US20020011905A1 - Surface mount RC devices - Google Patents
Surface mount RC devices Download PDFInfo
- Publication number
- US20020011905A1 US20020011905A1 US09/871,252 US87125201A US2002011905A1 US 20020011905 A1 US20020011905 A1 US 20020011905A1 US 87125201 A US87125201 A US 87125201A US 2002011905 A1 US2002011905 A1 US 2002011905A1
- Authority
- US
- United States
- Prior art keywords
- ceramic layers
- electrode
- terminations
- layer
- electrode plates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000463 material Substances 0.000 claims abstract description 58
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 16
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 16
- 239000000919 ceramic Substances 0.000 claims description 84
- 239000003990 capacitor Substances 0.000 claims description 24
- 239000011521 glass Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 8
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 239000007772 electrode material Substances 0.000 claims description 2
- 239000000075 oxide glass Substances 0.000 claims description 2
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 105
- 239000004020 conductor Substances 0.000 description 10
- 238000010276 construction Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229910007116 SnPb Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C13/00—Resistors not provided for elsewhere
- H01C13/02—Structural combinations of resistors
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H1/02—RC networks, e.g. filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H2001/0021—Constructional details
- H03H2001/0085—Multilayer, e.g. LTCC, HTCC, green sheets
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
- H05K3/3442—Leadless components having edge contacts, e.g. leadless chip capacitors, chip carriers
Definitions
- the present invention relates generally to the art of surface mount electronic components. More particularly, the invention relates to electronic components of the type having a multilayer ceramic structure.
- Multilayer ceramic capacitors have enjoyed widespread use in the electronics industry. These devices are generally constructed having a plurality of ceramic-electrode layers arranged in a stack. During manufacture, the stacked layers are pressed and sintered to achieve a substantially unitary capacitor body. The capacitor body is often rectangular in shape, with electrical terminations of opposite polarity provided along respective sides or at opposite ends. A single MLC package may contain one capacitor, or an array of multiple capacitors.
- IPDs integrated passive devices
- integrated RC devices produced in a manner similar to MLCs, utilize a single “package” to yield a desired filtering function.
- the capacitor of these devices will be made in a manner substantially identical to discrete MLCs.
- the resistor electrically connected to the capacitor in a predetermined manner, is often applied to the outer surface of the ceramic body.
- the present invention recognizes various disadvantages of prior art constructions and methods. Accordingly, it is an object of the present invention to provide novel electronic devices having a multilayer ceramic structure.
- IPDs integrated passive devices
- a composite RC device comprising a device body defined by a plurality of first ceramic layers and a plurality of second ceramic layers arranged to form a stack.
- Each of the first ceramic layers has at least one first electrode plate thereon, and each of the second ceramic layers has thereon a second electrode plate.
- a predetermined number of the first ceramic layers are respectively adjacent to a corresponding one of the second ceramic layers such that the first electrode plate will oppose the second electrode plate to form two plates of a capacitor.
- either or both of the first electrode plates and the second electrode plates are at least partially formed of a cofirable resistor material.
- the device body has a pair of terminations electrically connected to the first electrode plate on each of the first ceramic layers.
- at least one termination is electrically connected to the second electrode plate on each of the second ceramic layers to provide a predetermined electrical function.
- each of the first ceramic layers comprises a plurality of side-by-side first electrode plates. These first electrode plates extend between respective first and second terminations located on the device body. For example, a total of four side-by-side first electrode plates may be provided on each of the first ceramic layers.
- the second electrode plates may extend between third and fourth terminations on the device body.
- the first electrode plates may extend in a direction transverse to the second electrode plates.
- the first electrode plates and the second electrode plates may each be formed having a wider main plate portion with narrower tab portions at each end thereof.
- each of the first ceramic layers may comprise a single first electrode plate extending between first and second terminations located on the device body.
- the second electrode plates may extend between third and fourth terminations on the device body.
- the second electrode plates may extend in a direction transverse to the first electrode plates.
- the first electrode plates and the second electrode plates may each be formed having a wider main plate portion with narrower tab portions at each end thereof.
- the first electrode plates include the cofirable resistor material.
- Resistor materials suitable for this purpose may include an appropriate metal oxide (such as ruthenium oxide) which, depending on the exigencies of a particular application, may be diluted with a suitable metal.
- the second electrode plates may be formed of a substantially nonresistive conductive material. Materials suitable for this purpose may be selected from a group consisting of Ag, Ag/Pd, Cu, Ni, Pt, Au, Pd or other such metals.
- a least one blank ceramic layer is located in the stack such that the device will be provided with predetermined resistance and capacitance values.
- the terminations may comprise an inner layer having a metal oxide material and an outer layer of solderable metal.
- two of the second electrode plates may occupy respective topmost and bottommost positions in the stack to enhance electrical shielding of an interior thereof.
- an array device having a predetermined number of RC circuits in a singular package.
- the device comprises a device body defined by a plurality of first ceramic layers and a plurality of second ceramic layers arranged to form a stack.
- Each of the first ceramic layers has a plurality of side-by-side first electrode plates thereon, the first electrode plates being at least partially formed of a cofirable resistor material.
- Each of the second ceramic layers has a second electrode plate extending in a direction transverse to the first electrode plates.
- a predetermined number of the first ceramic layers are respectively adjacent to a corresponding one of the second ceramic layers such that the first electrode plates will oppose the second electrode plate to form two plates of a capacitor of a respective RC circuit.
- the device body is also configured having a plurality of terminations on side surfaces thereof. Respective first electrode plates corresponding to one of the RC circuits are electrically connected to at least one of the terminations. Furthermore, the second electrode plates are electrically connected to at least another of the terminations.
- a plurality of third ceramic layers are arranged in the stack with the first ceramic layers and second ceramic layers.
- the third ceramic layers have thereon a plurality of side-by-side third electrode plates at least partially formed of a cofirable resistor material.
- a predetermined number of the third ceramic layers are respectively adjacent to a corresponding one of the second ceramic layers such that the third electrode plates will oppose the second electrode plates to form two plates of a capacitor of a respective RC circuit.
- Respective third electrode plates corresponding to one of the RC circuits are connected to a corresponding one of the terminations.
- the first ceramic layers may be alternately stacked with the second ceramic layers in a top portion of the device body.
- the third ceramic layers may then be alternated with the second ceramic layers in a bottom portion of the device body.
- a miniature surface mount device comprising a device body having a unitary structure characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers.
- the device body includes at least two electrical terminations located on side surfaces thereof.
- Each of the terminations comprises an inner termination layer having a metal oxide material and an outer termination layer of solderable metal.
- the inner termination layer comprises a metal oxide-glass frit layer substantially similar to a material used to form resistive electrodes in the device.
- the intermediate termination layer may comprise a silver-glass frit layer.
- the outer termination layer is directly juxtaposed to the inner termination layer.
- at least some ceramic-electrode layers of the miniature surface mount device will comprise a metal oxide electrode material, such as ruthenium oxide, mixed with a glass frit binder.
- Still further objects of the invention are achieved by a method of fabricating a composite RC device.
- a plurality of first ceramic layers are provided having a predetermined dielectric constant.
- a first selected electrode pattern is entirely formed on the first ceramic layers of a substantially nonresistive conductive material.
- a plurality of second ceramic layers are provided having the predetermined dielectric constant.
- a second selected electrode pattern is entirely formed on the second ceramic layers of a cofirable resistive material.
- the second electrode pattern is further configured so as to yield a desired resistance value.
- the first selected electrode pattern and the second selected electrode pattern are configured to provide a particular electrode overlap to yield a desired capacitance value.
- a composite RC device comprising a device body having a unitary structure characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers.
- the device body includes at least two electrical terminations located on side surfaces thereof.
- the ceramic-electrode layers include a plurality of first ceramic layers having thereon a pair of first electrode plates extending to a respective termination.
- the ceramic-electrode layers further include a plurality of second ceramic layers having thereon a second electrode plate formed of a resistive material. The second ceramic layers are interleaved with the first ceramic layers to produce overlaps between each of the second electrode plates and a respective pair of the first electrode plates in an adjacent ceramic-electrode layer.
- FIG. 1 is a perspective view of a surface mount RC filter array constructed in accordance with the present invention in position on a circuit board;
- FIG. 2 is an enlarged perspective view of the filter array of FIG. 1;
- FIG. 3 is a cross sectional view as taken along line 3 - 3 of FIG. 1;
- FIGS. 4A and 4D are plan views of a first layer and a second layer as may be alternated and stacked to form the filter array of FIG. 1;
- FIG. 5 is an electrical schematic showing an equivalent circuit realized by the filter array of FIG. 1;
- FIGS. 6A and 6B are cross-sectional views similar to FIG. 3 illustrating the manner in which device capacitance can be adjusted independently of device resistance in the array device of FIG. 1;
- FIG. 7 is a perspective view of a discrete RC filter device constructed in accordance with the present invention.
- FIGS. 8A and 8B are plan views of a first layer and a second layer as may be alternated and stacked to form the filter device of FIG. 7;
- FIG. 9 is a perspective view of an alternative RC filter array constructed in accordance with the present invention.
- FIGS. 10A, 10B and 10 C are plan views of a first layer, a second layer and a third layer as may be alternated and stacked to form the RC filter array of FIG. 9;
- FIG. 11 is a cross-sectional view as taken along line 11 - 11 of FIG. 9;
- FIGS. 12 A-B through 16 A-B diagrammatically illustrate the manner in which teachings of the present invention may be utilized to achieve a variety of configurations without altering exterior dimensions of the device;
- FIG. 17 is a fragmentary view of a multilayer ceramic device having a novel termination structure in accordance with the present invention.
- FIG. 18 is an enlarged view of the area so indicated in FIG. 17;
- FIG. 19 is a view similar to FIG. 18 illustrating an alternative termination structure.
- FIG. 20 is a cross-sectional view showing the interior construction of a still further alternative device constructed in accordance with the present invention.
- the present invention discloses various improvements in surface mount RC devices made according to multilayer ceramic techniques.
- Surface mount RC devices having internal resistor structures are shown in commonly-assigned U.S. Pat. No. 5,889,445, incorporated herein by reference.
- these devices are constructed having a unitary body characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers. Terminations are applied to the surfaces of the body for electrical connection to external circuitry.
- the size of such devices may be expressed as a number “XXYY,” with XX and YY being the length and width in hundredths of an inch.
- Some typical sizes for devices of the present invention as expressed under this practice are 0603, 0805, 1206, 1210 and 1812.
- FIG. 1 illustrates a surface mount RC array 10 of the present invention mounted to a circuit board 12 .
- array 10 includes a main body 14 of relatively small size.
- a plurality of terminations 16 a - d and 18 a - d are located on respective sides of main body 14 , with terminations 20 and 22 being similarly located at respective ends thereof. While terminations 20 and 22 are here shown only partially covering the end of main body 14 , it is contemplated that these terminations may cover the entire end surface in some embodiments.
- circuit board 12 may be made from a low-temperature organic material, with the solder being a low temperature eutectic solder applied by wave or reflow soldering techniques.
- main body 14 includes a plurality of first electrode plates (such as plates 28 d ) situated in opposed and spaced apart relation with a plurality of second electrode plates 30 .
- the electrode plates are separated by layers of ceramic material to provide a predetermined dielectric constant.
- Capacitor body 14 is typically made by stacking ceramic-electrode layers formed using conventional dicing techniques, which are then pressed and sintered in a kiln. Generally, main body 14 will comprise approximately 5-50 ceramic-electrode layers stacked in this manner.
- each of the first electrode plates may comprise a plurality of side-by-side electrode plates (designated 28 a - d ) formed on the surface of a first ceramic layer 31 .
- each of the first electrode plates is configured to have a main plate portion (such as main plate portion 32 ) between a pair of tab portions (such as tab portions 34 ).
- the tab portions extend to, and are electrically connected with, respective pairs of side terminations.
- each of the second electrode plates 30 may be formed as a single electrode plate on the surface of a second ceramic layer 38 .
- electrode plate 30 which has a main plate portion 40 between a pair of tab portions 42 , preferably extends in a direction transverse to the direction of first electrode plates 28 a - d .
- Tab portions 42 are electrically connected with respective end terminations 20 and 22 .
- electrode plates 28 a - d are at least partially formed of a cofirable resistor material, such as a combination including a suitable metal oxide and glass frit.
- a cofirable resistor material such as a combination including a suitable metal oxide and glass frit.
- some presently preferred embodiments employ ruthenium oxide as the metal oxide material.
- the electrode pattern not only serves as one plate of a capacitor, but also serves as a resistor.
- the use of a cofirable material permits single fire processing, which simplifies processing in relation to many prior art arrangements.
- electrode plates 28 a - d are entirely formed from the resistor material.
- the opposed capacitor plates 30 are preferably formed of a conductive material from the family of noble and base metals that are traditionally used in cofired electronic components and packages.
- capacitor plates 30 may be formed from Ag, Ag/Pd, Cu, Ni, Pt, Au, Pd or the like. In some embodiments, however, it may be desirable to also form electrode plates 28 a - d of the cofirable resistor material.
- the illustrated embodiment provides a total of four RC devices in a single package. Often, each pair of side terminations will serve as the respective input and output terminals of one RC device. One or both of the end terminals 20 and 22 may be grounded to provide a three-terminal feedthrough arrangement, as schematically illustrated in FIG. 5.
- the R and C values of the respective RC devices can be adjusted by varying the overall number of ceramic layers. Due to the parallel arrangement of the resistors, more plates 28 will yield a lower R value. Because parallel capacitors are additive, fewer plates 30 will yield a lower C value.
- the values of R and C can be adjusted independently by selectively applying the “capacitor” or “resistor” layers.
- array 10 is constructed so that every potential position for an electrode plate is populated.
- the resistance between terminal 16 d and 18 d is determined by the single layer resistance of each plate 28 d , and the number of layers in parallel.
- Capacitance is determined by the number of combinations of plates 28 d and plates 30 .
- device capacitance can be adjusted independently of device resistance by altering the structure within the cofired body. Specifically, it is possible to vary the values of resistance and/or capacitance by interrupting the usual sequence of the plates.
- FIG. 6B illustrates a device 10 ′ wherein two plate positions that could be occupied by a plate 30 are shown to be vacant.
- device 10 ′ otherwise identical to device 10 , will exhibit a lower capacitance. Because the number of plates 28 d remains the same, however, the resistance between terminations 16 d and 18 d remains unchanged.
- FIG. 7 illustrates a discrete RC device 50 constructed in accordance with the present invention.
- device 50 includes a device body 52 manufactured from a plurality of ceramic electrode layers arranged to form a stack.
- a pair of terminations 54 and 56 are located on respective sides of device body 52 , as shown.
- Terminations 58 and 60 are located at the respective ends of device body 52 .
- FIGS. 8A and 8B illustrate the ceramic layers that can be alternated in the fabrication of device body 52 .
- the first ceramic layer 62 has a first electrode plate 64 located thereon.
- the plates 64 are configured to extend between terminations 58 and 60 .
- Plate 64 may be formed entirely of a cofireable resistor material as described above.
- each of the second ceramic layers 66 includes a second ceramic plate 68 , which serve as counterelectrodes in the eventual capacitor.
- second electrode plates 68 are configured to have a main plate portion 70 and a pair of tab portions 72 .
- the tab portions 72 extend to respective terminations 54 and 56 located on the lateral sides of device body 52 .
- electrode plates 68 may be formed of a substantially nonresistive material, or may be formed of a cofireable resistor material.
- FIG. 9 illustrates an alternative embodiment which is similar in its external appearance to array 10 .
- FIG. 9 illustrates an array 80 having a device body 82 formed of a plurality of ceramic-electrode layers arranged in a stack. The lateral sides of body 82 carry a plurality of opposite terminations 84 a - d and 86 a - d.
- array 80 is configured to yield a total of eight different RC circuits in a single package.
- the RC circuits of array 80 are configured as two terminal series circuits.
- FIGS. 10 A- 10 C illustrate the three different ceramic layers that can be stacked in the manufacture of device body 82 .
- first ceramic layer 92 includes a total of four electrode plates 94 a - d .
- plates 94 a - d are arranged side by side, with the tab portion of every other plate extending to opposite sides of the device.
- electrode plates 94 a and 94 c will be electrically connected to terminations 84 a and 84 c , with electrode plates 94 b and 94 d being connected to terminations 86 b and 86 d , respectively.
- the second ceramic layers 96 each include an elongate electrode plate 98 extending to opposite ends of device body 82 .
- electrode plates 98 which will serve as counter electrodes in the multilayer capacitor structure, will be electrically connected to terminations 88 and 90 .
- third ceramic layer 100 includes a plurality of third electrode plates 102 a - d .
- electrode plates 102 a - d are arranged such that the tab portion of every other plate extends to opposite sides of device body 82 .
- electrode plates 102 a and 102 c will be electrically connected to terminations 86 a and 86 c , respectively.
- electrode plates 102 b and 102 d will be electrically connected to terminations 84 b and 84 d.
- electrode plates 94 a - d and 102 a - d are formed of a cofireable resistor material as described above.
- electrode plates 98 will often be formed of a substantially nonresistive material.
- each of the RC circuits may have substantially equivalent values of both resistance and capacitance.
- Embodiments are also contemplated, however, in which only electrode plates 98 , or all of the electrode plates in the device, are formed of the resistive material. Such a construction may be advantageous to provide different values of resistance among the various RC circuits in the array. For example, the interior circuits may have a higher resistance value if electrode plates 98 are made of a resistive material, since there will be a longer resistive path from the counterelectrode of the capacitor to the end termination for these circuits.
- FIG. 11 illustrates one stacking arrangement which may be utilized to produce array 80 .
- the first ceramic layers are alternated with the second ceramic layers in the top portion of the stack.
- the second ceramic layers are alternated with the third ceramic layers.
- second electrodes 98 will occupy both the topmost and bottommost positions in the stack. This is advantageous to provide a degree of electrical shielding to the interior of the device.
- the present invention provides a high degree of flexibility in the manufacturing process.
- ceramic layers may be left blank, or the physical dimensions of the layers may be changed.
- a wide variety of different circuits can be easily created within a single component size. A series of examples will now be described to demonstrate this flexibility.
- FIGS. 12A and 12B are side and transverse sectional views, respectively, diagrammatically illustrating the construction of a typical multilayer ceramic capacitor 108 .
- a plurality of first polarity plates 110 are interleaved with a plurality of second polarity plates 112 , which extend to opposite ends of body 114 .
- the capacitor plates are formed of a conductive material, such as Ag/Pd.
- FIGS. 13A and 13B illustrate an RC device wherein the opposite polarity plates are made from a cofireable resistive material, such as ruthenium oxide and glass frit.
- Device 208 will exhibit a capacitance substantially identical to that of device 108 but will have a much higher series resistance value.
- FIGS. 14A and 14B illustrate a further alternative 308 wherein first polarity plates 310 are formed from the resistive material.
- Second polarity plates 312 are formed in this case from the conductive material.
- Device 308 will exhibit a capacitance substantially identical to that of devices 108 and 208 , but will exhibit a greatly reduced value of resistance.
- FIGS. 15A and 15B illustrate an RC device 408 having first polarity terminals 410 made from the resistive material.
- Electrode plates 412 are formed of the conductive material. In this case, electrode plates 412 are configured to provide a smaller overlap area than in the embodiments discussed above. As a result, device 408 will exhibit a smaller capacitance. In addition, the resistance value will be lower than that of devices 208 and 308 due to the shorter length of resistive material.
- FIGS. 16A and 16B illustrate a still further alternative device 508 , in which the first polarity electrode plates 510 are made from the resistive material. Electrode plates 512 , on the other hand, are formed from the conductive material. It can be seen that plates 510 are configured to have a length and area approximately equivalent to plates 310 of device 308 . Plates 512 , however, are configured to have a relatively narrow width. Thus, in comparison to device 308 , device 508 will exhibit a lower capacitance value. The resistance value, however, will not be substantially changed.
- the present invention allows a wide variety of different RC circuits to be manufactured to meet the needs of a particular application.
- the present invention also provides an improved termination structure for use with a multilayer ceramic device.
- a termination 120 of the present invention is shown covering an end surface of a device body 122 .
- termination 120 includes an inner termination layer 124 and an outer termination layer 126 .
- inner layer 124 is preferably formed from a chemically similar material.
- the termination material may be made from about equal parts of RuO 2 and glass frit, which is fired onto the body 122 when it is sintered.
- layer 124 is made from a resistive material in this example, it will not add appreciable resistance to the overall device. This is due to the relatively small thickness of the resistive layer.
- Termination layer 126 is typically formed of SnPb, Ni or other solderable metal. Preferably, layer 126 is applied to the device body after sintering as has been done in the past.
- inner termination layer 124 may be formed from an identical material. Because the two materials are the same, the termination will readily bond with the internal electrodes during the firing process. This is in contrast with fired-on termination materials of the prior art, such as a silver-glass frit material, which may not readily adhere to a metal oxide electrode.
- FIG. 19 illustrates an alternative termination structure 120 ′ constructed in accordance with the present invention.
- Termination structure 120 ′ includes an inner termination layer 124 ′ and an outer termination layer 126 ′ similar to layers 124 and 126 , respectively.
- an intermediate termination layer 128 is provided between termination layers 124 ′ and 126 ′.
- Termination layer 128 is formed of a prior art fired-on termination material of conductive metal and glass frit.
- a silver/glass frit material of the type typically used in component terminations of the prior art may be used for this purpose.
- Structure 120 may be advantageous to provide a good bond to resistive internal electrodes, while at the same time otherwise appearing as a termination structure of the prior art.
- An improved termination structure made in accordance with the present invention has been found to offer a number of benefits in certain applications.
- the like material of the termination structure provides excellent electrical contact.
- the termination structure will provide excellent electrical contact to conductive internal electrodes such as Ag/Pd electrodes and the like.
- the termination structure will also achieve excellent mechanical bond to the ceramic chip itself for a strong, well-adhered termination.
- the metal oxide termination offers very well-matched thermal expansion properties between the chip and termination to reduce thermal-cycle induced failures.
- resistive electrodes have been shown above as forming the entire electrode pattern.
- Embodiments are contemplated, however, wherein part of the electrode is formed from resistive material and part is formed from a traditional conductive material.
- a conductive tab may be provided between the termination and an electrode plate formed of resistive material. This may be particularly advantageous where it is desired to utilize a traditional conductive metal/glass frit termination material as the inner layer of the termination structure.
- the electrode plate may be formed of a conductive material, with the resistive material forming a series resistor between it and the termination.
- FIG. 20 illustrates a still further embodiment constructed in accordance with the present invention.
- a device 130 is depicted having terminations 132 and 134 located at respective ends of a sintered body 136 .
- Each of the first ceramic layers defines a pair of conductive capacitor plates 138 a - b extending to a respective termination.
- the second ceramic layers each define a resistive plate 140 which is not directly connected to either of the terminations. Instead, resistive plates 140 are configured to overlap a portion of plates 138 a - b to yield a predetermined capacitance. Electrically, the resulting structure will be equivalent to a series capacitor-resistor-capacitor, wherein the resistance and capacitance values can be adjusted as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Electron Tubes For Measurement (AREA)
- Thermistors And Varistors (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Both discrete and array RC components are described using cofireable resistive material as part of internal electrodes of the device. The devices include a sintered body of multilayer ceramic material in which multiple first and second electrode layers are stacked. Each of the first layers comprises at least one resistive electrode pattern extending across the sintered body between respective pairs of terminations. The second layers comprise an electrode pattern extending transverse to the resistive electrode pattern, such as between end terminations. In some embodiments, opposing side electrodes serve as input and output terminals of a respective feedthrough filter. In a feedthrough arrangement, the third terminal may be provided by one or both of the end terminals. The invention also describes an improved termination structure including a layer made from a metal oxide material.
Description
- This application is a divisional of U.S. Ser. No. 09/335,991, filed Jun. 18, 1999.
- The present invention relates generally to the art of surface mount electronic components. More particularly, the invention relates to electronic components of the type having a multilayer ceramic structure.
- Multilayer ceramic capacitors (MLCs) have enjoyed widespread use in the electronics industry. These devices are generally constructed having a plurality of ceramic-electrode layers arranged in a stack. During manufacture, the stacked layers are pressed and sintered to achieve a substantially unitary capacitor body. The capacitor body is often rectangular in shape, with electrical terminations of opposite polarity provided along respective sides or at opposite ends. A single MLC package may contain one capacitor, or an array of multiple capacitors.
- For a variety of considerations, including a desire to conserve circuit board “real estate,” several types of integrated passive devices (IPDs) have been provided. For example, integrated RC devices, produced in a manner similar to MLCs, utilize a single “package” to yield a desired filtering function. Often, the capacitor of these devices will be made in a manner substantially identical to discrete MLCs. The resistor, electrically connected to the capacitor in a predetermined manner, is often applied to the outer surface of the ceramic body.
- The present invention recognizes various disadvantages of prior art constructions and methods. Accordingly, it is an object of the present invention to provide novel electronic devices having a multilayer ceramic structure.
- It is a further object of the present invention to provide novel integrated passive devices (IPDs) for surface mount applications.
- It is an additional object of the present invention to provide novel RC components having a multilayer ceramic structure.
- It is also an object of the present invention to provide a multilayer ceramic device having a novel termination structure.
- Some of these objects are achieved by a composite RC device comprising a device body defined by a plurality of first ceramic layers and a plurality of second ceramic layers arranged to form a stack. Each of the first ceramic layers has at least one first electrode plate thereon, and each of the second ceramic layers has thereon a second electrode plate. A predetermined number of the first ceramic layers are respectively adjacent to a corresponding one of the second ceramic layers such that the first electrode plate will oppose the second electrode plate to form two plates of a capacitor.
- In the composite RC device, either or both of the first electrode plates and the second electrode plates are at least partially formed of a cofirable resistor material. In addition, the device body has a pair of terminations electrically connected to the first electrode plate on each of the first ceramic layers. Furthermore, at least one termination is electrically connected to the second electrode plate on each of the second ceramic layers to provide a predetermined electrical function.
- In some exemplary embodiments, each of the first ceramic layers comprises a plurality of side-by-side first electrode plates. These first electrode plates extend between respective first and second terminations located on the device body. For example, a total of four side-by-side first electrode plates may be provided on each of the first ceramic layers.
- Often, the second electrode plates may extend between third and fourth terminations on the device body. In such cases, the first electrode plates may extend in a direction transverse to the second electrode plates. In addition, the first electrode plates and the second electrode plates may each be formed having a wider main plate portion with narrower tab portions at each end thereof.
- In other embodiments, each of the first ceramic layers may comprise a single first electrode plate extending between first and second terminations located on the device body. In this case, the second electrode plates may extend between third and fourth terminations on the device body. For example, the second electrode plates may extend in a direction transverse to the first electrode plates. Often, the first electrode plates and the second electrode plates may each be formed having a wider main plate portion with narrower tab portions at each end thereof.
- Preferably, the first electrode plates include the cofirable resistor material. Resistor materials suitable for this purpose may include an appropriate metal oxide (such as ruthenium oxide) which, depending on the exigencies of a particular application, may be diluted with a suitable metal. The second electrode plates, on the other hand, may be formed of a substantially nonresistive conductive material. Materials suitable for this purpose may be selected from a group consisting of Ag, Ag/Pd, Cu, Ni, Pt, Au, Pd or other such metals.
- In some exemplary embodiments, a least one blank ceramic layer is located in the stack such that the device will be provided with predetermined resistance and capacitance values. Often, the terminations may comprise an inner layer having a metal oxide material and an outer layer of solderable metal. In some exemplary embodiments, two of the second electrode plates may occupy respective topmost and bottommost positions in the stack to enhance electrical shielding of an interior thereof.
- Other objects of the invention are achieved by an array device having a predetermined number of RC circuits in a singular package. The device comprises a device body defined by a plurality of first ceramic layers and a plurality of second ceramic layers arranged to form a stack. Each of the first ceramic layers has a plurality of side-by-side first electrode plates thereon, the first electrode plates being at least partially formed of a cofirable resistor material. Each of the second ceramic layers has a second electrode plate extending in a direction transverse to the first electrode plates. A predetermined number of the first ceramic layers are respectively adjacent to a corresponding one of the second ceramic layers such that the first electrode plates will oppose the second electrode plate to form two plates of a capacitor of a respective RC circuit.
- The device body is also configured having a plurality of terminations on side surfaces thereof. Respective first electrode plates corresponding to one of the RC circuits are electrically connected to at least one of the terminations. Furthermore, the second electrode plates are electrically connected to at least another of the terminations.
- In some exemplary embodiments, a plurality of third ceramic layers are arranged in the stack with the first ceramic layers and second ceramic layers. The third ceramic layers have thereon a plurality of side-by-side third electrode plates at least partially formed of a cofirable resistor material. A predetermined number of the third ceramic layers are respectively adjacent to a corresponding one of the second ceramic layers such that the third electrode plates will oppose the second electrode plates to form two plates of a capacitor of a respective RC circuit. Respective third electrode plates corresponding to one of the RC circuits are connected to a corresponding one of the terminations.
- In such embodiments, the first ceramic layers may be alternately stacked with the second ceramic layers in a top portion of the device body. The third ceramic layers may then be alternated with the second ceramic layers in a bottom portion of the device body.
- Other objects of the present invention are achieved by a miniature surface mount device comprising a device body having a unitary structure characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers. The device body includes at least two electrical terminations located on side surfaces thereof. Each of the terminations comprises an inner termination layer having a metal oxide material and an outer termination layer of solderable metal.
- In some exemplary embodiments, the inner termination layer comprises a metal oxide-glass frit layer substantially similar to a material used to form resistive electrodes in the device. Often, it will be desirable to provide an intermediate termination layer of a conductive metal-glass frit between the inner termination layer and the outer termination layer. For example, the intermediate termination layer may comprise a silver-glass frit layer. In other embodiments, the outer termination layer is directly juxtaposed to the inner termination layer. Often, at least some ceramic-electrode layers of the miniature surface mount device will comprise a metal oxide electrode material, such as ruthenium oxide, mixed with a glass frit binder.
- Still further objects of the invention are achieved by a method of fabricating a composite RC device. According to the method, a plurality of first ceramic layers are provided having a predetermined dielectric constant. A first selected electrode pattern is entirely formed on the first ceramic layers of a substantially nonresistive conductive material. In addition, a plurality of second ceramic layers are provided having the predetermined dielectric constant. A second selected electrode pattern is entirely formed on the second ceramic layers of a cofirable resistive material. The second electrode pattern is further configured so as to yield a desired resistance value. Furthermore, the first selected electrode pattern and the second selected electrode pattern are configured to provide a particular electrode overlap to yield a desired capacitance value.
- Additional objects of the invention are achieved by a composite RC device comprising a device body having a unitary structure characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers. The device body includes at least two electrical terminations located on side surfaces thereof. The ceramic-electrode layers include a plurality of first ceramic layers having thereon a pair of first electrode plates extending to a respective termination. The ceramic-electrode layers further include a plurality of second ceramic layers having thereon a second electrode plate formed of a resistive material. The second ceramic layers are interleaved with the first ceramic layers to produce overlaps between each of the second electrode plates and a respective pair of the first electrode plates in an adjacent ceramic-electrode layer.
- Other objects, features and aspects of the present invention are provided by various combinations and subcombinations of the disclosed elements, which are discussed in greater detail below.
- A full and enabling disclosure of the present invention, including the best mode thereof, to one of ordinary skill in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying drawings, in which:
- FIG. 1 is a perspective view of a surface mount RC filter array constructed in accordance with the present invention in position on a circuit board;
- FIG. 2 is an enlarged perspective view of the filter array of FIG. 1;
- FIG. 3 is a cross sectional view as taken along line3-3 of FIG. 1;
- FIGS. 4A and 4D are plan views of a first layer and a second layer as may be alternated and stacked to form the filter array of FIG. 1;
- FIG. 5 is an electrical schematic showing an equivalent circuit realized by the filter array of FIG. 1;
- FIGS. 6A and 6B are cross-sectional views similar to FIG. 3 illustrating the manner in which device capacitance can be adjusted independently of device resistance in the array device of FIG. 1;
- FIG. 7 is a perspective view of a discrete RC filter device constructed in accordance with the present invention;
- FIGS. 8A and 8B are plan views of a first layer and a second layer as may be alternated and stacked to form the filter device of FIG. 7;
- FIG. 9 is a perspective view of an alternative RC filter array constructed in accordance with the present invention;
- FIGS. 10A, 10B and10C are plan views of a first layer, a second layer and a third layer as may be alternated and stacked to form the RC filter array of FIG. 9;
- FIG. 11 is a cross-sectional view as taken along line11-11 of FIG. 9;
- FIGS.12A-B through 16A-B diagrammatically illustrate the manner in which teachings of the present invention may be utilized to achieve a variety of configurations without altering exterior dimensions of the device;
- FIG. 17 is a fragmentary view of a multilayer ceramic device having a novel termination structure in accordance with the present invention;
- FIG. 18 is an enlarged view of the area so indicated in FIG. 17;
- FIG. 19 is a view similar to FIG. 18 illustrating an alternative termination structure; and
- FIG. 20 is a cross-sectional view showing the interior construction of a still further alternative device constructed in accordance with the present invention.
- Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
- It is to be understood by one skilled in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention, which broader aspects are embodied in the exemplary constructions.
- The present invention discloses various improvements in surface mount RC devices made according to multilayer ceramic techniques. Surface mount RC devices having internal resistor structures are shown in commonly-assigned U.S. Pat. No. 5,889,445, incorporated herein by reference. Generally, these devices are constructed having a unitary body characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers. Terminations are applied to the surfaces of the body for electrical connection to external circuitry. According to industry practice, the size of such devices may be expressed as a number “XXYY,” with XX and YY being the length and width in hundredths of an inch. Some typical sizes for devices of the present invention as expressed under this practice are 0603, 0805, 1206, 1210 and 1812.
- FIG. 1 illustrates a surface
mount RC array 10 of the present invention mounted to acircuit board 12. As can also be seen in FIG. 2,array 10 includes amain body 14 of relatively small size. A plurality of terminations 16 a-d and 18 a-d are located on respective sides ofmain body 14, withterminations terminations main body 14, it is contemplated that these terminations may cover the entire end surface in some embodiments. - As shown in FIG. 1, the various terminations of the
body 14 align with respective conductive paths, such astraces circuit board 12. Electrical connection between each termination and its associated conductive path may be effected by soldering. Typically,circuit board 12 may be made from a low-temperature organic material, with the solder being a low temperature eutectic solder applied by wave or reflow soldering techniques. - Referring now to FIG. 3, the internal construction of
main body 14 will be explained. As can be seen,main body 14 includes a plurality of first electrode plates (such asplates 28 d) situated in opposed and spaced apart relation with a plurality ofsecond electrode plates 30. The electrode plates are separated by layers of ceramic material to provide a predetermined dielectric constant.Capacitor body 14 is typically made by stacking ceramic-electrode layers formed using conventional dicing techniques, which are then pressed and sintered in a kiln. Generally,main body 14 will comprise approximately 5-50 ceramic-electrode layers stacked in this manner. - As shown in FIG. 4A, each of the first electrode plates may comprise a plurality of side-by-side electrode plates (designated28 a-d) formed on the surface of a first
ceramic layer 31. In this case, each of the first electrode plates is configured to have a main plate portion (such as main plate portion 32) between a pair of tab portions (such as tab portions 34). The tab portions extend to, and are electrically connected with, respective pairs of side terminations. - Referring now to FIG. 4B, each of the
second electrode plates 30 may be formed as a single electrode plate on the surface of a secondceramic layer 38. As shown,electrode plate 30, which has amain plate portion 40 between a pair oftab portions 42, preferably extends in a direction transverse to the direction offirst electrode plates 28 a-d.Tab portions 42 are electrically connected withrespective end terminations - Preferably,
electrode plates 28 a-d are at least partially formed of a cofirable resistor material, such as a combination including a suitable metal oxide and glass frit. For example, some presently preferred embodiments employ ruthenium oxide as the metal oxide material. As a result, the electrode pattern not only serves as one plate of a capacitor, but also serves as a resistor. The use of a cofirable material permits single fire processing, which simplifies processing in relation to many prior art arrangements. - In the illustrated embodiment,
electrode plates 28 a-d are entirely formed from the resistor material. Theopposed capacitor plates 30 are preferably formed of a conductive material from the family of noble and base metals that are traditionally used in cofired electronic components and packages. For example,capacitor plates 30 may be formed from Ag, Ag/Pd, Cu, Ni, Pt, Au, Pd or the like. In some embodiments, however, it may be desirable to also formelectrode plates 28 a-d of the cofirable resistor material. - As will be appreciated, the illustrated embodiment provides a total of four RC devices in a single package. Often, each pair of side terminations will serve as the respective input and output terminals of one RC device. One or both of the
end terminals - In the illustrated embodiment, the R and C values of the respective RC devices can be adjusted by varying the overall number of ceramic layers. Due to the parallel arrangement of the resistors,
more plates 28 will yield a lower R value. Because parallel capacitors are additive,fewer plates 30 will yield a lower C value. The values of R and C can be adjusted independently by selectively applying the “capacitor” or “resistor” layers. - This can be explained most easily with reference to FIGS. 6A and 6B. In FIG. 6A,
array 10 is constructed so that every potential position for an electrode plate is populated. The resistance betweenterminal plate 28 d, and the number of layers in parallel. Capacitance is determined by the number of combinations ofplates 28 d andplates 30. Thus, device capacitance can be adjusted independently of device resistance by altering the structure within the cofired body. Specifically, it is possible to vary the values of resistance and/or capacitance by interrupting the usual sequence of the plates. - In this regard, FIG. 6B illustrates a
device 10′ wherein two plate positions that could be occupied by aplate 30 are shown to be vacant. As a result,device 10′, otherwise identical todevice 10, will exhibit a lower capacitance. Because the number ofplates 28 d remains the same, however, the resistance betweenterminations - FIG. 7 illustrates a
discrete RC device 50 constructed in accordance with the present invention. Likearray 10,device 50 includes adevice body 52 manufactured from a plurality of ceramic electrode layers arranged to form a stack. A pair ofterminations device body 52, as shown.Terminations device body 52. - FIGS. 8A and 8B illustrate the ceramic layers that can be alternated in the fabrication of
device body 52. As shown in FIG. 8A, the firstceramic layer 62 has afirst electrode plate 64 located thereon. Theplates 64 are configured to extend betweenterminations Plate 64 may be formed entirely of a cofireable resistor material as described above. - As shown in FIG. 8B, each of the second
ceramic layers 66 includes a secondceramic plate 68, which serve as counterelectrodes in the eventual capacitor. In this case,second electrode plates 68 are configured to have amain plate portion 70 and a pair oftab portions 72. Thetab portions 72 extend torespective terminations device body 52. Depending on the requirements of a particular application,electrode plates 68 may be formed of a substantially nonresistive material, or may be formed of a cofireable resistor material. - FIG. 9 illustrates an alternative embodiment which is similar in its external appearance to
array 10. Specifically, FIG. 9 illustrates anarray 80 having adevice body 82 formed of a plurality of ceramic-electrode layers arranged in a stack. The lateral sides ofbody 82 carry a plurality of opposite terminations 84 a-d and 86 a-d. - In this case,
array 80 is configured to yield a total of eight different RC circuits in a single package. Instead of three-terminal feedthrough arrangements as described above, the RC circuits ofarray 80 are configured as two terminal series circuits. - FIGS.10A-10C illustrate the three different ceramic layers that can be stacked in the manufacture of
device body 82. As shown in FIG. 10A, firstceramic layer 92 includes a total of four electrode plates 94 a-d. As shown, plates 94 a-d are arranged side by side, with the tab portion of every other plate extending to opposite sides of the device. Thus,electrode plates 94 a and 94 c will be electrically connected to terminations 84 a and 84 c, withelectrode plates 94 b and 94 d being connected to terminations 86 b and 86 d, respectively. - Referring to FIG. 10B, the second
ceramic layers 96 each include anelongate electrode plate 98 extending to opposite ends ofdevice body 82. As such,electrode plates 98, which will serve as counter electrodes in the multilayer capacitor structure, will be electrically connected to terminations 88 and 90. - Referring now to FIG. 10C, third
ceramic layer 100 includes a plurality of third electrode plates 102 a-d. Like electrode plates 94 a-d, electrode plates 102 a-d are arranged such that the tab portion of every other plate extends to opposite sides ofdevice body 82. Thus, electrode plates 102 a and 102 c will be electrically connected to terminations 86 a and 86 c, respectively. Similarly,electrode plates - Preferably, electrode plates94 a-d and 102 a-d are formed of a cofireable resistor material as described above. In such embodiments,
electrode plates 98 will often be formed of a substantially nonresistive material. In this manner, each of the RC circuits may have substantially equivalent values of both resistance and capacitance. - Embodiments are also contemplated, however, in which only electrode
plates 98, or all of the electrode plates in the device, are formed of the resistive material. Such a construction may be advantageous to provide different values of resistance among the various RC circuits in the array. For example, the interior circuits may have a higher resistance value ifelectrode plates 98 are made of a resistive material, since there will be a longer resistive path from the counterelectrode of the capacitor to the end termination for these circuits. - FIG. 11 illustrates one stacking arrangement which may be utilized to produce
array 80. In this case, the first ceramic layers are alternated with the second ceramic layers in the top portion of the stack. In the bottom portion of the stack, the second ceramic layers are alternated with the third ceramic layers. According to one preferred arrangement,second electrodes 98 will occupy both the topmost and bottommost positions in the stack. This is advantageous to provide a degree of electrical shielding to the interior of the device. - As noted above, the present invention provides a high degree of flexibility in the manufacturing process. Depending on the desired values of resistance and capacitance, ceramic layers may be left blank, or the physical dimensions of the layers may be changed. A wide variety of different circuits can be easily created within a single component size. A series of examples will now be described to demonstrate this flexibility.
- FIGS. 12A and 12B are side and transverse sectional views, respectively, diagrammatically illustrating the construction of a typical multilayer
ceramic capacitor 108. As can be seen, a plurality offirst polarity plates 110 are interleaved with a plurality ofsecond polarity plates 112, which extend to opposite ends ofbody 114. In this prior art arrangement, the capacitor plates are formed of a conductive material, such as Ag/Pd. - FIGS. 13A and 13B illustrate an RC device wherein the opposite polarity plates are made from a cofireable resistive material, such as ruthenium oxide and glass frit.
Device 208 will exhibit a capacitance substantially identical to that ofdevice 108 but will have a much higher series resistance value. - FIGS. 14A and 14B illustrate a
further alternative 308 whereinfirst polarity plates 310 are formed from the resistive material.Second polarity plates 312, on the other hand, are formed in this case from the conductive material.Device 308 will exhibit a capacitance substantially identical to that ofdevices - FIGS. 15A and 15B illustrate an
RC device 408 havingfirst polarity terminals 410 made from the resistive material.Electrode plates 412, on the other hand, are formed of the conductive material. In this case,electrode plates 412 are configured to provide a smaller overlap area than in the embodiments discussed above. As a result,device 408 will exhibit a smaller capacitance. In addition, the resistance value will be lower than that ofdevices - FIGS. 16A and 16B illustrate a still further
alternative device 508, in which the firstpolarity electrode plates 510 are made from the resistive material.Electrode plates 512, on the other hand, are formed from the conductive material. It can be seen thatplates 510 are configured to have a length and area approximately equivalent toplates 310 ofdevice 308.Plates 512, however, are configured to have a relatively narrow width. Thus, in comparison todevice 308,device 508 will exhibit a lower capacitance value. The resistance value, however, will not be substantially changed. - The following table represents theoretical capacitance and resistance values that may be achieved in one family of examples as described above, assuming use of ruthenium oxide as the resistive material and Ag/Pd as the conductive material:
DEVICE RESISTANCE CAPACITANCE 108 0.006 Ohms 39.6 pF 208 80.1 Ohms 39.6 pF 308 43.0 Ohms 39.6 pF 408 26.3 Ohms 19.9 pF 508 35.3 Ohms 21.8 pF - Thus, within a single component size, the present invention allows a wide variety of different RC circuits to be manufactured to meet the needs of a particular application.
- The above examples demonstrate that variations in plate geometry can yield different resistance and capacitance values. Further variations can be achieved, however, by altering the materials from which the electrode plates are made. For example, a conductive metal, such as silver, may be selectively added to the metal oxide/glass frit material to lower the resistance of the material.
- The present invention also provides an improved termination structure for use with a multilayer ceramic device. Referring now to FIG. 17, a
termination 120 of the present invention is shown covering an end surface of adevice body 122. As can be seen in FIG. 18,termination 120 includes an inner termination layer 124 and anouter termination layer 126. - Where the device includes internal electrodes formed of a ceramic material, such as the metal oxide and glass frit material described above, inner layer124 is preferably formed from a chemically similar material. For example, in one preferred implementation, the termination material may be made from about equal parts of RuO2 and glass frit, which is fired onto the
body 122 when it is sintered. Although layer 124 is made from a resistive material in this example, it will not add appreciable resistance to the overall device. This is due to the relatively small thickness of the resistive layer. -
Termination layer 126, on the other hand, is typically formed of SnPb, Ni or other solderable metal. Preferably,layer 126 is applied to the device body after sintering as has been done in the past. - When the improved termination of the present invention is used with an RC device having resistive electrodes, inner termination layer124 may be formed from an identical material. Because the two materials are the same, the termination will readily bond with the internal electrodes during the firing process. This is in contrast with fired-on termination materials of the prior art, such as a silver-glass frit material, which may not readily adhere to a metal oxide electrode.
- FIG. 19 illustrates an
alternative termination structure 120′ constructed in accordance with the present invention.Termination structure 120′ includes an inner termination layer 124′ and anouter termination layer 126′ similar tolayers 124 and 126, respectively. In this case, anintermediate termination layer 128 is provided between termination layers 124′ and 126′.Termination layer 128 is formed of a prior art fired-on termination material of conductive metal and glass frit. For example, a silver/glass frit material of the type typically used in component terminations of the prior art may be used for this purpose.Structure 120 may be advantageous to provide a good bond to resistive internal electrodes, while at the same time otherwise appearing as a termination structure of the prior art. - An improved termination structure made in accordance with the present invention has been found to offer a number of benefits in certain applications. For example, where an internal electrode of resistive material is used, the like material of the termination structure provides excellent electrical contact. In addition, the termination structure will provide excellent electrical contact to conductive internal electrodes such as Ag/Pd electrodes and the like. The termination structure will also achieve excellent mechanical bond to the ceramic chip itself for a strong, well-adhered termination. Moreover, the metal oxide termination offers very well-matched thermal expansion properties between the chip and termination to reduce thermal-cycle induced failures.
- In the above embodiments, resistive electrodes have been shown above as forming the entire electrode pattern. Embodiments are contemplated, however, wherein part of the electrode is formed from resistive material and part is formed from a traditional conductive material. In this regard, a conductive tab may be provided between the termination and an electrode plate formed of resistive material. This may be particularly advantageous where it is desired to utilize a traditional conductive metal/glass frit termination material as the inner layer of the termination structure. Alternatively, the electrode plate may be formed of a conductive material, with the resistive material forming a series resistor between it and the termination.
- FIG. 20 illustrates a still further embodiment constructed in accordance with the present invention. In this case, a
device 130 is depicted havingterminations sintered body 136. Each of the first ceramic layers defines a pair of conductive capacitor plates 138 a-b extending to a respective termination. The second ceramic layers each define aresistive plate 140 which is not directly connected to either of the terminations. Instead,resistive plates 140 are configured to overlap a portion of plates 138 a-b to yield a predetermined capacitance. Electrically, the resulting structure will be equivalent to a series capacitor-resistor-capacitor, wherein the resistance and capacitance values can be adjusted as described above. - It can thus be seen that the present invention provides improved RC devices that accomplish the various objectives set forth above. While preferred embodiments of the invention have been shown and described, modifications and variations may be made thereto by those of ordinary skill in the art without departing from the spirit and scope of the invention. It should also be understood that aspects of the various embodiments may be interchanged both in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to be limitative of the invention so further described in the appended claims.
Claims (9)
1. A miniature surface mount device, said device comprising:
a device body having a unitary structure characteristic of a plurality of stacked, pressed and sintered ceramic-electrode layers;
said device body including at least two electrical terminations located on side surfaces thereof; and
each of said terminations comprising an inner termination layer having a metal oxide material and an outer termination layer of solderable metal.
2. A miniature surface mount device as set forth in claim 1 , wherein said inner termination layer comprises a metal oxide-glass frit layer substantially similar to a material used to form resistive electrodes in said device.
3. A miniature surface mount device as set forth in claim 2 , further comprising an intermediate termination layer of conductive metal-glass frit between said inner termination layer and said outer termination layer.
4. A miniature surface mount device as set forth in claim 3 , wherein said intermediate termination layer comprises a silver-glass frit layer.
5. A miniature surface mount device as set forth in claim 2 , wherein said outer termination layer is directly juxtaposed to said inner termination layer.
6. A miniature surface mount device as set forth in claim 1 , wherein electrodes of at least some of said ceramic-electrode layers comprise a metal oxide electrode material.
7. A miniature surface mount device as set forth in claim 1 , wherein said metal oxide material comprises ruthenium oxide.
8. A composite RC device, said device comprising:
a device body defined by a plurality of first ceramic layers and a plurality of second ceramic layers arranged to form a stack;
each of said first ceramic layers having thereon at least one first electrode plate;
each of said second ceramic layers having a second electrode plate, a predetermined number of said first ceramic layers being respectively adjacent to a corresponding said second ceramic layer such that said first electrode plate will oppose said second electrode plate to form two plates of a capacitor;
said first electrode plates or said second electrode plates being at least partially formed of a cofirable resistor material; and said device body having a pair of terminations electrically connected to said first electrode plate on each of said first ceramic layers, and further having at least one termination electrically connected to said second electrode plate on each of said second ceramic layers to provide a predetermined electrical function;
wherein said terminations comprise an inner layer having a metal oxide material and an outer layer of solderable metal.
9. An array device having a predetermined number of RC circuits in a singular package, said device comprising:
a device body defined by a plurality of first ceramic layers and a plurality of second ceramic layers arranged to form a stack;
each of said first ceramic layers having thereon a plurality of side-by-side first electrode plates, said first electrode plates being at least partially formed of a cofirable resistor material;
each of said second ceramic layers having a second electrode plate extending in a direction transverse to said first electrode plates, a predetermined number of said first ceramic layers being respectively adjacent to a corresponding said second ceramic layer such that said first electrode plates will oppose said second electrode plate to form two plates of a capacitor of a respective RC circuit; and
said device body having a plurality of terminations on side surfaces thereof, respective of said first electrode plates corresponding to one of said RC circuits being electrically connected to at least one of said terminations and said second electrode plates being electrically connected to at least another of said terminations; wherein said array device further comprises a plurality of third ceramic layers arranged in said stack with said first ceramic layers and said second ceramic layers, said third ceramic layers having thereon a plurality of side-by-side third electrode plates at least partially formed of a cofirable resistor material;
a predetermined number of said third ceramic layers being respectively adjacent to a corresponding one of said second ceramic layers such that said third electrode plates will oppose said second electrode plates to form two plates of a capacitor of a respective RC circuit;
respective of said third electrode plates corresponding to one of said RC circuits being connected to a corresponding one of said terminations; and
wherein said terminations comprise an inner layer having a metal oxide material and an outer layer of solderable metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/871,252 US20020011905A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/335,991 US6525628B1 (en) | 1999-06-18 | 1999-06-18 | Surface mount RC array with narrow tab portions on each of the electrode plates |
US09/871,252 US20020011905A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/335,991 Division US6525628B1 (en) | 1999-06-18 | 1999-06-18 | Surface mount RC array with narrow tab portions on each of the electrode plates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020011905A1 true US20020011905A1 (en) | 2002-01-31 |
Family
ID=23314104
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/335,991 Expired - Fee Related US6525628B1 (en) | 1999-06-18 | 1999-06-18 | Surface mount RC array with narrow tab portions on each of the electrode plates |
US09/871,237 Abandoned US20020044029A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
US09/871,252 Abandoned US20020011905A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
US09/871,251 Abandoned US20020041219A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/335,991 Expired - Fee Related US6525628B1 (en) | 1999-06-18 | 1999-06-18 | Surface mount RC array with narrow tab portions on each of the electrode plates |
US09/871,237 Abandoned US20020044029A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/871,251 Abandoned US20020041219A1 (en) | 1999-06-18 | 2001-05-31 | Surface mount RC devices |
Country Status (8)
Country | Link |
---|---|
US (4) | US6525628B1 (en) |
EP (1) | EP1061535A3 (en) |
JP (1) | JP2001044076A (en) |
KR (1) | KR20010021003A (en) |
CN (1) | CN1279533A (en) |
NO (1) | NO20003015L (en) |
SG (1) | SG98405A1 (en) |
TW (1) | TW452808B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160126918A1 (en) * | 2014-11-04 | 2016-05-05 | Samsung Electro-Mechanics Co., Ltd. | Multilayer electronic component |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6606011B2 (en) | 1998-04-07 | 2003-08-12 | X2Y Attenuators, Llc | Energy conditioning circuit assembly |
US7336467B2 (en) | 2000-10-17 | 2008-02-26 | X2Y Attenuators, Llc | Energy pathway arrangement |
US9054094B2 (en) | 1997-04-08 | 2015-06-09 | X2Y Attenuators, Llc | Energy conditioning circuit arrangement for integrated circuit |
WO1999052210A1 (en) | 1998-04-07 | 1999-10-14 | X2Y Attenuators, L.L.C. | Component carrier |
US7042703B2 (en) | 2000-03-22 | 2006-05-09 | X2Y Attenuators, Llc | Energy conditioning structure |
US20030161086A1 (en) | 2000-07-18 | 2003-08-28 | X2Y Attenuators, Llc | Paired multi-layered dielectric independent passive component architecture resulting in differential and common mode filtering with surge protection in one integrated package |
US7336468B2 (en) | 1997-04-08 | 2008-02-26 | X2Y Attenuators, Llc | Arrangement for energy conditioning |
US6018448A (en) | 1997-04-08 | 2000-01-25 | X2Y Attenuators, L.L.C. | Paired multi-layered dielectric independent passive component architecture resulting in differential and common mode filtering with surge protection in one integrated package |
US6650525B2 (en) | 1997-04-08 | 2003-11-18 | X2Y Attenuators, Llc | Component carrier |
US7110235B2 (en) | 1997-04-08 | 2006-09-19 | Xzy Altenuators, Llc | Arrangement for energy conditioning |
US7274549B2 (en) | 2000-12-15 | 2007-09-25 | X2Y Attenuators, Llc | Energy pathway arrangements for energy conditioning |
US7106570B2 (en) | 1997-04-08 | 2006-09-12 | Xzy Altenuators, Llc | Pathway arrangement |
US6603646B2 (en) | 1997-04-08 | 2003-08-05 | X2Y Attenuators, Llc | Multi-functional energy conditioner |
US7110227B2 (en) | 1997-04-08 | 2006-09-19 | X2Y Attenuators, Llc | Universial energy conditioning interposer with circuit architecture |
US7321485B2 (en) | 1997-04-08 | 2008-01-22 | X2Y Attenuators, Llc | Arrangement for energy conditioning |
US7301748B2 (en) | 1997-04-08 | 2007-11-27 | Anthony Anthony A | Universal energy conditioning interposer with circuit architecture |
US6894884B2 (en) | 1997-04-08 | 2005-05-17 | Xzy Attenuators, Llc | Offset pathway arrangements for energy conditioning |
US7427816B2 (en) | 1998-04-07 | 2008-09-23 | X2Y Attenuators, Llc | Component carrier |
US7113383B2 (en) | 2000-04-28 | 2006-09-26 | X2Y Attenuators, Llc | Predetermined symmetrically balanced amalgam with complementary paired portions comprising shielding electrodes and shielded electrodes and other predetermined element portions for symmetrically balanced and complementary energy portion conditioning |
CN1468461A (en) | 2000-08-15 | 2004-01-14 | X2Y衰减器有限公司 | An electrode arrangement for circuit energy conditioning |
KR100536511B1 (en) | 2000-10-17 | 2005-12-14 | 엑스2와이 어테뉴에이터스, 엘.엘.씨 | Amalgam of shielding and shielded energy pathways and other elements for single or multiple circuitries with common reference node |
US7193831B2 (en) | 2000-10-17 | 2007-03-20 | X2Y Attenuators, Llc | Energy pathway arrangement |
DE10202915A1 (en) * | 2002-01-25 | 2003-08-21 | Epcos Ag | Electro-ceramic component with internal electrodes |
US7075774B2 (en) * | 2002-09-10 | 2006-07-11 | Tdk Corporation | Multilayer capacitor |
US7180718B2 (en) | 2003-01-31 | 2007-02-20 | X2Y Attenuators, Llc | Shielded energy conditioner |
CN1799112A (en) * | 2003-04-08 | 2006-07-05 | 阿维科斯公司 | Plated terminations |
EP1629582A2 (en) | 2003-05-29 | 2006-03-01 | X2Y Attenuators, L.L.C. | Connector related structures including an energy conditioner |
WO2005015719A2 (en) | 2003-07-21 | 2005-02-17 | X2Y Attenuators, Llc | Filter assembly |
KR20060120683A (en) | 2003-12-22 | 2006-11-27 | 엑스2와이 어테뉴에이터스, 엘.엘.씨 | Internally Shielded Energy Conditioner |
US20050180091A1 (en) * | 2004-01-13 | 2005-08-18 | Avx Corporation | High current feedthru device |
DE102004016146B4 (en) * | 2004-04-01 | 2006-09-14 | Epcos Ag | Electrical multilayer component |
US7817397B2 (en) | 2005-03-01 | 2010-10-19 | X2Y Attenuators, Llc | Energy conditioner with tied through electrodes |
US7782587B2 (en) | 2005-03-01 | 2010-08-24 | X2Y Attenuators, Llc | Internally overlapped conditioners |
US7586728B2 (en) | 2005-03-14 | 2009-09-08 | X2Y Attenuators, Llc | Conditioner with coplanar conductors |
US7923395B2 (en) * | 2005-04-07 | 2011-04-12 | Kemet Electronics Corporation | C0G multi-layered ceramic capacitor |
US20060229188A1 (en) * | 2005-04-07 | 2006-10-12 | Randall Michael S | C0G multi-layered ceramic capacitor |
US20070119911A1 (en) * | 2005-11-28 | 2007-05-31 | Chan Su L | Method of forming a composite standoff on a circuit board |
CN101395683A (en) | 2006-03-07 | 2009-03-25 | X2Y衰减器有限公司 | Energy conditioner structures |
CN100545875C (en) * | 2006-09-15 | 2009-09-30 | 财团法人工业技术研究院 | Electric vehicle power management system and method thereof |
US8493744B2 (en) * | 2007-04-03 | 2013-07-23 | Tdk Corporation | Surface mount devices with minimum lead inductance and methods of manufacturing the same |
KR100916480B1 (en) * | 2007-12-20 | 2009-09-08 | 삼성전기주식회사 | Multilayer Ceramic Capacitors |
US20090236692A1 (en) * | 2008-03-24 | 2009-09-24 | Sheng-Fu Su | Rc filtering device having air gap construction for over voltage protection |
JP2015109409A (en) | 2013-10-25 | 2015-06-11 | 株式会社村田製作所 | Electronic component |
US10033346B2 (en) | 2015-04-20 | 2018-07-24 | Avx Corporation | Wire-bond transmission line RC circuit |
US9866193B2 (en) | 2015-04-20 | 2018-01-09 | Avx Corporation | Parallel RC circuit equalizers |
US10734159B2 (en) * | 2016-12-22 | 2020-08-04 | Murata Manufacturing Co., Ltd. | Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor |
TW201927091A (en) * | 2017-12-08 | 2019-07-01 | 和碩聯合科技股份有限公司 | Surface-mount device |
CN108365308B (en) * | 2018-02-05 | 2020-04-21 | 重庆思睿创瓷电科技有限公司 | Dielectric waveguide filter and its mounting method |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2405515A (en) | 1944-09-23 | 1946-08-06 | Philco Radio & Television Corp | Amplifier coupling device |
US2828454A (en) | 1950-02-11 | 1958-03-25 | Globe Union Inc | Ceramic capacitor |
US2694185A (en) | 1951-01-19 | 1954-11-09 | Sprague Electric Co | Electrical circuit arrangement |
US2779975A (en) | 1955-01-19 | 1957-02-05 | Vitramon Inc | Methods for making composite electric circuit components |
US3002137A (en) | 1957-09-04 | 1961-09-26 | Sprague Electric Co | Voltage dependent ceramic capacitor |
US3256588A (en) | 1962-10-23 | 1966-06-21 | Philco Corp | Method of fabricating thin film r-c circuits on single substrate |
US3544925A (en) | 1965-08-31 | 1970-12-01 | Vitramon Inc | Solid-state electrical component with capacitance defeating resistor arrangement |
US3490055A (en) | 1967-01-16 | 1970-01-13 | Microtek Electronics Inc | Circuit structure with capacitor |
US3619220A (en) | 1968-09-26 | 1971-11-09 | Sprague Electric Co | Low temperature fired, glass bonded, dielectric ceramic body and method |
US3569872A (en) | 1968-11-27 | 1971-03-09 | Vitramon Inc | Electronic component |
US3569795A (en) | 1969-05-29 | 1971-03-09 | Us Army | Voltage-variable, ferroelectric capacitor |
DE2222546C3 (en) | 1972-05-08 | 1979-10-31 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Electrical RC component |
US3896354A (en) | 1974-07-02 | 1975-07-22 | Sprague Electric Co | Monolithic ceramic capacitor |
US4453199A (en) | 1983-06-17 | 1984-06-05 | Avx Corporation | Low cost thin film capacitor |
JPS62194607A (en) | 1986-02-20 | 1987-08-27 | 株式会社村田製作所 | Ceramic capacitor |
GB2197540B (en) | 1986-11-12 | 1991-04-17 | Murata Manufacturing Co | A circuit structure. |
JPH0635462Y2 (en) | 1988-08-11 | 1994-09-14 | 株式会社村田製作所 | Multilayer capacitor |
US5258335A (en) | 1988-10-14 | 1993-11-02 | Ferro Corporation | Low dielectric, low temperature fired glass ceramics |
JP2790640B2 (en) | 1989-01-14 | 1998-08-27 | ティーディーケイ株式会社 | Structure of hybrid integrated circuit components |
JP2852372B2 (en) | 1989-07-07 | 1999-02-03 | 株式会社村田製作所 | Multilayer ceramic capacitors |
JPH0373421U (en) * | 1989-07-20 | 1991-07-24 | ||
MY105486A (en) | 1989-12-15 | 1994-10-31 | Tdk Corp | A multilayer hybrid circuit. |
JPH0453219A (en) | 1990-06-20 | 1992-02-20 | Murata Mfg Co Ltd | Surface packaging type electronic part |
US5093774A (en) | 1991-03-22 | 1992-03-03 | Thomas & Betts Corporation | Two-terminal series-connected network |
US5495387A (en) | 1991-08-09 | 1996-02-27 | Murata Manufacturing Co., Ltd. | RC array |
JPH05283283A (en) | 1992-03-31 | 1993-10-29 | Mitsubishi Materials Corp | Chip-shaped cr composite element and its manufacture |
JPH05326317A (en) * | 1992-05-26 | 1993-12-10 | Tama Electric Co Ltd | Laminated ceramic component |
US5312674A (en) | 1992-07-31 | 1994-05-17 | Hughes Aircraft Company | Low-temperature-cofired-ceramic (LTCC) tape structures including cofired ferromagnetic elements, drop-in components and multi-layer transformer |
US5430605A (en) | 1992-08-04 | 1995-07-04 | Murata Erie North America, Inc. | Composite multilayer capacitive device and method for fabricating the same |
US5227951A (en) | 1992-08-04 | 1993-07-13 | Murata Erie North America, Inc. | Composite multilayer capacitive device and method for fabricating the same |
US5530722A (en) | 1992-10-27 | 1996-06-25 | Ericsson Ge Mobile Communications Inc. | Quadrature modulator with integrated distributed RC filters |
JPH06267789A (en) | 1993-03-12 | 1994-09-22 | Rohm Co Ltd | Laminated chip type c-r composite electronic component |
WO1996006459A1 (en) | 1994-08-25 | 1996-02-29 | National Semiconductor Corporation | Component stacking in multi-chip semiconductor packages |
JPH097877A (en) | 1995-04-18 | 1997-01-10 | Rohm Co Ltd | Multilayered ceramic chip capacitor and manufacture thereof |
US5880925A (en) * | 1997-06-27 | 1999-03-09 | Avx Corporation | Surface mount multilayer capacitor |
US5889445A (en) | 1997-07-22 | 1999-03-30 | Avx Corporation | Multilayer ceramic RC device |
US5897912A (en) * | 1997-09-03 | 1999-04-27 | Ferro Corporation | Method of making conductive electrodes for use in multilayer ceramic capacitors or inductors using organometallic ink |
-
1999
- 1999-06-18 US US09/335,991 patent/US6525628B1/en not_active Expired - Fee Related
-
2000
- 2000-06-01 SG SG200003056A patent/SG98405A1/en unknown
- 2000-06-02 EP EP00304693A patent/EP1061535A3/en not_active Withdrawn
- 2000-06-13 NO NO20003015A patent/NO20003015L/en unknown
- 2000-06-16 CN CN00118363A patent/CN1279533A/en active Pending
- 2000-06-17 KR KR1020000033440A patent/KR20010021003A/en not_active Withdrawn
- 2000-06-17 TW TW089111930A patent/TW452808B/en not_active IP Right Cessation
- 2000-06-19 JP JP2000182939A patent/JP2001044076A/en active Pending
-
2001
- 2001-05-31 US US09/871,237 patent/US20020044029A1/en not_active Abandoned
- 2001-05-31 US US09/871,252 patent/US20020011905A1/en not_active Abandoned
- 2001-05-31 US US09/871,251 patent/US20020041219A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160126918A1 (en) * | 2014-11-04 | 2016-05-05 | Samsung Electro-Mechanics Co., Ltd. | Multilayer electronic component |
US9948263B2 (en) * | 2014-11-04 | 2018-04-17 | Samsung Electro-Mechanics Co., Ltd. | Multilayer electronic component |
Also Published As
Publication number | Publication date |
---|---|
TW452808B (en) | 2001-09-01 |
NO20003015D0 (en) | 2000-06-13 |
KR20010021003A (en) | 2001-03-15 |
EP1061535A2 (en) | 2000-12-20 |
US20020044029A1 (en) | 2002-04-18 |
US6525628B1 (en) | 2003-02-25 |
CN1279533A (en) | 2001-01-10 |
EP1061535A3 (en) | 2005-06-15 |
JP2001044076A (en) | 2001-02-16 |
SG98405A1 (en) | 2003-09-19 |
US20020041219A1 (en) | 2002-04-11 |
NO20003015L (en) | 2000-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6525628B1 (en) | Surface mount RC array with narrow tab portions on each of the electrode plates | |
US5889445A (en) | Multilayer ceramic RC device | |
US4746557A (en) | LC composite component | |
US6515842B1 (en) | Multiple array and method of making a multiple array | |
KR101083983B1 (en) | Method for manufacturing multilayer capacitor | |
US20080165468A1 (en) | Very low profile multilayer components | |
US10141116B2 (en) | Composite electronic component and resistor device | |
US7542264B2 (en) | Capacitor block and laminated board | |
JPH07326536A (en) | Ceramic capacitors | |
US7724496B2 (en) | Multilayer vertically integrated array technology | |
JP2004516676A (en) | Electrical multilayer semiconductor and fault prevention circuit provided with the element | |
JP2716022B2 (en) | Composite laminated electronic components | |
JP2626143B2 (en) | Composite laminated electronic components | |
JPH07272975A (en) | Composite capacitor | |
US7710710B2 (en) | Electrical component and circuit configuration with the electrical component | |
CN114551096A (en) | Multilayer capacitor and board having the same | |
US10707023B2 (en) | Electronic components | |
JP7673912B2 (en) | Multilayer capacitor and its mounting substrate | |
JP3246166B2 (en) | Thin film capacitors | |
JPH0817675A (en) | Chip type multilayer ceramic capacitor | |
JPH0410676Y2 (en) | ||
JPH07263278A (en) | Capacitor | |
JPH0338813A (en) | Lc composite component | |
JPH07169651A (en) | Multilayer chip filter | |
JP2604139Y2 (en) | Multilayer chip components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |