US20020007876A1 - Ferritic stainless steel - Google Patents
Ferritic stainless steel Download PDFInfo
- Publication number
- US20020007876A1 US20020007876A1 US09/892,370 US89237001A US2002007876A1 US 20020007876 A1 US20020007876 A1 US 20020007876A1 US 89237001 A US89237001 A US 89237001A US 2002007876 A1 US2002007876 A1 US 2002007876A1
- Authority
- US
- United States
- Prior art keywords
- content
- stainless steel
- secondary working
- high temperature
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 30
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 20
- 229910000831 Steel Inorganic materials 0.000 claims description 36
- 239000010959 steel Substances 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 21
- 238000005452 bending Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 15
- 238000003466 welding Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 8
- 230000007704 transition Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000009628 steelmaking Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009661 fatigue test Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Definitions
- the present invention relates to a novel ferritic stainless steel. It particularly includes a welded ferritic stainless steel and welded product having superior secondary working embrittleness resistance and superior high temperature fatigue characteristics, and concerns welded parts that are suitable for applications in which a welded pipe or a welded plate, after having undergone forming work, is used.
- second working refers to the processing of a specified part after having already having subjected it to forming work.
- a welded pipe may be subjected to bending work (primary working), and thereafter, to pipe diameter enlargement work (secondary working).
- high temperature fatigue refers to a phenomenon wherein fatigue fracture of a material occurs due to repetitive bending at high temperatures of 600° C. or more.
- FIG. 1 of the drawings For example, welded parts of components of an exhaust pipe system in an automobile undergo secondary working and high temperature fatigue.
- an exhaust manifold as shown in FIG. 1 of the drawings, is subjected to severe conditions during operation, and undergoes intense vibration at high temperatures of 600° C. or more due to the action of engine exhaust gas.
- the present invention is preferably applied to, for example, an exhaust manifold of ferritic stainless steel, and other welded products.
- a ferritic steel containing an intervening material, Al 2 O 3 has been suggested in Japanese Unexamined Patent Publication No. 11-172369.
- the aforementioned kind of steel exhibits insufficient secondary working embrittleness which causes cracks in the welded parts. Whether or not high temperature fatigue characteristics are achieved, serious cracks frequently occur as a result of the harmful secondary working embrittleness.
- Al 2 O 3 , Si or Mn must be used as a deoxidizer in the steel making process. Accordingly, Al, widely used as a deoxidizer, cannot be used in production of welded products free of defects caused by harmful secondary working embrittleness.
- a ferritic stainless steel and a ferritic stainless steel welded part are provided with both superior secondary working embrittleness resistance and high temperature fatigue characteristic in accordance with this invention.
- the ferritic stainless steel of this invention has a composition, on a weight percentage basis, composed of about: 0.02% or less of C, 0.2% to 1.0% of Si, 0.1% to 1.5% of Mn, 0.04% or less of P, 0.01% or less of S, 11.0% to 20.0% of Cr, 0.1% to 1.0% of Ni, 1.0% to 2.0% of Mo, 1.0% or less of Al, 0.2% to 0.8% of Nb, 0.02% or less of N, 0.01% to 0.3% of Co, 0.01% to 0.3% of V, 0.0002% to 0.0050% of B, and the remainder Fe and incidental impurities.
- ferritic stainless steel contents of Co, V, and B preferably fall within the range represented by the following formula
- the aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, further comprising at least one element selected from the group consisting of about 0.05% to 0.5% of Ti, about 0.05% to 0.5% of Zr, and about 0.05% to 0.5% of Ta.
- the aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, further comprising about 0.1% to 2.0% of Cu.
- the aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, comprising at least one element selected from the group consisting of about 0.05% to 1.0% of W and about 0.001% to 0.1% of Mg.
- the aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, further comprising about 0.0005% to 0.005% of Ca.
- FIG. 1 is a schematic diagram of an exhaust manifold comprising a ferritic stainless steel in accordance with this invention.
- FIG. 2 is a graph showing the effects of Co, V, and B on secondary working embrittleness transition temperatures of welded parts such as the exhaust manifold of FIG. 1.
- FIG. 3 is a graph similar to FIG. 2 showing effects of Co, V, and B on high temperature fatigue characteristics (10 7 fatigue limit (MPa)) of such welded parts.
- FIG. 4 is a schematic diagram illustrating a test for evaluation of secondary working embrittleness resistance of such welded parts.
- FIG. 5 is a schematic diagram illustrating one example of a shape of a test piece used in a high temperature fatigue test, and a bending direction thereof.
- 10 7 fatigue limit means the maximum bending stress with which bending was repeated 10 7 times without any occurrence of any fatigue crack of welded parts.
- C when added in an appropriate amount, functions to strengthen the grain boundaries of the steel and improves the secondary working embrittleness resistance of welded parts.
- C when C is increased and carbide is produced and deposited at the grain boundaries, the secondary working embrittleness resistance is adversely affected.
- C when C exceeds about 0.02%, the adverse effect becomes remarkable. Therefore, C is specified to be about 0.02% or less.
- the content is preferably within the range of about 0.003% ⁇ C ⁇ 0.01%.
- Si about 0.2% to 1.0%
- Si is useful in this invention in that it contributes effectively to an increase in strength and to improve the high temperature fatigue characteristics.
- the Si content must be about 0.2% or more, although when the Si content exceeds about 1.0%, the steel becomes brittle, and the secondary working embrittleness resistance of the welded part is degraded. Therefore the Si content is specified to be about 0.2% to 1.0%.
- the Si content is preferably about 0.6% or less.
- Mn about 0.1% or more, but about 1.5% or less
- Mn is effective in improving oxidation resistance, it is necessary in materials used at high temperatures.
- the Mn content must be about 0.1% or more.
- the Mn content is specified to be about 1.5% or less.
- the Mn content is preferably about 0.5% or less.
- P is likely to segregate at grain boundaries of the steel so as to reduce the strengthening effect at the grain boundaries by B as described below. Therefore, by minimizing the content of P, the secondary working embrittleness resistance and the high temperature fatigue characteristic of the welded part can be improved. However, when the P content is reduced too much, steel production costs increase. As a consequence, the upper limit of the P content is specified to be about 0.04%.
- Cr is effective in improving high temperature strength, oxidation resistance, and corrosion resistance. In order to exhibit sufficient high temperature strength, oxidation resistance, and corrosion resistance, Cr must be about 11.0% or more. On the other hand, Cr degrades the toughness of steel. In particular, when the Cr content exceeds about 20.0%, the toughness is remarkably degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore the Cr content is specified to be within the range of about 11.0% to 20.0%. In particular, from the viewpoint of improving high temperature fatigue characteristic, the Cr content is preferably about 14.0% or more. On the other hand, from the viewpoint of improving secondary working embrittleness resistance, the Cr content is preferably about 16.0% or less.
- Ni about 0.1% or more, but about 1.0% or less
- Ni improves corrosion resistance, which is a characteristic of the stainless steel, and in order to improve the corrosion resistance, the Ni content must be about 0.1% or more. However, when the Ni content exceeds about 1.0%, the steel became hard, and the secondary working embrittleness resistance and the high temperature fatigue characteristic of the welded part are adversely affected.
- Mo is effective in improving high temperature strength and corrosion resistance.
- a Mo content must be about 1.0% or more.
- the Mo content exceeds about 2.0%, the toughness is degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore the Mo content is specified to be within the range of about 1.0% to 2.0%. From the viewpoint of improving high temperature fatigue characteristic, the Mo content is preferably about 1.5% or more.
- Al is essential as a deoxidizer in the steelmaking process, although excessive addition thereof causes production of an intervening material resulting in degradation of the secondary working embrittleness resistance. Therefore the Al content is specified to be about 1.0% or less. From the viewpoint of improving the secondary working embrittleness resistance, the Al content is preferably about 0.1% or less.
- Nb about 0.2% to 0.8%
- Nb is effective in improving high temperature strength of the steel.
- a Nb content must be about 0.2% or more.
- the Nb content exceeds about 0.8%, the toughness is degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore the Nb content is specified to be within the range of about 0.2% to 0.8%.
- the Nb content preferably exceeds about 0.4%.
- the Nb content is preferably about 0.6% or less.
- N about 0.02% or less
- N functions to strengthen the grain boundaries and improves the secondary working embrittleness resistance of the steel.
- the secondary working embrittleness resistance is adversely affected particularly when the N content exceeds about 0.02%. Therefore, the N content is specified to be about 0.02% or less. From the viewpoint of improving the secondary working embrittleness resistance of the welded part, the N content is preferably about 0.01% or less.
- Co about 0.01% to 0.3%
- V about 0.01% to 0.3%
- B about 0.0002% to 0.0050%
- both the secondary working embrittleness resistance and the high temperature fatigue characteristic of the welded part are remarkably improved by this compound addition of Co, V, and B.
- the aforementioned effect is exhibited when both the Co content and the V content are about 0.01% or more and the B content is about 0.0002% or more.
- the Co content is about 0.02% or more
- the V content is about 0.05% or more
- the B content is about 0.0005% or more.
- the contents of Co, V, and B are specified to be within the aforementioned range.
- Co improves the internal strength of grains which become coarse due to heat input during welding, and prevents cracks from occurring therein. It is believed that B coacts by segregating at the grain boundaries of the steel due to heat input, so as to strengthen the grain boundaries and to prevent formation of intergranular fractures. It is further believed that V also coacts by producing carbide due to the heat input so as to inhibit movement of the grain boundaries and to prevent crystal grains from becoming coarse, and that at the same time, V coacts by fixing C to prevent reduction of strengthening of the grain boundaries by B by deposition of carbide produced from B.
- Co, V, and B interact with each other so as to exhibit a remarkable effect. If there is an insufficiency of the amount present of at least one of them, the aforementioned advantages cannot be enjoyed.
- Ti about 0.05% or more, but about 0.5% or less
- Zr about 0.05% or more, but about 0.5% or less
- Ta about 0.05% or more, but about 0.5% or less
- the elements Ti, Zr, and Ta are useful in that they deposit as carbide due to heat input during welding, and so contribute to improvement of high temperature fatigue characteristics by strengthening due to the deposition thereof.
- the content of each must be about 0.05% or more.
- content of each exceeds about 0.5%, the effect reaches saturation, and surface properties of the steel plate are remarkably degraded. Therefore, each of the contents is specified to be about 0.5% or less.
- Cu about 0.1% or more, but about 2.0% or less
- Cu is effective in improving corrosion resistance and toughness of steel.
- the Cu content must be about 0.1% or more.
- the upper limit of the Cu content is specified to be about 2.0%.
- W about 0.05% or more, but about 1.0% or less
- Mg about 0.001% or more, but about 0.1% or less
- Each of W and Mg is effective in improving high temperature fatigue characteristics.
- the W content and the Mg content must be about 0.05% or more and about 0.001% or more, respectively.
- the W content and the Mg content exceed about 1.0% and about 0.1%, respectively, however, toughness is degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore, the W content and the Mg content are specified to be within the aforementioned range, respectively.
- Ca about 0.0005% or more, but about 0.005% or less
- Ca has an effect of preventing nozzle plugging due to a Ti-based intervening material during slab casting, and Ca is added if necessary.
- the Ca content must be about 0.0005% or more.
- the Ca content exceeds about 0.005%, the effect reaches saturation, and corrosion resistance is degraded, since an intervening material containing Ca becomes a starting point of development of pitting corrosion. Therefore, the Ca content is specified to be about 0.005% or less.
- the remainder is essentially composed of Fe and incidental impurities. This means that very small amounts of, for example, alkali metals, alkaline-earth metals, rare earth elements, and transition metals, other than Fe, will inevitably be present as admixed components. When very small amounts of these elements are present, the effects of the present invention are not affected.
- the method for manufacturing the invented steel is not specifically limited, and a generally adopted method for manufacturing ferritic stainless steel can be applied as it is conventionally used.
- a method in which a molten steel having a composition in the aforementioned range is preferably refined with a converter or an electric furnace, etc., and is then subjected to a secondary refining by VOD (Vacuum Oxygen Decarburization).
- VOD Vauum Oxygen Decarburization
- the refined molten steel can be made into a steel raw material by known methods for casting, although continuous casting is preferably applied, from the viewpoint of productivity and quality.
- the resulting steel raw material produced by the continuous casting is heated to 1,000° C. to 1,250° C., and made into a hot rolled plate having a predetermined thickness.
- the resulting hot rolled plate is, if necessary, preferably subjected to continuous annealing at a temperature of 900° C. to 1,100° C., and thereafter subjected to pickling and cold rolling so as to produce a cold rolled plate.
- the resulting cold rolled plate is preferably continuously annealed at 900° C. to 1,100° C., and thereafter, is pickled so as to produce a cold rolled annealed plate which becomes a product.
- the product which is produced by way of hot rolling, annealing, and thereafter pickling, etc., for removing scales, can also be used depending on the purpose intended.
- Any conventional method for welding for example, arc welding, e.g. TIG, MIG, and MAG, high frequency resistance welding and high frequency induction welding used for producing electric resistance weld pipes, and laser welding, can be applied.
- arc welding e.g. TIG, MIG, and MAG
- high frequency resistance welding and high frequency induction welding used for producing electric resistance weld pipes, and laser welding
- TIG welding was applied to each of the resulting test specimens, and thereafter, each welded test specimen was subjected to secondary working embrittleness testing and high temperature fatigue testing.
- the TIG welding was performed under the following conditions; current 240 A, voltage 12 V, welding speed 10 mm/s, and shield gas 100% Ar.
- FIG. 4 A method for evaluating secondary working embrittleness resistance is shown in FIG. 4. That is, a disk 49.5 mm in diameter, in which the bead of welding passed through the center of the disk, was stamped out. Then, the disk was subjected to deep drawing with a draw ratio of 1.5 using a cylindrical punch 33.0 mm in diameter. The resulting cylindrical cup was placed, so that the welded part on the side thereof facing upward, then a weight of 3 kg was dropped from a height of 800 mm directly above the cylindrical cup. Thereafter, the welded part was observed to determine whether or not cracks were present. The aforementioned drop weight tests were performed, while temperatures of the cylindrical cup were varied in the range of ⁇ 60° C. to +50° C. at intervals of 10° C., in order to determine the temperatures (secondary working embrittleness transition temperature) at which cracking did not occur.
- the 10 7 fatigue limit (the maximum bending stress with which bending was repeated 10 7 times without the occurrence of a fatigue crack) was measured by a flex (reversed stress) test at 800° C. in conformity with JIS Z 2275 using a test piece in which a TIG welded bead is located at the center as shown in FIG. 5.
- the bending stress ⁇ was determined as described below. Bending deformation was applied to each test piece, and a bending moment M (Nm) was measured regarding the section at which the maximum stress was generated (a section of the TIG welded bead part as shown in FIG. 5). Subsequently, the value of the bending moment was divided by the modulus of the section in order to calculate the value of the bending stress.
- a ferritic stainless steel including a welded part having superior secondary working embrittleness resistance and superior high temperature fatigue characteristic, was stably produced.
- a welded pipe or a welded plate after forming work was used, cracks during use were effectively prevented from occurring.
- the steel of this invention is suitable for many purposes, for example, components relating to automobile exhaust gas, in particular, exhaust manifolds, etc., in which a welded pipe is subjected to complicated bending work and used at a high temperature.
- the welded part of the steel of this invention exhibits excellent toughness and high temperature fatigue characteristics when it is used without further working or after primary working, so that it can also be applied to such a use with advantage.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a novel ferritic stainless steel. It particularly includes a welded ferritic stainless steel and welded product having superior secondary working embrittleness resistance and superior high temperature fatigue characteristics, and concerns welded parts that are suitable for applications in which a welded pipe or a welded plate, after having undergone forming work, is used.
- The expression “secondary working” as used herein refers to the processing of a specified part after having already having subjected it to forming work. For example, a welded pipe may be subjected to bending work (primary working), and thereafter, to pipe diameter enlargement work (secondary working).
- In known ferritic stainless steels, cracks due to brittleness are likely to form during secondary working.
- The expression “high temperature fatigue” as used herein refers to a phenomenon wherein fatigue fracture of a material occurs due to repetitive bending at high temperatures of 600° C. or more.
- For example, welded parts of components of an exhaust pipe system in an automobile undergo secondary working and high temperature fatigue. Among them, an exhaust manifold, as shown in FIG. 1 of the drawings, is subjected to severe conditions during operation, and undergoes intense vibration at high temperatures of 600° C. or more due to the action of engine exhaust gas. This is a typical example. The present invention is preferably applied to, for example, an exhaust manifold of ferritic stainless steel, and other welded products.
- 2. Description of the Related Art
- When a welded pipe that has been subjected to complicated bending work, or pipe diameter enlargement or reduction is used, for example, as an exhaust manifold of an automobile, problems arise because cracks occur in welded parts that had already become brittle due to secondary working. Fatigue cracks occur in welded parts during use, due to insufficient strength at a high temperature.
- The primary reason cracks are likely to occur in welded parts, rather than base materials, is that the toughness and strength of the welded parts deteriorate because crystal grains of the welded parts become coarse due to heat input during welding.
- A ferritic steel containing an intervening material, Al2O3, has been suggested in Japanese Unexamined Patent Publication No. 11-172369. However, the aforementioned kind of steel exhibits insufficient secondary working embrittleness which causes cracks in the welded parts. Whether or not high temperature fatigue characteristics are achieved, serious cracks frequently occur as a result of the harmful secondary working embrittleness.
- In order to reduce an intervening material introduced into the steel, Al2O3, Si or Mn must be used as a deoxidizer in the steel making process. Accordingly, Al, widely used as a deoxidizer, cannot be used in production of welded products free of defects caused by harmful secondary working embrittleness.
- A ferritic stainless steel having improved secondary working embrittleness resistance by adding phosphide, and controlling its size and amount, was suggested in Japanese Unexamined Patent Publication No. 7-126812. When P is added, however, degradation of toughness of the welded product cannot be avoided. It is believed that this is a result of segregation of P at the grain boundaries of the welded part, due to heat input during welding.
- Furthermore, high temperature fatigue characteristics of a welded part are not improved by controlling the amount of phosphide. Accordingly, high temperature fatigue cracks cannot be prevented by the addition of P to the steel.
- As described above, regarding improvements of secondary working embrittleness resistance and high temperature fatigue characteristics, various suggestions have been made. However, no ferritic stainless steel having both of these advantageous properties has been discovered.
- It is an object of this invention to do so.
- It is an object of the present invention to meet the aforementioned demand and to provide the significant advantages heretofore detailed.
- It is a further object of the present invention to provide a ferritic stainless steel in which both secondary working embrittleness resistance and high temperature fatigue characteristic of welded parts are improved.
- A ferritic stainless steel and a ferritic stainless steel welded part are provided with both superior secondary working embrittleness resistance and high temperature fatigue characteristic in accordance with this invention.
- The ferritic stainless steel of this invention has a composition, on a weight percentage basis, composed of about: 0.02% or less of C, 0.2% to 1.0% of Si, 0.1% to 1.5% of Mn, 0.04% or less of P, 0.01% or less of S, 11.0% to 20.0% of Cr, 0.1% to 1.0% of Ni, 1.0% to 2.0% of Mo, 1.0% or less of Al, 0.2% to 0.8% of Nb, 0.02% or less of N, 0.01% to 0.3% of Co, 0.01% to 0.3% of V, 0.0002% to 0.0050% of B, and the remainder Fe and incidental impurities.
- The ferritic stainless steel contents of Co, V, and B preferably fall within the range represented by the following formula
- 0.1≦[Co]+0.5×[V]+100×[B]≦0.5
- where [Co], [V] and [B] designate the contents by weight percentages of the respective elements.
- The aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, further comprising at least one element selected from the group consisting of about 0.05% to 0.5% of Ti, about 0.05% to 0.5% of Zr, and about 0.05% to 0.5% of Ta.
- The aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, further comprising about 0.1% to 2.0% of Cu.
- The aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, comprising at least one element selected from the group consisting of about 0.05% to 1.0% of W and about 0.001% to 0.1% of Mg.
- The aforementioned ferritic stainless steel preferably has a composition, on a weight percentage basis, further comprising about 0.0005% to 0.005% of Ca.
- FIG. 1 is a schematic diagram of an exhaust manifold comprising a ferritic stainless steel in accordance with this invention.
- FIG. 2 is a graph showing the effects of Co, V, and B on secondary working embrittleness transition temperatures of welded parts such as the exhaust manifold of FIG. 1.
- FIG. 3 is a graph similar to FIG. 2 showing effects of Co, V, and B on high temperature fatigue characteristics (107 fatigue limit (MPa)) of such welded parts.
- FIG. 4 is a schematic diagram illustrating a test for evaluation of secondary working embrittleness resistance of such welded parts.
- FIG. 5 is a schematic diagram illustrating one example of a shape of a test piece used in a high temperature fatigue test, and a bending direction thereof.
- In order to achieve the aforementioned objects, we have closely investigated effects of various additive elements on the secondary working embrittleness resistance and the high temperature fatigue characteristic of welded parts of ferritic stainless steel.
- As a consequence, we have discovered that the secondary working embrittleness resistance and the high temperature fatigue characteristics of a welded part were both remarkably improved by the addition of very small amounts of Co, V, and B.
- Results of the investigation regarding the effect of the addition of Co, V, and B on secondary working embrittleness transition temperatures of the welded parts are summarized as shown in FIG. 2.
- As is clear from FIG. 2, in the case in which all three elements Co, V, and B are added, secondary working embrittleness transition temperatures are surprisingly lower than those where only two of the aforementioned three elements are added. This indicates that cracks due to brittleness do not occur during use at a lower temperature.
- In particular, when contents of Co, V, and B fall within the range represented by the following formula
- 0.1≦[Co]+0.5×[V]+100×[B]≦0.5
- where [Co], [V], and [B] designate the contents of the stated elements by weight percentage of the respective elements, a further decrease in brittleness transition temperature was discovered.
- Furthermore, when the relationship among the high temperature fatigue characteristics of welded parts and the Co, V, and B contents were also investigated, we discovered that the addition of Co, V, and B surprisingly had a beneficial effect on the high temperature fatigue characteristics of the product.
- Results of the investigation regarding the effect of Co+V+B on the high temperature fatigue characteristics are summarized as shown in FIG. 3.
- The expression “107 fatigue limit” as used herein means the maximum bending stress with which bending was repeated 107 times without any occurrence of any fatigue crack of welded parts.
- As is clear from FIG. 3, in the case in which all three elements Co, V, and B, were added, the 107 fatigue limits were substantially improved, compared to those where only two of those elements were added. This indicates that the welded part can withstand higher stresses created by highly repetitive bending.
- In particular, when the contents of those elements fall approximately within the range represented by the following formula,
- 0.1≦[Co]+0.5×[V]+100×[B]≦0.5
- significantly higher 107 fatigue limits were exhibited.
- Reasons for limiting the components of the steel of this invention are as follows. The term “%” means the weight percentage (mass %) unless otherwise specified.
- C: about 0.02% or less
- C, when added in an appropriate amount, functions to strengthen the grain boundaries of the steel and improves the secondary working embrittleness resistance of welded parts. However, when C is increased and carbide is produced and deposited at the grain boundaries, the secondary working embrittleness resistance is adversely affected. In particular, when C exceeds about 0.02%, the adverse effect becomes remarkable. Therefore, C is specified to be about 0.02% or less. In particular, from the viewpoint of improving the secondary working embrittleness resistance, the content is preferably within the range of about 0.003%<C≦0.01%.
- Si: about 0.2% to 1.0%
- Si is useful in this invention in that it contributes effectively to an increase in strength and to improve the high temperature fatigue characteristics. In order to achieve this advantage, the Si content must be about 0.2% or more, although when the Si content exceeds about 1.0%, the steel becomes brittle, and the secondary working embrittleness resistance of the welded part is degraded. Therefore the Si content is specified to be about 0.2% to 1.0%. However, from the viewpoint of improving the secondary working embrittleness resistance of the welded part, the Si content is preferably about 0.6% or less.
- Mn: about 0.1% or more, but about 1.5% or less
- Since Mn is effective in improving oxidation resistance, it is necessary in materials used at high temperatures. The Mn content must be about 0.1% or more. However, when there are excessive amounts of Mn, not only the toughness of steel, but also the secondary working embrittleness resistance of a welded part is degraded. Therefore the Mn content is specified to be about 1.5% or less. However, from the viewpoint of improving the secondary working embrittleness resistance, the Mn content is preferably about 0.5% or less.
- P: about 0.04% or less
- P is likely to segregate at grain boundaries of the steel so as to reduce the strengthening effect at the grain boundaries by B as described below. Therefore, by minimizing the content of P, the secondary working embrittleness resistance and the high temperature fatigue characteristic of the welded part can be improved. However, when the P content is reduced too much, steel production costs increase. As a consequence, the upper limit of the P content is specified to be about 0.04%.
- S: about 0.01% or less
- When S is reduced, corrosion resistance, which is a characteristic of the stainless steel, is improved. However, the S content is specified to be about 0.01% or less due to economic constraints relating to desulfurization treatment in the steel making.
- Cr: about 11.0% to 20.0%
- Cr is effective in improving high temperature strength, oxidation resistance, and corrosion resistance. In order to exhibit sufficient high temperature strength, oxidation resistance, and corrosion resistance, Cr must be about 11.0% or more. On the other hand, Cr degrades the toughness of steel. In particular, when the Cr content exceeds about 20.0%, the toughness is remarkably degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore the Cr content is specified to be within the range of about 11.0% to 20.0%. In particular, from the viewpoint of improving high temperature fatigue characteristic, the Cr content is preferably about 14.0% or more. On the other hand, from the viewpoint of improving secondary working embrittleness resistance, the Cr content is preferably about 16.0% or less.
- Ni: about 0.1% or more, but about 1.0% or less
- Ni improves corrosion resistance, which is a characteristic of the stainless steel, and in order to improve the corrosion resistance, the Ni content must be about 0.1% or more. However, when the Ni content exceeds about 1.0%, the steel became hard, and the secondary working embrittleness resistance and the high temperature fatigue characteristic of the welded part are adversely affected.
- Mo: about 1.0% to 2.0%
- Mo is effective in improving high temperature strength and corrosion resistance. In order for the invented steel to exhibit sufficient high temperature strength and corrosion resistance, a Mo content must be about 1.0% or more. On the other hand, when the Mo content exceeds about 2.0%, the toughness is degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore the Mo content is specified to be within the range of about 1.0% to 2.0%. From the viewpoint of improving high temperature fatigue characteristic, the Mo content is preferably about 1.5% or more.
- Al: about 1.0% or less
- Al is essential as a deoxidizer in the steelmaking process, although excessive addition thereof causes production of an intervening material resulting in degradation of the secondary working embrittleness resistance. Therefore the Al content is specified to be about 1.0% or less. From the viewpoint of improving the secondary working embrittleness resistance, the Al content is preferably about 0.1% or less.
- Nb: about 0.2% to 0.8%
- Nb is effective in improving high temperature strength of the steel. In order for the invented steel to exhibit sufficient high temperature strength, a Nb content must be about 0.2% or more. On the other hand, when the Nb content exceeds about 0.8%, the toughness is degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore the Nb content is specified to be within the range of about 0.2% to 0.8%. From the viewpoint of improving the high temperature fatigue characteristic of the welded part, the Nb content preferably exceeds about 0.4%. On the other hand, from the viewpoint of improving the secondary working embrittleness resistance, the Nb content is preferably about 0.6% or less.
- N: about 0.02% or less
- When added in appropriate amounts, N functions to strengthen the grain boundaries and improves the secondary working embrittleness resistance of the steel. However, when nitride is produced and deposited at the grain boundaries, the secondary working embrittleness resistance is adversely affected particularly when the N content exceeds about 0.02%. Therefore, the N content is specified to be about 0.02% or less. From the viewpoint of improving the secondary working embrittleness resistance of the welded part, the N content is preferably about 0.01% or less.
- Co: about 0.01% to 0.3%, V: about 0.01% to 0.3%, and B: about 0.0002% to 0.0050%
- Both the secondary working embrittleness resistance and the high temperature fatigue characteristic of the welded part are remarkably improved by this compound addition of Co, V, and B. The aforementioned effect is exhibited when both the Co content and the V content are about 0.01% or more and the B content is about 0.0002% or more. In order for the steel of this invention to exhibit especially superior advantages, it is preferable that the Co content is about 0.02% or more, the V content is about 0.05% or more, and the B content is about 0.0005% or more. On the other hand, when the Co content exceeds about 0.3%, the V content exceeds about 0.3%, and the B content exceeds about 0.0050%, the effect reaches saturation even though the cost is increased. Therefore the contents of Co, V, and B are specified to be within the aforementioned range.
- The mechanism by which the compound addition of Co, V, and B effectively contributes to improvement of the secondary working embrittleness resistance and the high temperature fatigue characteristic has not yet been exactly clarified, although it is believed to be as follows.
- It is believed that Co improves the internal strength of grains which become coarse due to heat input during welding, and prevents cracks from occurring therein. It is believed that B coacts by segregating at the grain boundaries of the steel due to heat input, so as to strengthen the grain boundaries and to prevent formation of intergranular fractures. It is further believed that V also coacts by producing carbide due to the heat input so as to inhibit movement of the grain boundaries and to prevent crystal grains from becoming coarse, and that at the same time, V coacts by fixing C to prevent reduction of strengthening of the grain boundaries by B by deposition of carbide produced from B.
- In the present invention, Co, V, and B interact with each other so as to exhibit a remarkable effect. If there is an insufficiency of the amount present of at least one of them, the aforementioned advantages cannot be enjoyed.
- As described above, the addition of all of Co, V, and B results in a remarkable improvement in the secondary working embrittleness resistance of the welded part. Furthermore, it is believed that the aforementioned strengthening of the inside of the grain and the grain boundaries also contributes to the effects on the high temperature fatigue exhibited when Co, V, and B are added in approximately the following relationship:
- 0.1≦[Co]+0.5×[V]+100×[B]≦0.5
- In addition, since the secondary working embrittleness resistance and the high temperature fatigue characteristic can be further improved by the addition of Co, V, and B with contents falling within the range represented substantially by the aforementioned formula, as shown in the aforementioned FIGS. 2 and 3, it is preferable that contents of these elements are made to fall within the approximate range represented by the aforementioned formula.
- The indispensable components of the invented steel have been explained above, although in the present invention, other elements as described below can be added:
- Ti: about 0.05% or more, but about 0.5% or less, Zr: about 0.05% or more, but about 0.5% or less, and Ta: about 0.05% or more, but about 0.5% or less
- The elements Ti, Zr, and Ta are useful in that they deposit as carbide due to heat input during welding, and so contribute to improvement of high temperature fatigue characteristics by strengthening due to the deposition thereof. When these elements are added, the content of each must be about 0.05% or more. However, when content of each exceeds about 0.5%, the effect reaches saturation, and surface properties of the steel plate are remarkably degraded. Therefore, each of the contents is specified to be about 0.5% or less.
- Cu: about 0.1% or more, but about 2.0% or less
- Cu is effective in improving corrosion resistance and toughness of steel. When Cu is added, the Cu content must be about 0.1% or more. When the Cu content exceeds about 2.0%, however, workability of steel is degraded. Therefore, the upper limit of the Cu content is specified to be about 2.0%.
- W: about 0.05% or more, but about 1.0% or less, Mg: about 0.001% or more, but about 0.1% or less
- Each of W and Mg is effective in improving high temperature fatigue characteristics. When W and Mg are added, the W content and the Mg content must be about 0.05% or more and about 0.001% or more, respectively. When the W content and the Mg content exceed about 1.0% and about 0.1%, respectively, however, toughness is degraded, and the secondary working embrittleness resistance of the welded part is also degraded. Therefore, the W content and the Mg content are specified to be within the aforementioned range, respectively.
- Ca: about 0.0005% or more, but about 0.005% or less
- Ca has an effect of preventing nozzle plugging due to a Ti-based intervening material during slab casting, and Ca is added if necessary. When Ca is added, the Ca content must be about 0.0005% or more. However, when the Ca content exceeds about 0.005%, the effect reaches saturation, and corrosion resistance is degraded, since an intervening material containing Ca becomes a starting point of development of pitting corrosion. Therefore, the Ca content is specified to be about 0.005% or less.
- The remainder is essentially composed of Fe and incidental impurities. This means that very small amounts of, for example, alkali metals, alkaline-earth metals, rare earth elements, and transition metals, other than Fe, will inevitably be present as admixed components. When very small amounts of these elements are present, the effects of the present invention are not affected.
- Next, a method for manufacturing the steel of this invention will be explained.
- The method for manufacturing the invented steel is not specifically limited, and a generally adopted method for manufacturing ferritic stainless steel can be applied as it is conventionally used. For example, regarding steel making, a method in which a molten steel having a composition in the aforementioned range is preferably refined with a converter or an electric furnace, etc., and is then subjected to a secondary refining by VOD (Vacuum Oxygen Decarburization). The refined molten steel can be made into a steel raw material by known methods for casting, although continuous casting is preferably applied, from the viewpoint of productivity and quality.
- The resulting steel raw material produced by the continuous casting is heated to 1,000° C. to 1,250° C., and made into a hot rolled plate having a predetermined thickness. The resulting hot rolled plate is, if necessary, preferably subjected to continuous annealing at a temperature of 900° C. to 1,100° C., and thereafter subjected to pickling and cold rolling so as to produce a cold rolled plate. The resulting cold rolled plate is preferably continuously annealed at 900° C. to 1,100° C., and thereafter, is pickled so as to produce a cold rolled annealed plate which becomes a product.
- The product, which is produced by way of hot rolling, annealing, and thereafter pickling, etc., for removing scales, can also be used depending on the purpose intended.
- Any conventional method for welding, for example, arc welding, e.g. TIG, MIG, and MAG, high frequency resistance welding and high frequency induction welding used for producing electric resistance weld pipes, and laser welding, can be applied.
- Each of 50 kg steel ingots, which become test specimens having compositions as shown in Tables 1 to 3, was refined by a vacuum melting furnace, and was made into a hot rolled plate of 4 mm in thickness by the usual hot rolling. The resulting plate was subjected to annealing at 1,000° C. for 60 seconds. Scale was removed from the surface by pickling, and thereafter, a cold rolled plate 1.5 mm in thickness was produced by cold rolling. Subsequently, annealing finishing at 1,000° C. for 60 seconds and pickling for removing scales were performed so as to produce a cold rolled, annealed, and pickled plate 1.5 mm in thickness as a test specimen.
- Butt TIG welding was applied to each of the resulting test specimens, and thereafter, each welded test specimen was subjected to secondary working embrittleness testing and high temperature fatigue testing. The TIG welding was performed under the following conditions; current 240 A, voltage 12 V,
welding speed 10 mm/s, and shield gas 100% Ar. - A method for evaluating secondary working embrittleness resistance is shown in FIG. 4. That is, a disk 49.5 mm in diameter, in which the bead of welding passed through the center of the disk, was stamped out. Then, the disk was subjected to deep drawing with a draw ratio of 1.5 using a cylindrical punch 33.0 mm in diameter. The resulting cylindrical cup was placed, so that the welded part on the side thereof facing upward, then a weight of 3 kg was dropped from a height of 800 mm directly above the cylindrical cup. Thereafter, the welded part was observed to determine whether or not cracks were present. The aforementioned drop weight tests were performed, while temperatures of the cylindrical cup were varied in the range of −60° C. to +50° C. at intervals of 10° C., in order to determine the temperatures (secondary working embrittleness transition temperature) at which cracking did not occur.
- Regarding the high temperature fatigue test, the 107 fatigue limit (the maximum bending stress with which bending was repeated 107 times without the occurrence of a fatigue crack) was measured by a flex (reversed stress) test at 800° C. in conformity with JIS Z 2275 using a test piece in which a TIG welded bead is located at the center as shown in FIG. 5. Herein, the bending stress σ was determined as described below. Bending deformation was applied to each test piece, and a bending moment M (Nm) was measured regarding the section at which the maximum stress was generated (a section of the TIG welded bead part as shown in FIG. 5). Subsequently, the value of the bending moment was divided by the modulus of the section in order to calculate the value of the bending stress.
- The results of the aforementioned tests are shown in Tables 4 and 5.
- As is clear from Tables 4 and 5, each of the steels of this invention Nos. 1 to 36, was proved to be superior in both secondary working embrittleness resistance and high temperature fatigue characteristics of the welded part.
- On the other hand, regarding each of Comparative Steels Nos. 37 to 56, the secondary working embrittleness resistance and the high temperature fatigue characteristic were sharply inferior to the steels Nos. 1-36.
- As described above, according to the present invention, a ferritic stainless steel, including a welded part having superior secondary working embrittleness resistance and superior high temperature fatigue characteristic, was stably produced. As a consequence, in the case in which a welded pipe or a welded plate after forming work is used, cracks during use were effectively prevented from occurring.
- The steel of this invention is suitable for many purposes, for example, components relating to automobile exhaust gas, in particular, exhaust manifolds, etc., in which a welded pipe is subjected to complicated bending work and used at a high temperature. The welded part of the steel of this invention exhibits excellent toughness and high temperature fatigue characteristics when it is used without further working or after primary working, so that it can also be applied to such a use with advantage.
TABLE 1 Chemical Component (mass %) No. C Si Mn P S Cr Ni Mo Al Nb N Co V B Formula 1 Others 1 0.004 0.35 0.22 0.03 0.003 11.3 0.3 1.1 0.03 0.45 0.004 0.07 0.05 0.0009 0.19 2 0.005 0.25 0.28 0.02 0.003 11.8 0.2 1.5 0.03 0.58 0.004 0.08 0.06 0.0008 0.19 Ti: 0.13 3 0.008 0.23 0.18 0.03 0.001 11.2 0.3 1.0 0.02 0.22 0.006 0.05 0.07 0.0005 0.14 Ca: 0.0012 4 0.016 0.36 0.21 0.01 0.003 11.3 0.4 1.2 0.02 0.48 0.009 0.12 0.06 0.0012 0.27 Mg: 0.0010 5 0.004 0.30 0.21 0.03 0.003 14.8 0.3 1.6 0.03 0.45 0.006 0.02 0.05 0.0006 0.11 6 0.003 0.95 0.43 0.03 0.005 14.5 0.4 1.5 0.08 0.55 0.002 0.14 0.09 0.0006 0.25 7 0.004 0.47 0.18 0.01 0.002 14.2 0.5 2.0 0.03 0.46 0.004 0.22 0.21 0.0008 0.41 W: 0.14 8 0.006 0.38 0.32 0.03 0.005 13.5 0.2 1.6 0.06 0.52 0.009 0.01 0.16 0.0009 0.18 Ti: 0.12 9 0.004 0.23 0.43 0.04 0.002 14.8 0.1 1.7 0.03 0.43 0.006 0.11 0.07 0.0002 0.17 Zr: 0.06 10 0.006 0.31 0.46 0.02 0.003 14.2 0.2 1.7 0.05 0.55 0.005 0.02 0.09 0.0009 0.16 Ti: 0.13 11 0.008 0.43 0.12 0.03 0.005 15.8 0.3 1.8 0.01 0.48 0.009 0.05 0.14 0.0007 0.19 Cu: 0.15 12 0.005 0.38 0.32 0.03 0.003 14.6 0.5 1.5 0.03 0.42 0.006 0.06 0.12 0.0005 0.17 W: 0.08 13 0.002 0.28 0.22 0.02 0.002 14.8 0.3 1.6 0.02 0.48 0.006 0.08 0.07 0.0005 0.17 Ta: 0.05 14 0.005 0.25 0.26 0.03 0.003 14.1 0.3 1.7 0.02 0.47 0.008 0.02 0.04 0.0003 0.07 15 0.004 0.35 0.23 0.01 0.004 15.3 0.5 1.5 0.04 0.53 0.004 0.18 0.01 0.0025 0.44 Cu: 0.25 16 0.006 0.36 1.46 0.02 0.008 14.8 0.2 1.7 0.02 0.43 0.003 0.03 0.07 0.0005 0.12 Ca: 0.0007 17 0.016 0.31 0.20 0.02 0.003 15.8 0.3 1.3 0.02 0.45 0.006 0.05 0.07 0.0006 0.15 18 0.009 0.68 0.23 0.01 0.003 15.3 0.9 1.5 0.01 0.43 0.006 0.05 0.06 0.0008 0.16 Ti: 0.11, Cu: 0.53 -
TABLE 2 Chemical Component (mass %) No. C Si Mn P S Cr Ni Mo Al Nb N Co V B Formula 1 Others 19 0.004 0.38 0.33 0.03 0.007 15.0 0.2 1.2 0.05 0.23 0.008 0.03 0.08 0.0008 0.15 Ti: 0.06, Zr: 0.08 20 0.009 0.35 0.27 0.02 0.003 14.3 0.2 1.6 0.03 0.43 0.005 0.08 0.03 0.0007 0.17 Ca: 0.0009 21 0.007 0.53 0.25 0.03 0.006 14.9 0.3 1.7 0.02 0.52 0.009 0.05 0.07 0.0008 0.17 Ti: 0.15, Cu: 0.35 22 0.004 0.33 0.28 0.004 0.003 15.3 0.3 1.9 0.002 0.51 0.007 0.07 0.09 0.0007 0.19 Ti: 0.11, W: 0.13 23 0.006 0.46 0.19 0.01 0.005 15.2 0.4 1.7 0.04 0.49 0.008 0.13 0.05 0.0003 0.19 Ti: 0.12, Zr: 0.07 24 0.008 0.39 0.21 0.03 0.003 14.8 0.1 1.8 0.002 0.48 0.006 0.16 0.15 0.0009 0.33 Ti: 0.05, Ca: 0.0008 25 0.006 0.28 0.22 0.02 0.002 15.4 0.2 1.5 0.02 0.45 0.009 0.20 0.23 0.0025 0.57 26 0.007 0.53 0.25 0.03 0.006 14.9 0.3 1.7 0.02 0.52 0.009 0.05 0.07 0.0008 0.17 Ti: 0.11, Cu: 0.22, Ca: 0.0010 27 0.009 0.35 0.27 0.02 0.003 14.3 0.2 1.6 0.03 0.43 0.005 0.08 0.08 0.0012 0.24 Ti: 0.13, Zr: 0.09, Ca: 0.0012 28 0.005 0.38 0.32 0.03 0.003 14.6 0.5 1.5 0.03 0.42 0.006 0.06 0.12 0.0005 0.17 Cu: 0.18, W: 0.12 29 0.005 0.29 0.35 0.03 0.008 14.1 0.4 1.6 0.03 0.53 0.017 0.24 0.06 0.0007 0.34 Zr: 0.12, Cu: 0.24 30 0.010 0.33 0.23 0.01 0.006 14.8 0.5 1.7 0.31 0.49 0.009 0.10 0.26 0.0005 0.28 31 0.004 0.38 0.42 0.02 0.003 15.3 0.1 1.5 0.03 0.57 0.010 0.28 0.08 0.0009 0.41 Cu: 0.12, Ca: 0.0014 32 0.008 0.43 0.14 0.03 0.007 15.4 0.2 1.8 0.05 0.48 0.006 0.02 0.05 0.0046 0.51 Cu: 0.61 33 0.003 0.28 0.26 0.02 0.008 14.3 0.6 1.7 0.03 0.78 0.005 0.08 0.06 0.0008 0.19 Ti: 0.10 34 0.009 0.31 0.71 0.01 0.003 15.2 0.3 1.6 0.95 0.42 0.007 0.05 0.08 0.0006 0.15 35 0.005 0.21 0.31 0.03 0.005 18.2 0.2 1.7 0.05 0.48 0.008 0.12 0.11 0.0008 0.26 Ti: 0.15 36 0.006 0.39 0.37 0.03 0.005 19.8 0.1 1.5 0.02 0.41 0.004 0.07 0.05 0.0010 0.20 - It is noted that, in the foregoing Examples 1-36, the values of the formula [Co]+0.5[V]+100[B], in accordance with this invention, can range between 0.07 and 0.57, with excellent results. As stated, in the formula the expressions [Co], [V] and [B] represent the contents by weight percentage.
TABLE 3 Chemical Component (mass %) No. C Si Mn P S Cr Ni Mo Al Nb N Co V B Formula 1 Others 37 0.006 0.14 0.43 0.03 0.004 14.5 0.4 1.4 0.04 0.45 0.004 0.13 0.07 0.0003 0.20 38 0.004 0.34 0.24 0.03 0.003 14.9 1.1 1.6 0.03 0.42 0.004 0.06 0.06 0.0008 0.17 39 0.008 0.35 1.62 0.02 0.005 15.2 0.3 1.7 0.05 0.58 0.005 0.08 0.15 0.0002 0.18 40 0.025 0.45 0.26 0.01 0.008 15.9 0.4 1.3 0.03 0.51 0.006 0.12 0.06 0.0005 0.20 41 0.008 0.43 0.12 0.05 0.005 15.8 0.3 1.8 0.01 0.48 0.009 0.05 0.14 0.0007 0.19 Cu: 0.10 42 0.008 0.72 0.21 0.03 0.003 14.2 0.4 0.8 0.04 0.42 0.009 0.11 0.21 0.0005 0.27 43 0.010 0.35 0.28 0.02 0.007 14.8 0.3 1.4 1.19 0.48 0.005 0.09 0.06 0.0007 0.19 44 0.006 0.37 0.31 0.01 0.007 14.7 0.2 1.2 0.05 0.14 0.007 0.04 0.09 0.0010 0.19 45 0.004 0.35 0.19 0.03 0.010 15.7 0.2 1.4 0.02 0.48 0.026 0.08 0.14 0.0005 0.20 Ti: 0.13 46 0.006 0.42 0.29 0.04 0.008 15.3 0.3 1.2 0.03 0.52 0.004 <0.01 0.08 0.0012 0.16 47 0.004 0.32 0.21 0.03 0.004 15.2 0.1 1.3 0.03 0.54 0.005 0.07 <0.01 0.0006 0.13 Cu: 0.21 48 0.009 0.45 0.26 0.01 0.005 14.0 0.4 1.4 0.06 0.48 0.007 0.05 0.09 <0.0002 0.10 Ti: 0.15, Cu: 0.31 49 0.007 0.42 0.27 0.02 0.003 14.9 0.2 1.4 0.04 0.45 0.010 <0.01 <0.01 0.0007 0.07 Zr: 0.13 50 0.005 0.27 0.18 0.01 0.007 15.5 0.1 1.3 0.03 0.42 0.006 <0.01 <0.01 <0.0002 0.00 Ti: 0.12, Ca: 0.0011 51 0.004 0.27 0.16 0.03 0.007 15.3 0.3 1.3 0.02 0.51 0.004 0.13 <0.01 <0.0002 0.13 W: 0.09 52 0.007 0.39 0.19 0.01 0.005 14.3 0.3 1.1 0.04 0.50 0.008 <0.01 0.07 <0.0002 0.04 Ca: 0.0017 53 0.006 1.12 0.23 0.03 0.008 15.8 0.2 1.7 0.002 0.52 0.004 0.06 0.06 0.0009 0.18 54 0.003 0.37 0.26 0.02 0.005 15.2 0.3 1.8 0.15 0.90 0.006 0.08 0.07 0.0005 0.17 Ti: 0.15 55 0.004 0.35 0.36 0.03 0.010 14.7 0.2 2.2 0.02 0.43 0.003 0.12 0.14 0.0010 0.29 56 0.005 0.35 0.21 0.03 0.007 21.1 0.3 1.6 0.01 0.58 0.006 0.08 0.08 0.0008 0.20 -
TABLE 4 107 fatigue Secondary working limit of embrittleness transition welded temperature of welded No. part (MPa) part (° C.) Remarks 1 31 −30 Present Invention 2 33 −30 Present Invention 3 30 −30 Present Invention 4 30 −20 Present Invention 5 38 −30 Present Invention 6 35 −20 Present Invention 7 41 −30 Present Invention 8 33 −20 Present Invention 9 32 −20 Present Invention 10 43 −30 Present Invention 11 38 −40 Present Invention 12 41 −30 Present Invention 13 37 −20 Present Invention 14 31 −20 Present Invention 15 32 −20 Present Invention 16 35 −20 Present Invention 17 30 −20 Present Invention 18 31 −20 Present Invention 19 33 −30 Present Invention 20 33 −20 Present Invention 21 43 −40 Present Invention 22 45 −30 Present Invention 23 34 −20 Present Invention 24 41 −30 Present Invention 25 32 −20 Present Invention 26 43 −40 Present Invention 27 44 −30 Present Invention 28 42 −40 Present Invention -
TABLE 5 107 fatigue Secondary working limit of embrittleness transition welded temperature of welded No. part (MPa) part (° C.) Remarks 29 40 −20 Present Invention 30 37 −20 Present Invention 31 36 −40 Present Invention 32 31 −20 Present Invention 33 39 −20 Present Invention 34 36 −20 Present Invention 35 39 −20 Present Invention 36 35 −20 Present Invention 37 18 −30 Comparative Example 38 15 +10 Comparative Example 39 33 +10 Comparative Example 40 26 +10 Comparative Example 41 18 +10 Comparative Example 42 15 −20 Comparative Example 43 35 +10 Comparative Example 44 15 −30 Comparative Example 45 29 +10 Comparative Example 46 16 +10 Comparative Example 47 15 0 Comparative Example 48 16 0 Comparative Example 49 13 +10 Comparative Example 50 14 +10 Comparative Example 51 18 +10 Comparative Example 52 16 +10 Comparative Example 53 36 +10 Comparative Example 54 38 +10 Comparative Example 55 39 +10 Comparative Example 56 35 +10 Comparative Example
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-202296 | 2000-07-04 | ||
JP2000202296 | 2000-07-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020007876A1 true US20020007876A1 (en) | 2002-01-24 |
US6426039B2 US6426039B2 (en) | 2002-07-30 |
Family
ID=18699838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/892,370 Expired - Lifetime US6426039B2 (en) | 2000-07-04 | 2001-06-27 | Ferritic stainless steel |
Country Status (4)
Country | Link |
---|---|
US (1) | US6426039B2 (en) |
EP (1) | EP1170392B1 (en) |
KR (1) | KR100484983B1 (en) |
DE (1) | DE60102869T2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150139851A1 (en) * | 2012-05-28 | 2015-05-21 | Jfe Steel Corporation | Ferritic stainless steel |
CN109136762A (en) * | 2018-09-26 | 2019-01-04 | 首钢集团有限公司 | A kind of semitrailer welding I beam steel and its production method |
US20210277494A1 (en) * | 2017-03-30 | 2021-09-09 | Jfe Steel Corporation | Ferritic stainless steel |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002121652A (en) * | 2000-10-12 | 2002-04-26 | Kawasaki Steel Corp | Cr-CONTAINING STEEL FOR AUTOMOBILE SUSPENSION |
US7819991B2 (en) | 2005-06-09 | 2010-10-26 | Jfe Steel Corporation | Ferritic stainless steel sheet for raw material pipe for bellows pipe |
EP1818421A1 (en) * | 2006-02-08 | 2007-08-15 | UGINE & ALZ FRANCE | Ferritic, niobium-stabilised 19% chromium stainless steel |
JP5208450B2 (en) * | 2006-07-04 | 2013-06-12 | 新日鐵住金ステンレス株式会社 | Cr-containing steel with excellent thermal fatigue properties |
KR100825630B1 (en) * | 2006-10-20 | 2008-04-25 | 주식회사 포스코 | Ferritic stainless steel with excellent weldability and weld method |
KR100825632B1 (en) * | 2006-10-20 | 2008-04-25 | 주식회사 포스코 | Ferritic stainless steel with excellent workability of welded part and corrosion resistance of steel and its manufacturing method |
KR100856306B1 (en) * | 2006-12-11 | 2008-09-03 | 주식회사 포스코 | Ferritic Stainless Steel with Excellent Low Temperature Machinability |
CN100485077C (en) * | 2007-06-13 | 2009-05-06 | 陈卫东 | Ultrathin alloy material hose and producing method thereof |
JP5659061B2 (en) * | 2011-03-29 | 2015-01-28 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof |
DE102012100289A1 (en) * | 2012-01-13 | 2013-07-18 | Benteler Automobiltechnik Gmbh | Stainless ferritic steel and method of making a high temperature component |
JP5793459B2 (en) | 2012-03-30 | 2015-10-14 | 新日鐵住金ステンレス株式会社 | Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof |
UA111115C2 (en) | 2012-04-02 | 2016-03-25 | Ейкей Стіл Пропертіс, Інк. | cost effective ferritic stainless steel |
US20140065005A1 (en) * | 2012-08-31 | 2014-03-06 | Eizo Yoshitake | Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability |
WO2014136866A1 (en) | 2013-03-06 | 2014-09-12 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet having excellent heat resistance |
CN105051234B (en) | 2013-03-27 | 2017-05-10 | 新日铁住金不锈钢株式会社 | Ferritic stainless steel hot-rolled steel sheet, manufacturing method thereof, and steel strip |
CN103215524A (en) * | 2013-03-28 | 2013-07-24 | 宝钢不锈钢有限公司 | Stainless steel welded pipe with excellent pipe processability and manufacturing method thereof |
US10975459B2 (en) | 2015-09-29 | 2021-04-13 | Jfe Steel Corporation | Ferritic stainless steel |
CN107083548B (en) * | 2017-05-27 | 2019-02-26 | 遵义中铂硬质合金有限责任公司 | A kind of powder blower for alloy workpiece |
EP3670692B1 (en) | 2018-12-21 | 2022-08-10 | Outokumpu Oyj | Ferritic stainless steel |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3990892A (en) * | 1972-03-28 | 1976-11-09 | Kabushiki Kaisha Fujikoshi | Wear resistant and heat resistant alloy steels |
JPH0717988B2 (en) | 1991-03-08 | 1995-03-01 | 日本冶金工業株式会社 | Ferritic stainless steel with excellent toughness and corrosion resistance |
JP3142427B2 (en) | 1993-11-02 | 2001-03-07 | 川崎製鉄株式会社 | Ferritic stainless steel sheet excellent in secondary work brittleness resistance and method for producing the same |
JPH08218154A (en) * | 1995-02-14 | 1996-08-27 | Nippon Steel Corp | High strength ferritic heat resistant steel with excellent intermetallic compound precipitation embrittlement characteristics |
AU6364796A (en) | 1995-07-07 | 1997-02-10 | Highveld Steel & Vanadium Corporation Limited | A steel |
JP3475621B2 (en) | 1995-12-28 | 2003-12-08 | 住友金属工業株式会社 | High-strength ferritic heat-resistant steel with excellent weld toughness |
JP3508520B2 (en) | 1997-12-05 | 2004-03-22 | Jfeスチール株式会社 | Cr-containing ferritic steel with excellent high-temperature fatigue properties for welds |
JP3552517B2 (en) | 1998-02-13 | 2004-08-11 | Jfeスチール株式会社 | Method for welding high Cr ferritic heat resistant steel and method for manufacturing welded steel pipe |
-
2001
- 2001-06-27 US US09/892,370 patent/US6426039B2/en not_active Expired - Lifetime
- 2001-07-03 EP EP01116123A patent/EP1170392B1/en not_active Expired - Lifetime
- 2001-07-03 DE DE60102869T patent/DE60102869T2/en not_active Expired - Lifetime
- 2001-07-04 KR KR10-2001-0039643A patent/KR100484983B1/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150139851A1 (en) * | 2012-05-28 | 2015-05-21 | Jfe Steel Corporation | Ferritic stainless steel |
US20210277494A1 (en) * | 2017-03-30 | 2021-09-09 | Jfe Steel Corporation | Ferritic stainless steel |
US11560604B2 (en) * | 2017-03-30 | 2023-01-24 | Jfe Steel Corporation | Ferritic stainless steel |
CN109136762A (en) * | 2018-09-26 | 2019-01-04 | 首钢集团有限公司 | A kind of semitrailer welding I beam steel and its production method |
Also Published As
Publication number | Publication date |
---|---|
DE60102869T2 (en) | 2005-05-12 |
EP1170392B1 (en) | 2004-04-21 |
KR20020004863A (en) | 2002-01-16 |
KR100484983B1 (en) | 2005-04-22 |
US6426039B2 (en) | 2002-07-30 |
EP1170392A1 (en) | 2002-01-09 |
DE60102869D1 (en) | 2004-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6426039B2 (en) | Ferritic stainless steel | |
KR101554835B1 (en) | Ferritic stainless steel | |
TWI460292B (en) | Ferritic stainless steel | |
KR101878245B1 (en) | Ferritic stainless steel excellent in oxidation resistance | |
TWI472629B (en) | Fermented iron-based stainless steel with excellent heat resistance and processability | |
JP5937861B2 (en) | Heat-resistant ferritic stainless steel sheet with excellent weldability | |
CN115667563B (en) | Precipitation hardening martensitic stainless steel sheet excellent in fatigue resistance | |
JP5331700B2 (en) | Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same | |
JP4608818B2 (en) | Ferritic stainless steel with excellent secondary work brittleness resistance and high temperature fatigue properties of welds | |
CN111411264B (en) | Ni-based alloys and Ni-based alloy sheets | |
JP3477113B2 (en) | High-purity ferritic stainless steel sheet with excellent secondary work brittleness after deep drawing | |
JP3210255B2 (en) | Ferritic stainless steel with excellent corrosion resistance and manufacturability | |
TWI788143B (en) | Precipitation-hardened Asada loose iron-based stainless steel with excellent fatigue resistance | |
JPS5940203B2 (en) | Manufacturing method of high cleanliness, low yield ratio hot rolled steel sheet | |
JP7009666B1 (en) | Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance | |
JP3132728B2 (en) | Ferritic stainless steel with excellent formability | |
JP3933020B2 (en) | Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints | |
JP2002173720A (en) | Ni-base alloy with excellent hot workability | |
JPH04110419A (en) | Production of high ni stainless steel plate | |
JPS59159975A (en) | Ferritic chromium stainless steel containing al | |
JP3420372B2 (en) | Chromium steel sheet with excellent formability and weld ductility | |
JP4385502B2 (en) | Martensitic stainless steel for welded pipes with excellent weldability and toughness | |
JP2023037686A (en) | ferritic stainless steel | |
JP2000144340A (en) | Austenitic stainless steel wire with excellent cold forgeability | |
JP2003342688A (en) | Spring steel with excellent fatigue resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KAWASAKI STEEL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRASAWA, JUNICHIRO;MIYAZAKI, ATSUSHI;MURAKI, MINEO;AND OTHERS;REEL/FRAME:011948/0619 Effective date: 20010618 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: JFE STEEL CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:KAWASAKI STEEL CORPORATION;REEL/FRAME:014754/0386 Effective date: 20030401 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |