US20020010257A1 - Adhesion-promoting primer compositions for polyolefin substrates - Google Patents
Adhesion-promoting primer compositions for polyolefin substrates Download PDFInfo
- Publication number
- US20020010257A1 US20020010257A1 US09/970,880 US97088001A US2002010257A1 US 20020010257 A1 US20020010257 A1 US 20020010257A1 US 97088001 A US97088001 A US 97088001A US 2002010257 A1 US2002010257 A1 US 2002010257A1
- Authority
- US
- United States
- Prior art keywords
- solvent
- polyolefin
- primer composition
- based primer
- solvents
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 161
- 229920000098 polyolefin Polymers 0.000 title claims abstract description 137
- 239000000758 substrate Substances 0.000 title claims description 23
- 239000003973 paint Substances 0.000 claims abstract description 124
- 239000002904 solvent Substances 0.000 claims abstract description 119
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000002253 acid Substances 0.000 claims abstract description 34
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims abstract description 29
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims abstract description 28
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000005977 Ethylene Substances 0.000 claims abstract description 27
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 claims abstract description 25
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229920001577 copolymer Polymers 0.000 claims abstract description 22
- 229920001897 terpolymer Polymers 0.000 claims abstract description 22
- -1 polypropylene Polymers 0.000 claims abstract description 19
- 150000002148 esters Chemical class 0.000 claims abstract description 14
- 239000003849 aromatic solvent Substances 0.000 claims abstract description 11
- 150000008064 anhydrides Chemical class 0.000 claims abstract description 10
- 150000001735 carboxylic acids Chemical class 0.000 claims abstract description 10
- 239000003759 ester based solvent Substances 0.000 claims abstract description 10
- 239000005453 ketone based solvent Substances 0.000 claims abstract description 9
- 229920001155 polypropylene Polymers 0.000 claims abstract description 9
- 239000004743 Polypropylene Substances 0.000 claims abstract description 8
- 150000007513 acids Chemical class 0.000 claims abstract description 8
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 8
- 229920005606 polypropylene copolymer Polymers 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 31
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 23
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 18
- 239000008096 xylene Substances 0.000 claims description 18
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 13
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 11
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 6
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 claims description 6
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 5
- RXGUIWHIADMCFC-UHFFFAOYSA-N 2-Methylpropyl 2-methylpropionate Chemical compound CC(C)COC(=O)C(C)C RXGUIWHIADMCFC-UHFFFAOYSA-N 0.000 claims description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 claims description 4
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 claims description 4
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 claims description 4
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 claims description 4
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 claims description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 3
- 239000011976 maleic acid Substances 0.000 claims description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 229920005629 polypropylene homopolymer Polymers 0.000 claims description 3
- 235000015096 spirit Nutrition 0.000 claims description 3
- GVJRTUUUJYMTNQ-UHFFFAOYSA-N 2-(2,5-dioxofuran-3-yl)acetic acid Chemical compound OC(=O)CC1=CC(=O)OC1=O GVJRTUUUJYMTNQ-UHFFFAOYSA-N 0.000 claims description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 2
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 claims description 2
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 2
- 229940072049 amyl acetate Drugs 0.000 claims description 2
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 claims description 2
- 229940043232 butyl acetate Drugs 0.000 claims description 2
- 239000006184 cosolvent Substances 0.000 claims description 2
- 229940093499 ethyl acetate Drugs 0.000 claims description 2
- 239000001530 fumaric acid Substances 0.000 claims description 2
- 230000009477 glass transition Effects 0.000 claims description 2
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 claims description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 claims description 2
- 229940011051 isopropyl acetate Drugs 0.000 claims description 2
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 claims description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 claims description 2
- 239000003209 petroleum derivative Substances 0.000 claims description 2
- 229940090181 propyl acetate Drugs 0.000 claims description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 2
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 claims 1
- 150000001733 carboxylic acid esters Chemical class 0.000 claims 1
- 125000003944 tolyl group Chemical group 0.000 claims 1
- 229920001038 ethylene copolymer Polymers 0.000 abstract description 2
- 239000002987 primer (paints) Substances 0.000 description 114
- 229920002397 thermoplastic olefin Polymers 0.000 description 84
- 230000000717 retained effect Effects 0.000 description 53
- 238000012360 testing method Methods 0.000 description 49
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 40
- 239000000243 solution Substances 0.000 description 31
- 229920000642 polymer Polymers 0.000 description 28
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 15
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 14
- 239000007921 spray Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 11
- 239000000654 additive Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 230000001737 promoting effect Effects 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 150000008065 acid anhydrides Chemical class 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 210000003298 dental enamel Anatomy 0.000 description 4
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- PBKONEOXTCPAFI-UHFFFAOYSA-N 1,2,4-trichlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1 PBKONEOXTCPAFI-UHFFFAOYSA-N 0.000 description 3
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 229920000877 Melamine resin Polymers 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000002216 antistatic agent Substances 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 239000008199 coating composition Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 231100001244 hazardous air pollutant Toxicity 0.000 description 3
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000004034 viscosity adjusting agent Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 235000014692 zinc oxide Nutrition 0.000 description 3
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 2
- 239000002318 adhesion promoter Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229920000180 alkyd Polymers 0.000 description 2
- 125000005907 alkyl ester group Chemical group 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical compound CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005660 chlorination reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- DCYOBGZUOMKFPA-UHFFFAOYSA-N iron(2+);iron(3+);octadecacyanide Chemical compound [Fe+2].[Fe+2].[Fe+2].[Fe+3].[Fe+3].[Fe+3].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] DCYOBGZUOMKFPA-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000002991 molded plastic Substances 0.000 description 2
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001384 propylene homopolymer Polymers 0.000 description 2
- 229960003351 prussian blue Drugs 0.000 description 2
- 239000013225 prussian blue Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- YTZKOQUCBOVLHL-UHFFFAOYSA-N tert-butylbenzene Chemical compound CC(C)(C)C1=CC=CC=C1 YTZKOQUCBOVLHL-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 229910052984 zinc sulfide Inorganic materials 0.000 description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- HFZLSTDPRQSZCQ-UHFFFAOYSA-N 1-pyrrolidin-3-ylpyrrolidine Chemical compound C1CCCN1C1CNCC1 HFZLSTDPRQSZCQ-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- AMOYMEBHYUTMKJ-UHFFFAOYSA-N 2-(2-phenylethoxy)ethylbenzene Chemical compound C=1C=CC=CC=1CCOCCC1=CC=CC=C1 AMOYMEBHYUTMKJ-UHFFFAOYSA-N 0.000 description 1
- ROHFBIREHKPELA-UHFFFAOYSA-N 2-[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]prop-2-enoic acid;methane Chemical compound C.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O.CC(C)(C)C1=CC(CC(=C)C(O)=O)=CC(C(C)(C)C)=C1O ROHFBIREHKPELA-UHFFFAOYSA-N 0.000 description 1
- NDLNTMNRNCENRZ-UHFFFAOYSA-N 2-[2-hydroxyethyl(octadecyl)amino]ethanol Chemical compound CCCCCCCCCCCCCCCCCCN(CCO)CCO NDLNTMNRNCENRZ-UHFFFAOYSA-N 0.000 description 1
- BITAPBDLHJQAID-KTKRTIGZSA-N 2-[2-hydroxyethyl-[(z)-octadec-9-enyl]amino]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCN(CCO)CCO BITAPBDLHJQAID-KTKRTIGZSA-N 0.000 description 1
- RIZOAHWIOYVVDL-UHFFFAOYSA-N 2-[docosyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCCCCCCCCCCCN(CCO)CCO RIZOAHWIOYVVDL-UHFFFAOYSA-N 0.000 description 1
- NKFNBVMJTSYZDV-UHFFFAOYSA-N 2-[dodecyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCN(CCO)CCO NKFNBVMJTSYZDV-UHFFFAOYSA-N 0.000 description 1
- MJWIPTSHMLSLFE-UHFFFAOYSA-N 2-[hexadecyl(2-hydroxyethyl)amino]ethanol Chemical compound CCCCCCCCCCCCCCCCN(CCO)CCO MJWIPTSHMLSLFE-UHFFFAOYSA-N 0.000 description 1
- VMTRIKRTABFUOS-UHFFFAOYSA-N 2-o-[2-(2-methoxycarbonylbenzoyl)oxyethyl] 1-o-methyl benzene-1,2-dicarboxylate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OCCOC(=O)C1=CC=CC=C1C(=O)OC VMTRIKRTABFUOS-UHFFFAOYSA-N 0.000 description 1
- IKEHOXWJQXIQAG-UHFFFAOYSA-N 2-tert-butyl-4-methylphenol Chemical compound CC1=CC=C(O)C(C(C)(C)C)=C1 IKEHOXWJQXIQAG-UHFFFAOYSA-N 0.000 description 1
- UWSMKYBKUPAEJQ-UHFFFAOYSA-N 5-Chloro-2-(3,5-di-tert-butyl-2-hydroxyphenyl)-2H-benzotriazole Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O UWSMKYBKUPAEJQ-UHFFFAOYSA-N 0.000 description 1
- OLACEYXSHQPCKW-UHFFFAOYSA-N C(C=1C(C(=O)OCCOC(C=2C(C(=O)OCC)=CC=CC2)=O)=CC=CC1)(=O)OCC Chemical compound C(C=1C(C(=O)OCCOC(C=2C(C(=O)OCC)=CC=CC2)=O)=CC=CC1)(=O)OCC OLACEYXSHQPCKW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- CGSLYBDCEGBZCG-UHFFFAOYSA-N Octicizer Chemical compound C=1C=CC=CC=1OP(=O)(OCC(CC)CCCC)OC1=CC=CC=C1 CGSLYBDCEGBZCG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000602 Poly[(isobutylene-alt-maleic acid, ammonium salt)-co-(isobutylene-alt-maleic anhydride)] Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- KRADHMIOFJQKEZ-UHFFFAOYSA-N Tri-2-ethylhexyl trimellitate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C1 KRADHMIOFJQKEZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- GTVWRXDRKAHEAD-UHFFFAOYSA-N Tris(2-ethylhexyl) phosphate Chemical compound CCCCC(CC)COP(=O)(OCC(CC)CCCC)OCC(CC)CCCC GTVWRXDRKAHEAD-UHFFFAOYSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- OCWYEMOEOGEQAN-UHFFFAOYSA-N bumetrizole Chemical compound CC(C)(C)C1=CC(C)=CC(N2N=C3C=C(Cl)C=CC3=N2)=C1O OCWYEMOEOGEQAN-UHFFFAOYSA-N 0.000 description 1
- WXCZUWHSJWOTRV-UHFFFAOYSA-N but-1-ene;ethene Chemical compound C=C.CCC=C WXCZUWHSJWOTRV-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004924 electrostatic deposition Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- YOBAEOGBNPPUQV-UHFFFAOYSA-N iron;trihydrate Chemical compound O.O.O.[Fe].[Fe] YOBAEOGBNPPUQV-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000000196 viscometry Methods 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/06—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
Definitions
- the invention relates to adhesion-promoting primer compositions for use on polyolefin substrates. More particularly, the invention relates to solvent-based primer compositions containing an amorphous polyolefin being chemically modified with one or more unsaturated carboxylic acids, as well as, their corresponding acid anhydrides thereof and having a number average molecular weight ranging from about 1,000 to 15,000.
- plastic parts are widely used in automobiles, trucks, household appliances, toys and the like. Frequently these plastic parts are made from polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends.
- polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends.
- TPO thermoplastic olefin
- these plastic parts have to be painted in order to match the color of painted metal parts which are also present in the automobiles, appliances, or toys. Generally, paints do not adhere well to these plastic parts due to their wax-like surface and their chemical inertness.
- an adhesion promoting composition as a separate primer coating between the polyolefin substrate and the paint.
- the primer coating adheres adequately to both the polyolefin and the paint and thereby creates a unitary three component structure with the paint as the outer portion of the structure.
- an adhesion promoting primer composition may be added directly to the paint as a “stir in” adhesion promoter.
- carboxylate modified polyolefins have been found to be useful as adhesion promoting primers.
- these modified polyolefins have been formulated into solvent-based and water-based adhesion promoting primer compositions.
- the surface of the part is “primed” by application of the adhesion promoting primer composition and the solvent or water is allowed to evaporate.
- the surface so primed is then readily coated with any of a variety of different coating compositions to provide a strongly adherent and durable coating.
- adhesion promoting primer compositions have been formulated with polyolefins which have been modified with unsaturated carboxylic acids or acid anhydrides.
- carboxylic acid modified polyolefins have themselves been chlorinated to further improve their primer properties.
- Chlorinated polyolefins can be expensive to produce and their toughness and durability depends upon the amount of chlorination provided, which can vary. Additionally, some chlorinated polyolefins exhibit only limited solubility in anything other than aromatic or chlorinated solvents. Additionally, the presence of chlorine in the chlorinated polyolefin may pose environmental concerns as to the recyclability and disposal of the chlorine coated materials.
- primer-based compositions have attempted to avoid the use of solvents in forming modified polyolefin primer compositions.
- water-based primer coating compositions which require the addition of an emulsification agent, such as a nonionic or anionic surfactant.
- an emulsification agent such as a nonionic or anionic surfactant.
- water-based primers generally suffer from water-sensitivity problems. For example, water-based compositions typically exhibit poor adhesion when immersed in 40° C. water or subjected to high temperatures with high humidity.
- the invention solves the problems arising from previous primer compositions.
- the invention provides superior levels of paint adhesion to polyolefin surfaces, and improved durability and resistance to water and gasoline as well as thermal shock. Another benefit is the ease in which conventional additives may be added to the primer compositions of the invention.
- the primer compositions of the invention generally are solvent-based.
- Primer compositions of the invention contain a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof, and about 0.5 to 40 weight percent of modified polyolefin.
- the modified polyolefin comprises an amorphous polyolefin which has been chemically modified with one or more unsaturated carboxylic acid or acid anhydrides thereof.
- the amorphous polyolefin is formed from a polyolefin, including, but not limited to polypropylene homopolymers, copolymers and terpolymers and ethylene copolymers and terpolymers.
- the amorphous propylene copolymers and terpolymers of the invention contain ethylene, 1-butene, 1-pentene, or 1-hexene in amounts ranging from about 1 to about 99 mole percent.
- amorphous ethylene, 1-butene, 1-pentene and 1-hexene copolymers and terpolymers of the invention contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene or 1-hexene.
- the modified polyolefin has a number average molecular weight which may range from about 1,000 to 15,000.
- the primer compositions of the invention are capable of significantly improving the adhesion of paints to polyolefin surfaces.
- the invention provides solvent-based primer compositions which improve the adhesion of paint to polyolefin surfaces.
- the primer compositions of the invention are capable of improved durability and resistance to water, gasoline and thermal shock.
- the primer compositions of the invention can be formulated to exhibit better adhesion for both urethane and melamine topcoats.
- the invention relates to solvent-based primer compositions.
- One component of the primer composition is a chemically-modified amorphous polyolefin.
- the amorphous polyolefin is preferably a propylene homopolymer, copolymer or terpolymer and is chemically modified with one or more unsaturated carboxylic acids, preferably selected from the group consisting of acids, esters, and anhydrides.
- the chemically modified polyolefin generally has a number average molecular weight ranging from 1,000 to 15,000.
- the modified polyolefin may be dispersed in an ester, ketone aliphatic or aromatic solvent to form a solvent-based primer composition.
- the solvent-based primer composition may contain other conventional ingredients or components to provide the desired aesthetic or functional effects.
- a solvent-based primer composition of this invention is useful as a primer for coating substrates of olefin polymer molded articles and applying adhesives or varnishes to various substrates.
- the primer composition may be used in ink formulations and may be used in a foil stamping process where the primer composition aids the adhesion of foil to a substrate such as polypropylene.
- a preferred use of the solvent-based primer composition of the invention is as a primer for coating the surfaces of olefin polymer molded articles.
- a primer composition of the invention may be used with a variety of plastic surfaces or parts made from polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends with other polymers (e.g., thermoplastic olefin (TPO), a rubber-modified polypropylene).
- polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends with other polymers (e.g., thermoplastic olefin (TPO), a rubber-modified polypropylene).
- TPO thermoplastic olefin
- the primer compositions may also be used to promote adhesion to metal surfaces.
- a solvent-based primer composition of the invention contains a chemically-modified amorphous polyolefin, where the amorphous polyolefin is selected from polypropylene, propylene copolymers and propylene terpolymers.
- the amorphous polyolefin propylene copolymers and terpolymers may contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, 1-hexene or mixtures thereof.
- the primer compositions of the invention may be formed from ethylene, 1-butene, 1-pentene and 1-hexene copolymers and terpolymers.
- the copolymers and terpolymers of ethylene, 1-butene, 1-pentene and 1-hexene contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, 1-hexene and mixtures thereof.
- polyolefins with a substantial level of propylene tend to exhibit better adhesion properties for propylene and thermoplastic olefin substrates whereas polyolefins formed from ethylene-butene tend to have poor adhesion for TPO substrates.
- Preferred polyolefins contain ⁇ about 70 mole percent propylene, preferably, ⁇ about 75 mole percent propylene, more preferably ⁇ about 80 mole percent propylene and most preferably about 80 to about 90 mole percent propylene.
- particularly preferred amorphous polyolefin copolymers include, but are not limited to, a copolymer having 87 mole percent propylene and 13 mole percent ethylene and a copolymer having 45 mole percent propylene and 55 mole percent hexene.
- Commercially available polyolefins may be employed, such as those available from Creanova, Somerset, N.J., Huntsman Polymers Corporation, Odessa, Tex.
- Rextac RT 2585 and RT 2780 are available from Huntsman Polymers Corporation and Vestoplast 828 and Vestoplast 520 are available from Creanova and propylene copolymers having 10 to 20 weight percent of an alpha olefin comonomer having 2 to 8 carbon atoms, such as ethylene, are available from Eastman Chemical Company.
- the amorphous polyolefins used in a primer composition of the invention are chemically modified, or grafted, with one or more unsaturated carboxylic acids as well as their corresponding acid anhydrides or esters. Any unsaturated carboxylic acid which may be grafted onto the amorphous polyolefin may be used as a modifying acid.
- Suitable modifying acids and anhydrides include, but are not limited to, maleic acid, maleic anhydride, fumaric acid, citraconic anhydride, aconitic anhydride, itaconic anhydride, acrylic acid and methacrylic acid.
- Two preferred unsaturated modifying acids include a maleic acid and maleic anhydride and the use of which result in maleated polyolefins.
- a preferred process for the modification of a polyolefin with an unsaturated acid involves the following steps: dissolution of the polyolefin in the appropriate solvent at a particular temperature; modification of the polyolefin by addition of an unsaturated anhydride, unsaturated acid, or unsaturated ester and a radical initiator; holding the reaction for a suitable period of time to allow completion of the reaction; if necessary, distillation to remove the solvent used in the modification reaction; and if desired, dissolution of the molten modified polyolefin in a suitable solvent or mixture of solvents.
- the solvents for the solution modification of the polyolefins should be selected to minimize competition and side reactions between the polyolefin and the solvent for the acid.
- the solvents for the solution modification process do not contain benzylic hydrogens or secondary hydrogens.
- suitable solvents for the solution modification process include, but are not limited to, t-butylbenzene, anisole, biphenyl, diphenyl ether, and methyl benzoate.
- the acid number of the modified amorphous polyolefins may vary depending upon the desired function of the primer composition.
- modified polyolefins having a low acid number may have poor solubility, whereas a modified polyolefin with a high acid number may be water-sensitive and exhibit poor water and humidity resistance.
- the modified polyolefins for the primer compositions of the invention have acid numbers ranging from about 1 to about 100, preferably about 4 to about 60, more preferably about 20 to about 60 and most preferably about 35 to about 55.
- the modified, amorphous polyolefins used in this invention have a molecular weight which allows for the modified polyolefin to be solubilized in ester, ketone, and aliphatic hydrocarbon solvents.
- the molecular weight of the number average molecular weight may vary depending upon the desired function of the primer composition, however, it is preferred that the molecular weight be less than 15,000.
- a molecular weight of less than 15,000 reduces compatibility problems and facilitates the addition of additives, and, when applying the primer composition to a substrate, modified polyolefins of less than 15 , 000 molecular weight are more readily crosslinked.
- the modified polyolefins used in a solvent-based primer composition of the invention have a number average molecular weight ranging from about 1,000 to 15,000, preferably about 1,000 to about 10,000, more preferably about 2,000 to about 10,000 and most preferably about 4,000 to about 10,000. All molecular weights described maybe measured via a gel permeation chromotography (GPC) method. Additionally, the modified polyolefins of the invention generally exhibit a Ring and Ball Softening Point ranging from about 90° C. to about 165° C., preferably about 90° C. to about 120° C. as determined by ASTM E28 testing.
- the glass transition temperature (T g ) of the modified polyolefins will typically fall in the range of about ⁇ 30° C. to ⁇ 10° C., preferably about ⁇ 25° C. to ⁇ 15° C.
- the primer compositions of the invention contain about 0.5 to about 40 weight percent of the modified polyolefin. More preferably, the modified polyolefin is present in an amount of 0.5 to 30 weight percent. Most preferably, the primer composition contains about 0.5 to about 15 weight percent modified polyolefin. Additionally, mixtures of chemically-modified amorphous polyolefins may be used in a primer composition of the invention. It is also possible to form blends of amorphous modified polyolefins and blends of amorphous modified polyolefins and crystalline propylene polymers. For example, a suitable blend could be formed by maleating a mixture of amorphous polyolefin and polypropylene.
- the solvent is generally present in an amount sufficient to substantially dissolve the modified polyolefins described above.
- a sufficient amount of solvent is about 60 to about 99.5 weight percent of the composition.
- the solvent may be present in an amount ranging from about 85 to about 99.5 weight percent, more preferably about 85 to about 95 and most preferably in an amount ranging from about 90 to about 95 weight percent.
- the solvent may be an aliphatic or aromatic hydrocarbon solvent, for example, toluene, xylene, heptane, naphtha, mineral spirits and petroleum distillates such as Lacolene® solvents which are available from Ashland Chemical Company of Ohio.
- Preferred aromatic solvents include, but are not limited to, xylene, toluene, Lacolene® solvents and naphtha, especially Varnish Makers and Painters naphtha (VM&P).
- a preferred aliphatic hydrocarbon solvent is a cyclic aliphatic hydrocarbon, such as Cypar 7 and Cypar 9 which are available from Shell Corporation, Houston, Tex. Additionally, the solvents may be ester or ketone solvents.
- Preferred ester solvents include, for example, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, amyl acetate, ethyl propionate, isobutyl isobutyrate and the like.
- Reasonable evaporation rates for primer coating applications may be achieved when using solvents including, but not limited to, butyl acetate, isobutyl acetate, butyl propionate, mineral spirits, naphtha, Lacolene®, heptane, octane, xylene, toluene, and Aromatic 100® which is available from Exxon Chemical Company.
- a solvent which provides a preferred evaporation rate is Aromatic 100®.
- the solvents employed in the primer composition are not on the Hazardous Air Pollutants (HAPs) list recited in the Federal Clean Air Act Amendments of 1990.
- chlorinated solvents are generally not used because of environmental concerns and government regulations.
- a solvent/co-solvent mixture will generally contain from about 1 to about 99 weight percent of the ester, ketone, aliphatic or aromatic hydrocarbon solvent.
- Useful co-solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone and the like.
- a solvent-based primer composition of the invention may also contain other additives to impart desirable properties to the composition or a coating formed with the primer composition.
- the water-immersion resistance of the coating may be improved by adding a titanium complex to the primer composition.
- a titanium complex may generally be present in an amount ranging from 0.01 to 10 weight percent of the primer composition.
- a solvent-based primer composition of this invention may contain other additives commonly used in primer compositions or to promote adhesion of coatings to surfaces.
- additives include, but are not limited to, other resins soluble or insoluble in the solvent, plasticizers, antioxidants, ultraviolet absorbers, antistatic agents, organic or inorganic pigments or metal powders, viscosity modifiers, thixotropy modifiers, fillers, and anti-sag agents.
- Examples of the other resins which may be added to the solvent-based primer composition include, but are not limited to, polyolefin polymers such as polypropylene, an ethylene-propylene copolymer, poly-1-butene and ethylene-vinyl acetate copolymer, chlorination products of these polyolefins, a saponification product of an ethylene-vinyl acetate copolymer, polyesters, alkyd resins, epoxy resins, melamine resins, polyurethane resins, acrylic resins and styrene resins.
- polyolefin polymers such as polypropylene, an ethylene-propylene copolymer, poly-1-butene and ethylene-vinyl acetate copolymer
- chlorination products of these polyolefins a saponification product of an ethylene-vinyl acetate copolymer
- polyesters alkyd resins
- epoxy resins epoxy resins
- melamine resins poly
- plasticizers include, but are not limited to, alkyl esters of phthalic acid such as dibutyl phthalate and dioctyl phthalate, alkyl esters of adipic acid and sebacic acid, butyl benzylphthalate, tris (2-ethylhexyl) trimellitate, tris (2-ethylhexyl) phosphate,2-ethylhexyl diphenyl phosphate, tricresyl phosphate, dimethyl ethylene diphthalate, diethyl ethylene diphthalate, 2-phenylethyl ether and diphenyl ether.
- alkyl esters of phthalic acid such as dibutyl phthalate and dioctyl phthalate
- alkyl esters of adipic acid and sebacic acid butyl benzylphthalate
- tris (2-ethylhexyl) trimellitate tris (2-ethylhexyl)
- antioxidants include, but are not limited to, 2,6-di-t-butyl-p-cresol, o-t-butyl-p-cresol, tetrakis-[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane, and p-phenylenediamine.
- ultraviolet absorbers examples include, but are not limited to, 2,4-dihydroxybenzophenone, 2-(2′-hydroxy-3′,5′-di-t-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy3-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, and bis(2,2′,6,6′)tetramethyl-4-piperidine) sebacate.
- antistatic agents include, but are not limited to, lauryl diethanolamine, palmityl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, behenyldiethanolamine, polyoxyethylene alkylamines, stearyl monoglyceride, and 2-hydroxy-4-n-octoxybenzophenone.
- organic pigments or metallic powders include, but are not limited to, titanium dioxide (TiO 2 ), zinc white (zinc oxide; ZnO), zinc sulfide (ZnS), carbon black, zinc dust, silicon carbide (SiC), red oxide of iron (Fe 2 O 3 ), chrome yellow (lead chromate; PbCrO 4 ), cadmium yellow (CdS), chrome green (mixture of chrome yellow and Prussian blue), chromium oxide green (Cr 2 O 3 ), Prussian blue (iron blue; KFe 3+ [Fe 2+ (CN) 6 ]), cobalt blue (CoO n Al 2 O 3 ), aluminum powder, silver powder, bronze powder, zinc powder and gold powder.
- viscosity modifiers examples include, but are not limited to, metallic soaps, silica gel and bentonite.
- the amounts of such additives will depend upon the particular use of the primer compositions and may be the same as those used in other solvent-based primer compositions.
- the amount of the other resins may be about 0.01 to about 50 weight percent.
- the amount of the plasticizers may range from about 0.01 to about 5 weight percent.
- the amount of the antioxidants, ultraviolet absorbers, or antistatic agents may range from about 0.01 to about 5 weight percent.
- the amount of the pigments or metallic powders may range from about 0.01 to about 10 weight percent.
- the amount of the viscosity modifiers, thixotropy modifiers or anti-sag agents may range from about 0.01 to about 10 weight percent.
- any convention process may be used to prepare the solvent-based primer compositions of the invention.
- a modified amorphous polyolefin may be dissolved in a solvent, generally with stirring or other agitation. Moderate heating may be applied to more rapidly dissolve the polyolefin in the solvent.
- Additives may be incorporated initially with the polyolefin or may be added after the polyolefin has dissolved in the solvent.
- a solvent-based primer composition of this invention can be applied to a substance in any manner known in the art.
- a primer composition of the invention may be applied by spraying, brushing, dipping or roll coating. The coating is then generally dried by air drying or forced drying such as heating, e.g., convection or infrared heating, or other appropriate methods.
- a primer composition with a topcoat paint prior to its application to a desired substrate, such as a polyolefin substrate.
- the lower molecular weight and increased solubility of the modified polyolefins in a primer composition of this invention cause the primer compositions to be effective as additives to paint without significantly increasing its solution viscosity or HAPs solvent content.
- a solvent-based primer composition of the invention may be added to other coating compositions as a “stir-in” adhesion promoter.
- Paints or other coating compositions can be coated on plastic substrates, such as polyolefin substrates, or surface-treated by the solvent-based primer of this invention through any known methods such as electrostatic deposition, spray coating and brushing. These paints may be applied by recoating.
- the paints are not limited to any particular paint and will, in general, be chosen on the basis of the ultimate use of the coated substrate. However, when a coated film having a high adhesion to paints is especially required, solvent-type thermoplastic acrylic resin paints, solvent-type thermosetting acrylic resin paints, melamine resins, acrylic-modified alkyd resins, epoxy resin paints and polyurethane paints may be used.
- the coatings may be dried or cured by suitable heating means such as heating with electric heat, heating with infrared rays and dielectric heating.
- suitable heating means such as heating with electric heat, heating with infrared rays and dielectric heating.
- the heating conditions may be easily selected by one of skill in the art depending on materials or forms of the olefin polymer molded articles, properties of paints, etc.
- the primed polyolenfin substrates should be thoroughly dried by infrared or convection heating before applying the topcoat.
- a solvent-based primer composition of this invention may be simply air-dried before topcoating.
- a solvent-based primer composition also provides good penetration into the polyolefin surface and provides much better paint adhesion than is possible with water-based primers.
- a solvent-based composition of the invention can also be used on metal substrates.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in aromatic hydrocarbon solvent.
- 5 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 56 were dissolved in 95 grams of xylene at 130° F. to give a 5 percent, by weight, solids primer solution.
- the M n of the modified polymer was 7500 g/mol.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test are as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- this primer provides excellent adhesion for the topcoat paints on the TPO plastic.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an ester solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with an ester solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test are as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with an ester solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- maleated copolymer is 72 mole percent propylene and 28 mole percent ethylene.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with a ketone solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- test panels are high-density polyethylene or linear low-density polyethylene instead of TPO resin.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with a ketone solvent.
- a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of naphtha at 130° F. for 1 hour.
- the M n of the modified polymer was 4500 g/mol.
- 20 grams of the polymer/naphtha solution were reduced with 80 grams of methyl n-amyl ketone to give a 5 percent, by weight, solids primer solution.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- test panels are polypropylene instead of TPO resin.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent, ester solvent, and an aromatic hydrocarbon solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D03359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- This composition was spray applied as a primer onto themoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests are conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with an ester solvent.
- a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of a naphtha/n-butyl acetate solvent blend (1:1) at 130° F. for 1 hour.
- the M n of the modified polymer was 4500 g/mol.
- This composition was used as an additive to a Dupont acrylic enamel topcoat (10 grams amorphous, non-chlorinated, maleated propylene-ethylene copolymer solution/100 grams Dupont acrylic enamel topcoat) and spray applied as a one-coat system onto thermoplastic olefin (TPO) test plaques.
- TPO thermoplastic olefin
- maleated propylene-butene copolymer 5 grams of a maleated amorphous propylene-1-butene copolymer Rextac RT 2870 having an acid number of 35 was dissolved in 95 grams of toluene at 130° F. to give a 5 percent, by weight, solids primer solution.
- the M n of the modified polymer was 3100 g/mol.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat the panels were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- TPO thermoplastic olefin
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- thermoplastic olefin (TPO) test plaques were spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat the panels were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co. Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- the system was calibrated using a set of polystyrene narrow molecular weight distribution standards ranging from 7,500,000 to 7,000 g/mol.
- the calibration curve was a universal calibration using the combination of the refractive index and viscometry detectors. Molecular weight values are reported in absolute values as obtained through the universal calibration method.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Graft Or Block Polymers (AREA)
Abstract
The invention relates to solvent-based primer compositions containing 0.5 to 40 weight percent of a modified polyolefin and a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof. The modified polyolefin is formed from an amorphous polyolefin selected from polypropylene and a propylene copolymer or a propylene terpolymer or an ethylene copolymer or terpolymer. Preferably the polyolefin is a polypropylene copolymer or terpolymer containing about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, and 1-hexene. The amorphous polyolefin has a number average molecular weight ranging from about 1,000 to 15,000 and is chemically modified with one or more unsaturated carboxylic acids selected from the group consisting of acids, esters and anhydrides. These primers are useful for significantly improving the adhesion of paints to polyolefin surfaces.
Description
- This application claims benefit under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 60/091,168, filed Jun. 30, 1998. This provisional application is hereby incorporated by reference in its entirety.
- The invention relates to adhesion-promoting primer compositions for use on polyolefin substrates. More particularly, the invention relates to solvent-based primer compositions containing an amorphous polyolefin being chemically modified with one or more unsaturated carboxylic acids, as well as, their corresponding acid anhydrides thereof and having a number average molecular weight ranging from about 1,000 to 15,000.
- Molded plastic parts are widely used in automobiles, trucks, household appliances, toys and the like. Frequently these plastic parts are made from polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends. One such blend is thermoplastic olefin (TPO), which is rubber-modified polypropylene. Frequently, these plastic parts have to be painted in order to match the color of painted metal parts which are also present in the automobiles, appliances, or toys. Generally, paints do not adhere well to these plastic parts due to their wax-like surface and their chemical inertness.
- One approach to improving the adherence of paint to polyolefins is to use an adhesion promoting composition as a separate primer coating between the polyolefin substrate and the paint. The primer coating adheres adequately to both the polyolefin and the paint and thereby creates a unitary three component structure with the paint as the outer portion of the structure. Alternatively, an adhesion promoting primer composition may be added directly to the paint as a “stir in” adhesion promoter.
- Certain carboxylate modified polyolefins have been found to be useful as adhesion promoting primers. Generally, these modified polyolefins have been formulated into solvent-based and water-based adhesion promoting primer compositions. The surface of the part is “primed” by application of the adhesion promoting primer composition and the solvent or water is allowed to evaporate. The surface so primed is then readily coated with any of a variety of different coating compositions to provide a strongly adherent and durable coating.
- Conventionally, adhesion promoting primer compositions have been formulated with polyolefins which have been modified with unsaturated carboxylic acids or acid anhydrides. In some instances, such as in U.S. Pat. Nos. 3,579,485, 4,070,421 and 4,954,573, carboxylic acid modified polyolefins have themselves been chlorinated to further improve their primer properties. Chlorinated polyolefins, however, can be expensive to produce and their toughness and durability depends upon the amount of chlorination provided, which can vary. Additionally, some chlorinated polyolefins exhibit only limited solubility in anything other than aromatic or chlorinated solvents. Additionally, the presence of chlorine in the chlorinated polyolefin may pose environmental concerns as to the recyclability and disposal of the chlorine coated materials.
- Another approach that has been taken for coating polyolefins involves primer compositions containing carboxylate modified polyolefins which are solubilized in an organic solvent. For example, U.S. Pat. No. 4,299,754 and Canadian Patent 835,910 disclose the coating of polyolefins with compositions containing carboxylate modified polyolefins which may be solubilized in a solvent, such as an aromatic or aliphatic hydrocarbon or a chlorinated hydrocarbon. Unfortunately, such compositions have not always proven effective for coating molded plastic parts.
- Other primer-based compositions have attempted to avoid the use of solvents in forming modified polyolefin primer compositions. Typically such compositions are water-based primer coating compositions which require the addition of an emulsification agent, such as a nonionic or anionic surfactant. While such primers may be suitable for certain applications, water-based primers generally suffer from water-sensitivity problems. For example, water-based compositions typically exhibit poor adhesion when immersed in 40° C. water or subjected to high temperatures with high humidity.
- Thus, there exists a need for a primer composition having a modified polyolefin which exhibits good solubility in non-aromatic solvents and which provides suitable adhesion of paints to polyolefin substrates.
- The invention solves the problems arising from previous primer compositions. The invention provides superior levels of paint adhesion to polyolefin surfaces, and improved durability and resistance to water and gasoline as well as thermal shock. Another benefit is the ease in which conventional additives may be added to the primer compositions of the invention.
- The primer compositions of the invention generally are solvent-based. Primer compositions of the invention contain a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof, and about 0.5 to 40 weight percent of modified polyolefin. The modified polyolefin comprises an amorphous polyolefin which has been chemically modified with one or more unsaturated carboxylic acid or acid anhydrides thereof. The amorphous polyolefin is formed from a polyolefin, including, but not limited to polypropylene homopolymers, copolymers and terpolymers and ethylene copolymers and terpolymers. Generally, the amorphous propylene copolymers and terpolymers of the invention contain ethylene, 1-butene, 1-pentene, or 1-hexene in amounts ranging from about 1 to about 99 mole percent. Similarly, amorphous ethylene, 1-butene, 1-pentene and 1-hexene copolymers and terpolymers of the invention contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene or 1-hexene. The modified polyolefin has a number average molecular weight which may range from about 1,000 to 15,000. As mentioned above, the primer compositions of the invention are capable of significantly improving the adhesion of paints to polyolefin surfaces.
- The invention provides solvent-based primer compositions which improve the adhesion of paint to polyolefin surfaces. In particular, the primer compositions of the invention are capable of improved durability and resistance to water, gasoline and thermal shock. Furthermore, the primer compositions of the invention can be formulated to exhibit better adhesion for both urethane and melamine topcoats.
- The invention relates to solvent-based primer compositions. One component of the primer composition is a chemically-modified amorphous polyolefin. The amorphous polyolefin is preferably a propylene homopolymer, copolymer or terpolymer and is chemically modified with one or more unsaturated carboxylic acids, preferably selected from the group consisting of acids, esters, and anhydrides. The chemically modified polyolefin generally has a number average molecular weight ranging from 1,000 to 15,000. The modified polyolefin may be dispersed in an ester, ketone aliphatic or aromatic solvent to form a solvent-based primer composition. The solvent-based primer composition may contain other conventional ingredients or components to provide the desired aesthetic or functional effects.
- A solvent-based primer composition of this invention is useful as a primer for coating substrates of olefin polymer molded articles and applying adhesives or varnishes to various substrates. Furthermore, the primer composition may be used in ink formulations and may be used in a foil stamping process where the primer composition aids the adhesion of foil to a substrate such as polypropylene. A preferred use of the solvent-based primer composition of the invention is as a primer for coating the surfaces of olefin polymer molded articles. For example, a primer composition of the invention may be used with a variety of plastic surfaces or parts made from polyolefins such as polyethylene, ethylene copolymers, polypropylene, propylene copolymers, and polyolefin blends with other polymers (e.g., thermoplastic olefin (TPO), a rubber-modified polypropylene). The primer compositions may also be used to promote adhesion to metal surfaces.
- A solvent-based primer composition of the invention contains a chemically-modified amorphous polyolefin, where the amorphous polyolefin is selected from polypropylene, propylene copolymers and propylene terpolymers. In addition to propylene, the amorphous polyolefin propylene copolymers and terpolymers may contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, 1-hexene or mixtures thereof. Similarly, the primer compositions of the invention may be formed from ethylene, 1-butene, 1-pentene and 1-hexene copolymers and terpolymers. Generally, the copolymers and terpolymers of ethylene, 1-butene, 1-pentene and 1-hexene contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, 1-hexene and mixtures thereof. Through the selection of the appropriate polyolefin to be modified it is possible to control the properties of the resulting modified polyolefin. For example, polyolefins with a substantial level of propylene tend to exhibit better adhesion properties for propylene and thermoplastic olefin substrates whereas polyolefins formed from ethylene-butene tend to have poor adhesion for TPO substrates.
- Preferred polyolefins contain ≧ about 70 mole percent propylene, preferably, ≧ about 75 mole percent propylene, more preferably ≧ about 80 mole percent propylene and most preferably about 80 to about 90 mole percent propylene. Examples of particularly preferred amorphous polyolefin copolymers include, but are not limited to, a copolymer having 87 mole percent propylene and 13 mole percent ethylene and a copolymer having 45 mole percent propylene and 55 mole percent hexene. Commercially available polyolefins may be employed, such as those available from Creanova, Somerset, N.J., Huntsman Polymers Corporation, Odessa, Tex. and Eastman Chemical Company, Kingsport, Tenn. For example, Rextac RT 2585 and RT 2780 are available from Huntsman Polymers Corporation and Vestoplast 828 and Vestoplast 520 are available from Creanova and propylene copolymers having 10 to 20 weight percent of an alpha olefin comonomer having 2 to 8 carbon atoms, such as ethylene, are available from Eastman Chemical Company.
- The amorphous polyolefins used in a primer composition of the invention are chemically modified, or grafted, with one or more unsaturated carboxylic acids as well as their corresponding acid anhydrides or esters. Any unsaturated carboxylic acid which may be grafted onto the amorphous polyolefin may be used as a modifying acid. Suitable modifying acids and anhydrides include, but are not limited to, maleic acid, maleic anhydride, fumaric acid, citraconic anhydride, aconitic anhydride, itaconic anhydride, acrylic acid and methacrylic acid. Two preferred unsaturated modifying acids include a maleic acid and maleic anhydride and the use of which result in maleated polyolefins.
- Conventional procedures for grafting these unsaturated carboxylic acids or acid anhydrides thereof to polyolefins may be employed. For example, suitable grafting procedures include, but are not limited to, those described in U.S. Pat. Nos. 3,480,580 and 4,567,223, the disclosures of which are incorporated herein by reference in their entirety. A preferred process for the modification of a polyolefin with an unsaturated carboxylic acid, ester, or anhydride thereof is described in U.S. Provisional Application Ser. No.______, filed on Jun. 9, 1999 entitled “Solution Modification of Polyolefins, the disclosure of which is incorporated by reference in its entirety. As described in U.S. Provisional Application Ser. No. ______,a preferred process for the modification of a polyolefin with an unsaturated acid involves the following steps: dissolution of the polyolefin in the appropriate solvent at a particular temperature; modification of the polyolefin by addition of an unsaturated anhydride, unsaturated acid, or unsaturated ester and a radical initiator; holding the reaction for a suitable period of time to allow completion of the reaction; if necessary, distillation to remove the solvent used in the modification reaction; and if desired, dissolution of the molten modified polyolefin in a suitable solvent or mixture of solvents. The solvents for the solution modification of the polyolefins should be selected to minimize competition and side reactions between the polyolefin and the solvent for the acid. Thus, it is preferred that the solvents for the solution modification process do not contain benzylic hydrogens or secondary hydrogens. Examples of suitable solvents for the solution modification process include, but are not limited to, t-butylbenzene, anisole, biphenyl, diphenyl ether, and methyl benzoate.
- The acid number of the modified amorphous polyolefins may vary depending upon the desired function of the primer composition. For example, modified polyolefins having a low acid number may have poor solubility, whereas a modified polyolefin with a high acid number may be water-sensitive and exhibit poor water and humidity resistance. Generally, the modified polyolefins for the primer compositions of the invention have acid numbers ranging from about 1 to about 100, preferably about 4 to about 60, more preferably about 20 to about 60 and most preferably about 35 to about 55.
- Advantageously, the modified, amorphous polyolefins used in this invention have a molecular weight which allows for the modified polyolefin to be solubilized in ester, ketone, and aliphatic hydrocarbon solvents. Thus, as with the acid number, the molecular weight of the number average molecular weight may vary depending upon the desired function of the primer composition, however, it is preferred that the molecular weight be less than 15,000. By forming a primer composition with a modified polyolefin having a molecular weight of less than 15,000 it is possible to achieve better solubility of the modified polyolefin in non-aromatic solvents. Additionally, a molecular weight of less than 15,000 reduces compatibility problems and facilitates the addition of additives, and, when applying the primer composition to a substrate, modified polyolefins of less than15,000 molecular weight are more readily crosslinked.
- Generally, the modified polyolefins used in a solvent-based primer composition of the invention have a number average molecular weight ranging from about 1,000 to 15,000, preferably about 1,000 to about 10,000, more preferably about 2,000 to about 10,000 and most preferably about 4,000 to about 10,000. All molecular weights described maybe measured via a gel permeation chromotography (GPC) method. Additionally, the modified polyolefins of the invention generally exhibit a Ring and Ball Softening Point ranging from about 90° C. to about 165° C., preferably about 90° C. to about 120° C. as determined by ASTM E28 testing. Also, the glass transition temperature (Tg) of the modified polyolefins, as performed on a Differential Scanning Calorimeter (DSC), will typically fall in the range of about −30° C. to −10° C., preferably about −25° C. to −15° C.
- The primer compositions of the invention contain about 0.5 to about 40 weight percent of the modified polyolefin. More preferably, the modified polyolefin is present in an amount of 0.5 to 30 weight percent. Most preferably, the primer composition contains about 0.5 to about 15 weight percent modified polyolefin. Additionally, mixtures of chemically-modified amorphous polyolefins may be used in a primer composition of the invention. It is also possible to form blends of amorphous modified polyolefins and blends of amorphous modified polyolefins and crystalline propylene polymers. For example, a suitable blend could be formed by maleating a mixture of amorphous polyolefin and polypropylene.
- A solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof, constitutes a second component of a solvent-based primer composition of the invention. The solvent is generally present in an amount sufficient to substantially dissolve the modified polyolefins described above. Typically, a sufficient amount of solvent is about 60 to about 99.5 weight percent of the composition. Preferably, the solvent may be present in an amount ranging from about 85 to about 99.5 weight percent, more preferably about 85 to about 95 and most preferably in an amount ranging from about 90 to about 95 weight percent.
- Generally, the solvent may be an aliphatic or aromatic hydrocarbon solvent, for example, toluene, xylene, heptane, naphtha, mineral spirits and petroleum distillates such as Lacolene® solvents which are available from Ashland Chemical Company of Ohio. Preferred aromatic solvents include, but are not limited to, xylene, toluene, Lacolene® solvents and naphtha, especially Varnish Makers and Painters naphtha (VM&P). A preferred aliphatic hydrocarbon solvent is a cyclic aliphatic hydrocarbon, such as Cypar 7 and Cypar 9 which are available from Shell Corporation, Houston, Tex. Additionally, the solvents may be ester or ketone solvents. Preferred ester solvents include, for example, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, amyl acetate, ethyl propionate, isobutyl isobutyrate and the like.
- Reasonable evaporation rates for primer coating applications, may be achieved when using solvents including, but not limited to, butyl acetate, isobutyl acetate, butyl propionate, mineral spirits, naphtha, Lacolene®, heptane, octane, xylene, toluene, and Aromatic 100® which is available from Exxon Chemical Company. A solvent which provides a preferred evaporation rate is Aromatic 100®. Additionally, with regards to evaporation, it is preferred that the solvents employed in the primer composition are not on the Hazardous Air Pollutants (HAPs) list recited in the Federal Clean Air Act Amendments of 1990. Also, chlorinated solvents are generally not used because of environmental concerns and government regulations.
- Mixtures of aromatic, aliphatic, ester or ketone solvents, or combinations of solvent with one or more co-solvents may also be used. A solvent/co-solvent mixture will generally contain from about 1 to about 99 weight percent of the ester, ketone, aliphatic or aromatic hydrocarbon solvent. Useful co-solvents include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone and the like.
- A solvent-based primer composition of the invention may also contain other additives to impart desirable properties to the composition or a coating formed with the primer composition. For example, the water-immersion resistance of the coating may be improved by adding a titanium complex to the primer composition. A titanium complex may generally be present in an amount ranging from 0.01 to 10 weight percent of the primer composition.
- A solvent-based primer composition of this invention may contain other additives commonly used in primer compositions or to promote adhesion of coatings to surfaces. Examples of such additives include, but are not limited to, other resins soluble or insoluble in the solvent, plasticizers, antioxidants, ultraviolet absorbers, antistatic agents, organic or inorganic pigments or metal powders, viscosity modifiers, thixotropy modifiers, fillers, and anti-sag agents.
- Examples of the other resins which may be added to the solvent-based primer composition include, but are not limited to, polyolefin polymers such as polypropylene, an ethylene-propylene copolymer, poly-1-butene and ethylene-vinyl acetate copolymer, chlorination products of these polyolefins, a saponification product of an ethylene-vinyl acetate copolymer, polyesters, alkyd resins, epoxy resins, melamine resins, polyurethane resins, acrylic resins and styrene resins.
- Examples of the plasticizers include, but are not limited to, alkyl esters of phthalic acid such as dibutyl phthalate and dioctyl phthalate, alkyl esters of adipic acid and sebacic acid, butyl benzylphthalate, tris (2-ethylhexyl) trimellitate, tris (2-ethylhexyl) phosphate,2-ethylhexyl diphenyl phosphate, tricresyl phosphate, dimethyl ethylene diphthalate, diethyl ethylene diphthalate, 2-phenylethyl ether and diphenyl ether.
- Examples of the antioxidants include, but are not limited to, 2,6-di-t-butyl-p-cresol, o-t-butyl-p-cresol, tetrakis-[methylene-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane, and p-phenylenediamine.
- Examples of the ultraviolet absorbers include, but are not limited to, 2,4-dihydroxybenzophenone, 2-(2′-hydroxy-3′,5′-di-t-butylphenyl)-5-chlorobenzotriazole, 2-(2-hydroxy3-t-butyl-5-methylphenyl)-5-chlorobenzotriazole, and bis(2,2′,6,6′)tetramethyl-4-piperidine) sebacate.
- Examples of the antistatic agents include, but are not limited to, lauryl diethanolamine, palmityl diethanolamine, stearyl diethanolamine, oleyl diethanolamine, behenyldiethanolamine, polyoxyethylene alkylamines, stearyl monoglyceride, and 2-hydroxy-4-n-octoxybenzophenone.
- Examples of organic pigments or metallic powders include, but are not limited to, titanium dioxide (TiO2), zinc white (zinc oxide; ZnO), zinc sulfide (ZnS), carbon black, zinc dust, silicon carbide (SiC), red oxide of iron (Fe2O3), chrome yellow (lead chromate; PbCrO4), cadmium yellow (CdS), chrome green (mixture of chrome yellow and Prussian blue), chromium oxide green (Cr2O3), Prussian blue (iron blue; KFe3+[Fe2+(CN)6]), cobalt blue (CoOnAl2O3), aluminum powder, silver powder, bronze powder, zinc powder and gold powder.
- Examples of the viscosity modifiers, thixotropy modifiers and anti-sag agents include, but are not limited to, metallic soaps, silica gel and bentonite.
- The amounts of such additives will depend upon the particular use of the primer compositions and may be the same as those used in other solvent-based primer compositions. For instance, the amount of the other resins may be about 0.01 to about 50 weight percent. The amount of the plasticizers may range from about 0.01 to about 5 weight percent. The amount of the antioxidants, ultraviolet absorbers, or antistatic agents may range from about 0.01 to about 5 weight percent. The amount of the pigments or metallic powders may range from about 0.01 to about 10 weight percent. The amount of the viscosity modifiers, thixotropy modifiers or anti-sag agents may range from about 0.01 to about 10 weight percent.
- Any convention process may be used to prepare the solvent-based primer compositions of the invention. For example, a modified amorphous polyolefin may be dissolved in a solvent, generally with stirring or other agitation. Moderate heating may be applied to more rapidly dissolve the polyolefin in the solvent. Additives may be incorporated initially with the polyolefin or may be added after the polyolefin has dissolved in the solvent.
- A solvent-based primer composition of this invention can be applied to a substance in any manner known in the art. For example, a primer composition of the invention may be applied by spraying, brushing, dipping or roll coating. The coating is then generally dried by air drying or forced drying such as heating, e.g., convection or infrared heating, or other appropriate methods. Also it is possible to mix a primer composition with a topcoat paint prior to its application to a desired substrate, such as a polyolefin substrate. The lower molecular weight and increased solubility of the modified polyolefins in a primer composition of this invention cause the primer compositions to be effective as additives to paint without significantly increasing its solution viscosity or HAPs solvent content. Thus, a solvent-based primer composition of the invention may be added to other coating compositions as a “stir-in” adhesion promoter.
- Paints or other coating compositions can be coated on plastic substrates, such as polyolefin substrates, or surface-treated by the solvent-based primer of this invention through any known methods such as electrostatic deposition, spray coating and brushing. These paints may be applied by recoating. The paints are not limited to any particular paint and will, in general, be chosen on the basis of the ultimate use of the coated substrate. However, when a coated film having a high adhesion to paints is especially required, solvent-type thermoplastic acrylic resin paints, solvent-type thermosetting acrylic resin paints, melamine resins, acrylic-modified alkyd resins, epoxy resin paints and polyurethane paints may be used. The coatings may be dried or cured by suitable heating means such as heating with electric heat, heating with infrared rays and dielectric heating. The heating conditions may be easily selected by one of skill in the art depending on materials or forms of the olefin polymer molded articles, properties of paints, etc.
- When using existing water-based primers, the primed polyolenfin substrates should be thoroughly dried by infrared or convection heating before applying the topcoat. A solvent-based primer composition of this invention may be simply air-dried before topcoating. A solvent-based primer composition also provides good penetration into the polyolefin surface and provides much better paint adhesion than is possible with water-based primers. A solvent-based composition of the invention can also be used on metal substrates.
- The following examples will further illustrate the invention.
- Example 1
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in aromatic hydrocarbon solvent. 5 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 56 were dissolved in 95 grams of xylene at 130° F. to give a 5 percent, by weight, solids primer solution. The Mn of the modified polymer was 7500 g/mol.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer, the panels are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test are as follows: Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%
- Cleveland humidity testing was conducted in accordance with ASTM D 4585 in conjunction with ASTM D 3359 at 49° C. The results were as follows: Percent retained adhesion after 48 hours exposure: 100%. Percent retained adhesion after 144 hours exposure: 100%. Percent retained adhesion after 504 hours exposure: 100%
- Gasoline Resistance was tested using General Motors test GM 9501P Method B. Results is as follows: Percent loss after 1 hour in synthetic fuel mixture (55/45 VM&P naphtha/toluene): 0% with no blistering observed.
- Example 2
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of xylene at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the 25% polymer/xylene solution were reduced with 80 grams of naphtha, to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test are as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Thus, this primer provides excellent adhesion for the topcoat paints on the TPO plastic.
- Example 3
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an ester solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of xylene at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the polymer/xylene solution were reduced with 80 grams of n-butyl acetate, to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Similarly good results are achieved when the primer solutions contain 1 weight percent or 25 weight percent of the maleated propylene-ethylene copolymer.
- Example 4
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with an ester solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of heptane at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the polymer/heptane solution were reduced with 80 grams of n-butyl acetate to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test are as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Similarly good results are achieved when the solvent mixture is a 50/50-blend of heptane and n-butyl acetate.
- Example 5
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with an ester solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of naphtha at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the polymer/naphtha solution were reduced with 80 grams of isobutyl acetate to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Similarly good results are achieved when the maleated copolymer is 72 mole percent propylene and 28 mole percent ethylene.
- Example 6
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with a ketone solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of xylene at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the polymer/xylene solution were reduced with 80 grams of methyl n-amyl ketone to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Similarly good results are achieved when the test panels are high-density polyethylene or linear low-density polyethylene instead of TPO resin.
- Example 7
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with a ketone solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of naphtha at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the polymer/naphtha solution were reduced with 80 grams of methyl n-amyl ketone to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others are topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Similarly good results are achieved when the test panels are polypropylene instead of TPO resin.
- Example 8
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent, ester solvent, and an aromatic hydrocarbon solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of a naphtha/n-butyl acetate solvent blend (1:1) at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. 20 grams of the polymer/(naphtha/n-butyl acetate) solutions were reduced with 80 grams of toluene to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D03359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Example 9
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- 25 grams of a maleated amorphous propylene-1-hexene copolymer comprised of 45 mole percent propylene and 55 mole percent hexene having an acid number of 35 were dissolved in 75 grams of xylene at 130° F. for 1 hour. The Mn of the modified polymer was 7900 g/mol. 20 grams of the 25% polymer/xylene solution were reduced with 80 grams of naphtha, to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto themoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests are conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Example 10
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- 25 grams of a maleated amorphous propylene homopolymer having an acid number of 42 were dissolved in 75 grams of xylene at 130° F. for 1 hour. 20 grams of the 25% polymer/xylene solution were reduced with 80 grams of naphtha, to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Example 11
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aromatic hydrocarbon solvent with an aliphatic hydrocarbon solvent.
- 25 grams of a maleated amorphous propylene-ethylene-1-butene terpolymer comprised of 69 mole percent propylene, 6 mole percent ethylene, and 25 mole percent 1-butene having an acid number of 39 were dissolved in 75 grams of xylene at 130° F. for 1 hour. 20 grams of the 25% polymer/xylene solution were reduced with 80 grams of naphtha, to give a 5 percent, by weight, solids primer solution.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat, some of the panels were topcoated with OEM basecoat/clearcoat paint from PPG Industries, and others were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of PPG BC/CC paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of PPG BC/CC paint on Montell CA 187 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D 161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Example 12
- This example illustrates the preparation of a composition of the invention using a particular maleated amorphous polyolefin in combination with a blend of an aliphatic hydrocarbon solvent with an ester solvent.
- 25 grams of a maleated amorphous propylene-ethylene copolymer comprised of about 87 mole percent propylene and about 13 mole percent ethylene having an acid number of 39 were dissolved in 75 grams of a naphtha/n-butyl acetate solvent blend (1:1) at 130° F. for 1 hour. The Mn of the modified polymer was 4500 g/mol. This composition was used as an additive to a Dupont acrylic enamel topcoat (10 grams amorphous, non-chlorinated, maleated propylene-ethylene copolymer solution/100 grams Dupont acrylic enamel topcoat) and spray applied as a one-coat system onto thermoplastic olefin (TPO) test plaques.
- After application of the one-coat system, paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of amorphous maleated propylene-ethylene copolymer/Dupont acrylic enamel one-coat system onto Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of amorphous maleated propylene-ethylene copolymer/Dupont acrylic enamel one-coat system onto Montell CA 187 TPO: 100%.
- Example 13
- The following is an example of a maleated propylene-butene copolymer. 5 grams of a maleated amorphous propylene-1-butene copolymer Rextac RT 2870 having an acid number of 35 was dissolved in 95 grams of toluene at 130° F. to give a 5 percent, by weight, solids primer solution. The Mn of the modified polymer was 3100 g/mol.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat the panels were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co.
- Paint adhesion tests were conducted in accordance with ASTM D3359B method. Results of this test were as follows: Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Cleveland humidity testing was conducted in accordance with ASTM D 4585 in conjunction with ASTM D 3359 at 49° C. The results were as follows: Percent retained adhesion after 48 hours exposure: 20%. Percent retained adhesion after 144 hours exposure: 0%.
- Example 14
- The following is an example of maleated propylene-ethylene copolymer with less than 75% propylene content.
- 5 grams of a maleated amorphous propylene-ethylene copolymer, (Vestoplast 828), containing 56 mole % propylene and 44% ethylene and having an acid number of 65 was dissolved in 95 grams of xylene at 130° F. to give a 5 percent, by weight, solids primer solution. The Mn of the modified polymer was 6700 g/mol.
- This composition was spray applied as a primer onto thermoplastic olefin (TPO) test plaques and air-dried for 10 minutes. After application of the primer coat the panels were topcoated with an OEM 2-part urethane paint from Red Spot Paint & Varnish Co. Paint adhesion tests were conducted in accordance with ASTM D3359B method. The results of this test were as follows: Percent retained adhesion of Red Spot 2-part urethane paint on Dexter & Solvay D-161 TPO: 100%. Percent retained adhesion of Red Spot 2-part urethane paint on Montell CA 187 TPO: 100%.
- Gasoline Resistance was tested using General Motors test GM 9501P Method B. The results were as follows: Percent loss after 1 hour in synthetic fuel mixture (55/45 VM&P naphtha/toluene): 2%-75% blistering was observed.
- The GPC analysis for Examples 1-14 was performed on a Polymer Labs 210 GPC system equipped with a refractive index detector and a Viscotek 21 OR viscometer. Samples were prepared by making ˜1 mg/ml solutions in 1,2,4-trichlorobenzene which contained 0.05% (w/v) 2,6-di-tert-butyl-4-methylphenol as an antioxidant. The samples were dissolved under stirring at 150° C. for 2 hours and then filtered through 1.0 μm unbound glass fiber filters. The GPC oven, column and detector compartment was maintained at 140° C. The column set consisted of 3 Polymer Labs PLGel Mixed-B columns and one PLGel Mixed-B 10 μm guard column. The system was calibrated using a set of polystyrene narrow molecular weight distribution standards ranging from 7,500,000 to 7,000 g/mol. The calibration curve was a universal calibration using the combination of the refractive index and viscometry detectors. Molecular weight values are reported in absolute values as obtained through the universal calibration method.
Claims (21)
1. A solvent-based primer composition comprising:
about 0.5 to about 40 weight percent of a modified polyolefin having a number average molecular weight of up to 15,000 comprising an amorphous polyolefin selected from polypropylene homopolymers, copolymers, terpolymers and mixtures thereof, wherein the propylene copolymers and terpolymers contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, and 1-hexene, the amorphous polyolefin being chemically modified with one or more unsaturated carboxylic acids selected from the group consisting of acids, esters and anhydrides; and
a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof.
2. The solvent-based primer composition of claim 1 , wherein said unsaturated carboxylic acid esters or anhydrides are selected from the group consisting of maleic acid, maleic anhydride, fumaric acid, citraconic anhydride, aconitic anhydride, itaconic anhydride, methacrylic acid and acrylic acid.
3. The solvent-based primer composition of claim 1 , wherein the solvent is selected from toluene, xylene, heptane, naphtha, mineral spirits, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, amyl acetate, ethyl propionate, propyl propionate, isobutyl isobutyrate and petroleum distillates.
4. The solvent-based primer composition of claim 3 , wherein the solvent comprises:
about 1 to about 99 weight percent of the solvent; and
a co-solvent selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone and mixtures thereof.
5. The solvent-based primer composition of claim 1 , wherein the modified polyolefin has an acid number ranging from about 10 to about 100.
6. The solvent-based primer composition of claim 5 , wherein the modified polyolefin has an acid number ranging from about 20 to about 60.
7. The solvent-based primer composition of claim 1 , wherein the modified polyolefin has a molecular weight ranging from about 1,000 to about 10,000.
8. The solvent-based primer composition of claim 7 , wherein the modified polyolefin has a molecular weight ranging from about 4,000 to about 10,000.
9. The solvent-based primer composition of claim 1 , wherein the amorphous polyolefin is a propylene copolymer or terpolymer containing greater than about 70 mole percent propylene.
10. The solvent-based primer composition of claim 9 , wherein the amorphous polyolefin is a propylene copolymer or terpolymer containing about 80 to about 90 mole percent propylene.
11. The solvent-based primer composition of claim 1 , wherein the solvent is present in an amount ranging from about 60 to about 99.5 weight percent.
12. The solvent-based primer composition of claim 1 , comprising:
about 0.5 to about 15 weight percent of the modified polyolefin, and
about 85 to about 99.5 weight percent solvent.
13. The solvent-based primer composition of claim 1 , wherein the amorphous polyolefin is a chlorinated amorphous polyolefin.
14. The solvent-based primer composition of claim 1 , wherein the primer composition is capable of improving the adherence of paint to polyolefin substrate.
15. The solvent-based primer composition of claim 1 , wherein the modified polyolefin has a Ring and Ball Softening Point ranging from about 90° C. to about 165 ° C.
16. The solvent-based primer composition of claim 1 , wherein the modified polyolefin has a glass transition temperature ranging from about −30° C. to −10° C.
17. A solvent-based primer composition comprising:
about 5 to about 10 weight percent of a modified polyolefin having an acid number ranging from about 20 to about 60 and a number average molecular weight ranging from about 4,000 to about 10,000 comprising an amorphous polyolefin selected from the group consisting of polypropylene copolymers, polypropylene terpolymer and mixtures thereof, wherein the amorphous polyolefin contains about 80 to about 90 mole percent propylene, the polyolefin being chemically modified with one or more unsaturated carboxylic acids selected from the group consisting of acids, esters and anhydrides; and
about 85 to about 95 weight percent of a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof.
18. A method of improving the adherence of paint to a substrate comprising the steps of:
applying a solvent-based primer composition to a substrate,
wherein the primer composition comprises about 0.5 to about 40 weight percent of a modified polyolefin having a number average molecular weight ranging from about 1,000 to 15,000 comprising an amorphous polyolefin selected from polypropylene homopolymers, copolymers, terpolymers and mixtures thereof, wherein the propylene copolymers and terpolymers contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, and 1-hexene, the amorphous polyolefin being chemically modified with one or more unsaturated carboxylic acids selected from the group consisting of acids, esters and anhydrides, and a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof.
19. The method of claim 18 , wherein the substrate is a polyolefin substrate.
20. The method of claim 18 , comprising the additional step of:
coating the primed polyolefin substrate with paint.
21. A solvent-based primer composition comprising:
about 0.5 to about 40 weight percent of a modified polyolefin having a number average molecular weight of up to 15,000 comprising an amorphous polyolefin selected from ethylene, 1-butene, pentene and hexene copolymers, terpolymers and mixtures thereof, wherein the ethylene, 1-butene, 1-pentene and 1-hexene copolymers and terpolymers contain about 1 to about 99 mole percent ethylene, 1-butene, 1-pentene, and 1-hexene, the amorphous polyolefin being chemically modified with one or more unsaturated carboxylic acids selected from the group consisting of acids, esters and anhydrides; and
a solvent selected from the group consisting of ester solvents, ketone solvents, aliphatic solvents, aromatic solvents and mixtures thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/970,880 US20020010257A1 (en) | 1998-06-30 | 2001-10-05 | Adhesion-promoting primer compositions for polyolefin substrates |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9116898P | 1998-06-30 | 1998-06-30 | |
US09/342,181 US6310134B1 (en) | 1998-06-30 | 1999-06-29 | Adhesion-promoting primer compositions for polyolefin substrates |
US09/970,880 US20020010257A1 (en) | 1998-06-30 | 2001-10-05 | Adhesion-promoting primer compositions for polyolefin substrates |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/342,181 Division US6310134B1 (en) | 1998-06-30 | 1999-06-29 | Adhesion-promoting primer compositions for polyolefin substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020010257A1 true US20020010257A1 (en) | 2002-01-24 |
Family
ID=22226410
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/342,181 Expired - Lifetime US6310134B1 (en) | 1998-06-30 | 1999-06-29 | Adhesion-promoting primer compositions for polyolefin substrates |
US09/970,880 Abandoned US20020010257A1 (en) | 1998-06-30 | 2001-10-05 | Adhesion-promoting primer compositions for polyolefin substrates |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/342,181 Expired - Lifetime US6310134B1 (en) | 1998-06-30 | 1999-06-29 | Adhesion-promoting primer compositions for polyolefin substrates |
Country Status (7)
Country | Link |
---|---|
US (2) | US6310134B1 (en) |
EP (1) | EP1098942B1 (en) |
JP (2) | JP4800480B2 (en) |
AT (1) | ATE326511T1 (en) |
BR (1) | BR9911740B1 (en) |
DE (1) | DE69931372T2 (en) |
WO (1) | WO2000000558A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040176541A1 (en) * | 2003-02-21 | 2004-09-09 | Jackson Michael L. | Chlorine free and reduced chlorine content polymer and resin compositons for adhesion to plastics |
US20060008643A1 (en) * | 2002-08-12 | 2006-01-12 | Lin Chon Y | Polypropylene based fibers and nonwovens |
US20060293424A1 (en) * | 2005-06-24 | 2006-12-28 | Mun-Fu Tse | Functionalized propylene copolymer adhesive composition |
WO2007002177A1 (en) | 2005-06-24 | 2007-01-04 | Exxonmobil Chemical Patents Inc. | Plasticized functionalized propylene copolymer adhesive composition |
US20070021566A1 (en) * | 2004-04-15 | 2007-01-25 | Tse Mun F | Plasticized functionalized propylene copolymer adhesive composition |
US20080045638A1 (en) * | 2002-08-12 | 2008-02-21 | Chapman Bryan R | Plasticized hetero-phase polyolefin blends |
US20080070994A1 (en) * | 2002-08-12 | 2008-03-20 | Wen Li | Fibers and Nonwovens from Plasticized Polyolefin Compositions |
US20090171001A1 (en) * | 2002-08-12 | 2009-07-02 | Lin Chon-Yie | Articles from Plasticized Polyolefin Compositions |
US20100035498A1 (en) * | 2002-08-12 | 2010-02-11 | Lundmark Bruce R | Plasticized Polyolefin Compositions |
US8192813B2 (en) | 2003-08-12 | 2012-06-05 | Exxonmobil Chemical Patents, Inc. | Crosslinked polyethylene articles and processes to produce same |
US8389615B2 (en) | 2004-12-17 | 2013-03-05 | Exxonmobil Chemical Patents Inc. | Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin |
US8513347B2 (en) | 2005-07-15 | 2013-08-20 | Exxonmobil Chemical Patents Inc. | Elastomeric compositions |
CN106634742A (en) * | 2016-12-08 | 2017-05-10 | 歌尔股份有限公司 | Self-prepared glue and preparation method thereof |
JP2018095680A (en) * | 2016-12-08 | 2018-06-21 | 石原ケミカル株式会社 | Primer composition |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6310134B1 (en) * | 1998-06-30 | 2001-10-30 | Eastman Chemical Company | Adhesion-promoting primer compositions for polyolefin substrates |
WO2002034801A1 (en) * | 2000-10-23 | 2002-05-02 | Eastman Chemical Company | Solution modification of polyolefins |
JP2002241669A (en) * | 2000-12-15 | 2002-08-28 | Toyo Kasei Kogyo Co Ltd | Resin solution composition for coating or adhesive |
US8058354B2 (en) * | 2001-02-09 | 2011-11-15 | Eastman Chemical Company | Modified carboxylated polyolefins and their use as adhesion promoters |
US20020156144A1 (en) * | 2001-02-09 | 2002-10-24 | Williams Kevin Alan | UV-curable, non-chlorinated adhesion promoters |
JP4904627B2 (en) * | 2001-02-27 | 2012-03-28 | 日本製紙株式会社 | Resin solution composition with good solution properties |
EP1498434B1 (en) * | 2002-04-12 | 2013-10-09 | Idemitsu Kosan Co., Ltd. | Process for production of modified propylene polymers and modified propylene polymers produced by the process |
US6914097B2 (en) * | 2002-12-17 | 2005-07-05 | Equistar Chemicals Lp | Process for producing acid functionalized polyolefins and products |
BRPI0511821A (en) * | 2004-06-05 | 2007-12-26 | Akzo Nobel Coatings Int Bv | adhesion promoter for plastics |
US8058355B2 (en) * | 2004-10-06 | 2011-11-15 | Eastman Chemical Company | Modified chlorinated carboxylated polyolefins and their use as adhesion promoters |
US20070082209A1 (en) * | 2005-10-11 | 2007-04-12 | Williams Kevin A | Adhesion-promoting primer composition for non-olefin substrates |
JP4928774B2 (en) * | 2005-12-01 | 2012-05-09 | Hoya株式会社 | Insertion section flexible tube and endoscope |
US20070237902A1 (en) * | 2006-04-10 | 2007-10-11 | Ragunathan Kaliappa G | Adhesion-promoting compositions and methods of promoting adhesion between a coating and a substrate |
US7985483B2 (en) * | 2006-11-16 | 2011-07-26 | Smarthealth, Inc. | Digital printing of low volume applications |
JP2009136766A (en) * | 2007-12-06 | 2009-06-25 | Panasonic Corp | Antifouling coating film and home appliance housing and toilet seat covered with the same |
DE102009001885A1 (en) | 2009-03-26 | 2010-09-30 | Evonik Degussa Gmbh | Primer for polyolefin surfaces based on polyolefin-graft-poly (meth) acrylate copolymers |
DE102009001886A1 (en) | 2009-03-26 | 2010-10-07 | Evonik Degussa Gmbh | Adhesion promoter for coating polyolefin surfaces based on polyolefin-graft-poly (meth) acrylate copolymers |
JP5982131B2 (en) * | 2011-02-28 | 2016-08-31 | 日東電工株式会社 | Battery adhesive tape and battery using the adhesive tape |
JP6044537B2 (en) * | 2011-11-30 | 2016-12-14 | 東洋紡株式会社 | Non-aqueous dispersion in which acrylic modified polyolefin is dispersed in polar solvent and method for producing the same |
US10640656B2 (en) * | 2015-12-17 | 2020-05-05 | 3M Innovative Properties Company | Primer composition and articles made therefrom |
TW201917018A (en) * | 2017-10-25 | 2019-05-01 | 美商陶氏全球科技有限責任公司 | Tile containing primer coated substrates with good adhesion |
CN111788274A (en) * | 2018-02-28 | 2020-10-16 | 3M创新有限公司 | Polyisobutylene adhesives comprising polyolefin copolymer additives |
CN115926541B (en) * | 2022-11-04 | 2023-09-12 | 广东安捷伦新材料科技有限公司 | Flame-treatment-free PP primer and preparation method and application thereof |
WO2025084366A1 (en) * | 2023-10-17 | 2025-04-24 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | Aqueous coating agent composition |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA835910A (en) | 1970-03-03 | C. Tillson Henry | Coating polyolefin objects | |
US3480580A (en) | 1965-10-22 | 1969-11-25 | Eastman Kodak Co | Modified polymers |
US3579485A (en) | 1969-02-07 | 1971-05-18 | Eastman Kodak Co | Chlorinated carboxyl group containing poly-alpha-olefins |
BE755748A (en) * | 1969-09-08 | 1971-02-15 | Continental Can Co | PROCEDURE FOR BONDING A LAYER OF PROPENE POLYMER TO A METAL SURFACE |
JPS5323784B2 (en) | 1972-06-02 | 1978-07-17 | ||
JPS5142794A (en) * | 1974-10-09 | 1976-04-12 | Sanyo Kokusaku Pulp Co | GURAFUTOKAHORIOREFUINNOENSOKABUTSUNO SEIZOHO |
US4070421A (en) | 1976-04-23 | 1978-01-24 | Eastman Kodak Company | Chlorinated polymeric compositions useful as primers for polyolefins |
JPS598282B2 (en) | 1976-06-25 | 1984-02-23 | 三井化学株式会社 | Polyolefin modification method |
JPS5548260A (en) | 1978-10-04 | 1980-04-05 | Mitsui Petrochem Ind Ltd | Surface-treating agent and its preparation |
JPS6099138A (en) * | 1983-11-02 | 1985-06-03 | Mitsui Petrochem Ind Ltd | Primer for painting polyolefin molded products |
JPS61108608A (en) * | 1984-11-02 | 1986-05-27 | Mitsui Petrochem Ind Ltd | Production method of chlorinated modified polyolefin |
JPH0756012B2 (en) * | 1986-04-18 | 1995-06-14 | 関西ペイント株式会社 | Coating composition and coating method for plastic members |
US4954573A (en) | 1988-05-20 | 1990-09-04 | Eastman Kodak Company | Modified chlorinated polyolefins |
JP3174305B2 (en) * | 1988-09-29 | 2001-06-11 | シェブロン リサーチ アンド テクノロジー カンパニー | Novel polymer dispersant having alternating polyalkylene and succinyl groups |
JP2769705B2 (en) * | 1988-11-21 | 1998-06-25 | 三井化学株式会社 | Method for producing modified polyolefin particles |
CA2025992A1 (en) * | 1989-10-12 | 1991-04-13 | David Y. Chung | Multifunctional viscosity index improver derived from polyamine containing one primary amine group and at least one tertiary amine group and degraded ethylene copolymer |
JPH04363372A (en) * | 1991-01-09 | 1992-12-16 | Mitsui Petrochem Ind Ltd | Primer composition and coating method using the same |
JP2561191B2 (en) * | 1991-10-11 | 1996-12-04 | 日本製紙株式会社 | Process for producing modified polyolefin and coating composition for polyolefin resin |
JP2610559B2 (en) | 1992-03-18 | 1997-05-14 | 日本製紙株式会社 | Aqueous coating composition |
US5534577A (en) | 1992-11-11 | 1996-07-09 | Nippon Paper Industries Co., Ltd. | Aqueous polyolefin resin composition |
GB2273294B (en) | 1992-11-11 | 1997-06-11 | Jujo Paper Co Ltd | Aqueous polyolefin resin composition |
WO1994024197A1 (en) | 1993-04-12 | 1994-10-27 | Eastman Chemical Company | Primer coating process |
US5373048A (en) | 1993-07-30 | 1994-12-13 | Eastman Chemical Company | Aqueous coating composition |
JP2848584B2 (en) | 1994-06-23 | 1999-01-20 | 日本製紙株式会社 | Aqueous resin composition, its production method and use |
JP3328442B2 (en) * | 1994-09-30 | 2002-09-24 | 三井化学株式会社 | Primer composition and method for producing the same |
US5709946A (en) | 1995-02-01 | 1998-01-20 | Bee Chemical Company | Chlorine-free, zero VOC, waterborne adhesion promoter for polyolefinic substrates |
JP3512521B2 (en) * | 1995-05-29 | 2004-03-29 | 三井化学株式会社 | Modified propylene-based elastomer |
US5585192A (en) | 1995-10-02 | 1996-12-17 | Eastman Chemical Company | Waterborne polyolefin adhesion promoter |
JPH09249715A (en) * | 1996-03-19 | 1997-09-22 | Nof Corp | Production of maleinized polybutene |
JPH101513A (en) * | 1996-06-17 | 1998-01-06 | Mitsui Petrochem Ind Ltd | Modification method of polypropylene |
JP3175144B2 (en) * | 1996-07-22 | 2001-06-11 | 日本製紙株式会社 | Resin composition for primer |
US6310134B1 (en) * | 1998-06-30 | 2001-10-30 | Eastman Chemical Company | Adhesion-promoting primer compositions for polyolefin substrates |
-
1999
- 1999-06-29 US US09/342,181 patent/US6310134B1/en not_active Expired - Lifetime
- 1999-06-30 WO PCT/US1999/014787 patent/WO2000000558A1/en active IP Right Grant
- 1999-06-30 DE DE69931372T patent/DE69931372T2/en not_active Expired - Lifetime
- 1999-06-30 AT AT99933614T patent/ATE326511T1/en not_active IP Right Cessation
- 1999-06-30 BR BRPI9911740-1A patent/BR9911740B1/en not_active IP Right Cessation
- 1999-06-30 JP JP2000557313A patent/JP4800480B2/en not_active Expired - Fee Related
- 1999-06-30 EP EP99933614A patent/EP1098942B1/en not_active Expired - Lifetime
-
2001
- 2001-10-05 US US09/970,880 patent/US20020010257A1/en not_active Abandoned
-
2011
- 2011-05-18 JP JP2011111714A patent/JP2011162797A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7875670B2 (en) | 2002-08-12 | 2011-01-25 | Exxonmobil Chemical Patents Inc. | Articles from plasticized polyolefin compositions |
US7985801B2 (en) | 2002-08-12 | 2011-07-26 | Exxonmobil Chemical Patents Inc. | Fibers and nonwovens from plasticized polyolefin compositions |
US8217112B2 (en) | 2002-08-12 | 2012-07-10 | Exxonmobil Chemical Patents Inc. | Plasticized polyolefin compositions |
US8211968B2 (en) | 2002-08-12 | 2012-07-03 | Exxonmobil Chemical Patents Inc. | Plasticized polyolefin compositions |
US20100152346A1 (en) * | 2002-08-12 | 2010-06-17 | Henry Wu-Hsiang Yang | Plasticized Polyolefin Compositions |
US20080045638A1 (en) * | 2002-08-12 | 2008-02-21 | Chapman Bryan R | Plasticized hetero-phase polyolefin blends |
US8003725B2 (en) | 2002-08-12 | 2011-08-23 | Exxonmobil Chemical Patents Inc. | Plasticized hetero-phase polyolefin blends |
US20090171001A1 (en) * | 2002-08-12 | 2009-07-02 | Lin Chon-Yie | Articles from Plasticized Polyolefin Compositions |
US7998579B2 (en) | 2002-08-12 | 2011-08-16 | Exxonmobil Chemical Patents Inc. | Polypropylene based fibers and nonwovens |
US20100035498A1 (en) * | 2002-08-12 | 2010-02-11 | Lundmark Bruce R | Plasticized Polyolefin Compositions |
US20060008643A1 (en) * | 2002-08-12 | 2006-01-12 | Lin Chon Y | Polypropylene based fibers and nonwovens |
US20080070994A1 (en) * | 2002-08-12 | 2008-03-20 | Wen Li | Fibers and Nonwovens from Plasticized Polyolefin Compositions |
US20040176541A1 (en) * | 2003-02-21 | 2004-09-09 | Jackson Michael L. | Chlorine free and reduced chlorine content polymer and resin compositons for adhesion to plastics |
US8192813B2 (en) | 2003-08-12 | 2012-06-05 | Exxonmobil Chemical Patents, Inc. | Crosslinked polyethylene articles and processes to produce same |
US8703030B2 (en) | 2003-08-12 | 2014-04-22 | Exxonmobil Chemical Patents Inc. | Crosslinked polyethylene process |
US7645829B2 (en) | 2004-04-15 | 2010-01-12 | Exxonmobil Chemical Patents Inc. | Plasticized functionalized propylene copolymer adhesive composition |
US20070021566A1 (en) * | 2004-04-15 | 2007-01-25 | Tse Mun F | Plasticized functionalized propylene copolymer adhesive composition |
US8389615B2 (en) | 2004-12-17 | 2013-03-05 | Exxonmobil Chemical Patents Inc. | Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin |
US7812085B2 (en) | 2005-06-24 | 2010-10-12 | Exxonmobil Chemical Patents Inc. | Functionalized propylene copolymer adhesive composition |
WO2007002177A1 (en) | 2005-06-24 | 2007-01-04 | Exxonmobil Chemical Patents Inc. | Plasticized functionalized propylene copolymer adhesive composition |
US20060293424A1 (en) * | 2005-06-24 | 2006-12-28 | Mun-Fu Tse | Functionalized propylene copolymer adhesive composition |
US8513347B2 (en) | 2005-07-15 | 2013-08-20 | Exxonmobil Chemical Patents Inc. | Elastomeric compositions |
CN106634742A (en) * | 2016-12-08 | 2017-05-10 | 歌尔股份有限公司 | Self-prepared glue and preparation method thereof |
JP2018095680A (en) * | 2016-12-08 | 2018-06-21 | 石原ケミカル株式会社 | Primer composition |
Also Published As
Publication number | Publication date |
---|---|
JP2004500441A (en) | 2004-01-08 |
DE69931372T2 (en) | 2006-09-28 |
JP4800480B2 (en) | 2011-10-26 |
WO2000000558A1 (en) | 2000-01-06 |
US6310134B1 (en) | 2001-10-30 |
DE69931372D1 (en) | 2006-06-22 |
ATE326511T1 (en) | 2006-06-15 |
EP1098942B1 (en) | 2006-05-17 |
BR9911740A (en) | 2001-04-03 |
EP1098942A1 (en) | 2001-05-16 |
BR9911740B1 (en) | 2009-01-13 |
JP2011162797A (en) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6310134B1 (en) | Adhesion-promoting primer compositions for polyolefin substrates | |
EP1366087B1 (en) | Uv-curable, non-chlorinated adhesion promoters | |
US5863646A (en) | Coating composition for plastic substrates and coated plastic articles | |
JPS5975958A (en) | Composition for polypropylene resin | |
CA2460181C (en) | Primer composition for polyolefin material | |
JP4295097B2 (en) | Modified carboxylated polyolefins and their use as fixing agents | |
JP5161575B2 (en) | Modified chlorinated carboxylated polyolefins and their use as adhesion promoters | |
US20120040195A1 (en) | Modified carboxylated polyolefins and their use as adhesion promoters for polyolefin surfaces | |
EP1207171A1 (en) | Graft polyolefin and resin coating composition containing the same | |
GB2319774A (en) | Primer compositions based on modified chlorinated polypropylenes | |
US20020198329A1 (en) | Modified carboxylated polyolefins and their use as adhesion promoters | |
MXPA01000594A (en) | Adhesion-promoting primer compositions for polyolefin substrates | |
JPS6195076A (en) | paint composition | |
JP3023188B2 (en) | Resin composition for coating | |
JPS58185655A (en) | Coating composition | |
JPS6411075B2 (en) | ||
HU186841B (en) | Process for preparing coating materials on the basis of alkyd resin and acrylate copolymer | |
JPS647609B2 (en) | ||
JP2001146565A (en) | Binder resin composition for base coat and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |