aryl allyl carbonates and methallyl carbonates.
- suitable allyl carbonates are methyl allyl carbonate, methyl methallyl carbonate, ethyl allyl carbonate, and the like, and mixtures thereof.
- the amount of the mono-allylic monomer used depends on many factors, particularly the amount of an multi-ethylenic monomer used.
- the mono-allylic monomer functions as a crosslinking retardant that reduces the gel formation. Generally, when more multi-ethylenic monomer is used, more mono-allylic monomer is needed.
- the multi-ethylenic monomer is used in an amount from about 0.1% to about 5% by weight, the mono-allylic monomer is preferably used in an amount from about 5% to about 25% by weight.
- the mono-allylic monomer is preferably used in an amount from about 25% to about 40% by weight.
- the process of the invention is a free-radical polymerization.
- the mono-allylic monomer is added into the reactor before the polymerization starts.
- the mono-ethylenic and multi-ethylenic monomers are gradually fed during the polymerization. It is preferred to add at least about 50% by weight, preferably at least about 70% by weight, of the mono-ethylenic and the multi-ethylenic monomers to the reaction mixture gradually.
- the mono-ethylenic and the multi-ethylenic monomers are added at rates effective to maintain their steady, low concentrations in the reaction mixture.
- the ratio of mono-allylic monomer to mono-ethylenic and multi-ethylenic monomers is kept essentially constant; this helps to produce a resin having a relatively uniform composition.
- Gradual addition of the mono-ethylenic and the multi-ethylenic monomers enables the preparation of a copolymer having a desired molecular weight and molecular weight distribution and having a minimum amount of gel formation.
- Suitable free radical initiators include peroxides, hydroperoxides, azo compounds, and many others known to the polymer industry.
- suitable free radical initiators are hydrogen peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, 2,2′-azobisisobutyronitrile, and the like, and mixtures thereof.
- the invention also includes an allylic copolymer.
- the copolymer comprises a mono-ethylenic monomeric unit, a multi-ethylenic monomeric unit, and a mono-allylic monomeric unit. Suitable mono-ethylenic, multi-ethylenic, and mono-allylic monomers are discussed above.
- the copolymer comprises about 0.1% by weight to about 10% by weight of multi-ethylenic monomeric units, about 5% by weight to about 40% by weight of mono-allylic monomeric units, and about 50% by weight to about 95% by weight of mono-ethylenic monomeric units.
- the copolymer has a weight average molecular weight greater than about 10,000, a molecular weight distribution (Mw/Mn) greater than about 5, and a gel content less than about 10% by weight.
- the remaining mixture is added into the reactor over 6 hours as follows: first hour, 195 g; second hour, 165 g; third hour, 135 g; fourth hour, 110 g; fifth hour, 85 g; and sixth hour, 65 g.
- the reaction is allowed to continue for an additional 30 minutes at 145° C. after the addition.
- the unreacted monomer is removed by vacuum distillation at 155° C. with nitrogen purging.
- the product (835 g) is collected (87.3% yield).
- the resulting copolymer is colorless and has good clarity.
- GPC shows two main peaks at 10 4 and 10 6 .
- the product has Mn: 6600, Mw: 126,200, glass transition temperature (T g , by DSC): 63° C., and toluene insoluble portion: 1% by weight.
- a reactor as described in Example 1 is charged with allyl monopropoxylate (100 g). The reactor contents are purged with nitrogen for 30 minutes. Styrene (429 g), n-butyl methacrylate (107 g), divinylbenzene (3.35 g, 80%), and di-tert-butyl peroxide (33.5 g) are mixed and charged into the addition funnel. The reactor is initially charged with 100 grams of the mixture, and is heated to 145° C. The remaining mixture is added into reactor over 4 hours as follows: first hour, 171 g; second hour, 144 g; third hour, 90 g; fourth hour, 67.5 g. The reaction is allowed to continue for an additional 30 minutes at 145° C. after the addition.
- the unreacted monomer is removed by vacuum distillation at 155° C. with nitrogen purging.
- the product (563 g) is collected (83.7% yield).
- the resulting resin is colorless and has good clarity.
- GPC shows only one main molecular weight peak at 10 4 , and it has Mn: 5820 and Mw: 52,350, T g : 65° C., and toluene insoluble portion: 0%.
- a reactor as described in Example 1 is charged with styrene (640 g), n-butyl methacrylate (160 g), divinylbenzene (6.0 g, 80%), and di-tert-butyl peroxide (50 g).
- the reactor contents are purged with nitrogen for 30 minutes, and are then heated to 145° C.
- the reaction contents gel completely within 30 min.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Developing Agents For Electrophotography (AREA)
Abstract
A process for making an allylic copolymer is disclosed. The process is a free radical copolymerization of a mono-ethylenic monomer, a multi-ethylenic monomer, and a mono-allylic monomer. The copolymer produced has a high molecular weight and a broad molecular weight distribution, and it is particularly useful as a toner resin.
Description
- The invention relates to allylic copolymers. More particularly, the invention relates to allylic copolymers that have broad molecular weight distributions. The copolymers are particularly useful, for example, as toner resins.
- Allyl alcohol and allyl alcohol alkoxylates are useful, unique, hydroxyl functional monomers. They readily copolymerize with most commonly used monomers, e.g., vinyl aromatics, acrylates and methacrylates, vinyl ethers and esters, vinyl halides, conjugated dienes, and many others. These allylic monomers not only contribute hydroxyl functionality to the copolymers, but they also regulate the molecular weight of the copolymers and control the polymerization rate. When even a small portion of allylic monomer is used, a low molecular weight polymer is produced.
- U.S. Pat. No. 5,382,642 teaches how to prepare copolymers of vinyl aromatics and allyl alcohol propoxylates. The copolymers have hydroxyl numbers of 80-260 mg KOH/g, and number average molecular weights from 500 to 3500. They are particularly useful for polyurethane, alkyd, and melamine coatings.
- U.S. Pat. No. 5,451,652 teaches how to prepare homopolymers of allyl alcohol propoxylates, and copolymers of allyl alcohol and allyl alcohol propoxylates. These polymers are highly hydroxyl-functionalized, and are particularly useful as crosslinking agents.
- U.S. Pat. No. 5,475,073 teaches how to prepare hydroxyl acrylic resins by substituting allyl alcohol and allyl alcohol propoxylates for hydroxyalkyl acrylates or methacrylates. By using the allylic monomers, low molecular weight resins are advantageously produced without the need for a chain transfer agent or solvent. The resins have hydroxyl numbers from 50 to 450 mg KOH/g, and number average molecular weights from 500 to 10,000. They are particularly useful for acrylic-urethane and acrylic-melamine coatings.
- U.S. Pat. No. 5,480,954 teaches how to prepare copolymers of allyl esters with allyl alcohol or allyl alcohol propoxylates. Compared with the polymers taught in U.S. Pat. No. 5,451,652, these copolymers have lower hydroxyl numbers, improved solubility in organic solvents, and better compatibility with other resins.
- U.S. Pat. No. 5,646,225 teaches how to prepare water-soluble or water-dispersible resins. These resins are prepared by copolymerizing an allyl alcohol propoxylate, a vinyl aromatic monomer, and acrylic acid. They are particularly useful in water-borne coatings and inks.
- The polymers disclosed in the above U.S. patents all have low molecular weights and narrow molecular weight distributions. They are highly valuable as hydroxyl functional resins in high-solids or low-VOC coatings because their low molecular weights and narrow molecular weight distributions give low solution viscosities.
- Allylic copolymers having high molecular weights and broad molecular weight distributions are needed, for example, in toner resins. However, they are difficult to prepare.
- Commonly used toner resins are high molecular weight copolymers of styrene and butadiene, or styrene and acrylates. Usually, they are prepared by suspension or emulsion polymerization. Toner resins usually require broad molecular weight distributions or bimodal distributions because the low molecular weight portion gives the toner low melt viscosity and good flexibility, while the high molecular weight portion improves anti-offset and anti-winding characteristics.
- U.S. Pat. No. 5,219,947 teaches how to prepare a toner resin by a two-stage polymerization process. In the first stage, a low molecular weight polymer is formed in a solution polymerization. In the second stage, the low molecular weight polymer from the first stage is dissolved in a monomer, and the monomer is then polymerized by a suspension polymerization. The preparation is rather complicated not only because there are two different polymerization processes involved, but also because both the organic solvent from the first stage and water from the second stage must be removed from the product.
- Copending application Ser. No. 09/085,039 teaches how to prepare high molecular weight, broad molecular weight distribution, allylic copolymers. These copolymers are particularly useful as toner resins. They are prepared by copolymerizing an ethylenic monomer, a monofunctional allyl monomer, and a multifunctional allyl monomer. No solvent is needed in the preparation. However, removing the unreacted multifunctional allyl monomer, such as diallyl phthalate, is found to be very difficult.
- New methods for preparing allylic copolymers of high molecular weight and broad molecular weight distribution are needed. Ideally, the preparation does not require the use of a multifunctional allylic monomer.
- The invention is a process for preparing an allylic copolymer that has a broad molecular weight distribution. The process comprises free radically copolymerizing a mixture of a mono-ethylenic monomer, a multi-ethylenic monomer, and a mono-allylic monomer to produce an allylic copolymer that has a high molecular weight, a broad molecular weight distribution, and a low gel content.
- The invention includes an allylic copolymer that comprises about 0.1% by weight to about 10% by weight of multi-ethylenic monomeric units, about 5% by weight to about 40% by weight of mono-allylic monomeric units, and about 50% by weight to about 95% by weight of mono-ethylenic monomeric units. The polymer has a weight average molecular weight greater than about 10,000, a molecular weight distribution (Mw/Mn) greater than about 5, and a gel content less than about 10% by weight. It is particularly useful as a toner resin.
- The process of the invention comprises free radically copolymerizing a monomer mixture containing: a) a mono-ethylenic monomer; b) a multi-ethylenic monomer; and c) a mono-allylic monomer.
- The mono-ethylenic monomer suitable for use in the invention has one free radically polymerizable group. Preferably, the group is —CR═CH2, wherein R is hydrogen, or C1 to C10 alkyl. Examples of suitable mono-ethylenic monomers are vinyl aromatics, vinyl halides, vinyl ethers, vinyl esters, unsaturated nitriles, acrylic and methacrylic acids and their esters, conjugated dienes, and the like, and mixtures thereof. Preferred mono-ethylenic monomers are vinyl aromatics, C1 to C10 alkyl acylates and methacrylates, and conjugated dienes. Particularly preferred are styrene, methyl methacrylate, butyl methacrylate, butyl acrylate, isoprene, and butadiene. More preferred are mixtures of styrene with butyl acrylate, and styrene with butadiene.
- Usually, the mono-ethylenic monomer is the major component of the monomer mixture. The amount used is determined by many factors, particularly the desired glass transition temperature (Tg) of the copolymer. For toner applications, the copolymer is required to have a Tg greater than about 50° C. The Tg of the copolymer is essentially determined by the monomeric type and comonomer ratio. For example, when a low Tg mono-allylic monomer is used, a relatively large amount of a high Tg mono-ethylenic monomer is required to achieve a high Tg copolymer. The mono-ethylenic monomer is usually used in an amount greater than about 50% by weight of the copolymer composition.
- The multi-ethylenic monomer suitable for use in the invention contains more than one free radically polymerizable ethylenic group as defined above. Examples are divinyl aromatics, diacrylates, and dimethacrylates. Preferred multi-ethylenic monomers are divinyl benzene (DVB), and ethylene glycol dimethacrylate.
- The amount of multi-ethylenic monomer used is important because it determines the molecular weight of the copolymer. The multi-ethylenic monomer has two or more reactive carbon-carbon double bonds that participate in the polymerization. This results in polymeric chain branching and an increase in copolymer molecular weight. Using too much multi-ethylenic monomer causes gel formation during polymerization. Gel formation is undesirable because it causes difficulty in product isolation and reactor cleaning-up. Moreover, the highly crosslinked copolymer is less desirable in toner applications.
- It is essential to use the multi-ethylenic monomer in the presence of a mono-allylic monomer. Without a mono-allylic monomer, using the multi-ethylenic monomer causes gel formation.
- The amount of the multi-ethylenic monomer used depends on the amount of mono-allylic monomer used. The multi-ethylenic monomer is usually used in an amount less than 15% by weight of the copolymer composition. More preferably, it is used in an amount less than 10% by weight of the copolymer composition.
- Mono-allylic monomers suitable for use in the invention contain a single allylic double bond. Suitable mono-allylic monomers include allylic alcohols, alkoxylated allylic alcohols, allyl ethers, allyl esters, allyl amines, allyl carbonates, and the like, and mixtures thereof. Examples of allylic alcohols are allyl alcohol, methallyl alcohol, and 2-ethyl-2-propen-1-ol. Allyl alcohol is preferred because it is commercially available.
- Alkoxylated allylic alcohols suitable for use in the invention include alkoxylation products of allyl alcohol and methallyl alcohol with ethylene oxide, propylene oxide, and the like, and mixtures thereof. Preferred alkoxylated allylic alcohols have less than 10 units of oxyalkylene. Preferred alkoxylated allylic alcohols include allyl alcohol monopropoxylate and allyl alcohol monoethoxylate because they have relatively low boiling points and easier to remove from the copolymer product after polymerization.
- Preferred allyl ethers include C1-C10 alkyl and aryl allyl ethers and methallyl ethers. Examples of suitable allyl ethers are allyl methyl ether, methallyl methyl ether, allyl ethyl ether, allyl t-butyl ether, and the like, and mixtures thereof.
- Preferred allyl esters include allyl esters and methallyl esters of C1-C12 aliphatic or aromatic acids. Examples of suitable allyl esters are allyl acetate, methallyl acetate, allyl butyrate, allyl formate, allyl benzoate, and the like, and mixtures thereof.
- Preferred allyl amines include allyl amine, methallyl amine, C1-C12 alkyl or aryl N-substituted allyl amines or methallyl amines, and the like, and mixtures thereof. Examples of suitable allyl amines are allyl amine, methallyl amine, N-methyl allyl amine, N-butyl allyl amine, N-benzyl allyl amine, N,N-dimethyl allyl amine, N,N-dibutyl methallyl amine, and the like, and mixtures thereof.
- Preferred allyl carbonates include C1-C12 alkyl and aryl allyl carbonates and methallyl carbonates. Examples of suitable allyl carbonates are methyl allyl carbonate, methyl methallyl carbonate, ethyl allyl carbonate, and the like, and mixtures thereof.
- It is essential to use the mono-allylic monomer in combination with a multi-ethylenic monomer because without the multi-ethylenic monomer, the process produces only a copolymer having a low molecular weight and a narrow molecular weight distribution.
- The amount of the mono-allylic monomer used depends on many factors, particularly the amount of an multi-ethylenic monomer used. The mono-allylic monomer functions as a crosslinking retardant that reduces the gel formation. Generally, when more multi-ethylenic monomer is used, more mono-allylic monomer is needed. When the multi-ethylenic monomer is used in an amount from about 0.1% to about 5% by weight, the mono-allylic monomer is preferably used in an amount from about 5% to about 25% by weight. When the multi-ethylenic monomer is used in an amount from about 5% to about 10% by weight, the mono-allylic monomer is preferably used in an amount from about 25% to about 40% by weight.
- An excess of mono-allylic monomer is usually needed to incorporate a sufficient amount of it into the copolymer. The unreacted mono-allylic monomer is then removed from the copolymer after polymerization by distillation.
- The process of the invention is a free-radical polymerization. Generally, the mono-allylic monomer is added into the reactor before the polymerization starts. Usually the mono-ethylenic and multi-ethylenic monomers are gradually fed during the polymerization. It is preferred to add at least about 50% by weight, preferably at least about 70% by weight, of the mono-ethylenic and the multi-ethylenic monomers to the reaction mixture gradually. Preferably, the mono-ethylenic and the multi-ethylenic monomers are added at rates effective to maintain their steady, low concentrations in the reaction mixture. Preferably, the ratio of mono-allylic monomer to mono-ethylenic and multi-ethylenic monomers is kept essentially constant; this helps to produce a resin having a relatively uniform composition. Gradual addition of the mono-ethylenic and the multi-ethylenic monomers enables the preparation of a copolymer having a desired molecular weight and molecular weight distribution and having a minimum amount of gel formation.
- Suitable free radical initiators include peroxides, hydroperoxides, azo compounds, and many others known to the polymer industry. Examples of suitable free radical initiators are hydrogen peroxide, di-t-butyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, 2,2′-azobisisobutyronitrile, and the like, and mixtures thereof. Generally, it is preferred to add the free radical initiator to the reactor gradually during the course of the polymerization; it is also desirable to match the addition rate of the free-radical initiator to the addition rates of the mono-ethylenic and the multi-ethylenic monomers.
- I surprisingly found that using a combination of a mono-allylic monomer and a multi-ethylenic monomer produces an allylic copolymer having a high molecular weight and a broad molecular weight distribution without gel formation during polymerization.
- The invention also includes an allylic copolymer. The copolymer comprises a mono-ethylenic monomeric unit, a multi-ethylenic monomeric unit, and a mono-allylic monomeric unit. Suitable mono-ethylenic, multi-ethylenic, and mono-allylic monomers are discussed above. Preferably, the copolymer comprises about 0.1% by weight to about 10% by weight of multi-ethylenic monomeric units, about 5% by weight to about 40% by weight of mono-allylic monomeric units, and about 50% by weight to about 95% by weight of mono-ethylenic monomeric units. The copolymer has a weight average molecular weight greater than about 10,000, a molecular weight distribution (Mw/Mn) greater than about 5, and a gel content less than about 10% by weight.
- The following examples merely illustrate the invention. Those skilled in the art will recognize many variations that are within the spirit of the invention and scope of the claims.
- A 2-liter glass reactor equipped with an agitator, a heater, a monomer addition funnel, a condenser, and a nitrogen inlet, is charged with allyl monopropoxylate (100 g, product of Lyondell Chemical Company). The reactor contents are purged with nitrogen for 30 minutes. Styrene (640 g), n-butyl methacrylate (160 g), divinylbenzene (6.0 g, 80%, product of Aldrich) and di-tert-butyl peroxide (50 g) are mixed and charged into the addition funnel. The reactor is initially charged with 101 grams of the mixture, and is heated to 145° C. The remaining mixture is added into the reactor over 6 hours as follows: first hour, 195 g; second hour, 165 g; third hour, 135 g; fourth hour, 110 g; fifth hour, 85 g; and sixth hour, 65 g. The reaction is allowed to continue for an additional 30 minutes at 145° C. after the addition. The unreacted monomer is removed by vacuum distillation at 155° C. with nitrogen purging. The product (835 g) is collected (87.3% yield). The resulting copolymer is colorless and has good clarity. GPC shows two main peaks at 104 and 106. The product has Mn: 6600, Mw: 126,200, glass transition temperature (Tg, by DSC): 63° C., and toluene insoluble portion: 1% by weight.
- A reactor as described in Example 1, is charged with allyl monopropoxylate (100 g). The reactor contents are purged with nitrogen for 30 minutes. Styrene (429 g), n-butyl methacrylate (107 g), divinylbenzene (3.35 g, 80%), and di-tert-butyl peroxide (33.5 g) are mixed and charged into the addition funnel. The reactor is initially charged with 100 grams of the mixture, and is heated to 145° C. The remaining mixture is added into reactor over 4 hours as follows: first hour, 171 g; second hour, 144 g; third hour, 90 g; fourth hour, 67.5 g. The reaction is allowed to continue for an additional 30 minutes at 145° C. after the addition. The unreacted monomer is removed by vacuum distillation at 155° C. with nitrogen purging. The product (563 g) is collected (83.7% yield). The resulting resin is colorless and has good clarity. GPC shows only one main molecular weight peak at 104, and it has Mn: 5820 and Mw: 52,350, Tg: 65° C., and toluene insoluble portion: 0%.
- A reactor as described in Example 1 is charged with styrene (640 g), n-butyl methacrylate (160 g), divinylbenzene (6.0 g, 80%), and di-tert-butyl peroxide (50 g). The reactor contents are purged with nitrogen for 30 minutes, and are then heated to 145° C. The reaction contents gel completely within 30 min.
Claims (11)
1. A process which comprises free radically copolymerizing a monomer mixture comprising:
a) a mono-ethylenic monomer,
b) a multi-ethylenic monomer, and
c) a mono-allylic monomer;
wherein the multi-ethylenic monomer and the mono-allylic monomer are used in amounts sufficient to produce a copolymer having a weight average molecular weight (Mw) greater than about 10,000, a molecular weight distribution (Mw/Mn) greater than about 5, and a gel content less than about 10% by weight.
2. The process of claim 1 wherein the mono-ethylenic monomer is selected from the group consisting of vinyl aromatics, C1 to C20 alkyl and C6 to C20 aryl acrylates and methacrylates, vinyl halides, vinyl ethers, vinyl esters, acrylic and methacrylic acids, conjugated dienes, and mixtures thereof.
3. The process of claim 1 wherein the mono-ethylenic monomer is a mixture of styrene and butadiene.
4. The process of claim 1 wherein the mono-ethylenic monomer is a mixture of styrene and methyl methacrylate.
5. The process of claim 1 wherein the multi-ethylenic monomer is selected from the group consisting of divinyl aromatics, diacrylates, dimethacrylates, and mixtures thereof.
6. The process of claim 1 wherein the multi-ethylenic monomer is divinyl benzene.
7. The process of claim 1 wherein the mono-allylic monomer is selected from the group consisting of allyl and methallyl alcohols, ethoxylated allyl and methallyl alcohols of 1 to 5 oxyethylene units, and propoxylated allyl and methallyl alcohols of 1 to 5 oxypropylene units.
8. The process of claim 1 wherein the mono-allylic monomer is used in an amount within the range of about 5% by weight to about 40% by weight, and the multi-ethylenic monomer is used in an amount within the range from about 0.1% by weight to about 10% by weight.
9. A copolymer made by the process of claim 1 .
10. An allylic copolymer that comprises
a) about 0.1% by weight to about 10% by weight of multi-ethylenic monomeric units;
b) about 5% by weight to about 40% by weight of mono-allylic monomeric units; and
c) about 50% by weight to about 95% by weight of mono-ethylenic monomeric units;
said polymer has a weight average molecular weight greater than about 10,000, a molecular weight distribution (Mw/Mn) greater than about 5, and a gel content less than about 10% by weight.
11. A toner composition comprising the copolymer of claim 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/970,321 US6350842B1 (en) | 1999-11-03 | 2001-10-03 | Preparation of allylic copolymers of broad molecular weight distributions |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/432,977 US6362297B1 (en) | 1999-11-03 | 1999-11-03 | Preparation of allylic copolymers of broad molecular weight distributions |
US09/970,321 US6350842B1 (en) | 1999-11-03 | 2001-10-03 | Preparation of allylic copolymers of broad molecular weight distributions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/432,977 Division US6362297B1 (en) | 1999-11-03 | 1999-11-03 | Preparation of allylic copolymers of broad molecular weight distributions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020016432A1 true US20020016432A1 (en) | 2002-02-07 |
US6350842B1 US6350842B1 (en) | 2002-02-26 |
Family
ID=23718345
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/432,977 Expired - Fee Related US6362297B1 (en) | 1999-11-03 | 1999-11-03 | Preparation of allylic copolymers of broad molecular weight distributions |
US09/970,321 Expired - Fee Related US6350842B1 (en) | 1999-11-03 | 2001-10-03 | Preparation of allylic copolymers of broad molecular weight distributions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/432,977 Expired - Fee Related US6362297B1 (en) | 1999-11-03 | 1999-11-03 | Preparation of allylic copolymers of broad molecular weight distributions |
Country Status (3)
Country | Link |
---|---|
US (2) | US6362297B1 (en) |
AU (1) | AU8005600A (en) |
WO (1) | WO2001032725A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9623631B2 (en) * | 2005-06-22 | 2017-04-18 | Henkel IP & Holding GmbH | Radiation-curable laminating adhesives |
US7282552B1 (en) * | 2006-05-16 | 2007-10-16 | Fina Technology, Inc. | Styrene copolymers with a bimodal molecular weight distribution |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243768A (en) * | 1977-03-31 | 1981-01-06 | Minnesota Mining And Manufacturing Company | Sag-resistant compositions |
US5219947A (en) | 1986-09-08 | 1993-06-15 | Canon Kabushiki Kaisha | Binder resin for a toner for developing electrostatic images, and process for production thereof |
US4833223A (en) * | 1987-12-14 | 1989-05-23 | Borg-Warner Chemicals, Inc. | High molecular weight polystyrene and method |
US5204422A (en) * | 1989-03-21 | 1993-04-20 | Ciba-Geigy Corporation | Peroxide free radical initiators containing hindered amine moieties with low basicity |
US5382642A (en) | 1993-07-28 | 1995-01-17 | Arco Chemical Technology, L.P. | Copolymers of allyl alcohol propoxylates and vinyl aromatic monomers |
US5451652A (en) | 1994-04-28 | 1995-09-19 | Arco Chemical Technology, L.P. | Polymers from propoxylated allyl alcohol |
US5480954A (en) | 1994-09-21 | 1996-01-02 | Arco Chemical Technology, L.P. | Allyl ester copolymers with allylic alcohols or propoxylated allylic alcohols |
US5475073A (en) | 1994-11-18 | 1995-12-12 | Arco Chemical Technology, L.P. | Hydroxy-functional acrylate resins |
US5646225A (en) | 1996-05-13 | 1997-07-08 | Arco Chemical Technology, L.P. | Water-reducible resins for coatings and inks |
US5866712A (en) * | 1996-12-30 | 1999-02-02 | Elf Atochem North America, Inc. | Oxalic acid peroxide compositions and uses |
JP2002517528A (en) * | 1998-06-01 | 2002-06-18 | アルコ ケミカル テクノロジィ, エル.ピー. | Method for producing allyl / ethylene copolymer |
-
1999
- 1999-11-03 US US09/432,977 patent/US6362297B1/en not_active Expired - Fee Related
-
2000
- 2000-10-11 WO PCT/US2000/027952 patent/WO2001032725A1/en active Application Filing
- 2000-10-11 AU AU80056/00A patent/AU8005600A/en not_active Abandoned
-
2001
- 2001-10-03 US US09/970,321 patent/US6350842B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6362297B1 (en) | 2002-03-26 |
WO2001032725A1 (en) | 2001-05-10 |
US6350842B1 (en) | 2002-02-26 |
AU8005600A (en) | 2001-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5516836A (en) | Method of producing aqueous polymer dispersions | |
MXPA02000745A (en) | Process for preparing comb-branched polymers. | |
US5444141A (en) | Process for making vinyl aromatic/allylic alcohol copolymers | |
NO833562L (en) | The polymerization process | |
CA1210882A (en) | Process for producing stable large particle size latices | |
US5700873A (en) | Method of preparation of water-soluble copolymer | |
US6362297B1 (en) | Preparation of allylic copolymers of broad molecular weight distributions | |
CN110437398B (en) | Method for preparing polymer polyether polyol by continuous dispersion polymerization process | |
JP4898072B2 (en) | Partially branched polymer | |
KR100609870B1 (en) | Process for preparing aqueous resin dispersion | |
EP1363958B1 (en) | Preparation of vinyl aromatic-allylic alcohol copoylmers | |
US20030191265A1 (en) | Preparation of allylic copolymers of broad molecular weight distributions | |
US6103840A (en) | Process for making allylic/ehtylenic copolymers | |
US5986031A (en) | Process for making allylic copolymer resins | |
US5061761A (en) | Polyvinyl ester macromonomer and its uses | |
US5886114A (en) | Process for making vinyl aromatic/allyl alcohol copolymers | |
EP1290036A1 (en) | Water soluble ampiphilic heteroarm star polymers and their use as emulsion stabilizers in emulsion polymerization | |
JPH03174426A (en) | Polymer containing polyvinyl alcohol macromonomer units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060226 |