US20020011418A1 - Method for surface treatment of copper foil - Google Patents
Method for surface treatment of copper foil Download PDFInfo
- Publication number
- US20020011418A1 US20020011418A1 US09/833,059 US83305901A US2002011418A1 US 20020011418 A1 US20020011418 A1 US 20020011418A1 US 83305901 A US83305901 A US 83305901A US 2002011418 A1 US2002011418 A1 US 2002011418A1
- Authority
- US
- United States
- Prior art keywords
- copper
- copper foil
- treatment
- adhesive strength
- cathodic electrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 239000011889 copper foil Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000004381 surface treatment Methods 0.000 title description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 53
- 239000010949 copper Substances 0.000 claims abstract description 53
- 238000011282 treatment Methods 0.000 claims abstract description 45
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 24
- -1 titanium ions Chemical class 0.000 claims abstract description 23
- 239000010936 titanium Substances 0.000 claims abstract description 22
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 17
- 239000010937 tungsten Substances 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 14
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 12
- 238000007788 roughening Methods 0.000 claims abstract description 11
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 7
- 229910000365 copper sulfate Inorganic materials 0.000 claims abstract description 4
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims abstract description 4
- 239000011248 coating agent Substances 0.000 claims abstract description 3
- 238000000576 coating method Methods 0.000 claims abstract description 3
- 238000000151 deposition Methods 0.000 claims abstract description 3
- 230000008021 deposition Effects 0.000 claims abstract description 3
- 239000000853 adhesive Substances 0.000 abstract description 20
- 230000001070 adhesive effect Effects 0.000 abstract description 20
- 239000000463 material Substances 0.000 abstract description 18
- 239000011347 resin Substances 0.000 abstract description 17
- 229920005989 resin Polymers 0.000 abstract description 17
- 229910052785 arsenic Inorganic materials 0.000 abstract description 6
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 abstract description 6
- 230000009931 harmful effect Effects 0.000 abstract description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052711 selenium Inorganic materials 0.000 abstract description 5
- 239000011669 selenium Substances 0.000 abstract description 5
- 229910052714 tellurium Inorganic materials 0.000 abstract description 5
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 abstract description 5
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 229920001721 polyimide Polymers 0.000 description 10
- 229910020341 Na2WO4.2H2O Inorganic materials 0.000 description 8
- 229910011006 Ti(SO4)2 Inorganic materials 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- WPZFLQRLSGVIAA-UHFFFAOYSA-N sodium tungstate dihydrate Chemical compound O.O.[Na+].[Na+].[O-][W]([O-])(=O)=O WPZFLQRLSGVIAA-UHFFFAOYSA-N 0.000 description 8
- HDUMBHAAKGUHAR-UHFFFAOYSA-J titanium(4+);disulfate Chemical compound [Ti+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O HDUMBHAAKGUHAR-UHFFFAOYSA-J 0.000 description 8
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 239000009719 polyimide resin Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 210000001787 dendrite Anatomy 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910017518 Cu Zn Inorganic materials 0.000 description 2
- 229910017752 Cu-Zn Inorganic materials 0.000 description 2
- 229910017943 Cu—Zn Inorganic materials 0.000 description 2
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 2
- JHWIEAWILPSRMU-UHFFFAOYSA-N 2-methyl-3-pyrimidin-4-ylpropanoic acid Chemical compound OC(=O)C(C)CC1=CC=NC=N1 JHWIEAWILPSRMU-UHFFFAOYSA-N 0.000 description 1
- ZDWPBMJZDNXTPG-UHFFFAOYSA-N 2h-benzotriazol-4-amine Chemical compound NC1=CC=CC2=C1NN=N2 ZDWPBMJZDNXTPG-UHFFFAOYSA-N 0.000 description 1
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017816 Cu—Co Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 238000004532 chromating Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Substances [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/38—Improvement of the adhesion between the insulating substrate and the metal
- H05K3/382—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
- H05K3/384—Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/58—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/03—Metal processing
- H05K2203/0307—Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0723—Electroplating, e.g. finish plating
Definitions
- the present invention relates to the surface treatment of copper foil. More specifically, this invention concerns the method of treating the surface of copper foil to create a surface with a rough and uniform condition and with a high adhesion to resins for use in the semiconductor field represented by printed circuit boards.
- Copper foil is used in printed circuit boards for electronics and electric materials in large quantities.
- Printed circuit boards are made in the following process. First, the matte side of copper foil is put on an insulating resin-impregnated base material, heated and press-bonded into a copper-coated laminated board.
- the glass-epoxy resin base material (FR-4) which is widely used is pressed at 170° C. for one to two hours. Some base materials like glass and high heat-resistant resins such as polyimide require pressing for two hours at 220° C.
- Printed circuit boards have been improved in performance and reliability, and the properties required in the printed circuit boards are getting complicated and diversified.
- the copper foil one of the constituent materials of the printed circuit board, too, has to meet vigorous quality requirements.
- Copper foil for printed circuit boards is available in two kinds, that is, rolled copper foil and electrodeposited copper foil.
- the electrodeposited copper foil which has a matte side and a shiny side is used in predominantly large quantities.
- the electrodeposited copper foil is generally made in the following process. Copper is deposited from a copper electrolytic solution in an electrodeposition apparatus to obtain a crude foil which is called untreated copper foil. Then, the matte side (non-shiny side) of the untreated copper foil is pickled for roughening treatment to secure adhesion to the resin. Then, the copper foil is treated to improve and stabilize such properties as heat resistance and chemical resistance and etching properties.
- Printed circuit boards have been highly densified in recent years, and the insulating layer or the resin layer is made very thin in thin printed circuit boards and build-up process printed circuit boards, for example. Such printed circuit boards can present problems with interlayer insulating properties if the roughened side of copper foil is high in degree of rougheness.
- the shiny side or the reverse side of the matte side of copper foil requires properties different from those on the matte side. They include resistance to heat color change, solder wettability and resist adhesion.
- the matte side needs a process of surface treatment different from that for the shiny side.
- Japanese publicized examined patent application gazette No. 53-38700 discloses a process involving a three-step electrolytic treatment in an acid electrolytic bath containing arsenic.
- Japanese publicized examined patent application gazettes Nos. 53-39327 and 54-38053 disclose processes comprising carrying out electrolysis at around the limiting current density in a acid copper electrolytic bath containing arsenic, antimony, bismuth, selenium, and tellurium.
- Japanese patent No. 2717911 discloses a process involving electrolysis at around the limiting current density in an acid copper electrolytic bath containing either chromium or tungsten or both.
- At least one side of copper foil is subjected to a roughening treatment involving a cathodic electrolysis near or above the limiting current density in an electrolytic bath containing titanium ions and tungsten ions and prepared by adding sulfuric acid and copper sulfate so as to have copper protrusions deposited and then the depositions are coated with copper or a copper alloy in a cathodic electrolysis. Then the surface of the above-mentioned copper or the copper alloy is given at least one of the following rust-proofing treatments—chromate treatment, organic rust-proofing treament and silane coupling agent treatment.
- the concentration of titanium ions is 0.03 to 5 g/l and the concentration of tungsten is 0.001 to 0.3 g/l in the electrolytic bath.
- the matte surface of the copper foil is subjected to cathodic electrolysis near or above the limiting current density in an electrolytic bath so as to have copper protrusions deposited on the surface, thus forming an uneven surface.
- the deposited copper protrusions are weak in adhesive strength to the surface of the copper foil. After that, therefore, a coat of copper or copper alloy is formed by cathodic electrolysis so as to coat the protrusions with the copper, thus keeping copper foil and copper protrusions from peeling off.
- the coat of copper or copper alloy is subjected to rust proofing treatment.
- the cathodic electrolysis conditions to deposit copper protrusions on the copper foil surface are different depending on the concentration of the electrolytic bath, time, temperature, the requred extent of roughing, and not limited in particular. But the preferable conditions are treatment time 2 to 60 seconds, bath temperature 10 to 50° C., current density 5 to 100 A/dm 2 , quantity of electricity 20 to 200 C/dm 2 , more preferably 40 to 130 C/dm 2 . Under those conditions, cathodic electrolysis can be carried out near or above the limiting current density.
- the electrolytic bath contains 0.03 to 5 g/l of titanium ions and 0.001 to 0.3 g/l of tungsten.
- Sulfuric acid may be used in 50 to 200 g/l and copper sulfate in 5 to 200 g/l, but the addition is not limited to these ranges, because the bath temperature, current density etc. have effects on the electrolysis conditions.
- titanium ion source it is preferable to use titanic sulfate solution.
- the addition of titanium ion is preferably 0.03 to 5 g/l, more preferably 0.2 to 0.8 g/l.
- concentration range is restricted as mentioned above.
- the addition of not larger than 0.03 g/l is not desirable because the copper deposited protrusions will not be uniform.
- concentration of not smaller than 5 g/l is not desirable, because the copper deposited protrusion will be too fine and could leave copper on the printed circuit board side after etching.
- tungsten ion sources it is possible to use tungstic acid and its salts such as its salt, sodium salt, potassium salt, ammonium salt etc.
- Tungstic acid is added in 0.001 to 0.3 g/l, preferably 0.005 to 0.08 g/l.
- the concentration range is limited as mentioned above is to curb the growth of the projection of copper and to improve the adhesion for the surface of copper foil. If the concentration is not larger than 0.001 g/l, it will be less effective in making copper deposited protrusions uniform and it is possible that a uniform matte condition can not be obtained. If, on the other hand, the concentration is not smaller than 0.3 g/l, it will be so effective in curbing the growth of copper protrusions that sufficient adhesive strength can not be obtained. To increase the adhesive strength, it will be necessary to increase the concentration of titanium ions. That is bad economy.
- titanium ions and tungsten ions are used in combination. Titanium ions are effective in micronizing the copper deposited protrusion and making the rougheness on the rough surface uniform but tends to leave copper on the printed circuit board surface after etching. That is why the use of titanium ions alone is not desirable.
- tungsten ions are effective in curbing the formation of dendrites by controlling the spawning of nuclei. But tungsten alone is not effective in imparting adhesive strength, especially to the glass polyimide resin base material. Without either titanium or tungsten, no desired results can be expected in a roughening treatment.
- the rough condition is unfirom with a low rougheness.
- a high adhesive strength can be imparted to such base materials as glass-polyimide which is generally weak in adhesive strength.
- the copper foil subjected to roughening treatment in an electrolytic solution with titanium and tungsten ions added thereto is generally uniform in rough surface condition with a low rougheness on the surface. That is a rough surface just for a fine pattern.
- the copper protrusions or dendrites are coated with copper or a copper alloy in a cathodic electrolysis to improve the adhesion of the rough surface.
- This treatment is carried out in the following bath under the following conditions, for example.
- the thickness of the coat formed in the cathodic electrolysis is 2.5 to 40 g/m 2 , preferably 4.5 to 20 g/m 2 .
- the thickness of the coat is smaller than 2.5 g/m 2 , the deposited protrusions can not be coated well. Deposited protrusions sticking to the surface of the copper foil can fall off, which is undesirable. Furthermore, it is feared that copper will remain after etching. If, on the other hand, the coat is thicker than 40 g/m 2 , the treated surface is so thick that there are such problems as decreased mechanical anchoring effect.
- the copper alloy is an alloy formed of copper as main component and one or two elements selected from among Ni, Co, Zn, Sn etc.
- the preferred alloys include Cu—Ni, Cu—Co, Ci—Ni—Co, Cu—Zn, Cu—Sn etc.
- the coated layer (plated layer) formed of copper or a copper alloy by the cathodic electrolysis further strengthens the adhesive strength between the base material and the copper foil, determining the final condition on the roughened surface.
- the organic rust-proofing treatment represented by chromate treatment and benzotriazole and silane coupling agent treatment can be named.
- One treatment alone or more in combination are performed.
- an aqueous solution containing potassium dichromate ions is adjusted to a suitable pH.
- the copper foil is dipped or subjected to cathodic electrolysis.
- the chemicals used include trichromate oxide, potassium dischlormate, sodium dichromate.
- organic rust-proofing agents are prepared into an aqueous solution. The solution is applied by dipping or spraying.
- suitable organic rust-proofing agents are methylbenzotriazole, aminobenzotriazole, benzotriazole.
- silane coupling agent treatment is carried out by dipping or spraying an aqueous solution of silane coupling agent.
- silane coupling agents can be named, including epoxy group, amino group, methylcapto group, and vinyl group.
- a group compatible with the resin is used, and no restriction is imposed on the selection.
- the heat resistance may be increased by forming a barrier layer of Co—Mo, W or Cu—Zn disclosed in Japanese examined patent application gazettes Nos. 2-24037 and 8-19550 or another known barrier layer before the rust-proofing treatment.
- Copper foils given the surface treatment according to the present invention are uniform in surface condition and have a high adhesion for the resin used, and can be used as DT foils meeting those requirements.
- the shiny side of the copper foil is roughened lightly than the roughened side.
- the matte side and the shiny side may be reversed.
- the shiny side of the untreated copper foil is first brought in contact with the resin when making a copper-coated laminated board.
- the side not in contact with the resin has a better adhesion for resist after molding with the resin than in case one side is not treated at all.
- the preceding treatment that is, soft etching can be dropped.
- the step of treating the surface of copper is light as compared with the conventional method of making copper foil with two treated sides. That makes manufacuturing much easier at the copper manufacturer.
- Copper foils obtained by the surface treatment method according to the present invention is used in copper-coated laminated boards, that is, printed circuit boards.
- the copper foil was subjected to cathodic electrolysis for 5 seconds at 0.5 A/dm 2 in
- this copper foil as coated surface was pressed to a glass-polyimide resin base material under a pressure of 3.9 Mpa for 100 minutes at 200° C. Also, the copper foil was laminated with a glass-epoxy resin and pressed under a pressure of 3.9 Mpa for 60 minutes at 170° C. in the molding step.
- Embodiment 1 The same treatment as Embodiment 1 was carried out by cathodic electrolysis for 4.2 seconds at 30 A/dm 2 at 40° C. except that (A) bath was replaced with
- Embodiment 1 The same treatment as Embodiment 1 was carried out by cathodic electrolysis for 4.2 seconds at 30 A/dm 2 at 40° C. except that (A) bath was replaced with
- (H) bath prepared of: CuSO 4 .5H 2 O 60 g/l H 2 SO 4 100 g/l 24% solution of Ti(SO 4 ) 2 4.6 ml/l (Ti 4+ : 0.3 g/l) Na 2 WO 4 .2H 2 O 0.009 g/l (W 6+ : 0.005 g/l)
- ⁇ roughened particles on the matte side are not large and uniform with little differences in size found among them.
- ⁇ roughened particles on the matte side are not large but some differences in size are found among them.
- ⁇ roughened particles on the matte side are very large and ununiform.
- Adhesive strength means a degree of strength required to tear the copper foil from the base material. The strength was determined in accordance with JIS-C-6481 (1986) 5.7.
- the surface treatment process according to the present invention has the following advatanges:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Disclosed is a process of treating the surface of copper foil without using harmful elements such as arsenic, selenium and tellurium unlike in the prior art. It is possible to, in an easy way, obtain a uniform rough condition and low rougheness and produce a high adhesive strength to such resin base materials as polymide resin which is weak in adhesive strength. The process comprises a roughening treatment involving a cathodic electrolysis of at least one side of copper foil near or above the limiting current density in an electrolytic bath containing titanium ions and tungsten ions and prepared by adding sulfuric acid and copper sulfate so as to have copper protrusions deposited and then coating the depositions with copper or a copper alloy in a cathodic electrolysis, followed by giving to the surface of the above-mentioned copper or the copper alloy at least one of the following rust-proofing treatments—chromate treatment, organic rust-proofing treatment and silane coupling agent treatment.
Description
- 1. Field of the Invention
- The present invention relates to the surface treatment of copper foil. More specifically, this invention concerns the method of treating the surface of copper foil to create a surface with a rough and uniform condition and with a high adhesion to resins for use in the semiconductor field represented by printed circuit boards.
- 2. Description of the Prior Art
- Copper foil is used in printed circuit boards for electronics and electric materials in large quantities.
- Printed circuit boards are made in the following process. First, the matte side of copper foil is put on an insulating resin-impregnated base material, heated and press-bonded into a copper-coated laminated board. The glass-epoxy resin base material (FR-4) which is widely used is pressed at 170° C. for one to two hours. Some base materials like glass and high heat-resistant resins such as polyimide require pressing for two hours at 220° C.
- Printed circuit boards have been improved in performance and reliability, and the properties required in the printed circuit boards are getting complicated and diversified.
- The copper foil, one of the constituent materials of the printed circuit board, too, has to meet vigorous quality requirements.
- Copper foil for printed circuit boards is available in two kinds, that is, rolled copper foil and electrodeposited copper foil. The electrodeposited copper foil which has a matte side and a shiny side is used in predominantly large quantities.
- The electrodeposited copper foil is generally made in the following process. Copper is deposited from a copper electrolytic solution in an electrodeposition apparatus to obtain a crude foil which is called untreated copper foil. Then, the matte side (non-shiny side) of the untreated copper foil is pickled for roughening treatment to secure adhesion to the resin. Then, the copper foil is treated to improve and stabilize such properties as heat resistance and chemical resistance and etching properties.
- A number of techniques for those treatments have been developed and proposed, which make available copper foils with high-functional surfaces.
- Printed circuit boards have been highly densified in recent years, and the insulating layer or the resin layer is made very thin in thin printed circuit boards and build-up process printed circuit boards, for example. Such printed circuit boards can present problems with interlayer insulating properties if the roughened side of copper foil is high in degree of rougheness.
- In a recent trend toward fine lining, furthermore, a matte side with a low profile is being sought, because a lower degree of rougheness on the roughened side of copper foil can keep the inter-line insulation better. However, if the adhesion is not sufficient, the copper foil circuit will present such problems as peeling, lifting, and delamination in the course of or after manufacturing. Those requirements are conflicting with each other, and a process of surface treatment that meet those conflicting requirements is sought.
- Furthermore, as base material for printed circuit boards, glass-epoxy resin base material (FR-4) has been widely used, while base materials impregnated with special resins like polyimide resin, high heat-resistant and low dielectric constant resins are finding increasing use in printed circuit boards because of the high reliability.
- Such special resins are low in adhesion for copper foil. It is hoped that a process of surface treatment should be developed that solves the adhesion problem on the low profiled surface.
- Meanwhile, the shiny side or the reverse side of the matte side of copper foil requires properties different from those on the matte side. They include resistance to heat color change, solder wettability and resist adhesion. The matte side needs a process of surface treatment different from that for the shiny side.
- In the past, no solder wettability is required in the shiny side of copper foil for use in multi-layer printed circuit boards, especially as inner layer and did not need to be roughened.
- But even in an application called DT (double treatment) foil other than copper foil, light roughening has come to be hoped for to improve the adhesion for resist and the adhesive strength in treatment of inner layers in forming a printed circuit board.
- Sophisticated treatments have been developed to meet a variety of requirements made on the matte side and the shiny side of copper foil.
- A number of processes of roughening copper foil are disclosed. For example, Japanese publicized examined patent application gazette No. 53-38700 discloses a process involving a three-step electrolytic treatment in an acid electrolytic bath containing arsenic. Japanese publicized examined patent application gazettes Nos. 53-39327 and 54-38053 disclose processes comprising carrying out electrolysis at around the limiting current density in a acid copper electrolytic bath containing arsenic, antimony, bismuth, selenium, and tellurium. Japanese patent No. 2717911 discloses a process involving electrolysis at around the limiting current density in an acid copper electrolytic bath containing either chromium or tungsten or both.
- But some of the above-mentioned processes use such substances as arsenic, selenium and tellurium that are harmful to humans and have to be extremely limited in their uses in the light of the environmental protection. It is feared that the harmful components contained in copper foil could pollute the environment when printed circuit boards are recycled or disposed of as industrial waste. One of the disclosed processes of surface treatment involves treatment in a bath containing chromium and tungsten. In this process, the roughened surface condition improves in uniformity but is low in adhesive strength to glass epoxy resin base material (FR-4) and especially glass-polyimide resin base material etc. and is not practically useful.
- In view of the prior art described above, including the disadvantages and problems of the prior art, it is an object of the present invention to provide an easy process of copper foil surface treatment which does not use such harmful substances as arsenic, selenium and tellurium and which produces a copper foil with a uniform matte condition, a low surface rougheness and a high adhesive strength for such base resins with a weak adhesion as polyimide resin.
- The foregoing object is effected by the invention as will be apparent from the following description. That is, at least one side of copper foil is subjected to a roughening treatment involving a cathodic electrolysis near or above the limiting current density in an electrolytic bath containing titanium ions and tungsten ions and prepared by adding sulfuric acid and copper sulfate so as to have copper protrusions deposited and then the depositions are coated with copper or a copper alloy in a cathodic electrolysis. Then the surface of the above-mentioned copper or the copper alloy is given at least one of the following rust-proofing treatments—chromate treatment, organic rust-proofing treament and silane coupling agent treatment.
- It is preferable that the concentration of titanium ions is 0.03 to 5 g/l and the concentration of tungsten is 0.001 to 0.3 g/l in the electrolytic bath.
- The roughening treatment method according to the present invention will be described. First, untreated copper foil is pickled to remove oxides and stains on the surface.
- Then, the matte surface of the copper foil is subjected to cathodic electrolysis near or above the limiting current density in an electrolytic bath so as to have copper protrusions deposited on the surface, thus forming an uneven surface.
- The deposited copper protrusions are weak in adhesive strength to the surface of the copper foil. After that, therefore, a coat of copper or copper alloy is formed by cathodic electrolysis so as to coat the protrusions with the copper, thus keeping copper foil and copper protrusions from peeling off.
- Then, the coat of copper or copper alloy is subjected to rust proofing treatment.
- The cathodic electrolysis conditions to deposit copper protrusions on the copper foil surface are different depending on the concentration of the electrolytic bath, time, temperature, the requred extent of roughing, and not limited in particular. But the preferable conditions are treatment time 2 to 60 seconds, bath temperature 10 to 50° C., current density 5 to 100 A/dm2, quantity of electricity 20 to 200 C/dm2, more preferably 40 to 130 C/dm2. Under those conditions, cathodic electrolysis can be carried out near or above the limiting current density.
- It is preferable that the electrolytic bath contains 0.03 to 5 g/l of titanium ions and 0.001 to 0.3 g/l of tungsten. Sulfuric acid may be used in 50 to 200 g/l and copper sulfate in 5 to 200 g/l, but the addition is not limited to these ranges, because the bath temperature, current density etc. have effects on the electrolysis conditions.
- As titanium ion source, it is preferable to use titanic sulfate solution. The addition of titanium ion is preferably 0.03 to 5 g/l, more preferably 0.2 to 0.8 g/l.
- The reason why the concentration range is restricted as mentioned above is to make copper deposited protrusions uniform and fine. The addition of not larger than 0.03 g/l is not desirable because the copper deposited protrusions will not be uniform. The concentration of not smaller than 5 g/l is not desirable, because the copper deposited protrusion will be too fine and could leave copper on the printed circuit board side after etching.
- As tungsten ion sources, it is possible to use tungstic acid and its salts such as its salt, sodium salt, potassium salt, ammonium salt etc.
- Tungstic acid is added in 0.001 to 0.3 g/l, preferably 0.005 to 0.08 g/l.
- The reason why the concentration range is limited as mentioned above is to curb the growth of the projection of copper and to improve the adhesion for the surface of copper foil. If the concentration is not larger than 0.001 g/l, it will be less effective in making copper deposited protrusions uniform and it is possible that a uniform matte condition can not be obtained. If, on the other hand, the concentration is not smaller than 0.3 g/l, it will be so effective in curbing the growth of copper protrusions that sufficient adhesive strength can not be obtained. To increase the adhesive strength, it will be necessary to increase the concentration of titanium ions. That is bad economy.
- The reason why titanium ions and tungsten ions are used in combination is this. Titanium ions are effective in micronizing the copper deposited protrusion and making the rougheness on the rough surface uniform but tends to leave copper on the printed circuit board surface after etching. That is why the use of titanium ions alone is not desirable. On the other hand, tungsten ions are effective in curbing the formation of dendrites by controlling the spawning of nuclei. But tungsten alone is not effective in imparting adhesive strength, especially to the glass polyimide resin base material. Without either titanium or tungsten, no desired results can be expected in a roughening treatment.
- If titanium and tungsten ions are added, the rough condition is unfirom with a low rougheness. In addition, a high adhesive strength can be imparted to such base materials as glass-polyimide which is generally weak in adhesive strength.
- As set forth above, the copper foil subjected to roughening treatment in an electrolytic solution with titanium and tungsten ions added thereto is generally uniform in rough surface condition with a low rougheness on the surface. That is a rough surface just for a fine pattern.
- On the other hand, in case neither titanium ions nor tungsten ions are added, the rough condition with copper protrusions is quite ununiform with rough and large dendrites formed. And copper can remain on the etched surface of the printed circuit board after press molding. This defect is fatal to the printed circuit board. The wiring density is high nowdays, and even if no copper is found left, the wiring edge formed in a delicate etching time is poor in fineness. There is a possible of a short circuit being caused. That is, there arises a problem with insulation. Such a printed circuit board is problematical.
- After copper protrusions or dendrites are deposited on the surface of copper foil, the copper protrusions or dendrites are coated with copper or a copper alloy in a cathodic electrolysis to improve the adhesion of the rough surface.
- This treatment is carried out in the following bath under the following conditions, for example.
CuSO4.5H2O 250 g/l H2SO4 100 g/l - bath temperature 50° C., current density 5 A/dm2, cathodic electrolysis time about 80 seconds. Under those conditions, roughening is finished.
- The thickness of the coat formed in the cathodic electrolysis is 2.5 to 40 g/m2, preferably 4.5 to 20 g/m2.
- If the thickness of the coat is smaller than 2.5 g/m2, the deposited protrusions can not be coated well. Deposited protrusions sticking to the surface of the copper foil can fall off, which is undesirable. Furthermore, it is feared that copper will remain after etching. If, on the other hand, the coat is thicker than 40 g/m2, the treated surface is so thick that there are such problems as decreased mechanical anchoring effect.
- The copper alloy is an alloy formed of copper as main component and one or two elements selected from among Ni, Co, Zn, Sn etc. The preferred alloys include Cu—Ni, Cu—Co, Ci—Ni—Co, Cu—Zn, Cu—Sn etc.
- The coated layer (plated layer) formed of copper or a copper alloy by the cathodic electrolysis further strengthens the adhesive strength between the base material and the copper foil, determining the final condition on the roughened surface.
- The coating with copper or a copper alloy is followed by rust-proofing treatment.
- For rust-proofing, the organic rust-proofing treatment represented by chromate treatment and benzotriazole and silane coupling agent treatment can be named. One treatment alone or more in combination are performed.
- For chromating treatment, an aqueous solution containing potassium dichromate ions is adjusted to a suitable pH. In this solution, the copper foil is dipped or subjected to cathodic electrolysis. The chemicals used include trichromate oxide, potassium dischlormate, sodium dichromate.
- For organic rust-proofing, a variety of organic rust-proofing agents are prepared into an aqueous solution. The solution is applied by dipping or spraying. Among the suitable organic rust-proofing agents are methylbenzotriazole, aminobenzotriazole, benzotriazole.
- The silane coupling agent treatment is carried out by dipping or spraying an aqueous solution of silane coupling agent. Many suitable silane coupling agents can be named, including epoxy group, amino group, methylcapto group, and vinyl group. A group compatible with the resin is used, and no restriction is imposed on the selection.
- After going through those treatments, a finished printed circuit board can be obtained.
- In this connection, the heat resistance may be increased by forming a barrier layer of Co—Mo, W or Cu—Zn disclosed in Japanese examined patent application gazettes Nos. 2-24037 and 8-19550 or another known barrier layer before the rust-proofing treatment.
- In the past, as set forth above, there was no need to roughen the shiny side of the copper foil except for one used as inner DT (double treated) foil. In recent years, however, it is hoped that copper foil is given beforehand fine, uniform and light roughening treatment to improve the adhesion of resist, to drop the soft etching step and to increase the adhesive strength of the inner layers.
- Copper foils given the surface treatment according to the present invention are uniform in surface condition and have a high adhesion for the resin used, and can be used as DT foils meeting those requirements.
- In treating the copper foil according to the present invention, the shiny side of the copper foil is roughened lightly than the roughened side.
- In treatment of copper foil according to the present invention, the matte side and the shiny side may be reversed. In case the matte side and the shiny side are reversed, the shiny side of the untreated copper foil is first brought in contact with the resin when making a copper-coated laminated board. In such a method in which the matte side and the shiny side are reversed, the side not in contact with the resin has a better adhesion for resist after molding with the resin than in case one side is not treated at all. In the inner layer processing step in the printed circuit board manufacturer, the preceding treatment, that is, soft etching can be dropped. Furthermore, the step of treating the surface of copper is light as compared with the conventional method of making copper foil with two treated sides. That makes manufacuturing much easier at the copper manufacturer.
- Embodiments
- Copper foils obtained by the surface treatment method according to the present invention is used in copper-coated laminated boards, that is, printed circuit boards.
- There will now be described properties of copper-coated laminated board embodying the present invention.
- Embodiment 1
- The matte side of an untreated electrodeposited copper foil 35 μm thick was subjected to cathodic electrolysis for 2.5 seconds at 50 A/dm2 at a temperaure of 40° C. in
- (A) bath prepared of:
CuSO4.5H2O 50 g/l H2SO4 100 g/l 24% solution of Ti(SO4)2 6.1 ml/l (Ti4+: 0.4 g/l) Na2WO4.2H2O 0.018 g/l (W6+: 0.01 g/l) - rinsed and was subjected to cathodic electrolysis for 60 seconds at 10 A/dm2 at a temperaure of 40° C. in
- (B) bath prepared of:
CuSO4.5H2O 200 g/l H2SO4 100 g/l - followed by rinsing.
- Then, for rust-proofing, the copper foil was subjected to cathodic electrolysis for 5 seconds at 0.5 A/dm2 in
- (C) bath prepared of:
Na2Cr2O7.2H2O 3 g/l NaOH 10 g/l - followed by rinsing and drying.
- The surface properties (uniformity, surface rougheness) of this copper foil were determined. The results are shown in Table 1.
- Furthermore, the roughened surface of this copper foil as coated surface was pressed to a glass-polyimide resin base material under a pressure of 3.9 Mpa for 100 minutes at 200° C. Also, the copper foil was laminated with a glass-epoxy resin and pressed under a pressure of 3.9 Mpa for 60 minutes at 170° C. in the molding step.
- The properties (adhesive strength, copper residue) of the copper-coated laminated board were determined. The results are shown in Table 1.
- Embodiment 2
- The same treatment as Embodiment 1 was carried out at 40° C. except that (A) bath was replaced with
- (D) bath prepared of:
CuSO4.5H2O 50 g/l H2SO4 100 g/l 24% solution of Ti(SO4)2 8.4 ml/l (Ti4+: 0.55 g/l) Na2WO4.2H2O 0.054 g/l (W6+: 0.03 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- Embodiment 3
- The same treatment as Embodiment 1 was carried out by cathodic electrolysis for 3 seconds at 40 A/dm2 at 40° C. except that (A) bath was replaced with
- (E) bath prepared of:
CuSO4.5H2O 60 g/l H2SO4 150 g/l 24% solution of Ti(SO4)2 9.1 ml/l (Ti4+: 0.6 g/l) Na2WO4.2H2O 0.018 g/l (W6+: 0.01 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- Embodiment 4
- The same treatment as Embodiment 1 was carried out by cathodic electrolysis for 4.2 seconds at 30 A/dm2 at 40° C. except that (A) bath was replaced with
- (F) Bath prepared of:
CuSO4.5H2O 60 g/l H2SO4 150 g/l 24% solution of Ti(SO4)2 12.1 ml/l (Ti4+: 0.8 g/l) Na2WO4.2H2O 0.09 g/l (W6+: 0.05 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- Embodiment 5
- The same treatment as Embodiment 1 was carried out by cathodic electrolysis for 4.2 seconds at 30 A/dm2 at 40° C. except that (A) bath was replaced with
- (G) bath prepared of:
CuSO4.5H2O 60 g/l H2SO4 150 g/l 24% solution of Ti(SO4)2 12.1 ml/l (Ti4+: 0.8 g/l) Na2WO4.2H2O 0.144 g/l (W6+: 0.08 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- Embodiment 6
- The same treatment as Embodiment 1 was carried out by cathodic electrolysis for 2.5 seconds at 60 A/dm2 except that (A) bath was replaced with
- (H) bath prepared of:
CuSO4.5H2O 60 g/l H2SO4 100 g/l 24% solution of Ti(SO4)2 4.6 ml/l (Ti4+: 0.3 g/l) Na2WO4.2H2O 0.009 g/l (W6+: 0.005 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- Embodiment 7
- The same treatment as Embodiment 1 was carried out at 40° C. except that (A) bath was replaced with
- (I) bath prepared of:
CuSO4.5H2O 40 g/l H2SO4 150 g/l 24% solution of Ti(SO4)2 9.1 ml/l (Ti4+: 0.6 g/l) Na2WO4.2H2O 0.054 g/l (W6+: 0.03 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- The same treatment as Embodiment 1 was carried out at 40° C. except that (A) bath was replaced with
- (J) bath prepared of:
CuSO4.5H2O 50 g/l H2SO4 100 g/l 24% solution of Ti(SO4)2 9.1 ml/l (Ti4+: 0.6 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- The same treatment as Embodiment 1 was carried out at 40° C. except that (A) bath was replaced with
- (K) bath prepared of:
CuSO4.5H2O 50 g/l H2SO4 100 g/l Na2WO4.2H2O 0.018 g/l (W6+: 0.01 g/l) - and the properties were determined the same way, and the results are shown in Table 1.
- The same treatment as Embodiment 1 was carried out at 40° C. except that (A) bath was replaced with
- (L) bath prepared of:
CuSO4.5H2O 50 g/l H2SO4 100 g/l - and the properties were determined the same way, and the results are shown in Table 1.
TABLE 1 Adhesive Adhesive strength strength (FR-4) Roughness (N/mm) (N/mm) Copper Rz (μm) to glass- to glass- found left Uni- on roughened polyimide epoxy resin on etched formity side resin base base base side Embod- Ments (1) 0 8.9 2.05 2.00 0 (2) 0 8.7 2.01 1.95 0 (3) 0 7.6 2.11 1.82 0 (4) 0 9.0 1.84 2.03 0 (5) 0 8.5 1.86 1.86 0 (6) 0 8.3 1.85 1.82 0 (7) 0 8.4 1.98 1.97 0 Com- parative example (1) Δ 8.8 1.57 1.87 X (2) 0 8.4 1.58 1.91 0 (3) X 11.1 1.90 2.15 X - “Uniformity” was evaluated by examining the surface condition under an electronic microscope at a maginification of about 1,000. The evaluation results are indicated by the following symbols:
- ∘: roughened particles on the matte side are not large and uniform with little differences in size found among them.
- Δ: roughened particles on the matte side are not large but some differences in size are found among them.
- ×: roughened particles on the matte side are very large and ununiform.
- “Adhesive strength” means a degree of strength required to tear the copper foil from the base material. The strength was determined in accordance with JIS-C-6481 (1986) 5.7.
- “Copper found left on etched base side” was checked under a stereomicroscope at a magnification of 50 after copper was removed by cupric chloride etching. Table 1 shows the evaluation results on the glass-polyimide resin base material. The evaluation results are indicated by the following symbols:
- ∘: no copper found left
- ×: copper found left
- The results in Table 1 show that the roughened surface condition treated according to the present invention is high in uniformity and low in rougheness as compared with those by the prior art. According to the present invention, while the adhesive strength to the glass-epoxy resin base material (Grade FR-4) is somewhat low, a high degree of adhesion is exhibited with glass-polyimide. Thus, excellent surface treated copper foil can be obtained.
- As set forth above, the surface treatment process according to the present invention has the following advatanges:
- (1) roughens the surface without using such harmful element as arsenic, selenium and tellurium, presenting no environmetal problems and having no fear of harmful effects on humans.
- (2) Produces a surface treated copper foil with a uniform roughness condition on the matte side and with a high adhesive strength to the resins, especially glass-polymide resin base material which is weak in adhesive strength, thus adapted to high density printed circuit boards.
- (3) Needs only light treatment and easy to include in the copper production process, thus permitting mass production.
Claims (2)
1. A process of treating the surface of copper foil which comprises the steps of:
Roughening the surface to deposit copper protrusions by subjecting at least one side of copper foil near or above the limiting current density in an electrolytic bath containing titanium ions and tungsten ions and prepared by adding sulfuric acid and copper sulfate
coating the depositions with copper or a copper alloy by a cathodic electrolysis,
giving to the surface of said copper or the copper alloy at least one of the following rust-proofing treatments—chromate treatment, organic rust-proofing treatment and silane coupling agent treatment.
2. The process of treating the surface of copper foil wherein the electrolytic bath contains 0.03 to 5 g/l of titanium ions and 0.001 to 0.3 g/l of tungsten ions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000112808 | 2000-04-14 | ||
JP2000-112808 | 2000-04-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020011418A1 true US20020011418A1 (en) | 2002-01-31 |
US6419811B2 US6419811B2 (en) | 2002-07-16 |
Family
ID=18624899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/833,059 Expired - Fee Related US6419811B2 (en) | 2000-04-14 | 2001-04-12 | Method for surface treatment of copper foil |
Country Status (3)
Country | Link |
---|---|
US (1) | US6419811B2 (en) |
CN (1) | CN1196391C (en) |
GB (1) | GB2361713B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100138A1 (en) * | 2002-05-23 | 2003-12-04 | Antonio Rodriguez Siurana | Copper laminate, composite lamellar material comprising said copper laminate and a procedure for producing it |
US20040157080A1 (en) * | 2003-02-12 | 2004-08-12 | Furukawa Circuit Foil Co., Ltd. | Copper foil for fine pattern printed circuits and method of production of same |
US20040170857A1 (en) * | 2003-02-27 | 2004-09-02 | Yasuhisa Yoshihara | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
CN101899686A (en) * | 2010-06-23 | 2010-12-01 | 江西理工大学 | Additive for roughening treatment in copper foil surface treatment process |
US20130092548A1 (en) * | 2011-10-18 | 2013-04-18 | Ming Jen Tzou | Process to manufacture surface fine grain copper foil with high peeling strength and environmental protection for printed circuit boards |
CN115087225A (en) * | 2022-07-20 | 2022-09-20 | 深圳市板明科技股份有限公司 | Chloride ion-resistant printed circuit board flash etching additive and flash etching method |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1301046C (en) * | 2002-05-13 | 2007-02-14 | 三井金属鉱业株式会社 | Flexible printed wiring board for chip on film |
KR100553840B1 (en) * | 2003-05-29 | 2006-02-24 | 일진소재산업주식회사 | Manufacturing Method of Copper Foil for Printed Circuit Board |
JP2006222185A (en) * | 2005-02-09 | 2006-08-24 | Furukawa Circuit Foil Kk | Polyimide flexible copper clad laminate, copper foil therefor, and polyimide flexible printed wiring board |
CN1320672C (en) * | 2005-07-25 | 2007-06-06 | 北京中科天华科技发展有限公司 | Nano-electrolytic copper foil suitable to lithium ion cell and preparation method |
CN100399604C (en) * | 2005-10-09 | 2008-07-02 | 北京中科天华科技发展有限公司 | Surface treatment method of lithium ion battery current collector copper foil |
WO2007047940A2 (en) * | 2005-10-19 | 2007-04-26 | World Properties, Inc. | Circuit board materials with improved bond to conductive metals and methods of the manufacture thereof |
CN103266335B (en) * | 2007-09-28 | 2016-08-10 | Jx日矿日石金属株式会社 | Copper foil for printed circuit and copper-clad laminate |
CN101935836B (en) * | 2010-08-03 | 2012-06-06 | 山东金宝电子股份有限公司 | Surface treatment process of reddened copper foil for high-grade FR-4 copper-clad plate |
US20130189538A1 (en) * | 2010-09-24 | 2013-07-25 | Jx Nippon Mining & Metals Corporation | Method of manufacturing copper foil for printed wiring board, and copper foil printed wiring board |
CN102711393B (en) * | 2011-03-28 | 2015-01-14 | 南亚塑胶工业股份有限公司 | A method for manufacturing surface fine-grained copper foil for printed circuit boards |
CN102560584B (en) * | 2012-02-14 | 2014-06-11 | 联合铜箔(惠州)有限公司 | Additive for electrolytic copper foil and surface treatment process of very low profile electrolytic copper foil |
CN104404590A (en) * | 2014-10-31 | 2015-03-11 | 联合铜箔(惠州)有限公司 | Additive used for electrolytic copper foil and surface roughening treatment technology for electrolytic copper foil |
CN109989083A (en) * | 2019-04-28 | 2019-07-09 | 天水华洋电子科技股份有限公司 | Pretreating process is electroplated in the super roughening lead frame of one kind |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3392008B2 (en) * | 1996-10-30 | 2003-03-31 | 日本表面化学株式会社 | Metal protective film forming treatment agent and treatment method |
US3293109A (en) * | 1961-09-18 | 1966-12-20 | Clevite Corp | Conducting element having improved bonding characteristics and method |
JPS5339327A (en) | 1976-09-22 | 1978-04-11 | Nippon Paint Co Ltd | Powder coating composition |
GB8333753D0 (en) * | 1983-12-19 | 1984-01-25 | Thorpe J E | Dielectric boards |
JP2717911B2 (en) | 1992-11-19 | 1998-02-25 | 日鉱グールド・フォイル株式会社 | Copper foil for printed circuit and manufacturing method thereof |
JP2762386B2 (en) * | 1993-03-19 | 1998-06-04 | 三井金属鉱業株式会社 | Copper-clad laminates and printed wiring boards |
US5679230A (en) * | 1995-08-21 | 1997-10-21 | Oak-Mitsui, Inc. | Copper foil for printed circuit boards |
-
2001
- 2001-04-11 GB GB0109098A patent/GB2361713B/en not_active Expired - Fee Related
- 2001-04-12 US US09/833,059 patent/US6419811B2/en not_active Expired - Fee Related
- 2001-04-13 CN CNB01116400XA patent/CN1196391C/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100138A1 (en) * | 2002-05-23 | 2003-12-04 | Antonio Rodriguez Siurana | Copper laminate, composite lamellar material comprising said copper laminate and a procedure for producing it |
US7052779B2 (en) | 2003-02-12 | 2006-05-30 | Furukawa Circuit Foil Co., Ltd. | Copper foil for fine pattern printed circuits and method of production of same |
US20040157080A1 (en) * | 2003-02-12 | 2004-08-12 | Furukawa Circuit Foil Co., Ltd. | Copper foil for fine pattern printed circuits and method of production of same |
EP1448036A1 (en) * | 2003-02-12 | 2004-08-18 | Furukawa Circuit Foil Co., Ltd. | Copper foil for fine pattern printed circuits and method of production same |
US7476449B2 (en) * | 2003-02-27 | 2009-01-13 | Furukawa Circuit Foil Co., Ltd. | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
US20070160865A1 (en) * | 2003-02-27 | 2007-07-12 | Furukawa Ciruit Foil Co., Ltd | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
US20040170857A1 (en) * | 2003-02-27 | 2004-09-02 | Yasuhisa Yoshihara | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
US7569282B2 (en) | 2003-02-27 | 2009-08-04 | The Furukawa Electric Co., Ltd. | Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield |
CN101899686A (en) * | 2010-06-23 | 2010-12-01 | 江西理工大学 | Additive for roughening treatment in copper foil surface treatment process |
US20130092548A1 (en) * | 2011-10-18 | 2013-04-18 | Ming Jen Tzou | Process to manufacture surface fine grain copper foil with high peeling strength and environmental protection for printed circuit boards |
US9115441B2 (en) * | 2011-10-18 | 2015-08-25 | Nan Ya Plastics Corporation | Process to manufacture surface fine grain copper foil with high peeling strength and environmental protection for printed circuit boards |
CN115087225A (en) * | 2022-07-20 | 2022-09-20 | 深圳市板明科技股份有限公司 | Chloride ion-resistant printed circuit board flash etching additive and flash etching method |
CN115087225B (en) * | 2022-07-20 | 2022-11-08 | 深圳市板明科技股份有限公司 | Chloride ion-resistant printed circuit board flash etching additive and flash etching method |
Also Published As
Publication number | Publication date |
---|---|
US6419811B2 (en) | 2002-07-16 |
GB2361713B (en) | 2003-09-24 |
CN1196391C (en) | 2005-04-06 |
GB2361713A (en) | 2001-10-31 |
GB0109098D0 (en) | 2001-05-30 |
CN1321061A (en) | 2001-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6419811B2 (en) | Method for surface treatment of copper foil | |
US5389446A (en) | Copper foil for printed circuits | |
US5712047A (en) | Copper foil for printed wiring board | |
JPH06169169A (en) | Printed circuit copper foil and manufacture thereof | |
JP2620151B2 (en) | Copper foil for printed circuits | |
US7108923B1 (en) | Copper foil for printed circuit board with taking environmental conservation into consideration | |
JPH1018075A (en) | Electrolytic copper foil | |
JPH08236930A (en) | Copper foil for printed circuit and its manufacture | |
US7037597B2 (en) | Copper foil for printed-wiring board | |
JP2006028635A (en) | Method for manufacturing surface treated copper foil for microfabrication circuit substrate | |
US7344785B2 (en) | Copper foil for printed circuit board, method for fabricating same, and trivalent chromium conversion treatment solution used for fabricating same | |
JP3623621B2 (en) | Copper foil surface treatment method | |
JPH06169168A (en) | Printed circuit copper foil and manufacture thereof | |
JP3564460B2 (en) | Copper foil for printed wiring board and method for producing the same | |
EP0839440B1 (en) | Copper foil for the manufacture of printed circuits and method of producing same | |
JP2631061B2 (en) | Copper foil for printed circuit and method of manufacturing the same | |
US5332486A (en) | Anti-oxidant coatings for copper foils | |
JP3342479B2 (en) | Copper foil surface treatment method | |
US5304428A (en) | Copper foil for printed circuit boards | |
JP4083927B2 (en) | Copper foil surface treatment method | |
JP3709142B2 (en) | Copper foil for printed wiring board and method for producing the same | |
KR930001934B1 (en) | Electrolysis copper foil & making method for printed circuit | |
LU501394B1 (en) | Surface-treated copper foil for high-frequency circuit and method for producing the same | |
JPH06237078A (en) | Manufacture of copper foil for printed circuit | |
JPH08335776A (en) | Method for treating copper foil in printed circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUKUDA METAL FOIL & POWDER CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANABE, HISANORI;TAKAMI, MASASTO;HIROSE, MASARU;REEL/FRAME:012047/0542 Effective date: 20010626 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140716 |