US20020010084A1 - Method for producting fulvene metal complexes - Google Patents
Method for producting fulvene metal complexes Download PDFInfo
- Publication number
- US20020010084A1 US20020010084A1 US09/922,365 US92236501A US2002010084A1 US 20020010084 A1 US20020010084 A1 US 20020010084A1 US 92236501 A US92236501 A US 92236501A US 2002010084 A1 US2002010084 A1 US 2002010084A1
- Authority
- US
- United States
- Prior art keywords
- group
- formula
- fulvene
- reaction
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 title claims description 30
- 239000002184 metal Substances 0.000 title claims description 30
- PGTKVMVZBBZCKQ-UHFFFAOYSA-N Fulvene Chemical compound C=C1C=CC=C1 PGTKVMVZBBZCKQ-UHFFFAOYSA-N 0.000 title description 16
- -1 C1-C6 alkyl radical Chemical group 0.000 claims abstract description 47
- 239000003054 catalyst Substances 0.000 claims abstract description 19
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 14
- 238000002360 preparation method Methods 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 11
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 150000001336 alkenes Chemical class 0.000 claims abstract description 7
- 150000003623 transition metal compounds Chemical class 0.000 claims abstract description 6
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 5
- 150000002367 halogens Chemical class 0.000 claims abstract description 5
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 238000006116 polymerization reaction Methods 0.000 claims description 22
- 229910052739 hydrogen Inorganic materials 0.000 claims description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 150000001993 dienes Chemical class 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 8
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 7
- 125000002097 pentamethylcyclopentadienyl group Chemical group 0.000 claims description 6
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000011651 chromium Substances 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 5
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- 125000004429 atom Chemical group 0.000 claims description 4
- 239000012429 reaction media Substances 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052768 actinide Inorganic materials 0.000 claims description 2
- 150000001255 actinides Chemical class 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims description 2
- 150000001408 amides Chemical class 0.000 claims description 2
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 150000004696 coordination complex Chemical class 0.000 claims description 2
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 2
- 125000005843 halogen group Chemical group 0.000 claims description 2
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 2
- 150000002602 lanthanoids Chemical class 0.000 claims description 2
- 230000007935 neutral effect Effects 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000000101 thioether group Chemical group 0.000 claims description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 25
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 abstract description 6
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052723 transition metal Inorganic materials 0.000 abstract description 4
- 150000003624 transition metals Chemical class 0.000 abstract description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000460 chlorine Substances 0.000 abstract description 3
- 229910052801 chlorine Inorganic materials 0.000 abstract description 3
- 239000000178 monomer Substances 0.000 abstract description 2
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical group C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 abstract 1
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 229920000098 polyolefin Polymers 0.000 abstract 1
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 44
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 40
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 39
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 36
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 35
- 239000011777 magnesium Substances 0.000 description 35
- 229910052749 magnesium Inorganic materials 0.000 description 34
- 239000000243 solution Substances 0.000 description 33
- 239000007787 solid Substances 0.000 description 20
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 13
- 239000005977 Ethylene Substances 0.000 description 13
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 12
- WXACXMWYHXOSIX-UHFFFAOYSA-N 5-propan-2-ylidenecyclopenta-1,3-diene Chemical compound CC(C)=C1C=CC=C1 WXACXMWYHXOSIX-UHFFFAOYSA-N 0.000 description 11
- BULLHRADHZGONG-UHFFFAOYSA-N [cyclopenta-2,4-dien-1-ylidene(phenyl)methyl]benzene Chemical compound C1=CC=CC1=C(C=1C=CC=CC=1)C1=CC=CC=C1 BULLHRADHZGONG-UHFFFAOYSA-N 0.000 description 11
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 11
- 229910010062 TiCl3 Inorganic materials 0.000 description 10
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 10
- IPZJQDSFZGZEOY-UHFFFAOYSA-N dimethylmethylene Chemical compound C[C]C IPZJQDSFZGZEOY-UHFFFAOYSA-N 0.000 description 8
- MCEJJXNBAPNTMY-UHFFFAOYSA-N CC(C)=C1C(C)=C(C)C(C)=C1C Chemical compound CC(C)=C1C(C)=C(C)C(C)=C1C MCEJJXNBAPNTMY-UHFFFAOYSA-N 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- RYLMKTLFCIGRQD-UHFFFAOYSA-N 2,3,4,5-tetramethylfulvene Chemical compound CC1=C(C)C(=C)C(C)=C1C RYLMKTLFCIGRQD-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- QOXHZZQZTIGPEV-UHFFFAOYSA-K cyclopenta-1,3-diene;titanium(4+);trichloride Chemical compound Cl[Ti+](Cl)Cl.C=1C=C[CH-]C=1 QOXHZZQZTIGPEV-UHFFFAOYSA-K 0.000 description 6
- 150000002234 fulvenes Chemical class 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 229910007926 ZrCl Inorganic materials 0.000 description 5
- 150000004645 aluminates Chemical class 0.000 description 5
- 238000001149 thermolysis Methods 0.000 description 5
- IPRROFRGPQGDOX-UHFFFAOYSA-K 1,2,3,4,5-pentamethylcyclopenta-1,3-diene;trichlorotitanium Chemical group Cl[Ti](Cl)Cl.CC=1C(C)=C(C)[C-](C)C=1C IPRROFRGPQGDOX-UHFFFAOYSA-K 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 229910007930 ZrCl3 Inorganic materials 0.000 description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- LWNDMGJQHFFEPE-UHFFFAOYSA-N methylcyclohexane;titanium;toluene Chemical compound [Ti].C[C-]1[CH-][CH-][CH-][CH-][CH-]1.CC1=CC=CC=C1 LWNDMGJQHFFEPE-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 4
- CSFFJSOWDFOFON-UHFFFAOYSA-N 5-(2,2-dimethylpropylidene)cyclopenta-1,3-diene Chemical compound CC(C)(C)C=C1C=CC=C1 CSFFJSOWDFOFON-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- GONLXCSZJHTGIC-UHFFFAOYSA-N 1-tert-butyl-5-methylidenecyclopenta-1,3-diene Chemical compound CC(C)(C)C1=CC=CC1=C GONLXCSZJHTGIC-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- GMXJULBTMDZPHU-UHFFFAOYSA-N 5-ethylidene-1,2,3,4-tetramethylcyclopenta-1,3-diene Chemical compound CC=C1C(C)=C(C)C(C)=C1C GMXJULBTMDZPHU-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004639 Schlenk technique Methods 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910003074 TiCl4 Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001642 boronic acid derivatives Chemical class 0.000 description 2
- 150000001925 cycloalkenes Chemical class 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004795 grignard reagents Chemical class 0.000 description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- 239000001282 iso-butane Substances 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 125000000654 isopropylidene group Chemical group C(C)(C)=* 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052987 metal hydride Inorganic materials 0.000 description 2
- 150000004681 metal hydrides Chemical class 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 2
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000012982 x-ray structure analysis Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- DYGGAVULJCNEIG-UHFFFAOYSA-N (2,4-diethyl-3-methylidene-5-phenylcyclopenta-1,4-dien-1-yl)benzene Chemical compound CCC=1C(=C)C(CC)=C(C=2C=CC=CC=2)C=1C1=CC=CC=C1 DYGGAVULJCNEIG-UHFFFAOYSA-N 0.000 description 1
- QKUVGYVQJVSFKW-UHFFFAOYSA-N (2,4-dimethyl-3-methylidene-5-phenylcyclopenta-1,4-dien-1-yl)benzene Chemical compound CC=1C(=C)C(C)=C(C=2C=CC=CC=2)C=1C1=CC=CC=C1 QKUVGYVQJVSFKW-UHFFFAOYSA-N 0.000 description 1
- JWCQJEMOTHGHHH-UHFFFAOYSA-N (3-methylidene-2,4,5-triphenylcyclopenta-1,4-dien-1-yl)benzene Chemical compound C=C1C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 JWCQJEMOTHGHHH-UHFFFAOYSA-N 0.000 description 1
- RNGRSVBIFDGEJJ-UHFFFAOYSA-N (3-methylidene-5-phenylcyclopenta-1,4-dien-1-yl)benzene Chemical compound C=1C(=C)C=C(C=2C=CC=CC=2)C=1C1=CC=CC=C1 RNGRSVBIFDGEJJ-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- DUOLVCQVQGYWKL-UHFFFAOYSA-N (5-benzylidene-2,3-diphenylcyclopenta-1,3-dien-1-yl)benzene Chemical compound C=1C=CC=CC=1C=C1C=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 DUOLVCQVQGYWKL-UHFFFAOYSA-N 0.000 description 1
- ZGXMNEKDFYUNDQ-GQCTYLIASA-N (5e)-hepta-1,5-diene Chemical compound C\C=C\CCC=C ZGXMNEKDFYUNDQ-GQCTYLIASA-N 0.000 description 1
- 125000000923 (C1-C30) alkyl group Chemical group 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- CSRTXMOEJLOODX-UHFFFAOYSA-N 1-[cyclopenta-2,4-dien-1-ylidene-(2,3,4,5,6-pentafluorophenyl)methyl]-2,3,4,5,6-pentafluorobenzene Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1C(C=1C(=C(F)C(F)=C(F)C=1F)F)=C1C=CC=C1 CSRTXMOEJLOODX-UHFFFAOYSA-N 0.000 description 1
- RYWQKMKTWPCXJL-UHFFFAOYSA-N 1-cyclopenta-2,4-dien-1-ylidene-n,n,n',n'-tetramethylmethanediamine Chemical compound CN(C)C(N(C)C)=C1C=CC=C1 RYWQKMKTWPCXJL-UHFFFAOYSA-N 0.000 description 1
- UJXXVGXQTXQALL-UHFFFAOYSA-N 1-cyclopenta-2,4-dien-1-ylidene-n,n-dimethylmethanamine Chemical compound CN(C)C=C1C=CC=C1 UJXXVGXQTXQALL-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- IHTWCYWTBONHAN-UHFFFAOYSA-N 2,3-dimethyl-5-methylidenecyclopenta-1,3-diene Chemical compound CC1=CC(=C)C=C1C IHTWCYWTBONHAN-UHFFFAOYSA-N 0.000 description 1
- BHNQYGJTXLQHMK-UHFFFAOYSA-N 2,6-bis(2-methylpropyl)oxaluminane Chemical compound CC(C)CC1CCC[Al](CC(C)C)O1 BHNQYGJTXLQHMK-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-M 2,6-ditert-butyl-4-methylphenolate Chemical group CC1=CC(C(C)(C)C)=C([O-])C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-M 0.000 description 1
- QGQBREBGIBKDOS-UHFFFAOYSA-N 2-cyclopenta-2,4-dien-1-ylidene-1,3-dithiolane Chemical compound S1CCSC1=C1C=CC=C1 QGQBREBGIBKDOS-UHFFFAOYSA-N 0.000 description 1
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 1
- BBDKZWKEPDTENS-UHFFFAOYSA-N 4-Vinylcyclohexene Chemical compound C=CC1CCC=CC1 BBDKZWKEPDTENS-UHFFFAOYSA-N 0.000 description 1
- FYZHLRMYDRUDES-UHFFFAOYSA-N 5,7-dimethylocta-1,6-diene Chemical compound CC(C)=CC(C)CCC=C FYZHLRMYDRUDES-UHFFFAOYSA-N 0.000 description 1
- GTZQESAMRQJMPF-UHFFFAOYSA-N 5-(2-methylpropylidene)cyclopenta-1,3-diene Chemical compound CC(C)C=C1C=CC=C1 GTZQESAMRQJMPF-UHFFFAOYSA-N 0.000 description 1
- VANVKDJJYBYKEA-UHFFFAOYSA-N 5-cyclopentylidenecyclopenta-1,3-diene Chemical compound C1CCCC1=C1C=CC=C1 VANVKDJJYBYKEA-UHFFFAOYSA-N 0.000 description 1
- INYHZQLKOKTDAI-UHFFFAOYSA-N 5-ethenylbicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(C=C)CC1C=C2 INYHZQLKOKTDAI-UHFFFAOYSA-N 0.000 description 1
- LMDOZFCKTSEGMJ-UHFFFAOYSA-N 5-methylidene-2,3-di(propan-2-yl)cyclopenta-1,3-diene Chemical compound CC(C)C1=CC(=C)C=C1C(C)C LMDOZFCKTSEGMJ-UHFFFAOYSA-N 0.000 description 1
- WWWGOVOVYRKPEQ-UHFFFAOYSA-M CC(C)=C1C(C)=C(C)C2=C1C=CC=C2.[V]I Chemical compound CC(C)=C1C(C)=C(C)C2=C1C=CC=C2.[V]I WWWGOVOVYRKPEQ-UHFFFAOYSA-M 0.000 description 1
- RJLCZHXAOWIDAO-UHFFFAOYSA-N CC(C)=C1C2=C(C=CC=C2)C2=C1C=CC=C2.[V] Chemical compound CC(C)=C1C2=C(C=CC=C2)C2=C1C=CC=C2.[V] RJLCZHXAOWIDAO-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- JUOXOUBQXJJXAO-UHFFFAOYSA-N [Mg].C=CC=C Chemical compound [Mg].C=CC=C JUOXOUBQXJJXAO-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000091 aluminium hydride Inorganic materials 0.000 description 1
- GRJWDJVTZAUGDZ-UHFFFAOYSA-N anthracene;magnesium Chemical compound [Mg].C1=CC=CC2=CC3=CC=CC=C3C=C21 GRJWDJVTZAUGDZ-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 1
- SJBIACKVFNCVOM-UHFFFAOYSA-M bis(2-methylpropyl)alumanylium;fluoride Chemical compound CC(C)C[Al](F)CC(C)C SJBIACKVFNCVOM-UHFFFAOYSA-M 0.000 description 1
- XGIUDIMNNMKGDE-UHFFFAOYSA-N bis(trimethylsilyl)azanide Chemical group C[Si](C)(C)[N-][Si](C)(C)C XGIUDIMNNMKGDE-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- MIODROMBEUMZIF-UHFFFAOYSA-N cyclopenta-2,4-dien-1-ylidenecyclohexane Chemical compound C1CCCCC1=C1C=CC=C1 MIODROMBEUMZIF-UHFFFAOYSA-N 0.000 description 1
- IGSGWPUSCLPKER-UHFFFAOYSA-N cyclopenta-2,4-dien-1-ylidenemethylbenzene Chemical compound C=1C=CC=CC=1C=C1C=CC=C1 IGSGWPUSCLPKER-UHFFFAOYSA-N 0.000 description 1
- JZLAYHCMSHSZKE-UHFFFAOYSA-N cyclopenta-2,4-dien-1-ylidenemethylcyclohexane Chemical compound C1CCCCC1C=C1C=CC=C1 JZLAYHCMSHSZKE-UHFFFAOYSA-N 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- PBGGNZZGJIKBMJ-UHFFFAOYSA-N di(propan-2-yl)azanide Chemical group CC(C)[N-]C(C)C PBGGNZZGJIKBMJ-UHFFFAOYSA-N 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- UZBQIPPOMKBLAS-UHFFFAOYSA-N diethylazanide Chemical group CC[N-]CC UZBQIPPOMKBLAS-UHFFFAOYSA-N 0.000 description 1
- SIPUZPBQZHNSDW-UHFFFAOYSA-N diisobutylaluminium hydride Substances CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 1
- JLTDJTHDQAWBAV-UHFFFAOYSA-O dimethyl(phenyl)azanium Chemical compound C[NH+](C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-O 0.000 description 1
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical group C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910012375 magnesium hydride Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- MJGFBOZCAJSGQW-UHFFFAOYSA-N mercury sodium Chemical compound [Na].[Hg] MJGFBOZCAJSGQW-UHFFFAOYSA-N 0.000 description 1
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-M phenolate Chemical compound [O-]C1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-M 0.000 description 1
- 229940031826 phenolate Drugs 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- ASRAWSBMDXVNLX-UHFFFAOYSA-N pyrazolynate Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(=O)C=1C(C)=NN(C)C=1OS(=O)(=O)C1=CC=C(C)C=C1 ASRAWSBMDXVNLX-UHFFFAOYSA-N 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910001023 sodium amalgam Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012312 sodium hydride Substances 0.000 description 1
- 229910000104 sodium hydride Inorganic materials 0.000 description 1
- QLUMLEDLZDMGDW-UHFFFAOYSA-N sodium;1h-naphthalen-1-ide Chemical compound [Na+].[C-]1=CC=CC2=CC=CC=C21 QLUMLEDLZDMGDW-UHFFFAOYSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000007944 thiolates Chemical class 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F110/00—Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F110/04—Monomers containing three or four carbon atoms
- C08F110/06—Propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65908—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/941—Synthetic resins or natural rubbers -- part of the class 520 series having the transition metal bonded directly to carbon
Definitions
- the present invention relates to a process for the preparation of fulvene-metal complexes, new fulvene-metal complexes and their use as catalysts for the polymerization of unsaturated compounds, in particular for the polymerization and copolymerization of olefins and/or dienes.
- Metal complexes with cyclopentadienyl ligands have been the subject of intense investigation since the discovery of ferrocene.
- the use of cyclopentadienyl-metal complexes, in particular the use of metallocene complexes as a mixture with activating cocatalysts, preferably alumoxanes, for the polymerization of olefins and diolefins has been known for a long time (e.g. EP-A 69 951, 129 368, 351 392, 485 821, 485 823).
- Metallocenes have proved to be highly active, specific catalysts in the polymerization of olefins.
- thermolysis reaction The synthesis of the ( ⁇ 6 -2,3,4,5-tetramethylcyclopentadienyl-1-methylene)( ⁇ 5 -pentamethylcyclopentadienyl)zirconium compound is very expensive, it first being necessary to prepare a metallocene with pentamethylcyclopentadienyl ligands, which is decomposed by a thermolysis reaction in the last synthesis stage. Such thermolysis reactions are described in the literature.
- the fulvene complex ( ⁇ 6 -2,3,4,5-tetramethylcyclopentadienyl-1-methylene)( ⁇ 5 -pentamethylcyclopentadienyl)titanium-methyl is formed by thermolysis of bis( ⁇ 5 -pentamethylcyclopentadienyl)titanium-dimethyl.
- T. J. Marks et al., JACS (1988), 110, 7701 describe the thermolysis of pentamethylcyclopentadienyl complexes of zirconium and hafnium.
- the fulvene complex ( ⁇ 6 -2,3,4,5-tetramethylcyclopentadienyl-1-methylene) ⁇ 5 -pentamethylcyclopentadienyl)zirconium-phenyl is formed by thermnolysis of bis( ⁇ 5 -pentamethylcyclopentadienyl)zirconium-diphenyl.
- fulvene-metal complexes can be prepared by reaction of a fulvene compound with a suitable transition metal complex in the presence of a reducing agent.
- the present invention thus provides a process for the preparation of fulvene-metal complexes of the formula (Ia)
- M is a metal from group IIIb, IVb, Vb or VIb or the lanthanides or the actinides of the periodic table of the elements according to IUPAC,
- A denotes an anionic ligand optionally with one or more bridges
- X denotes a hydrogen atom, a C 1 - to C 10 -alkyl group, a C 1 - to C 10 -alkoxy group, a C 6 - to C 10 -aryl group, a C 6 - to C 10 -aryloxy group, a C 2 - to C 10 -alkenyl group, a C 7 - to C 40 -arylalkyl group, a C 7 -to C 40 -alkylaryl group, a C 8 - to C 40 -arylalkenyl group, a silyl group substituted by C 1 - to C 10 -hydrocarbon radicals, a halogen atom or an amide of the formula NR 7 2 ,
- L denotes a neutral ligand
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are identical or different and represent hydrogen, halogen, a cyano group, a C 1 - to C 20 -alkyl group, a C 1 - to C 10 -fluoroalkyl group, a C 6 - to C 10 -fluoroaryl group, a C 1 - to C 10 -alkoxy group, a C 6 - to C 20 -aryl group, a C 6 - to C 10 -aryloxy group, a C 2 - to C 10 -alkenyl group, a C 7 - to C 40 -arylalkyl group, a C 7 - to C 40 -alkylaryl group, a C 1 - to C 40 -arylalkenyl group, a C 2 - to C 10 - alkinyl group, a silyl group substituted by C 1 -C 10 -hydrocarbon radicals
- R 1 , R 2 , R 3 , R 4 , R 5 , R 6 in each case together with the atoms connecting them, form one or more aliphatic or aromatic ring systems, which can contain one or more heteroatoms (O, N, S) and 5 to 10 carbon atoms,
- R 7 represents hydrogen, a C 1 - to C 20 -alkyl group, a C 6 - to C 20 -aryl group, a C 7 - to C 40 -arylalkyl group, a C 7 - to C 40 -alkylaryl group, a silyl group substituted by C 1 -C 10 -hydrocarbon radicals or an amino group which is optionally substituted by C 1 -C 20 -hydrocarbon radicals,
- m, p represent the numbers 0, 1, 2, 3 or 4, which result from the valency and the bonding state of M, and
- k represents the number 1, 2 or 3, and the sum of k+m+p is 1 to 5, depending on the oxidation level of M, and
- n is a number from 0 to 10
- s is 2, 3, 4, 5 or 6 and s is >p
- R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the abovementioned meaning
- the reaction can be carried out in a single reaction step, i.e. in a one-pot reaction, the sequence of addition of the individual reaction components not being fixed.
- the reaction can also be carried out in separate reaction steps.
- transition metal compounds of the formula (IIa) or (IIb) can first be brought into contact with a reducing agent and reacted with fulvene compounds of the formula (III) in a separate reaction step. It is furthermore preferable first to add the transition metal compound (IIa) or (IIb) to the fulvene compound (III) and then to add the reducing agent.
- suitable reducing agents are alkali metals, alkaline earth metals, aluminium, zinc, alloys of the alkali metals, such as e.g. sodium-potassium alloys or sodium amalgam, alloys of the alkaline earth metals, and metal hydrides.
- metal hydrides are lithium hydride, sodium hydride, magnesium hydride, aluminium hydride, lithium aluminium hydride and sodium borohydride.
- Specific examples of reducing agents are sodium naphthalenide, potassium graphite, lithium-alkyls, magnesium-butadiene, magnesium-anthracene, trialkylaluminium compounds and Grignard reagents.
- Preferred reducing agents are alkali metals or alkaline earth metals, C 1 -C 6 -alkyllithium, tri-C 1 -C 6 -alkylaluminium compounds and Grignard reagents.
- Preferred reducing agents are lithium, magnesium, n-butyllithium and triethylaluminium and triisobutylaluminium. Instead of the reducing agents mentioned, it is also possible to carry out an electrochemical reduction.
- the process for the preparation of the fulvene-metal complexes of the formula (I) is carried out in a suitable reaction medium at temperatures of ⁇ 100 to +250° C., preferably ⁇ 78 to +130° C., particularly preferably ⁇ 10 to +120° C.
- reaction media examples include aliphatic or aromatic hydrocarbons, halogenated hydrocarbons, ethers and cyclic ethers.
- examples of these are unbranched aliphatic hydrocarbons, such as butane, pentane, hexane, heptane and octane, branched aliphatic hydrocarbons, such as isobutane, isopentane and isohexane, cyclic aliphatic hydrocarbons, such as cyclohexane and methylcyclohexane, aromatic hydrocarbons, such as benzene, toluene and xylene, and ethers, such as dialkyl ethers, dimethoxyethane and tetrahydrofuran. Mixtures of various solvents are also suitable.
- the fulvene-metal complexes of the formula (I) are prepared and handled with the exclusion of air and water under inert gas conditions (inert gas technique).
- inert gases are nitrogen or argon.
- the Schlenk technique generally conventional for organometallic substances is suitable, for example, as an inert gas technique.
- the fulvene-metal complexes of the formula (I) can be isolated or employed directly for further reactions. If isolation is necessary, the by-products formed can be removed by conventional methods of purification, e.g. by filtration. Alternatively, the desired products can also be extracted with a solvent. If necessary, a purification operation, e.g. recrystallization, can be carried out.
- Possible transition metal complexes of the formula (IIa) or (IIb) are, in particular, those in which
- M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
- A is a pyrazolate of the formula N 2 C 3 R 8 3 where R 8 represents hydrogen or a C 1 -C 10 -alkyl group or a C 6 -C 10 -aryl group, a pyrazolylborate of the formula R 7 B(N 2 C 3 R 8 3 ) 3 , an alcoholate or phenolate of the formula OR 7 , a siloxane of the formula OSiR 7 3 , a thiolate of the formula SR 7 , an acetylacetonate of the formula (R 7 CO) 2 CR 7 , a diimine of the formula (R 7 N ⁇ CR 7 ) 2 , an amidinate of the formula R 7 C(NR 7 2 ) 2 , a cyclooctatetraenyl of the formula C 8 H q R 7 8-q where q is 0, 1, 2, 3, 4, 5, 6 or 7 , a cyclopentadienyl of the formula C 5 H q R 7 5-q where
- L, X, R 7 , m, s and n have the abovementioned meaning.
- transition metal complexes of the formula (IIa) or (IIb) are those in which
- M represents titanium, zirconium or hafnium
- A represents bis(trimethylsilyl)amide, dimethylamide, diethylamide, diisopropylamide, 2,6-di-tert-butyl-4-methylphenolate, cyclooctatetraenyl, cyclopentadienyl, methylcyclopentadienyl, benzylcyclopentadienyl, n-propylcyclopentadienyl, n-butylcyclopentadienyl, iso-butylcyclopentadienyl, t-butylcyclopentadienyl, cyclopentylcyclopentadienyl, octadecylcyclopentadienyl, 1,2-dimethylcyclopentadienyl, 1,3-dimethylcyclopentadienyl, 1,3-diisopropylcyclopentadienyl, 1,3-di-t-butylcyclopentadien
- X denotes fluorine or chlorine
- L, m, s and n have the abovementioned meaning.
- Possible fulvene compounds are, in particular, those of the formula (III) in which
- R 1 to R 6 represents a C 1 -C 30 -alkyl group, a C 6 -C 10 -aryl group or a C 7 -C 40 -alkylaryl group, in particular hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, phenyl, pentafluorophenyl, methylphenyl, cyclohexyl or benzyl.
- Preferred compounds of the formula (III) are fulvene compounds of the fonnula (IV)
- R 1 , R 2 , R 3 and R 4 have the abovementioned meaning.
- Particularly preferred compounds of the formula (III) are 6-cyclohexylfulvene, 6-isopropylfulvene, 6-tert-butylfulvene, 6-phenylfulvene, 6-(dimethylamino)fulvene, 6,6-bis(dimethylamino)fulvene, 6,6-dimethylfulvene, 6,6-bis(trifluoromothyl)-fulvene, 6,6-diphenylfulvene, 6,6-bis(pentafluorophenyl)fulvene, 6,6-pentamethylenefulvene, 6,6-tetramethylenefulvene, 6,6-trimethylenefulvene, 2-(2,4-cyclopentadien-1-ylidene)-1,3-dithiolane, 5-benzylidene-1,2,3-triphenyl-1,3-cyclopentadiene, 1,2,3,4-tetramethylfulvene, 1,2,3,4-tetraphenylful
- FIG. 1 shows in perspective the structure of a fulvene-metal complex which can be prepared according to the invention such as is obtained by X-ray structure analysis, taking the compound (6-tert-butylfulvenyl)pentamethylcyclopentadienyl)titanium chloride as an example.
- the process according to the invention opens up an access to new fulvene-metal complexes of the formula (I) which e.g. cannot be formed by thermolysis.
- the present invention therefore also provides fulvene-metal complexes of the formula (I) in which
- M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
- R 1 and R 2 represent hydrogen and at the same time
- R 3 , R 4 , R 5 and R 6 represent a methyl group and at the same time
- A denotes a pentamethylcyclopentadienyl group or a carboranediyl group of the formula C 2 B 9 11 11 .
- the present invention also provides a catalyst system comprising a
- M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
- Possible cocatalysts are the cocatalysts known in the field of metallocene catalysis, such as polymeric or oligomeric aluminoxanes, Lewis acids and aluminates and borates.
- metallocene catalysis such as polymeric or oligomeric aluminoxanes, Lewis acids and aluminates and borates.
- Particularly suitable cocatalysts are methylaluminoxane, methylalumoxane and diisobutylalumoxane modified by triisobutylaluminium, trialkylaluminium compounds, such as trimethylaluminium, triethylaluminium, triisobutylaluminium and trilsooctylaluminium, and furthermore dialkylaluminium compounds, such as diisobutylaluminium hydride, diisobutylaluminium fluoride and diethylaluminium chloride, substituted triarylaluminium compounds, such as tristpentafluorophenyl)aluminium, and ionic compounds which contain tetrakis(pentafluorophenyl)aluminate as the anion, such as triphenylmethyl tetrakis(pentafluorophenyl)aluminate and N,N-dimethylanilini
- the present invention also provides the use of the new catalyst system for the polymerization of unsaturated compounds, in particular olefins and dienes. Both homopolymerization and copolymerization of the unsaturated compounds mentioned are understood as polymerization here.
- Compounds which are employed in particular in the polymerization are C 2 -C 10 -alkenes, such as ethylene, propylene, but-1-ene, pent-1-ene and hex-1-ene, oct-1-ene and isobutylene, and arylalkenes, such as styrene.
- Dienes which are employed in particular are: conjugated dienes, such as 1,3-butadiene, isoprene and 1,3-pentadiene, and non-conjugated dienes, such as 1,4-hexadiene, 1,5-heptadiene, 5,7-dimethyl-1,6-octadiene, 4-vinyl-1-cyclohexene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene and dicyclopentadiene.
- conjugated dienes such as 1,3-butadiene, isoprene and 1,3-pentadiene
- non-conjugated dienes such as 1,4-hexadiene, 1,5-heptadiene, 5,7-dimethyl-1,6-octadiene, 4-vinyl-1-cyclohexene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene and dicyclopenta
- the catalysts according to the invention are suitable for the preparation of rubbers based on copolymers of ethylene with one or more of the ⁇ -olefins mentioned and the dienes mentioned.
- the catalyst system according to the invention is furthermore suitable for the polymerization of cyclo-olefins, such as norbornene, cyclopentene, cyclohexene and cyclooctene, and the copolymerization of cycloolefins with ethylene or ⁇ -olefins.
- the polymerization can be carried out in the liquid phase, in the presence or absence of an inert solvent or in the gas phase.
- Suitable solvents are aromatic hydrocarbons, such as benzene and/or toluene, or aliphatic hydrocarbons, such as propane, hexane, heptane, octane, isobutane or cyclohexane, or mixtures of the various hydrocarbons.
- Suitable support materials which may be mentioned are e.g.: inorganic or organic polymeric supports, such as silica gel, zeolites, carbon black, active charcoal, aluminium oxide, polystyrene and polypropylene.
- the catalyst system according to the invention can be applied here to the support materials in the conventional manner.
- Methods of supporting catalyst systems are described, for example, in U.S. Pat. Nos. 4,808,561, 4,912,075, 5,008,228 and 4,914,253.
- the polymerization is in general carried out under pressures of 1 to 1,000, preferably 1 to 100 bar and at temperatures of ⁇ 100 to +250° C., preferably 0 to +150° C.
- the polymerization can be carried out continuously or discontinuously in conventional reactors.
- Fulvene complex synthesis by reaction of 6,6-dimethylfulvene with Cp*TiCl 3 , in the presence of butyllithium [(Cp*)(C 5 H 4 C(CH 3 ) 2 )TiCl]400 mg (1.38 mmol) Cp*TiCl 3 , 154 mg (1.45 mmol) 6,6-dimethylfulvene and 1.11 ml (2.76 mmol) n-butyllithium were combined in 25 ml THF in a Schlenk vessel at a temperature of ⁇ 78° C. The mixture was allowed to warm slowly to 0° C. and was stirred for a further two hours at this temperature in order to bring the reaction to completion.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The invention relates to a process for the preparation of polyolefins by polymerizing olefins of the formula CH2CHR in which R=H or C1-C10 alkyl, on their own or as a mixture, if appropriate together with C4-C12 α,ω-diolefins, in solvents, liquid monomers or the gas phase, at temperatures between −50° and 200° C., using a catalyst system composed of a soluble, halogen-containing transition metal compound of the general formula
(cyclopentadienyl)2 Me R Hal
in which R is cyclopentadienyl or a C1-C6 alkyl radical or a halogen, in particular chlorine, Me is a transition metal, in particular zirconium, and Hal is a halogen, in particular chlorine, and a compound, containing aluminum, of the aluminoxane type having the general formulae
Al2OR4(Al(R)—O)n
for a linear aluminoxane and/or
(Al(R)—O)n—2
for a cyclic aluminoxane, in which n is a number from 4 to 20 and R is a methyl or ethyl radical, preferably a methyl radical.
Description
- The present invention relates to a process for the preparation of fulvene-metal complexes, new fulvene-metal complexes and their use as catalysts for the polymerization of unsaturated compounds, in particular for the polymerization and copolymerization of olefins and/or dienes.
- Metal complexes with cyclopentadienyl ligands have been the subject of intense investigation since the discovery of ferrocene. The use of cyclopentadienyl-metal complexes, in particular the use of metallocene complexes as a mixture with activating cocatalysts, preferably alumoxanes, for the polymerization of olefins and diolefins has been known for a long time (e.g. EP-A 69 951, 129 368, 351 392, 485 821, 485 823). Metallocenes have proved to be highly active, specific catalysts in the polymerization of olefins. A large number of new metallocene catalysts and metallocene catalyst systems for the polymerization of olefinic compounds have therefore been developed in recent years in order to increase the activity, selectivity, control of the microstructure, molecular weights and molecular weight distribution.
- Comparatively little is known of metal complexes with fulvene ligands.
- J. Am. Chem. Soc. 1997, 119, 5132 describes zwitter-ionic olefin polymerization catalysts which are formed in the reaction of specific (η6-2,3,4,5-tetramethylcyclopentadienyl-1-methylene) (η5-pentamethylcyclopentadienyl)zirconium compounds with tris(pentafluorophenyl)boron or bispentafluorophenyl)-borane. The synthesis of the (η6-2,3,4,5-tetramethylcyclopentadienyl-1-methylene)(η5-pentamethylcyclopentadienyl)zirconium compound is very expensive, it first being necessary to prepare a metallocene with pentamethylcyclopentadienyl ligands, which is decomposed by a thermolysis reaction in the last synthesis stage. Such thermolysis reactions are described in the literature.
- According to Bercaw et al., JACS (1972), 94, 1219, the fulvene complex (η6-2,3,4,5-tetramethylcyclopentadienyl-1-methylene)(η5-pentamethylcyclopentadienyl)titanium-methyl is formed by thermolysis of bis(η5-pentamethylcyclopentadienyl)titanium-dimethyl. T. J. Marks et al., JACS (1988), 110, 7701 describe the thermolysis of pentamethylcyclopentadienyl complexes of zirconium and hafnium. The fulvene complex (η6-2,3,4,5-tetramethylcyclopentadienyl-1-methylene)η5-pentamethylcyclopentadienyl)zirconium-phenyl is formed by thermnolysis of bis(η5-pentamethylcyclopentadienyl)zirconium-diphenyl.
- The preparation of fulvene complexes by the thermal process is limited to a few structural variants. The thermal process does not always lead to uniform products.
- G. Wilkinson et al. in J. Chem. Soc. 1960, 1321-1324 describe the reaction of 6,6-dialkylfulvenes with chromium-hexacarbonyl or molybdenum-hexacarbonyl. However, cyclopentadienyl-metal complexes are obtained instead of the fulvene-metal complexes.
- In J. Chem. Soc. Dalton Trans. (1985), 2037, M. L. 14. Green et al. report the synthesis of bis(η6-6,6-diphenylfulvene)titanium by reaction of bis(toluene)titanium with 6,6-diphenylfulvene. However, the bis(toluene)titanium must be prepared by involved and expensive metal atom vaporization techniques. For this, metallic titanium is vaporized and condensed in a matrix together with gaseous toluene. The yield of bis(toluene)titanium is very low. The bis(toluene)titanium is therefore accessible to only a limited extent.
- There was therefore the object of discovering an improved process for the preparation of fulvene-metal complexes which avoids the disadvantages mentioned.
- It has now been found, surprisingly, that fulvene-metal complexes can be prepared by reaction of a fulvene compound with a suitable transition metal complex in the presence of a reducing agent.
-
-
- wherein
- M is a metal from group IIIb, IVb, Vb or VIb or the lanthanides or the actinides of the periodic table of the elements according to IUPAC,
- A denotes an anionic ligand optionally with one or more bridges,
- X denotes a hydrogen atom, a C1- to C10-alkyl group, a C1- to C10-alkoxy group, a C6- to C10-aryl group, a C6- to C10-aryloxy group, a C2- to C10-alkenyl group, a C7- to C40-arylalkyl group, a C7-to C40-alkylaryl group, a C8- to C40-arylalkenyl group, a silyl group substituted by C1- to C10-hydrocarbon radicals, a halogen atom or an amide of the formula NR7 2,
- L denotes a neutral ligand,
- R1, R2, R3, R4, R5, R6 are identical or different and represent hydrogen, halogen, a cyano group, a C1- to C20-alkyl group, a C1- to C10-fluoroalkyl group, a C6- to C10-fluoroaryl group, a C1- to C10-alkoxy group, a C6- to C20-aryl group, a C6- to C10-aryloxy group, a C2- to C10-alkenyl group, a C7- to C40-arylalkyl group, a C7- to C40-alkylaryl group, a C1- to C40-arylalkenyl group, a C2- to C10- alkinyl group, a silyl group substituted by C1-C10-hydrocarbon radicals, a sulfide group substituted by a C1-C10-hydrocarbon radical or an amino group which is optionally substituted by C1-C20-hydrocarbon radicals,
- or
- R1, R2, R3, R4, R5, R6, in each case together with the atoms connecting them, form one or more aliphatic or aromatic ring systems, which can contain one or more heteroatoms (O, N, S) and 5 to 10 carbon atoms,
- R7 represents hydrogen, a C1- to C20-alkyl group, a C6- to C20-aryl group, a C7- to C40-arylalkyl group, a C7- to C40-alkylaryl group, a silyl group substituted by C1-C10-hydrocarbon radicals or an amino group which is optionally substituted by C1-C20-hydrocarbon radicals,
- m, p represent the
numbers 0, 1, 2, 3 or 4, which result from the valency and the bonding state of M, and - k represents the number 1, 2 or 3, and the sum of k+m+p is 1 to 5, depending on the oxidation level of M, and
- n is a number from 0 to 10,
- by reaction of a transition metal compound of the formula (IIa) or (IIb)
- AmXsM (IIa)
- or
- AmXsLnM (IIb)
- wherein
- A, X, L, M, m, s and n have the abovementioned meaning and
- s is 2, 3, 4, 5 or 6 and s is >p,
-
- wherein
- R1, R2, R3, R4, R5 and R6 have the abovementioned meaning,
- in the presence of a reducing agent.
-
- The reaction can be carried out in a single reaction step, i.e. in a one-pot reaction, the sequence of addition of the individual reaction components not being fixed. The reaction can also be carried out in separate reaction steps. For example, transition metal compounds of the formula (IIa) or (IIb) can first be brought into contact with a reducing agent and reacted with fulvene compounds of the formula (III) in a separate reaction step. It is furthermore preferable first to add the transition metal compound (IIa) or (IIb) to the fulvene compound (III) and then to add the reducing agent.
- Examples of suitable reducing agents are alkali metals, alkaline earth metals, aluminium, zinc, alloys of the alkali metals, such as e.g. sodium-potassium alloys or sodium amalgam, alloys of the alkaline earth metals, and metal hydrides. Examples of metal hydrides are lithium hydride, sodium hydride, magnesium hydride, aluminium hydride, lithium aluminium hydride and sodium borohydride. Specific examples of reducing agents are sodium naphthalenide, potassium graphite, lithium-alkyls, magnesium-butadiene, magnesium-anthracene, trialkylaluminium compounds and Grignard reagents. Preferred reducing agents are alkali metals or alkaline earth metals, C1-C6-alkyllithium, tri-C1-C6-alkylaluminium compounds and Grignard reagents. Preferred reducing agents are lithium, magnesium, n-butyllithium and triethylaluminium and triisobutylaluminium. Instead of the reducing agents mentioned, it is also possible to carry out an electrochemical reduction.
- The process for the preparation of the fulvene-metal complexes of the formula (I) is carried out in a suitable reaction medium at temperatures of −100 to +250° C., preferably −78 to +130° C., particularly preferably −10 to +120° C.
- Examples of possible suitable reaction media are aliphatic or aromatic hydrocarbons, halogenated hydrocarbons, ethers and cyclic ethers. Examples of these are unbranched aliphatic hydrocarbons, such as butane, pentane, hexane, heptane and octane, branched aliphatic hydrocarbons, such as isobutane, isopentane and isohexane, cyclic aliphatic hydrocarbons, such as cyclohexane and methylcyclohexane, aromatic hydrocarbons, such as benzene, toluene and xylene, and ethers, such as dialkyl ethers, dimethoxyethane and tetrahydrofuran. Mixtures of various solvents are also suitable.
- The fulvene-metal complexes of the formula (I) are prepared and handled with the exclusion of air and water under inert gas conditions (inert gas technique). Examples of inert gases are nitrogen or argon. The Schlenk technique generally conventional for organometallic substances is suitable, for example, as an inert gas technique.
- The fulvene-metal complexes of the formula (I) can be isolated or employed directly for further reactions. If isolation is necessary, the by-products formed can be removed by conventional methods of purification, e.g. by filtration. Alternatively, the desired products can also be extracted with a solvent. If necessary, a purification operation, e.g. recrystallization, can be carried out.
- Possible transition metal complexes of the formula (IIa) or (IIb) are, in particular, those in which
- M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
- A is a pyrazolate of the formula N2C3R8 3 where R8 represents hydrogen or a C1-C10-alkyl group or a C6-C10-aryl group, a pyrazolylborate of the formula R7B(N2C3R8 3)3, an alcoholate or phenolate of the formula OR7, a siloxane of the formula OSiR7 3, a thiolate of the formula SR7, an acetylacetonate of the formula (R7CO)2CR7, a diimine of the formula (R7N═CR7)2, an amidinate of the formula R7C(NR7 2)2, a cyclooctatetraenyl of the formula C8HqR7 8-q where q is 0, 1, 2, 3, 4, 5, 6 or 7, a cyclopentadienyl of the formula C5HqR7 5-q where q is 0, 1, 2, 3, 4 or 5, an indenyl of the formula C9H7-rR7 r where r is 0, 1, 2, 3, 4, 5, 6 or 7, a fluorenyl of the formula C13H9-sR7 s where s is 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 or a C1- to C30-alkyl radical, a C6- to C10-aryl radical or a C7- to C40-alkylaryl radical and
- L, X, R7, m, s and n have the abovementioned meaning.
- Especially preferred transition metal complexes of the formula (IIa) or (IIb) are those in which
- M represents titanium, zirconium or hafnium,
- A represents bis(trimethylsilyl)amide, dimethylamide, diethylamide, diisopropylamide, 2,6-di-tert-butyl-4-methylphenolate, cyclooctatetraenyl, cyclopentadienyl, methylcyclopentadienyl, benzylcyclopentadienyl, n-propylcyclopentadienyl, n-butylcyclopentadienyl, iso-butylcyclopentadienyl, t-butylcyclopentadienyl, cyclopentylcyclopentadienyl, octadecylcyclopentadienyl, 1,2-dimethylcyclopentadienyl, 1,3-dimethylcyclopentadienyl, 1,3-diisopropylcyclopentadienyl, 1,3-di-t-butylcyclopentadienyl, 1-ethyl-2-methylcyclopentadienyl, 1-isopropyl-3-methylcyclopentadienyl, 1-(n-butyl)-3-methylcyclopentadienyl, 1-(t-butyl)-3-methylcyclopentadienyl, pentamethylcyclopentadienyl, 1,2,3,4-tetramethylcyclopentadienyl, 1,2,4-trimethylcyclopentadienyl, 1,2,4-triisopropylcyclopentadienyl, 1,2,4-tri-(t-butyl)-cyclopentadienyl, indenyl, tetrahydroindenyl, 2-methylindenyl, 4,7-dimethylindenyl, 2-methyl-4,5-benzoindenyl, 2-methyl-4-phenylindenyl, fluorenyl or 9-methylfluorenyl,
- X denotes fluorine or chlorine and
- L, m, s and n have the abovementioned meaning.
- Possible fulvene compounds are, in particular, those of the formula (III) in which
- R1 to R6 represents a C1-C30-alkyl group, a C6-C10-aryl group or a C7-C40-alkylaryl group, in particular hydrogen, methyl, trifluoromethyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, phenyl, pentafluorophenyl, methylphenyl, cyclohexyl or benzyl.
-
-
- wherein
- R1, R2, R3 and R4 have the abovementioned meaning.
- Particularly preferred compounds of the formula (III) are 6-cyclohexylfulvene, 6-isopropylfulvene, 6-tert-butylfulvene, 6-phenylfulvene, 6-(dimethylamino)fulvene, 6,6-bis(dimethylamino)fulvene, 6,6-dimethylfulvene, 6,6-bis(trifluoromothyl)-fulvene, 6,6-diphenylfulvene, 6,6-bis(pentafluorophenyl)fulvene, 6,6-pentamethylenefulvene, 6,6-tetramethylenefulvene, 6,6-trimethylenefulvene, 2-(2,4-cyclopentadien-1-ylidene)-1,3-dithiolane, 5-benzylidene-1,2,3-triphenyl-1,3-cyclopentadiene, 1,2,3,4-tetramethylfulvene, 1,2,3,4-tetraphenylfulvene, 2,3-dimethylfulvene, 2,3-diisopropylfulvene, 2,3-diphenylfulvene, 1,4-dimethyl-2,3-diphenylfulvene and 1,4-diethyl-2,3-diphenylfulvene.
- The synthesis of the fulvene compounds of the formula (III), (IV) and (V) can be carried out, for example, in accordance with the method of J. Org. Chem., Vol. 49, No. 11(1984), 1849.
- The formula (I) given for the fulvene-metal complexes is to be regarded as a formal illustration of the bonding circumstances. The bonding circumstances in the metal complexes depend, inter alia, on the central atom, on the oxidation level and on the substituents of the fulvene ligand.
- FIG. 1 shows in perspective the structure of a fulvene-metal complex which can be prepared according to the invention such as is obtained by X-ray structure analysis, taking the compound (6-tert-butylfulvenyl)pentamethylcyclopentadienyl)titanium chloride as an example.
- The process according to the invention opens up an access to new fulvene-metal complexes of the formula (I) which e.g. cannot be formed by thermolysis.
- The present invention therefore also provides fulvene-metal complexes of the formula (I) in which
- M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
- k is 1 and
- A, X, m, p, R1, R2, R3, R4, R5 and R6 have the abovementioned meaning,
- with the exception of the compounds of the formula (1) wherein
- R1 and R2 represent hydrogen and at the same time R3, R4, R5 and R6 represent a methyl group and at the same time A denotes a pentamethylcyclopentadienyl group or a carboranediyl group of the formula C2B91111.
- The present invention also provides a catalyst system comprising a
- (a) fulvene-metal complex of the formula (I) prepared by the process according to the invention, wherein
- M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
- k is 1 and
- A, X, m, p, R1, R2, R3, R4, R5 and R6 have the abovementioned meaning, and
- (b) a cocatalyst suitable for activating the metal complex (a), the molar ratio of component (a) to component (b) being in the range from 1:0.1 to 1:10,000, preferably 1:1 to 1;1,000.
- Possible cocatalysts are the cocatalysts known in the field of metallocene catalysis, such as polymeric or oligomeric aluminoxanes, Lewis acids and aluminates and borates. In this connection, reference is made in particular to Macromol. Symp. Vol. 97, July 1995, p. 1-246 (for alumoxanes) and to EP 277 003, EP 277 004 and Organometallics 1997, 16, 842-857 (for borates), and EP 573 403 (for aluminates).
- Particularly suitable cocatalysts are methylaluminoxane, methylalumoxane and diisobutylalumoxane modified by triisobutylaluminium, trialkylaluminium compounds, such as trimethylaluminium, triethylaluminium, triisobutylaluminium and trilsooctylaluminium, and furthermore dialkylaluminium compounds, such as diisobutylaluminium hydride, diisobutylaluminium fluoride and diethylaluminium chloride, substituted triarylaluminium compounds, such as tristpentafluorophenyl)aluminium, and ionic compounds which contain tetrakis(pentafluorophenyl)aluminate as the anion, such as triphenylmethyl tetrakis(pentafluorophenyl)aluminate and N,N-dimethylanilinium tetrakis-(pentafluorophenyl)aluminate, substituted triarylboron compounds, such as tris(pentafluorophenyl)boron, and ionic compounds which contain tetrakis(pentafluorophenyl)borate as the anion, such as triphenylmethyl tetrakis(pentafluorophenyl)borate and N,N-dimethylanilinium tetrakis-(pentafluorophenyl)borate. Mixtures of various cocatalysts are also suitable for activation of the fulvene-metal complexes of the formula (I).
- The present invention also provides the use of the new catalyst system for the polymerization of unsaturated compounds, in particular olefins and dienes. Both homopolymerization and copolymerization of the unsaturated compounds mentioned are understood as polymerization here. Compounds which are employed in particular in the polymerization are C2-C10-alkenes, such as ethylene, propylene, but-1-ene, pent-1-ene and hex-1-ene, oct-1-ene and isobutylene, and arylalkenes, such as styrene. Dienes which are employed in particular are: conjugated dienes, such as 1,3-butadiene, isoprene and 1,3-pentadiene, and non-conjugated dienes, such as 1,4-hexadiene, 1,5-heptadiene, 5,7-dimethyl-1,6-octadiene, 4-vinyl-1-cyclohexene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene and dicyclopentadiene.
- The catalysts according to the invention are suitable for the preparation of rubbers based on copolymers of ethylene with one or more of the α-olefins mentioned and the dienes mentioned. The catalyst system according to the invention is furthermore suitable for the polymerization of cyclo-olefins, such as norbornene, cyclopentene, cyclohexene and cyclooctene, and the copolymerization of cycloolefins with ethylene or α-olefins.
- The polymerization can be carried out in the liquid phase, in the presence or absence of an inert solvent or in the gas phase. Suitable solvents are aromatic hydrocarbons, such as benzene and/or toluene, or aliphatic hydrocarbons, such as propane, hexane, heptane, octane, isobutane or cyclohexane, or mixtures of the various hydrocarbons.
- It is possible to employ the catalyst system according to the invention applied to a support. Suitable support materials which may be mentioned are e.g.: inorganic or organic polymeric supports, such as silica gel, zeolites, carbon black, active charcoal, aluminium oxide, polystyrene and polypropylene.
- The catalyst system according to the invention can be applied here to the support materials in the conventional manner. Methods of supporting catalyst systems are described, for example, in U.S. Pat. Nos. 4,808,561, 4,912,075, 5,008,228 and 4,914,253.
- The polymerization is in general carried out under pressures of 1 to 1,000, preferably 1 to 100 bar and at temperatures of −100 to +250° C., preferably 0 to +150° C. The polymerization can be carried out continuously or discontinuously in conventional reactors.
- The invention is explained in more detail with the aid of the following examples.
- General information: Organometallic compounds were prepared and handled with the exclusion of air and moisture under argon protection (Schlenk technique). All the solvents required were rendered absolute before use by boiling over a suitable desiccant for several hours and subsequent distillation under argon. The compounds were characterized by1H-NMR, 13C-NMR and mass spectroscopy.
- Abbreviations:
- Cp:cyclopentadienyl
- Cp*:pentamethylcyclopentadienyl
- HV:high vacuum
- RT:room temperature
- THF:tetrahydrofuran
- MS:mass spectrum
- EA:elemental analysis
- Tg:glass transition temperature (DSC measurement)
- de:diastereomer excess
- Fulvene complex synthesis by reaction of 6,6-dimethylfulvene with Cp*TiCl3 in the presence of magnesium [(C5(CH3)5)(C5H4)C(CH3)2TiCl]
- Cp*TiCl3 (0.610 g, 2.11 mmol) and 1.05 equivalents of magnesium (0.054 g, 2.21 mmol) were initially introduced into 25 ml THF. 1.05 equivalents of 6,6-dimethylfulvene (0.227 g, 2.14 mmol) were added dropwise to this mixture at room temperature. The mixture was subsequently stirred overnight at RT so that all the Mg was consumed. The solvent was removed under HV and the green residue was taken up in hexane. The solid was filtered off and the solution was concentrated to half, green shiny platelets precipitating out. For recrystallization, the mixture was cooled to −20° C. The olive-green crystals were isolated and dried under HV. 0.429 g (59%) [(C5(CH3)5)(CH4)C(CH3)2TiCl] was obtained.
-
-
- MS (70 eV) m/e/(%): 324 (40) [M+], 288 (40) [M+—HCl], 135 (5) [Cp*], 106 (100) [dimethylfulvene].
- Fulvene complex synthesis by reaction of 6,6-dimethylfulvene with Cp*TiCl3, in the presence of butyllithium [(Cp*)(C5H4=C(CH3)2)TiCl]400 mg (1.38 mmol) Cp*TiCl3, 154 mg (1.45 mmol) 6,6-dimethylfulvene and 1.11 ml (2.76 mmol) n-butyllithium were combined in 25 ml THF in a Schlenk vessel at a temperature of −78° C. The mixture was allowed to warm slowly to 0° C. and was stirred for a further two hours at this temperature in order to bring the reaction to completion. The solvent was then removed under HV and the green residue was taken up in n-hexane. The solid was filtered off and the solution was concentrated to half, green crystals precipitating out. 290 mg (65%) [(C5(CH3)5)(C5H4)C(CH3)2TiCl] were obtained.
-
-
- Fulvene complex synthesis by reaction of 6,6-dimethylfulvene with Cp*ZrCl3 in the presence of magnesium [(C5(CH3)5)(C5H4)C(CH3)2ZrCl]
- Cp*ZrCl3 (0.380 g, 1.14 mmol) and 1.1 equivalents of magnesium (0.031 g, 1.26mmol) were initially introduced into 10 ml THF. 1.1 equivalents of 6,6-dimethylfulvene (0.134 g, 1.26 mmol) were added dropwise to this solution. After 5 min clouding of the reaction solution occurred. The mixture was stirred overnight so that the magnesium dissolved completely. It was concentrated to dryness under HV, the residue was taken up in 10 ml hexane and the precipitate formed was filtered off. 197 mg (47%) [(C5(CH3)5)(C5H4)C(CH3)2ZrCl] were isolated from the filtrate as a brown-red solid.
-
-
- MS (70 eV) m/e (%): 366 (10) [M+], 330 (5) [M+-HCl], 259 (2), 135 (5) [Cp*], 106 (100) [dimethylfulvene].
- Synthesis of bis(η-6,6-diphenylfulvene)titanium by reaction of 6,6-diphenylfulvene with titanium tetrachloride in the presence of magnesium
- 610 mg (1.83 mmol) TiCl4(THF)2, 89 mg (3.65 mmol) magnesium filings and 841 mg (3.65 mmol) 6,6-diphenylfulvene were combined in 30 ml THF as the reaction medium in a Schlenk vessel. The mixture was stirred for 12 h, until the magnesium filings had been consumed completely, in order to bring the reaction to completion. By concentrating the reaction solution to dryness a green solid was obtained, which could be separated off from the magnesium chloride formed by taking up in n-hexane and filtration. 640 mg (70%) bis(η6-6,6-diphenylfulvene)titanium were obtained by stepwise concentration and cooling of the filtrate.
- Fulvene complex synthesis by reaction of 6,6-dimethylfulvene with CpTiCl3 in the presence of magnesium [(C5H5)(C5H4)C(CH3)2TiCl]
- CpTCl3 (0.410 g, 1.87 mmol) and 1.05 equivalents of magnesium (0.048 g, 1.96 mmol) were initially introduced into 20 ml THF. 1.03 equivalents of 6,6-dimethylfulvene (0.204 g, 1.92 mmol) were added dropwise to this yellow solution at RT and the mixture was stirred until the magnesium employed had been consumed. It was then concentrated under HV and the resulting green solid was taken up in 20 ml hexane. After the solid had been filtered off, the dark green solution was concentrated to half under HV. 0.2 g (42%) [(C5H5(C5H4)C(CH3)2TiCl] was obtained as a dark green solid by crystallization at −20° C.
-
-
- Fulvene complex synthesis by reaction of 6,6-diphenylfulvene with Cp*TiCl3 in the presence of magnesium [(C5(CH3)5)(C5,H4)C(C6H5)2TiCl]
- Cp*TiCl3 (0.690 g, 2.38 mmol) and 1.1 equivalents of magnesium (0.064 g, 2.62 mmol) were initially introduced into 20 ml THF. 1.1 equivalents of 6,6-diphenylfulvene (0.604 g, 2.62 mmol) were added dropwise to this solution at RT. The mixture was stirred overnight at RT, so that all the magnesium was consumed. The solvent was removed under HV and the green residue was taken up in hexane. The precipitate was filtered off and the solution was concentrated to half. The mixture was cooled to −20° C. for crystallization, 0.29 g (27%) [(C5(CH3)5)(C5H4)C(C6H5)2TiCl] being obtained as a green solid.
-
-
- MS (70 eV) m/e (%): 448 (5) [M+], 413 (2) [M+-HCl], 230 (100) [6,6-diphenylfulvene], 135 (15) [Cp*], 78 (12) [Ph].
- Fulvene complex synthesis by reaction of 6,6-diphenylfulvene with Cp*ZrCl3 in the presence of magnesium [(C5(CH3)5)(C5H4)C(C6H5)2ZrCl]
- Cp*ZrCl3 (0.310 g, 0.93 mmol) and 1.05 equivalents of magnesium (0.024 g, 0.98 mmol) were initially introduced into 10 ml THF. 1.05 equivalents of 6,6-diphenylfulvene (0.225 g, 0.98 mmol) were added dropwise to this solution. The mixture was stirred overnight, so that the magnesium had reacted completely. It was concentrated to dryness under HV, the residue was taken up in 20 ml toluene and the insoluble precipitate was filtered off. After covering with a layer of hexane at −20° C., 178 mg (39%) [(C5(CH3)5)(C5H4)C(C6H5)2ZrCl] were obtained as a red solid.
-
-
- MS (70 eV) m/e (%): 448 (5) [M+], 413 (2) [M+-HCl], 230 (100) [6,6-diphenylfulvene], 135 (15) [Cp*], 78 (12) [Ph].
- Fulvene complex synthesis by reaction of 2,3,4,5-tetramethylfulvene with Cp*TiCl3 in the presence of magnesium [(C5(CH3)5)(C5(CH3)4)CH2TiCl]
- Cp*TiCl3 (0.370 g, 1.28 mmol) and 1.05 equivalents of magnesium (0.033 g, 1.35 mmol) were initially introduced into 25 ml THF. 1.05
equivalents 2,3,4,5-tetramethylfulvene (0.185 g, 1.35 mmol) were added dropwise to this red solution at room temperature. The mixture was stirred overnight at RT so that all the magnesium was consumed. The solvent was removed under HV and the green residue was taken up in hexane. The solid was filtered off and the solution was concentrated to half. The mixture was cooled to −20° C. for crystallization, 0.23 g (52%) [(C5(CH3)5)(C5(CH3)4)CH2TiCl] being obtained as a green solid. -
-
- Fulvene complex synthesis by reaction of 2,3,4,5-tetramethylfulvene with CpTiCl3 in the presence of magnesium [(C5H5)C5(CH3)4)CH2TiCl]
- CpTiCl3 (0.350 g, 1.60 mmol) and 1.05 equivalents of magnesium (0.041 g, 1.67 mmol) were initially introduced into 20 ml THF. 1.1 equivalents of 2,3,4,5-tetramethylfulvene (0.260 g, 1.67 mmol) were added dropwise to this solution at room temperature and the mixture was stirred until the magnesium employed had been consumed. It was then concentrated under HV and the resulting green solid was taken up in 20 ml hexane. After the solid had been filtered off, the dark green solution was concentrated to half under HV. 0.3 g (67%) [(C5H5)C5(CH3)4)CH2TiCl] was obtained as a dark green solid by crystallization at −20° C.
-
-
- MS (70 eV) m/e (%): 283 (10) [M+], 247 (15) [M+—HCl], 134 (50) [2,3,4,5-tetramethylfulvene], 119 (100) [2,3,4,5-tetramethylfulvene-CH4], 65 (30) [Cp].
- Fulvene complex synthesis by reaction of 1,2,3,4,6-pentamethylfulvene with CpTiCl3 in the presence of magnesium [(C5H5)(C5(CH3)4C(H)(CH3)TiCl]
- CpTiCl3 (0.450 g, 2.05 mmol) and 1.05 equivalents of magnesium (0.054 g, 2.15 mmol) were initially introduced into 20 ml THF. 1.03 equivalents of 1,2,3,4,6-pentamethylfulvene (0.320 g, 2.15 mmol) were added dropwise to this solution at RT and the mixture was stirred until the magnesium employed had been consumed. It was then concentrated under HV and the resulting green solid was taken up in 20 ml hexane. After the solid had been filtered off, the dark green solution was concentrated to half under HV. 0.17 g (28%) [(C5H5)(C5(CH3)4)C(H)(CH3)TiCl] was obtained as a dark green solid by crystallization at −20° C.
- de: 25%
-
-
- Fulvene complex synthesis by reaction of 6-tert-butylfulvene with Cp*TiCl3 in the presence of magnesium [(C5(CH3)5)(C5H4)C(H)(C(CH3)3)TiCl]
- Cp*TiCl3 (0.450 g, 1.55 mmol) and 1.05 equivalents of magnesium (0.039 g, 1.63 mmol) were initially introduced into 15 ml THF. 1.05 equivalents of tertbutylfulvene (0.249 g, 1.63 mmol) were added dropwise to this solution at RT. The mixture was stirred overnight at RT so that all the magnesium was consumed. The solvent was removed under HV and the green residue was taken up in hexane. The solid was filtered off and the solution was concentrated to half. The mixture was cooled to −20° C. for crystallization, 0.35 g (64%) [(C5(CH3)5)(C5H4)C(H)-(C(CH3)3)TiCl] being obtained as green crystals.
- An X-ray structure analysis was carried out (FIG. 1).
- de: ≧98%
-
-
- MS (70 eV) m/e (%): 353 (12) [M+], 316 (5) [M+-HCl], 270 (18), 235 (8), 135 (100) [Cp*], 119 (35), 80 (85), 57 (90) [C(CH3)3].
- Fulvene complex synthesis by reaction of 6-tert-butylfulvene with CpTCl3 in the presence of magnesium [(C5H5)(C5H4)C(H)(C(CH3)3)TiCl]
- CpTiCl3 (0.420 g, 1.91 mmol) and 1.05 equivalents of magnesium (0.048 g, 2.01 mmol) were initially introduced into 10 ml THF. 1.03 equivalents of tertbutylfulvene (0.295 g, 1.91 mmol) were added dropwise to this solution at RT and the mixture was stirred under the magnesium employed was consumed. It was then concentrated under HV and the resulting green solid was taken up in 20 ml hexane. After the solid had been filtered off, the dark green solution was concentrated to half under HV. 0.23 g (44%) [(C5H5)(C5H4)C(H)(C(CH3)3)TiCl] was obtained as dark green crystals by crystallization at −20° C.
- de: ≧98%
-
-
- MS (70 eV) m/e (%): 282 (5) [M+], 246 (45) [M+—HCl], 228 (15), 135 (10) [Cp*], 119 (35).
- Preparation of the catalyst solution
- 8.3 mg (22.6 μmol) [(Cp*)(C5H4=C(CH3)2)ZrCl] from example 3 were dissolved in 11.3 ml toluene.
- Polymerization of ethylene
- 100 ml toluene were initially introduced into a 250 ml glass reactor and 1 ml of a 0.1 molar solution of triisobutylaluminium in toluene and 0.5 ml of the catalyst solution were added. Ethylene was then passed continuously into the solution under a pressure of 1.1 bar with a gas inlet tube. The polymerization was initiated by addition of 1 ml of a 0.001 molar solution of N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate in toluene. After a polymerization time of 5 min at a temperature of 40° C. under an ethylene pressure of 1.1 bar, the reaction was stopped by addition of 10 ml methanol and the polymer formed was filtered off, washed with acetone and dried in a vacuum drying cabinet. 1.61 g polyethylene were obtained.
- Copolymerization of ethylene and propylene
- 500 ml toluene and 5 ml of a 10% MAO solution in toluene were initially introduced into a 1.4 l steel autoclave, equipped with a mechanical stirrer, manometer, temperature probe, temperature control device, catalyst sluice and monomer metering devices for ethylene and propylene, and were stirred for 10 min. 52 g propylene were then metered in. The internal temperature was adjusted to 40° C. with a thermostat. Ethylene was then metered in until the internal pressure in the reactor rose to 6 bar. The polymerization was initiated by addition of 5 ml of the catalyst solution from example 5 and ethylene was metered in continuously such that the internal pressure at 40° C. was constant at 6 bar. After a polymerization time of 1 hour the polymerization was stopped with a 1% HCl solution in methanol, the mixture was stirred for 10 min and the polymer was then precipitated in methanol. The polymer thus obtained was washed with methanol, isolated and dried in vacuo at 60° C. for 20 h, 48 g copolymer being obtained. Determination of the composition of the copolymer by IR spectroscopy showed an incorporation of 82.9% ethylene and 17.1% propylene. A Tg of −24° C. was determined by the DSC method.
- Preparation of the catalyst
- 73.9 mg (0.221 mmol) TiCl4(THF)2 were dissolved in 3 ml THF. 5.4 mg (0.22 mmol) magnesium and 51 mg (0.221 mmol) 6,6-diphenylfulvene were then added. After stirring at 20° C. for 20 h, a dark green solution was obtained. The solution was concentrated to dryness, the residue formed was dried under HV for 2 h and 22 ml toluene were then added, a dark green suspension being formed. 1 ml of the catalyst suspension contained 0.01 mmol titanium.
- Polymerization of ethylene
- 90 ml toluene and 5 ml of an MAO solution (10% in toluene) were initially introduced into a 250 ml glass reactor and were stirred for 5 minutes. 5 ml of the catalyst suspension were then added and the mixture was stirred at 40° C. for 10 minutes. Ethylene was then passed continuously into the solution with a gas inlet tube. After a polymerization time of 10 min at a temperature of 40° C. and an ethylene pressure of 1.1 bar, the reaction was stopped by addition of 10 ml of a 1% solution of HCl in methanol and the polymer formed was filtered off, washed with methanol and dried in a vacuum drying cabinet. 8.9 g polyethylene were obtained.
Claims (8)
1. Process for the preparation of fulvene-metal complexes of the formula (Ia)
or of the formula (Ib)
wherein
M is a metal from group IIIb, IVb, Vb or VIb or the lanthanides or the actinides of the periodic table of the elements according to IUPAC,
A denotes an anionic ligand optionally with one or more bridges,
X denotes a hydrogen atom, a C1- to C10-alkyl group, a C1- to C10-alkoxy group, a C6- to C10-aryl group, a C6- to C10-aryloxy group, a C2- to C10-alkenyl group, a C7- to C40-arylalkyl group, a C7-to C40-alkylaryl group, a C8- to C40-arylalkenyl group, a silyl group substituted by C1- to C10-hydrocarbon radicals, a halogen atom or an amide of the formula NR7 2,
L denotes a neutral ligand,
R1, R2, R3, R4, R5, R6 are identical or different and represent hydrogen, halogen, a cyano group, a C1- to C20-alkyl group, a C1- to C10-fluoroalkyl group, a C6- to C10-fluoroaryl group, a C1- to C10-alkoxy group, a C6- to C20-aryl group, a C6- to C10-aryloxy group, a C2- to C10-alkenyl group, a C7- to C40-arylalkyl group, a C7- to C40-alkylaryl group, a C8- to C40-arylalkenyl group, a C2- to C10-alkinyl group, a silyl group substituted by C1-C10-hydrocarbon radicals, a sulfide group substituted by a C1-C10-hydrocarbon radical or an amino group which is optionally substituted by C1-C20-hydrocarbon radicals,
or
R1, R2, R3, R4, R5, R6, in each case together with the atoms connecting them, form one or more aliphatic or aromatic ring systems, which can contain one or more hetero atoms (O, N, S) and 5 to 10 carbon atoms,
R7 represents hydrogen, a C1- to C20-alkyl group, a C6- to C20-aryl group, a C7- to C40-arylalkyl group, a C1- to C40-alkylaryl group, a silyl group substituted by C1-C10-hydrocarbon radicals or an amino group which is optionally substituted by C1-C20-hydrocarbon radicals,
m, p represent the numbers 0, 1, 2, 3 or 4, which result from the valency and the bonding state of M, and
k represents the number 1, 2 or 3, and the sum of k+m+p is 1 to 5, depending on the oxidation level of M, and
n is a number from 0 to 10,
by reaction of a transition metal compound of the formula (IIa) or (IIb)
AmXsM (IIa)
or
AmXsLnM (IIb)
wherein
A, X, L, M, m, s and n have the abovementioned meaning and
s is 2, 3, 4, 5 or 6 and s is >p,
with a fulvene compound of the formula (III)
wherein
R1, R2, R3, R4, R5 and R6 have the abovementioned meaning,
in the presence of a reducing agent.
2. Process according to claim 1 , characterized in that the reaction is carried out in a suitable reaction medium at temperatures of −100 to +250° C.
3. Process according to claim 1 , characterized in that alkali metals, alkaline earth metals or lithium-alkyls are used as the reducing agent.
4. Process according to claim 1 , characterized in that the reaction is carried out in a solvent.
5. Process according to claim 4 , characterized in that the reaction is carried out in an ether.
6. Fulvene-metal complexes of the formula (Ia) or (Ib), wherein
M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
k is 1 and
A, X, L, m, n, p, R1, R2, R3, R4, R5 and R6 have the abovementioned meaning,
with the exception of the compounds of the formula (Ia) or (Ib) wherein
R1 and R2 represent hydrogen and at the same time R3, R, R5 and R6 represent a methyl group and at the same time A denotes a pentamethylcyclopentadienyl group or a carboranediyl group of the formula C2B91111.
7. Catalyst system comprising:
(a) a fulvene-metal complex of the formula (Ia) or (Ib) prepared by the process according to claim 1 , wherein
M is a metal from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, tantalum and chromium,
k is 1 and
A, X, L, m, n, p, R1, R2, R3, R4, R5 and R6 have the abovementioned meaning,
and
(b) a cocatalyst suitable for activating the metal complex (a), the molar ratio of component (a) to component (b) being in the range from 1:0.1 to 1:10,000.
8. Use of the catalyst system according to claim 7 for the polymerization of olefins and/or dienes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/922,365 US20020010084A1 (en) | 1997-11-07 | 2001-08-03 | Method for producting fulvene metal complexes |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19749293 | 1997-11-07 | ||
DE19749'293.2 | 1997-11-07 | ||
DE19756742.8 | 1997-12-19 | ||
DE19756742A DE19756742A1 (en) | 1997-11-07 | 1997-12-19 | Process for the production of fulven metal complexes |
US09/530,812 US6403735B1 (en) | 1997-11-07 | 1998-10-28 | Method for producing fulvene metal complexes |
US09/922,365 US20020010084A1 (en) | 1997-11-07 | 2001-08-03 | Method for producting fulvene metal complexes |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/530,812 Division US6403735B1 (en) | 1997-11-07 | 1998-10-28 | Method for producing fulvene metal complexes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020010084A1 true US20020010084A1 (en) | 2002-01-24 |
Family
ID=26041416
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/530,812 Expired - Fee Related US6403735B1 (en) | 1997-11-07 | 1998-10-28 | Method for producing fulvene metal complexes |
US09/922,365 Abandoned US20020010084A1 (en) | 1997-11-07 | 2001-08-03 | Method for producting fulvene metal complexes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/530,812 Expired - Fee Related US6403735B1 (en) | 1997-11-07 | 1998-10-28 | Method for producing fulvene metal complexes |
Country Status (9)
Country | Link |
---|---|
US (2) | US6403735B1 (en) |
EP (1) | EP1028968A1 (en) |
JP (1) | JP2001522856A (en) |
CN (1) | CN1278265A (en) |
AU (1) | AU2047999A (en) |
BR (1) | BR9813196A (en) |
CA (1) | CA2309174A1 (en) |
NO (1) | NO20002319L (en) |
WO (1) | WO1999024445A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005220172B2 (en) * | 2004-10-08 | 2011-04-14 | Patria Aerostructures Oy | Pivoting panel for aircraft, and composite support piece |
US20160306044A1 (en) * | 2014-08-11 | 2016-10-20 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6054405A (en) | 1997-12-29 | 2000-04-25 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst composition for the polymerization of olefins |
US6087515A (en) * | 1998-10-07 | 2000-07-11 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Metallocenes and process for the preparation of metallocenes |
DE19850898A1 (en) * | 1998-11-05 | 2000-05-11 | Bayer Ag | Process for the preparation of EP (D) M |
DE19924176A1 (en) * | 1999-05-27 | 2000-11-30 | Bayer Ag | Catalyst system based on fulvene compounds |
KR100515585B1 (en) * | 2002-08-29 | 2005-09-16 | 주식회사 엘지화학 | Fulvene-based compound and method for preparing thereof |
EP1532181B1 (en) * | 2002-08-29 | 2016-03-16 | LG Chem, Ltd. | Fulvene and preparation thereof |
US7816550B2 (en) * | 2005-02-10 | 2010-10-19 | Praxair Technology, Inc. | Processes for the production of organometallic compounds |
EP2019111A1 (en) * | 2007-07-24 | 2009-01-28 | Total Petrochemicals Research Feluy | Catalyst components based on fulvene complexes |
US8440772B2 (en) * | 2011-04-28 | 2013-05-14 | Chevron Phillips Chemical Company Lp | Methods for terminating olefin polymerizations |
US10273315B2 (en) | 2012-06-20 | 2019-04-30 | Chevron Phillips Chemical Company Lp | Methods for terminating olefin polymerizations |
KR102251989B1 (en) | 2014-03-10 | 2021-05-14 | 삼성전자주식회사 | Organometallic precursors and methods of forming a thin layer using the same |
KR102124239B1 (en) * | 2015-02-10 | 2020-06-17 | 밀리켄 앤드 캄파니 | Thermoplastic polymer composition |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3127133A1 (en) | 1981-07-09 | 1983-01-27 | Hoechst Ag, 6000 Frankfurt | METHOD FOR PRODUCING POLYOLEFINS AND THEIR COPOLYMERISATS |
US5580939A (en) | 1983-06-06 | 1996-12-03 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US5324800A (en) | 1983-06-06 | 1994-06-28 | Exxon Chemical Patents Inc. | Process and catalyst for polyolefin density and molecular weight control |
US4808561A (en) | 1985-06-21 | 1989-02-28 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
PL276385A1 (en) | 1987-01-30 | 1989-07-24 | Exxon Chemical Patents Inc | Method for polymerization of olefines,diolefins and acetylene unsaturated compounds |
IL85097A (en) | 1987-01-30 | 1992-02-16 | Exxon Chemical Patents Inc | Catalysts based on derivatives of a bis(cyclopentadienyl)group ivb metal compound,their preparation and their use in polymerization processes |
US4912075A (en) | 1987-12-17 | 1990-03-27 | Exxon Chemical Patents Inc. | Method for preparing a supported metallocene-alumoxane catalyst for gas phase polymerization |
US5008228A (en) | 1988-03-29 | 1991-04-16 | Exxon Chemical Patents Inc. | Method for preparing a silica gel supported metallocene-alumoxane catalyst |
US4892851A (en) | 1988-07-15 | 1990-01-09 | Fina Technology, Inc. | Process and catalyst for producing syndiotactic polyolefins |
US4914253A (en) | 1988-11-04 | 1990-04-03 | Exxon Chemical Patents Inc. | Method for preparing polyethylene wax by gas phase polymerization |
EP0485821B1 (en) | 1990-11-12 | 1996-06-12 | Hoechst Aktiengesellschaft | Metallocenes with 2-substituted indenyl-derivates as ligands, process for their preparation and their use as catalysts |
EP0485823B1 (en) | 1990-11-12 | 1995-03-08 | Hoechst Aktiengesellschaft | 2-Substituted bisindenyl-metallocenes, process for their preparation and their use as catalysts for the polymerization of olefins |
US6054405A (en) * | 1997-12-29 | 2000-04-25 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst composition for the polymerization of olefins |
-
1998
- 1998-10-28 EP EP98965145A patent/EP1028968A1/en not_active Withdrawn
- 1998-10-28 CN CN98810873.9A patent/CN1278265A/en active Pending
- 1998-10-28 AU AU20479/99A patent/AU2047999A/en not_active Abandoned
- 1998-10-28 BR BR9813196-6A patent/BR9813196A/en not_active IP Right Cessation
- 1998-10-28 JP JP2000520454A patent/JP2001522856A/en active Pending
- 1998-10-28 US US09/530,812 patent/US6403735B1/en not_active Expired - Fee Related
- 1998-10-28 CA CA002309174A patent/CA2309174A1/en not_active Abandoned
- 1998-10-28 WO PCT/EP1998/006821 patent/WO1999024445A1/en not_active Application Discontinuation
-
2000
- 2000-05-02 NO NO20002319A patent/NO20002319L/en not_active Application Discontinuation
-
2001
- 2001-08-03 US US09/922,365 patent/US20020010084A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2005220172B2 (en) * | 2004-10-08 | 2011-04-14 | Patria Aerostructures Oy | Pivoting panel for aircraft, and composite support piece |
US20160306044A1 (en) * | 2014-08-11 | 2016-10-20 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
Also Published As
Publication number | Publication date |
---|---|
WO1999024445A1 (en) | 1999-05-20 |
BR9813196A (en) | 2000-08-29 |
JP2001522856A (en) | 2001-11-20 |
CA2309174A1 (en) | 1999-05-20 |
US6403735B1 (en) | 2002-06-11 |
EP1028968A1 (en) | 2000-08-23 |
CN1278265A (en) | 2000-12-27 |
NO20002319D0 (en) | 2000-05-02 |
NO20002319L (en) | 2000-06-29 |
AU2047999A (en) | 1999-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0632819B1 (en) | Addition polymerization catalysts comprising reduced oxidation state metal complexes | |
US6153776A (en) | Bimetallic complexes and polymerization catalysts therefrom | |
JPH10502087A (en) | Group 4 metal diene complex and addition polymerization catalyst using the same | |
US6403735B1 (en) | Method for producing fulvene metal complexes | |
EP1401880A1 (en) | Metallocene catalysts containing an indenyl moiety substituted at the 4-, 5-, 6- or 7-position by a siloxy or germyloxy group | |
JPH08231573A (en) | Metallocene compounds and their use as catalyst components | |
US6365763B1 (en) | Method for producing metallocenes | |
CN112745366B (en) | Silicon-based bridged metallocene compound, and preparation method and application thereof | |
JP3751344B2 (en) | Metallocene compounds | |
CN100429240C (en) | Process for making low-density polyolefins | |
EP1311513B1 (en) | Catalysts | |
US6395672B1 (en) | Catalysts based on fulvene metal complexes | |
JP3850048B2 (en) | Organic transition metal compound and method for producing polyolefin using the same | |
WO2001053362A1 (en) | Metallocene catalysts comprising monocyclic siloxy substituted cyclopentadienyl group(s) for the polymerisation of olefins | |
US6258744B1 (en) | Catalyst system based on fulvene cyclopentadienyl metal complexes | |
US5965678A (en) | Catalyst system based on monoazadiene metal complexes | |
US6214762B1 (en) | Catalysts based on metal fulvene complexes | |
KR20010031855A (en) | Process for the Preparation of Fulvene-Metal Complexes | |
JPH07173208A (en) | Novel metallocene compound and olefin polymerization method using the same | |
US6774078B1 (en) | Olefin polymerization catalysts based on annulated cyclopentadienyl ligands | |
JP3946615B2 (en) | Transition metal compound for olefin polymerization catalyst, catalyst for olefin polymerization, and method for producing polyolefin | |
MXPA00004295A (en) | Method for producing fulvene metal complexes | |
WO2001053361A1 (en) | Siloxy-substituted monocyclopentadienyl ligated constrained geometry olefin polymerisation catalysts | |
ES2351298T3 (en) | METALOGEN CATALYSTS CONTAINING AN INDENILE REST REPLACED IN THE POSITION 4-, 5-, 6- OR 7-, WITH A SILOXI OR GERMILOXI GROUP. | |
JPH1129610A (en) | Novel transition metal compound, α-olefin polymerization catalyst component and α-olefin polymerization catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |