US20020006917A1 - Method of locking 1alpha-OH of vitamin D compounds in axial orientation - Google Patents
Method of locking 1alpha-OH of vitamin D compounds in axial orientation Download PDFInfo
- Publication number
- US20020006917A1 US20020006917A1 US09/909,818 US90981801A US2002006917A1 US 20020006917 A1 US20020006917 A1 US 20020006917A1 US 90981801 A US90981801 A US 90981801A US 2002006917 A1 US2002006917 A1 US 2002006917A1
- Authority
- US
- United States
- Prior art keywords
- group
- ring
- compound
- integer
- disease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- -1 vitamin D compounds Chemical class 0.000 title claims abstract description 34
- 229930003316 Vitamin D Natural products 0.000 title claims abstract description 26
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 title claims abstract description 26
- 239000011710 vitamin D Substances 0.000 title claims abstract description 26
- 235000019166 vitamin D Nutrition 0.000 title claims abstract description 26
- 229940046008 vitamin d Drugs 0.000 title claims abstract description 26
- 125000001424 substituent group Chemical group 0.000 claims abstract description 49
- 150000001875 compounds Chemical class 0.000 claims description 68
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 31
- 125000003277 amino group Chemical group 0.000 claims description 27
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 24
- 229910052760 oxygen Inorganic materials 0.000 claims description 24
- 239000001301 oxygen Substances 0.000 claims description 24
- 229910052717 sulfur Inorganic materials 0.000 claims description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 22
- 201000010099 disease Diseases 0.000 claims description 22
- 239000011593 sulfur Substances 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 20
- 125000000217 alkyl group Chemical group 0.000 claims description 18
- 125000003118 aryl group Chemical group 0.000 claims description 17
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 17
- 150000002431 hydrogen Chemical class 0.000 claims description 15
- 238000004873 anchoring Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 12
- 125000002252 acyl group Chemical group 0.000 claims description 10
- 125000004043 oxo group Chemical group O=* 0.000 claims description 9
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 8
- 208000001132 Osteoporosis Diseases 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 7
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 125000005160 aryl oxy alkyl group Chemical group 0.000 claims description 6
- 125000004104 aryloxy group Chemical group 0.000 claims description 6
- 125000001153 fluoro group Chemical group F* 0.000 claims description 6
- 125000001188 haloalkyl group Chemical group 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 6
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 6
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical group [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 125000004644 alkyl sulfinyl group Chemical group 0.000 claims description 5
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 5
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 5
- 125000005135 aryl sulfinyl group Chemical group 0.000 claims description 5
- 125000004391 aryl sulfonyl group Chemical group 0.000 claims description 5
- 230000008512 biological response Effects 0.000 claims description 5
- 210000000988 bone and bone Anatomy 0.000 claims description 5
- 230000000125 calcaemic effect Effects 0.000 claims description 5
- 229910052805 deuterium Inorganic materials 0.000 claims description 5
- 201000004624 Dermatitis Diseases 0.000 claims description 4
- 201000004681 Psoriasis Diseases 0.000 claims description 4
- 208000006673 asthma Diseases 0.000 claims description 4
- 230000024245 cell differentiation Effects 0.000 claims description 4
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 4
- 208000002874 Acne Vulgaris Diseases 0.000 claims description 3
- 201000004384 Alopecia Diseases 0.000 claims description 3
- 206010020772 Hypertension Diseases 0.000 claims description 3
- 208000013038 Hypocalcemia Diseases 0.000 claims description 3
- 206010000496 acne Diseases 0.000 claims description 3
- 231100000360 alopecia Toxicity 0.000 claims description 3
- 230000000705 hypocalcaemia Effects 0.000 claims description 3
- 238000001727 in vivo Methods 0.000 claims description 3
- 206010039073 rheumatoid arthritis Diseases 0.000 claims description 3
- 150000003431 steroids Chemical group 0.000 claims description 3
- 230000000699 topical effect Effects 0.000 claims description 3
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 claims description 2
- 206010006187 Breast cancer Diseases 0.000 claims description 2
- 208000026310 Breast neoplasm Diseases 0.000 claims description 2
- 208000013725 Chronic Kidney Disease-Mineral and Bone disease Diseases 0.000 claims description 2
- 206010009944 Colon cancer Diseases 0.000 claims description 2
- 208000007984 Female Infertility Diseases 0.000 claims description 2
- 206010021928 Infertility female Diseases 0.000 claims description 2
- 241000124008 Mammalia Species 0.000 claims description 2
- 208000029725 Metabolic bone disease Diseases 0.000 claims description 2
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 206010060862 Prostate cancer Diseases 0.000 claims description 2
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 2
- 206010039984 Senile osteoporosis Diseases 0.000 claims description 2
- 201000006035 X-linked dominant hypophosphatemic rickets Diseases 0.000 claims description 2
- 125000001118 alkylidene group Chemical group 0.000 claims description 2
- 208000010668 atopic eczema Diseases 0.000 claims description 2
- 230000008416 bone turnover Effects 0.000 claims description 2
- 208000029742 colonic neoplasm Diseases 0.000 claims description 2
- 125000005345 deuteroalkyl group Chemical group 0.000 claims description 2
- 206010012601 diabetes mellitus Diseases 0.000 claims description 2
- 230000002500 effect on skin Effects 0.000 claims description 2
- 230000036571 hydration Effects 0.000 claims description 2
- 238000006703 hydration reaction Methods 0.000 claims description 2
- 208000011111 hypophosphatemic rickets Diseases 0.000 claims description 2
- 210000000987 immune system Anatomy 0.000 claims description 2
- 208000032839 leukemia Diseases 0.000 claims description 2
- 201000006417 multiple sclerosis Diseases 0.000 claims description 2
- 208000005368 osteomalacia Diseases 0.000 claims description 2
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 2
- 208000001685 postmenopausal osteoporosis Diseases 0.000 claims description 2
- 201000006409 renal osteodystrophy Diseases 0.000 claims description 2
- 208000007442 rickets Diseases 0.000 claims description 2
- 210000002374 sebum Anatomy 0.000 claims description 2
- 230000028327 secretion Effects 0.000 claims description 2
- 208000017520 skin disease Diseases 0.000 claims description 2
- 230000037393 skin firmness Effects 0.000 claims description 2
- 125000004434 sulfur atom Chemical group 0.000 claims description 2
- 208000032349 type 2B vitamin D-dependent rickets Diseases 0.000 claims description 2
- 230000037303 wrinkles Effects 0.000 claims description 2
- OKTJSMMVPCPJKN-YPZZEJLDSA-N carbon-10 atom Chemical compound [10C] OKTJSMMVPCPJKN-YPZZEJLDSA-N 0.000 claims 5
- 239000008194 pharmaceutical composition Substances 0.000 claims 5
- 206010020649 Hyperkeratosis Diseases 0.000 claims 1
- 208000000038 Hypoparathyroidism Diseases 0.000 claims 1
- 208000001126 Keratosis Diseases 0.000 claims 1
- 208000030136 Marchiafava-Bignami Disease Diseases 0.000 claims 1
- 206010052779 Transplant rejections Diseases 0.000 claims 1
- 230000002159 abnormal effect Effects 0.000 claims 1
- 201000011510 cancer Diseases 0.000 claims 1
- 230000004663 cell proliferation Effects 0.000 claims 1
- 230000004071 biological effect Effects 0.000 abstract description 7
- 0 *C1(C)C(C)(C)C(C)(C)C(C)(C)C(C)(C)C1(C)C.*C1(C)C(C)(C)C(C)(C)C(C)(C)C(C)(C)C1(C)C Chemical compound *C1(C)C(C)(C)C(C)(C)C(C)(C)C(C)(C)C1(C)C.*C1(C)C(C)(C)C(C)(C)C(C)(C)C(C)(C)C1(C)C 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 229940088594 vitamin Drugs 0.000 description 19
- 229930003231 vitamin Natural products 0.000 description 19
- 235000013343 vitamin Nutrition 0.000 description 19
- 239000011782 vitamin Substances 0.000 description 19
- 150000003710 vitamin D derivatives Chemical class 0.000 description 13
- 230000003993 interaction Effects 0.000 description 11
- 238000009472 formulation Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- OFHCOWSQAMBJIW-AVJTYSNKSA-N alfacalcidol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C OFHCOWSQAMBJIW-AVJTYSNKSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- MECHNRXZTMCUDQ-RKHKHRCZSA-N vitamin D2 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)/C=C/[C@H](C)C(C)C)=C\C=C1\C[C@@H](O)CCC1=C MECHNRXZTMCUDQ-RKHKHRCZSA-N 0.000 description 5
- 239000011647 vitamin D3 Substances 0.000 description 5
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 239000011653 vitamin D2 Substances 0.000 description 4
- KJKIIUAXZGLUND-ICCVIKJNSA-N 25-hydroxyvitamin D2 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](\C=C\[C@H](C)C(C)(C)O)C)=C\C=C1\C[C@@H](O)CCC1=C KJKIIUAXZGLUND-ICCVIKJNSA-N 0.000 description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000001687 destabilization Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- JPBHXVRMWGWSMX-UHFFFAOYSA-N 1,4-dimethylidenecyclohexane Chemical compound C=C1CCC(=C)CC1 JPBHXVRMWGWSMX-UHFFFAOYSA-N 0.000 description 2
- JWUBBDSIWDLEOM-NQZHSCJISA-N 25-hydroxy-3 epi cholecalciferol Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@H](O)CCC1=C JWUBBDSIWDLEOM-NQZHSCJISA-N 0.000 description 2
- XUXIUBPNNUHHFE-BFUQYABPSA-N C.C.C=C/C=C1\[C@H](C)[C@@H](O)C(=C)[C@H](O)[C@@H]1C.C=C/C=C1\[C@H](C)[C@@H](O)C[C@H](O)[C@@H]1C Chemical compound C.C.C=C/C=C1\[C@H](C)[C@@H](O)C(=C)[C@H](O)[C@@H]1C.C=C/C=C1\[C@H](C)[C@@H](O)C[C@H](O)[C@@H]1C XUXIUBPNNUHHFE-BFUQYABPSA-N 0.000 description 2
- ZYIMQVPSNVPXJG-UTZNBNNSSA-N C=C/C=C1/C(=C)[C@@H](O)C[C@H](O)[C@H]1[U].C=C/C=C1/C[C@@H](O)C(=C)[C@H](O)[C@H]1[U].C=C/C=C1/C[C@@H](O)C[C@H](O)[C@H]1[U] Chemical compound C=C/C=C1/C(=C)[C@@H](O)C[C@H](O)[C@H]1[U].C=C/C=C1/C[C@@H](O)C(=C)[C@H](O)[C@H]1[U].C=C/C=C1/C[C@@H](O)C[C@H](O)[C@H]1[U] ZYIMQVPSNVPXJG-UTZNBNNSSA-N 0.000 description 2
- XGJPTBSDNLDIJQ-LKFGDWOGSA-N C=C/C=C1/C(=C)[C@@H](O)[C@@H](C)[C@H](O)[C@H]1C.C=C/C=C1/C[C@@H](O)[C@@H](C)[C@H](O)[C@H]1C Chemical compound C=C/C=C1/C(=C)[C@@H](O)[C@@H](C)[C@H](O)[C@H]1C.C=C/C=C1/C[C@@H](O)[C@@H](C)[C@H](O)[C@H]1C XGJPTBSDNLDIJQ-LKFGDWOGSA-N 0.000 description 2
- XGJPTBSDNLDIJQ-MVGJHMROSA-N C=C/C=C1\C(=C)[C@@H](O)[C@H](C)[C@H](O)[C@@H]1C.C=C/C=C1\C[C@@H](O)[C@H](C)[C@H](O)[C@@H]1C Chemical compound C=C/C=C1\C(=C)[C@@H](O)[C@H](C)[C@H](O)[C@@H]1C.C=C/C=C1\C[C@@H](O)[C@H](C)[C@H](O)[C@@H]1C XGJPTBSDNLDIJQ-MVGJHMROSA-N 0.000 description 2
- PXHNHTBJHHSVPT-UHFFFAOYSA-N CCC(C)(C)CC(C)(C)C Chemical compound CCC(C)(C)CC(C)(C)C PXHNHTBJHHSVPT-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011612 calcitriol Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 150000001934 cyclohexanes Chemical class 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000000968 intestinal effect Effects 0.000 description 2
- 239000006210 lotion Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000027425 release of sequestered calcium ion into cytosol Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000001962 taste-modifying agent Substances 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- DYEQHQNRKZJUCT-UHFFFAOYSA-N 1,2-dimethylidenecyclohexane Chemical compound C=C1CCCCC1=C DYEQHQNRKZJUCT-UHFFFAOYSA-N 0.000 description 1
- GMRQFYUYWCNGIN-ZVUFCXRFSA-N 1,25-dihydroxy vitamin D3 Chemical compound C1([C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=CC=C1C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-ZVUFCXRFSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- 125000004080 3-carboxypropanoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C(O[H])=O 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 108091029845 Aminoallyl nucleotide Proteins 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000010392 Bone Fractures Diseases 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- LVYVOZSUUSWESD-UHFFFAOYSA-N C#C.C#C.C#C.C=C1CCCCC1(C)C.C=C1CCCCC1C.CC1(C)CCCC(C)(C)C1.CC1(C)CCCCC1(C)C.CC1CCCC(C)C1.CC1CCCCC1C Chemical compound C#C.C#C.C#C.C=C1CCCCC1(C)C.C=C1CCCCC1C.CC1(C)CCCC(C)(C)C1.CC1(C)CCCCC1(C)C.CC1CCCC(C)C1.CC1CCCCC1C LVYVOZSUUSWESD-UHFFFAOYSA-N 0.000 description 1
- KZZAKXIKBNNGJM-PIAUKXLDSA-N C.C.C=C/C=C1/C[C@@H](O)/C(=C/[U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)/C(=C\[U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C(=C[U])[C@H](O)C1 Chemical compound C.C.C=C/C=C1/C[C@@H](O)/C(=C/[U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)/C(=C\[U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C(=C[U])[C@H](O)C1 KZZAKXIKBNNGJM-PIAUKXLDSA-N 0.000 description 1
- GKUMAGVBBSUKOW-DOMGKEPGSA-N C.C.C=C/C=C1/C[C@@H](O)[C@H]([U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@@H]([U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C([U])[C@H](O)C1 Chemical compound C.C.C=C/C=C1/C[C@@H](O)[C@H]([U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@@H]([U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C([U])[C@H](O)C1 GKUMAGVBBSUKOW-DOMGKEPGSA-N 0.000 description 1
- QWYVPDRQFOPLHC-SESOJJCQSA-N C.C.C=C/C=C1/C[C@H]2OCC=C2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1=C Chemical compound C.C.C=C/C=C1/C[C@H]2OCC=C2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1=C QWYVPDRQFOPLHC-SESOJJCQSA-N 0.000 description 1
- BCJPFVZYZCOFEL-GVQNPURESA-N C.C.C=C/C=C1/C[C@H]2OC[C@@H]2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1=C Chemical compound C.C.C=C/C=C1/C[C@H]2OC[C@@H]2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1=C BCJPFVZYZCOFEL-GVQNPURESA-N 0.000 description 1
- HCOFHVNQIDGKOL-MGFSWQKWSA-N C.C.C=C/C=C1\C(=C)[C@@H](O)C[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C(=C)[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C[C@@H]2OC[C@@H]12 Chemical compound C.C.C=C/C=C1\C(=C)[C@@H](O)C[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C(=C)[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C[C@@H]2OC[C@@H]12 HCOFHVNQIDGKOL-MGFSWQKWSA-N 0.000 description 1
- RNFWCRSTCRSWFP-JZZBPMJGSA-N C=C/C=C1/C[C@@H](O)/C(=C/[U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)/C(=C\[U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C(=C[U])[C@H](O)C1 Chemical compound C=C/C=C1/C[C@@H](O)/C(=C/[U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)/C(=C\[U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C(=C[U])[C@H](O)C1 RNFWCRSTCRSWFP-JZZBPMJGSA-N 0.000 description 1
- GDUKMUNSIQYWQD-JSECZNJYSA-N C=C/C=C1/C[C@@H](O)[C@H]([U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@@H]([U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C([U])[C@H](O)C1 Chemical compound C=C/C=C1/C[C@@H](O)[C@H]([U])[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@@H]([U])[C@H](O)C1=C.C=CC=C1C[C@@H](O)C([U])[C@H](O)C1 GDUKMUNSIQYWQD-JSECZNJYSA-N 0.000 description 1
- HZWIAHVZOHKLLF-CJLLUBKRSA-N C=C/C=C1/C[C@H]2OCC=C2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1=C Chemical compound C=C/C=C1/C[C@H]2OCC=C2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1.C=C/C=C1\C[C@@H](O)C2=CCO[C@@H]2C1=C HZWIAHVZOHKLLF-CJLLUBKRSA-N 0.000 description 1
- PUTNQXVMKHUGBM-POWLJTPFSA-N C=C/C=C1/C[C@H]2OC[C@@H]2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1=C Chemical compound C=C/C=C1/C[C@H]2OC[C@@H]2[C@H](O)C1=C.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1.C=C/C=C1\C[C@@H](O)[C@H]2CO[C@@H]2C1=C PUTNQXVMKHUGBM-POWLJTPFSA-N 0.000 description 1
- NYRCTJIPZVDWTM-JJMJMLMXSA-N C=C/C=C1\C(=C)[C@@H](O)C[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C(=C)[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C[C@@H]2OC[C@@H]12 Chemical compound C=C/C=C1\C(=C)[C@@H](O)C[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C(=C)[C@@H]2OC[C@@H]12.C=C/C=C1\C[C@@H](O)C[C@@H]2OC[C@@H]12 NYRCTJIPZVDWTM-JJMJMLMXSA-N 0.000 description 1
- HFKIENDGKZENQN-IKYIAVGMSA-N CC(C)CCC[C@@H](C)C(C)C.CC(C)[C@H](C)/C=C/[C@@H](C)C(C)(C)O.CC(C)[C@H](C)/C=C/[C@H](C)C(C)(C)O.CC(C)[C@H](C)/C=C/[C@H](C)C(C)C.CC(C)[C@H](C)CCCC(C)(C)O Chemical compound CC(C)CCC[C@@H](C)C(C)C.CC(C)[C@H](C)/C=C/[C@@H](C)C(C)(C)O.CC(C)[C@H](C)/C=C/[C@H](C)C(C)(C)O.CC(C)[C@H](C)/C=C/[C@H](C)C(C)C.CC(C)[C@H](C)CCCC(C)(C)O HFKIENDGKZENQN-IKYIAVGMSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- PGZNUGOJUFIUBZ-LZYWSIODSA-N [H]/C(C)=C1\CCCCC1(C)C.[H]/C(C)=C1\CCCCC1(C)C Chemical compound [H]/C(C)=C1\CCCCC1(C)C.[H]/C(C)=C1\CCCCC1(C)C PGZNUGOJUFIUBZ-LZYWSIODSA-N 0.000 description 1
- 208000009621 actinic keratosis Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000018678 bone mineralization Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- GMRQFYUYWCNGIN-NKMMMXOESA-N calcitriol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@@H](CCCC(C)(C)O)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C GMRQFYUYWCNGIN-NKMMMXOESA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000001721 carboxyacetyl group Chemical group 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 150000001993 dienes Chemical group 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- HKXBNHCUPKIYDM-CGMHZMFXSA-N doxercalciferol Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)/C=C/[C@H](C)C(C)C)=C\C=C1\C[C@@H](O)C[C@H](O)C1=C HKXBNHCUPKIYDM-CGMHZMFXSA-N 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 125000005929 isobutyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])OC(*)=O 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000324 molecular mechanic Methods 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 125000003431 oxalo group Chemical group 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- 101150047829 plin-1 gene Proteins 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 210000004765 promyelocyte Anatomy 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 150000003338 secosteroids Chemical class 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000003718 tetrahydrofuranyl group Chemical group 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C401/00—Irradiation products of cholesterol or its derivatives; Vitamin D derivatives, 9,10-seco cyclopenta[a]phenanthrene or analogues obtained by chemical preparation without irradiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/59—Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/18—Drugs for disorders of the endocrine system of the parathyroid hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/02—Systems containing two condensed rings the rings having only two atoms in common
- C07C2602/14—All rings being cycloaliphatic
- C07C2602/24—All rings being cycloaliphatic the ring system containing nine carbon atoms, e.g. perhydroindane
Definitions
- the present invention relates to vitamin D compounds, and more particularly, to a method of presenting the 1 ⁇ —OH of vitamin D compounds in an axial orientation and the compounds made thereby.
- R 1 and R 2 are medium or large groups, the axial conformer is preferred over the equatorial (Malhotra et al., J. Am. Chem. Soc. 87, 5492 (1965)].
- This exomethylene group is situated below the mean A-ring plane in the ⁇ -chair form and above it in the alternate ⁇ -chair form.
- the orientation of 1 ⁇ -OH is axial in the ⁇ chair form and equatorial in the ⁇ -form (Scheme IV).
- [0015] 1) constitute anancomeric system or other corresponding to at least 90% preponderating conformer possessing 1 ⁇ —OH in axial position, even though the rate of A-ring inversion can remain facile—these analogs are characterized by conformationally free well-defined geometries of A rings and a significant energy advantage (at least 1.2 kcal/mole) for an axial 1 ⁇ —OH conformer; or 2) constitute conformationally locked, rigid or distorted geometries in which the A ring is held in only one chair conformation, i.e. the one having an axial 1 ⁇ —OH or, although it may deform considerably, it may not flip over to its conformationally inverted opposite form with equatorial orientation of 1 ⁇ —OH.
- the present invention provides a novel class of 1 ⁇ -hydroxylated vitamin D compounds wherein the conformational equilibrium of the A-ring has, or has been altered or modified to favor a chair conformation that presents the 1 ⁇ -hydroxyl in the axial orientation, and the A-ring is attached to the conventional 5,7-diene and C-D ring system having any known side chain attached at carbon 17 of the D-ring.
- Y 1 and Y 2 which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group; where Y 3 , Y 4 , Y 5 , Y 6 , Y 7 and Y 8 , which may be the same or different, are each selected from the group consisting of hydrogen, a methyl group or substituted methyl group of the formula —CR 1 R 2 R 3 , an amino group or substituted amino group of the formula —NR 1 R 2 , a phosphino group or substituted phosphino group of the formula —PR 1 R 2 , an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and aryl, where R 1 , R 2 and R 3 are each independently selected from the group consisting of hydrogen, C 1-5 alkyl, hydroxyalkyl, aminoallyl,
- R can represent a saturated or unsaturated hydrocarbon radical of 1-35 carbons, that may be straight-chain, branched or cyclic and that may contain one or more additional substituents, such as hydroxy- or protected-hydroxy groups, fluoro, carbonyl, ester, epoxy, amino or other heteroatomic groups.
- Preferred side chains of this type are represented by the structure below
- the stereo chemical center (corresponding to C-20 in steroid numbering) may have the R or S configuration, (i.e. either the natural configuration about carbon 20 or the 20-epi configuration), and where Z is selected from Y, —OY, —CH 2 OY, —C ⁇ CY and —CH ⁇ CHY, where the double bond may have the cis or trans geometry, and where Y is selected from hydrogen, methyl, —COR 10 and a radical of the structure:
- x and y independently, represent the integers from 0 to 5, where R 6 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C 1-5 -alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R 7 , R 8 , and R 9 , independently, is selected from deuterium, deuteroalkl, hydrogen, fluoro, trifluoromethyl and C 1-5 alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R 6 and R 7 , taken together, represent an oxo group, or an alkylidene group, ⁇ CR 7 R 8 , or the group —(CH 2 ) p —, where p is an integer from 2 to 5, and where R 8 and R 9 , taken together, represent an oxo group, or the group —(CH)
- side chains with natural 20R-configuration are the structures represented by formulas (a), (b), (c), (d) and (e) below, i.e. the side chain as is occurs in 25-hydroxyvitamin D 3 (a); vitamin D 3 (b); 25-hydroxyvitamin D 2 (c); vitamin D 2 (d); and the C-24 epimer of 25-hydroxyvitamin D 2 (e):
- the above novel compounds wherein the 1 ⁇ —OH group is presented in the axial orientation exhibit a desired, and highly advantageous, pattern of biological activity.
- These compounds are characterized by having greater biological activity, as compared to 1 ⁇ ,25(OH) 2 D 3 , in one or more of the three activities typically referred to as “calcemic” activities, i.e. intestinal calcium transport activity, bone mineralization activity and bone calcium mobilization activity, or in cell differentiation activity.
- calcemic activities i.e. intestinal calcium transport activity, bone mineralization activity and bone calcium mobilization activity, or in cell differentiation activity.
- calcemic activities i.e. intestinal calcium transport activity, bone mineralization activity and bone calcium mobilization activity, or in cell differentiation activity.
- their preferential calcemic activity suggests the in vivo administration of these compounds for the treatment of metabolic bone diseases where bone loss is a major concern.
- one or more of these compounds may be preferred therapeutic agents for the treatment of diseases where bone formation is desired, such as osteoporosis, especially low bone turnover osteoporosis, steroid induced osteoporosis, senile osteoporosis or postmenopausal osteoporosis, as well as hypoparathroidism, osteomalacia and renal osteodystrophy.
- diseases where bone formation is desired such as osteoporosis, especially low bone turnover osteoporosis, steroid induced osteoporosis, senile osteoporosis or postmenopausal osteoporosis, as well as hypoparathroidism, osteomalacia and renal osteodystrophy.
- hypocalcemia as well as rickets, and vitamin D resistant rickets may be treated with one or more of the disclosed compounds.
- These compounds may also provide a method of treating female infertility in female mammals. The treatment may be transdermal, oral (in solid or liquid form) or parenteral
- the compounds may be present in a composition in an amount from about 0.01 ⁇ g/day to about 100 ⁇ g/day, preferably about 0.1 ⁇ g/gm to about 50 ⁇ g/gm of the composition, and may be administered in dosages of from about 0.1 ⁇ g/day to about 50 ⁇ g/day.
- the compounds of the invention are also especially suited for treatment and prophylaxis of human disorders which are characterized by an imbalance in the immune system, e.g. in autoimmune diseases, including multiple sclerosis, diabetes mellitus, host versus graft reaction, and rejection of transplants; and additionally for the treatment of inflammatory diseases, such as rheumatoid arthritis and asthma, as well as the improvement of bone fracture healing and improved bone grafts.
- autoimmune diseases including multiple sclerosis, diabetes mellitus, host versus graft reaction, and rejection of transplants
- inflammatory diseases such as rheumatoid arthritis and asthma
- alopecia skin conditions such as dry skin (lack of dermal hydration), undue skin slackness (insufficient skin firmness), insufficient sebum secretion and wrinkles, and hypertension are other conditions which may be treated with one or more of the compounds of the invention.
- the above compounds may also be characterized by high cell differentiation activity.
- these compounds may also provide therapeutic agents for the treatment of psoriasis and other skin disorders characterized by proliferation of undifferentiated skin cells, e.g. dermatitis, eczema, solar keratosis and the like, or as an anti-cancer agent, especially against leukemia, colon cancer, breast cancer and prostate cancer.
- the compounds may be present in a composition to treat disorders such as psoriasis in an amount from about 0.01 ⁇ g/gm to about 100 ⁇ g/gm of the composition, and may be administered topically, transdermally, orally (in solid or liquid form) or parenterally in dosages of from about 0.01 ⁇ g/day to about 100 ⁇ g/day.
- This invention also provides a novel method of modifying or altering the structure of a 1 ⁇ -hydroxylated vitamin D compound to increase its biological activity by altering the conformational equilibrium of the A-ring of the 1 ⁇ -hydroxylated vitamin D compound to favor a chair conformation that presents the 1 ⁇ -hydroxyl in the axial orientation. This is accomplished by either locking the chair conformation of the A-ring in a geometry having an axially orientated 1 ⁇ -hydroxyl, or by the addition of one or more substituents to the A-ring which interact with other substituents in the molecule or on the A-ring to provide a driving force to the A-ring to adopt a chair conformation which presents the 1 ⁇ -hydroxyl in the axial orientation.
- hydroxy-protecting group signifies any group commonly used for the temporary protection of hydroxy functions, such as for example, alkoxycarbonyl, acyl, alkylsilyl or alkylarylsilyl groups (hereinafter referred to simply as “silyl” groups), and alkoxyalkyl groups.
- Alkoxycarbonyl protecting groups are alkyl-O—CO— groupings such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl or allyloxycarbonyl.
- acyl signifies an alkanoyl group of 1 to 6 carbons, in all of its isomeric forms, or a carboxyalkanoyl group of 1 to 6 carbons, such as an oxalyl, malonyl, succinyl, glutaryl group, or an aromatic acyl group such as benzoyl, or a halo, nitro or alkyl substituted benzoyl group.
- alkyl as used in the description of the claims, denotes a straight-chain or branched alkyl radical of 1 to 10 carbons, in all its isomeric forms.
- Alkoxyalkyl protecting groups are groupings such as methoxymethyl, ethoxymethyl, methoxyethoxymethyl, or tetrahydrofuranyl and tetrahydropyranyl.
- Preferred silyl-protecting groups are trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, dibutylmethylsilyl, diphenylmethylsilyl, phenyldimethylsilyl, diphenyl-t-butylsilyl and analogous alkylated silyl radicals.
- aryl specifies a phenyl-, or an alkyl-, nitro- or halo-substituted phenyl group.
- a “protected hydroxy” group is a hydroxy group derivatised or protected by any of the above groups commonly used for the temporary or permanent protection of hydroxy functions, e.g. the silyl, alkoxyalkyl, acyl or alkoxycarbonyl groups, as previously defined.
- the terms “hydroxyalkyl”, “deuteroalkyl”, “aminoalkyl”, “halogenalkyl”, “alkoxyallyl”, “aryloxyalkyl”, and “fluoroalkyl” refer to an alkyl radical substituted by one or more hydroxy, deuterium, arnino, halogen, alkoxy, aryloxy, or fluoro group respectively.
- a “halogen” group includes any of the five elements fluorine, chlorine, bromine, iodine and astatine that form a part of group VIIA of the periodic table.
- U is selected from the group consisting of a methyl, a substituted methyl group described by general formula CR 1 R 2 R 3 , an amino group or substituted amino group described by general formula NR 1 R 2 , a phosphino group or substituted phosphino group described by general formula PR 1 R 2 , an alkyl- or arylsulfinyl group, an alkyl- or arylsulfonyl group, and aryl, and where R 1 , R 2 and R 3 are each independently selected from the group consisting of hydrogen, alkyl, hydroxyalkyl, aminoalkyl, halogenalkyl, alkoxyalkyl, aryloxyalkyl, aryl, halogen, hydroxyl, protected hydroxy, alkoxyl, aryloxyl, acyl, an amino group, an amino group substituted with alkyl or aryl substitutents and where R 1 and R 2 , taken together, represent an oxo group
- Vitamins that contain an anchoring bond system i.e., possessing an additional ring connecting C(2) with C(3)—O.
- the vitamins are characterized by trans-diequatorial orientation of substituents at C(2) and C(3) and, therefore, they have 1 ⁇ -hydroxyl in an axial orientation.
- R 1 and R 2 are as described above, and wherein n is an integer having a value of from 1 to 4, and wherein any of the groups CR 1 R 2 - may be replaced by an oxygen, sulfur or nitrogen atom.
- Vitamins in which 2-methylene group is further substituted by U are characterized by cis-orientation of substituents of the terminal olefinic atoms of the 1,4-dimethylenecyclohexane system of the ring A, i.e. cis-orientation between C(6)-C(7) bond and C(1′)-U bond.
- Substituent U due to its size strongly interacts with equatorial 1 ⁇ —OH and, therefore, the inverted A-ring chair conformer is favored, having 1 ⁇ -hydroxyl in an axial orientation:
- Vitamins that contain a flattening bond system i.e., an exocyclic 2-methylene group that is further substituted and forms a ring with C(3)—O.
- the vitamins are characterized by trans-orientation of substituents of the terminal olefinic atoms of the 1,4-dimethylenecyclohexane system of the ring A, i.e., trans-orientation between C(6)-C(7) bond and C(1′)-C(2′)R 1 R 2 bond. Therefore, these vitamins have C(3)—O substituent in equatorial disposition and 1 ⁇ -hydroxy in an axial orientation:
- R 1 and R 2 are as described above, and wherein s is an integer having a value of from 1 to 3, and wherein any of the groups —CR 1 R 2 — may be replaced by an oxygen, sulfur or nitrogen atom.
- Vitamins that contain an anchoring bond system i.e., possessing an additional ring connecting C(4) with C(3)—O.
- the vitamins are characterized by trans-diequatorial orientation of substituents at C(3) and C(4) and, therefore, they have 1 ⁇ -hydroxyl in an axial orientation:
- R 1 and R 2 are as described above, and wherein n is an integer having a value of from 1 to 4, and wherein any of the groups —CR 1 R 2 — may be replaced by an oxygen, sulfur or nitrogen atom.
- Vitamins possessing 10 ⁇ -substituent U which due to its size strongly interacts with C(7)—H and, therefore, the inverted A-ring chair conformer is favored, having 1 ⁇ -hydroxyl in an axial orientation:
- Vitamins that contain a bridged bond system i.e., possessing an additional ring connecting C(2) with C(4).
- the vitamins are characterized by cis-1,3-diaxial orientation of additional substituents at C(2) and C(4) and, therefore, they have 1 ⁇ -hydroxyl in an axial orientation:
- R 1 and R 2 are as described above, and wherein r is an integer having a value of from 1 to 5, and wherein any of the groups —CR 1 R 2 — may be replaced by an oxygen, sulfur or nitrogen atom.
- Vitamins that contain a bridged bond system i.e., possessing an additional ring connecting C(2) with C(10).
- the vitamins are characterized by cis-1,3-diaxial orientation of substituents at C(2) and C(10) and, therefore, they have 1 ⁇ -hydroxyl in an axial orientation:
- R 1 and R 2 are as described above, and wherein r is an integer having a value of from 1 to 5, and wherein any of the groups —CR 1 R 2 — may be replaced by an oxygen, sulfur or nitrogen atom.
- Vitamins that contain a bridged bond system i.e., possessing an additional ring connecting C(4) with C(10).
- the vitamins are characterized by cis-1,3-diaxial orientation of additional substituents at C(4) and C(10) and, therefore, they have 1 ⁇ -hydroxyl in an axial orientation:
- R 1 and R 2 are as described above, and wherein r is an integer having a value of from 1 to 5, and wherein any of the groups —CR 1 R 2 — may be replaced by an oxygen, sulfur or nitrogen atom.
- the term “24-homo” refers to the addition of one methylene group and the term “24-dihomo” refers to the addition of two methylene groups at the carbon 24 position in the side chain. Likewise, the term “trihomo” refers to the addition of three methylene groups. Also, the term “26,27-dimethyl” refers to the addition of a methyl group at carbon 26 and 27 positions so that for example R 3 and R 4 are ethyl groups. Likewise, the term “26,27-diethyl” refers to the addition of an ethyl group at the 26 and 27 positions so that R 3 and R 4 are propyl groups.
- novel compounds of this invention defined by formula I may be formulated for pharmaceutical applications as a solution in innocuous solvents, or as an emulsion, suspension or dispersion in suitable solvents or carriers, or as pills, tablets or capsules, together with solid carriers, according to conventional methods known in the art. Any such formulations may also contain other pharmaceutically-acceptable and non-toxic excipients such as stabilizers, anti-oxidants, binders, coloring agents or emulsifying or taste-modifying agents.
- the compounds may be administered orally, topically, parenterally or transdermally.
- the compounds are advantageously administered by injection or by intravenous infusion or suitable sterile solutions, or in the form of liquid oral doses or solid doses via the alimentary canal, or in the form of creams, ointments, patches, or similar vehicles suitable for transdermal applications.
- Doses of from 0.01 ⁇ g to 100 ⁇ g per day, preferably 0.1 ⁇ g to 50 ⁇ g per day, of the compounds are appropriate for treatment purposes, such doses being adjusted according to the disease to be treated, its severity and the response of the subject as is well understood in the art.
- each may be suitably administered alone, or together with graded doses of another active vitamin D compound—e.g. 1 ⁇ -hydroxyvitamin D 2 or D 3 , or 1 ⁇ ,25-dihydroxyvitamin D 3 —in situations where different degrees of bone mineral mobilization and calcium transport stimulation is found to be advantageous.
- another active vitamin D compound e.g. 1 ⁇ -hydroxyvitamin D 2 or D 3 , or 1 ⁇ ,25-dihydroxyvitamin D 3
- compositions for use in the above-mentioned cell differentiation treatments comprise an effective amount of one or more vitamin D compound as defined by the above formula I as the active ingredient, and a suitable carrier.
- An effective amount of such compounds for use in accordance with this invention is from about 0.01 ⁇ g to about 100 ⁇ g per gm of composition, and may be administered topically, transdermally, orally or parenterally in dosages of from about 0.1 ⁇ g/day to about 100 ⁇ g/day.
- the compounds may be formulated as creams, lotions, ointments, topical patches, pills, capsules or tablets, or in liquid form as solutions, emulsions, dispersions, or suspensions in pharmaceutically innocuous and acceptable solvents or oils, and such preparations may contain in addition other pharmaceutically innocuous or beneficial components, such as stabilizers, antioxidants, emulsifiers, coloring agents, binders or taste-modifying agents.
- the compounds are advantageously administered in amounts sufficient to effect the differentiation of promyelocytes to normal macrophages. Dosages are described above are suitable, it being understood that the amounts given are to be adjusted in accordance with the severity of the disease, and the condition and response of the subject as is well understood in the art.
- compositions of the present invention comprise an active ingredient in association with a pharmaceutically acceptable carrier therefore and optionally other therapeutic ingredients.
- the carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulations and not deleterious to the recipient thereof.
- Formulations of the present invention suitable for oral administration may be in the form of discrete units as capsules, sachets, tablets or lozenges, each containing a predetermined amount of the active ingredient; in the form of a powder or granules; in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid; or in the form of an oil-in-water emulsion or a water-in-oil emulsion.
- Formulations for rectal administration may be in the form of a suppository incorporating the active ingredient and a carrier such as cocoa butter, or in the form of an enema.
- Formulations suitable for parenteral administration conveniently comprise a sterile oily or aqueous preparation of the active ingredient which is preferably isotonic with the blood of the recipient.
- Formulations suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, applicants, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops; or as sprays.
- a nebulizer or an atomizer can be used for asthma treatment.
- formulations may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy.
- dosage unit is meant a unitary, i.e. a single dose which is capable of being administered to a patient as a physically and chemically stable unit dose comprising either the active ingredient as such or a mixture of it with solid or liquid pharmaceutical diluentes or carriers.
- vitamin D nucleus a central part consisting of a substituted chain of five carbon atoms which correspond to positions 8, 14, 13, 17 and 20 of vitamin D 3 and at the ends of which are connected at position 20 a structural moiety representing any of the typical side chains known for vitamin D type compounds (such as R as previously defined herein), and at position 8 the 5,7-diene moiety connected to the A-ring of an active 1 ⁇ -hydroxy vitamin D analog (as illustrated by formula I herein).
- vitamin D type compounds such as R as previously defined herein
- formula I an active 1 ⁇ -hydroxy vitamin D analog
- paired substituents X 1 and X 4 or X 5 , X 2 or X 3 and X 6 or X 7 , X 4 or X 5 and X 8 or X 9 when taken together with the three adjacent carbon atoms of the central part of the compound, which correspond to positions 8, 14, 13 or 14, 13, 17 or 13, 17, 20 respectively, can be the same or different and form a saturated or unsaturated, substituted or unsubstituted, carbocyclic 3, 4, 5, 6 or 7 membered ring.
- Preferred compounds of the present invention may be represented by one of the following formulae:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Diabetes (AREA)
- Physical Education & Sports Medicine (AREA)
- Epidemiology (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Endocrinology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Pulmonology (AREA)
- Transplantation (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Pain & Pain Management (AREA)
- Biomedical Technology (AREA)
- Obesity (AREA)
- Emergency Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
- [0001] This invention was made with United States government support awarded by the following agencies:
- [0002] NIH Grant No. DK14881
- [0003] The United States has certain rights in this invention.
- The present invention relates to vitamin D compounds, and more particularly, to a method of presenting the 1α—OH of vitamin D compounds in an axial orientation and the compounds made thereby.
- The two diastereomeric forms of monosubstituted cyclohexanes (Scheme I) are differently populated, the equilibrium constant K being given by the equation
- ΔG°=−RTln K
- where K=[equatorial conformer]/[axial conformer]. ΔG° (usually negative) is the difference of free energy between the equatorial and axial conformers and −ΔG° is known as conformational free energy of the substituent R [defined as it's A value, Winstein et al., J. Am. Chem. Soc. 77, 5562 (1955)]. Thus, the greater the A value of the substituent R, the greater a driving force to adopt the R-equatorial form. A value can be, therefore, considered as
- destabilization energy imparted to a monosubstituted six-membered chair by an axial substituent. Thus, for example, the A value of methyl substituent equals ca. 1.7 kcal/mol [Hirsch, Top. Stereochem. 1, 199 (1967)] that corresponds to 95% of population of equatorial conformer of methylcyclohexane at room temperature. The conformational free energies of substituents in cyclohexanes under ideal conditions are expected to be additive. It is usually assumed that all conformational effects are additive, i.e. various destabilizing interactions identified within a six-membered ring system operate independently of each other. In di-, tri- and polysubstituted cyclohexanes mutual interactions among the substituents have to be considered. Such interactions can destabilize one chair conformation raising its energy to favor an alternate inverted chair form, or even favor some other, distorted (rigid or flexible) cyclohexane geometries. The most important interactions that influence the equilibrium between the respective chair conformations include interaction of a pair of substituents in 1,2-trans-diequatorial and 1,3-cis-diaxial relationship. Thus, total destabilization energy (ED) can be described as a sum of the substituents' A values, representing monoaxial interactions, G values for 1,2-diequatorial interactions and U values for 1,3-diaxial interactions [Corey, et al., J. Org. Chem. 45, 765 (1980)].
- E D=Σ(A+G+U)
-
- R1 and R2 are medium or large groups, the axial conformer is preferred over the equatorial (Malhotra et al., J. Am. Chem. Soc. 87, 5492 (1965)]. Thus, for example, when R1=R2=Me the difference in energy between both forms is approximately 4.5 kcal/mol, in favor of the axial conformer. In the case when R1=Me and R2=H, a 1:3 peri interaction exists which increases by ca. 1.25 kcal/mol the destabilization energy of the system (Duraisamy et al., J. Am. Chem. Soc. 105, 3264 (1983)].
- Conformational behavior of vitamin D has attracted considerable attention over the past 25 years. It has been suggested long ago [Havinga, Experientia 29, 1181 (1973)] that vitamin D compounds can exist as a mixture of two rapidly equilibrating A-ring chair conformers. These two conformations were abbreviated as α- and β- forms (Scheme III).1H NMR studies of vitamin D2 and D3 in chloroform solutions confirmed the existence of the dynamic equilibrium between the two chair forms [La Mar et al., J. Am. Chem. Soc. 96, 7317 (1974); Wing et al., J. Am. Chem. Soc. 97, 4980 (1975)] of these B-ring secosteroids. A similar conformational equilibrium has also been found for 25-hydroxyvitamin D3 (25-OH-D3), 1α-hydroxyvitamin D3 (1α—OH-D3) and the natural hormone 1α, 25-dihydroxyvitamin D3 (1α25—(OH)2D3) as well as some other A-ring substituted vitamin D derivatives [see for example Helmer et al., Arch. Biochem. Biophys. 241, 608 (1985); Sheves et al., J. Org. Chem. 42, 3597 (1977); Berman et al., J. Org. Chem. 42, 3325 (1977); Sheves et al., J. Chem. Soc. Chem. Commun. 643 (1975); Okamura et al., J. Org. Chem. 43, 574 (1978)]. In the α-chair conformer of vitamin D molecule, the hydroxy group is equatorial whereas in the β-chair conformer the hydroxy group is axially oriented.
- NMR studies of various vitamin D compounds in solutions have also shown that the ratio of the respective A-ring conformers depends significantly on the solvent used [Helmer et al., Arch. Biochem. Biophys. 241, 608 (1985)]. Unfortunately, due to solubility problems, it is impossible to study these conformer populations in an aqueous medium. X-Ray diffraction studies of vitamin D2 and D3 confirmed that their A-rings also occur in the solid phase as an equimolar mixture of such extreme α- and β-chair conformations [Hull et al., Acta Cryst., Sect. B, 32, 2374 (1976); Trinh et al., J. Org. Chem. 41, 3476 (1976)]. Interestingly, 25—OH-D3 exists in the solid state exclusively in the α-form whereas the natural hormone 1α25—(OH)2D3 in the A-ring β-form [Trinh et al., J. Chem. Soc., Perkin Trans. II, 393 (1977); Suwinska et al., Acta Cryst., Sect. B, 52, 550 (1996)]. X-Ray studies have also shown that the C(5)=C(6)-C(7)=C(8) diene part of the molecule is nearly planar, whereas the exocyclic C(10)=C(19) bond, because of steric strain, is twisted out of plane by about 55°. This exomethylene group is situated below the mean A-ring plane in the α-chair form and above it in the alternate β-chair form. In the case of vitamin D analogs substituted in the ring A with a 1α-hydroxy group, crucial for biological activity, the orientation of 1α-OH is axial in the α chair form and equatorial in the β-form (Scheme IV).
- It has to be added that molecular mechanics calculations revealed that, similarly as in the case of the model 1,2-dimethylenecyclohexane ([Hofmann et al., J. Org. Chem. 55, 2151 (1990)], an existence of other than low-energy chair conformations of the ring A can be expected for D vitamins, namely, half-chair or twist forms [Mosquera et al., J. Mol. Struct. 168, 125, (1988); Hofer et al., Monatsh. fur Chemie, 124, 185 (1993)].
- In 1974, it was proposed [Okamura et al., Proc. Natl. Acad. Sci. USA 71, 4194 (1974); Wing et al., Science 186, 939 (1974)] that calcium regulation ability of vitamin D is limited to the compounds that can assume a ring-A chair conformation in which the 1α-hydroxy group (or pseudo-1α—OH) occupies an equatorial orientation. Such conformation, according to this hypothesis, has the proper geometry for binding to the protein receptor, a step which is necessary to induce the biological response leading to the calcium transport and calcium mobilization in the body. However, recent results of biological testing of 1α,25-dihydroxy-10, 19-dihydroxyvitamin D3 compounds do not support the idea that the equatorially favored 1-hydroxyl would be the most biologically active. On the contrary, 1α,25-dihydroxy-10(S), 19-dihydrovitamin D3, the analog strongly biased toward the A-ring chair conformer possessing 1α-axial orientation, provided the greatest in vivo biological response and showed very significant activity on intestinal calcium transport. Moreover, more recent studies on 19-norvitamins, especially those substituted at C-2, demonstrate that pronounced biological activity is provided by compounds having an axial 1α-hydroxyl.
- Thus, it is believed that axial orientation of the 1α-hydroxyl group in the vitamin D molecule is of crucial importance for its biological activity and, the prediction of its biological response can be made by evaluation of the conformational equilibrium of the A-ring of the vitamin. It is believed that the more favored the axial position of 1α-hydroxyl is the greater biological response can be expected. A logical extension of this prediction is that the greatest activity can be predicted for such A-ring substitution of vitamin D molecules which:
- 1) constitute anancomeric system or other corresponding to at least 90% preponderating conformer possessing 1α—OH in axial position, even though the rate of A-ring inversion can remain facile—these analogs are characterized by conformationally free well-defined geometries of A rings and a significant energy advantage (at least 1.2 kcal/mole) for an axial 1α—OH conformer; or 2) constitute conformationally locked, rigid or distorted geometries in which the A ring is held in only one chair conformation, i.e. the one having an axial 1α—OH or, although it may deform considerably, it may not flip over to its conformationally inverted opposite form with equatorial orientation of 1α—OH.
- Such structural constrains which prevent the cyclohexane ring from flipping but which can be accommodated by its chair geometry (Scheme V) include:
- 1) anchoring bonds (trans-fusion bonds to a ring of size seven or smaller),
- 2) flattening bonds (fusion bonds to a ring of size seven or smaller which contains a double bond exocyclic to the six-membered ring), and
-
- It should be noted that the remaining substituents (or hydrogens) of flattening or anchoring bonds must assume an axial orientation with respect to the six-membered ring. In the case of (1,3)-bridging, the bridged bonds have to be axially disposed with respect to the six-membered ring.
- Accordingly, the present invention provides a novel class of 1α-hydroxylated vitamin D compounds wherein the conformational equilibrium of the A-ring has, or has been altered or modified to favor a chair conformation that presents the 1α-hydroxyl in the axial orientation, and the A-ring is attached to the conventional 5,7-diene and C-D ring system having any known side chain attached at carbon 17 of the D-ring.
-
- where Y1 and Y2, which may be the same or different, are each selected from the group consisting of hydrogen and a hydroxy-protecting group; where Y3, Y4, Y5, Y6, Y7 and Y8, which may be the same or different, are each selected from the group consisting of hydrogen, a methyl group or substituted methyl group of the formula —CR1R2R3, an amino group or substituted amino group of the formula —NR1R2, a phosphino group or substituted phosphino group of the formula —PR1R2, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, and aryl, where R1, R2 and R3 are each independently selected from the group consisting of hydrogen, C1-5 alkyl, hydroxyalkyl, aminoallyl, halogenalkyl, alkoxyalkyl, aryloxyalkyl, aryl, halogen, hydroxyl, protected hydroxy, alkoxyl, aryloxyl, acyl, an amino group, an alkyl substituted amino group, and an aryl substituted amino group, and where R1 and R2 taken together represent an oxo group or a group —(CH2)m- where m is an integer having a value of from 2 to 5; or Y3 and Y4 when taken together represent a methylene group; or Y7 and Y8 when taken together represent a methylene group; where Y2 and Y6, or Y2 and Y7, when taken together may represent the group —(CR1R2)n— where n is an integer having a value of from 1 to 4 and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom; where Y5 and Y8, or Y5 and Y3, or Y3 and Y8, when taken together may represent the group —(CR1R2)r— where r is an integer having a value of from 1 to 5 and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom; and where Y5 and Y6 when taken together represent the group ═CR4R5 where R4 and R5, which may be the same or different, are each selected from the group consisting of hydrogen and Y3, with the proviso that R4 and R5 cannot be a hydroxyl; and where R4 and Y2 when taken together may represent the group —(CR1R2)s— where s is an integer having a value of from 1 to 3; and where the group R represents any of the typical side chains known for vitamin D type compounds.
- More specifically R can represent a saturated or unsaturated hydrocarbon radical of 1-35 carbons, that may be straight-chain, branched or cyclic and that may contain one or more additional substituents, such as hydroxy- or protected-hydroxy groups, fluoro, carbonyl, ester, epoxy, amino or other heteroatomic groups. Preferred side chains of this type are represented by the structure below
-
- where x and y, independently, represent the integers from 0 to 5, where R6 is selected from hydrogen, deuterium, hydroxy, protected hydroxy, fluoro, trifluoromethyl, and C1-5-alkyl, which may be straight chain or branched and, optionally, bear a hydroxy or protected-hydroxy substituent, and where each of R7, R8, and R9, independently, is selected from deuterium, deuteroalkl, hydrogen, fluoro, trifluoromethyl and C1-5 alkyl, which may be straight-chain or branched, and optionally, bear a hydroxy or protected-hydroxy substituent, and where R6 and R7, taken together, represent an oxo group, or an alkylidene group, ═CR7R8, or the group —(CH2)p—, where p is an integer from 2 to 5, and where R8 and R9, taken together, represent an oxo group, or the group —(CH2)q—, where q is an integer from 2 to 5, and where R10 represents hydrogen, hydroxy, protected hydroxy, or C1-5 alkyl and wherein any of the CH-groups at positions 20, 22, or 23 in the side chain may be replaced by a nitrogen atom, or where any of the groups —CH(CH3)—, —CH(R3)—, or —CH(R2)— at positions 20, 22, and 23, respectively, may be replaced by an oxygen or sulfur atom.
- The wavy line to the substituent at C-20 indicates that the carbon 20 may have either the R or S configuration.
-
- The above novel compounds wherein the 1α—OH group is presented in the axial orientation exhibit a desired, and highly advantageous, pattern of biological activity. These compounds are characterized by having greater biological activity, as compared to 1α,25(OH)2D3, in one or more of the three activities typically referred to as “calcemic” activities, i.e. intestinal calcium transport activity, bone mineralization activity and bone calcium mobilization activity, or in cell differentiation activity. Hence, these compounds may be highly specific in their calcemic activity. Their preferential calcemic activity suggests the in vivo administration of these compounds for the treatment of metabolic bone diseases where bone loss is a major concern. Because of their preferential calcemic activity on bone, one or more of these compounds may be preferred therapeutic agents for the treatment of diseases where bone formation is desired, such as osteoporosis, especially low bone turnover osteoporosis, steroid induced osteoporosis, senile osteoporosis or postmenopausal osteoporosis, as well as hypoparathroidism, osteomalacia and renal osteodystrophy. In addition, hypocalcemia as well as rickets, and vitamin D resistant rickets may be treated with one or more of the disclosed compounds. These compounds may also provide a method of treating female infertility in female mammals. The treatment may be transdermal, oral (in solid or liquid form) or parenteral. The compounds may be present in a composition in an amount from about 0.01 μg/day to about 100 μg/day, preferably about 0.1 μg/gm to about 50 μg/gm of the composition, and may be administered in dosages of from about 0.1 μg/day to about 50 μg/day.
- The compounds of the invention are also especially suited for treatment and prophylaxis of human disorders which are characterized by an imbalance in the immune system, e.g. in autoimmune diseases, including multiple sclerosis, diabetes mellitus, host versus graft reaction, and rejection of transplants; and additionally for the treatment of inflammatory diseases, such as rheumatoid arthritis and asthma, as well as the improvement of bone fracture healing and improved bone grafts. Acne, alopecia, skin conditions such as dry skin (lack of dermal hydration), undue skin slackness (insufficient skin firmness), insufficient sebum secretion and wrinkles, and hypertension are other conditions which may be treated with one or more of the compounds of the invention.
- The above compounds may also be characterized by high cell differentiation activity. Thus, these compounds may also provide therapeutic agents for the treatment of psoriasis and other skin disorders characterized by proliferation of undifferentiated skin cells, e.g. dermatitis, eczema, solar keratosis and the like, or as an anti-cancer agent, especially against leukemia, colon cancer, breast cancer and prostate cancer. The compounds may be present in a composition to treat disorders such as psoriasis in an amount from about 0.01 μg/gm to about 100 μg/gm of the composition, and may be administered topically, transdermally, orally (in solid or liquid form) or parenterally in dosages of from about 0.01 μg/day to about 100 μg/day.
- This invention also provides a novel method of modifying or altering the structure of a 1α-hydroxylated vitamin D compound to increase its biological activity by altering the conformational equilibrium of the A-ring of the 1α-hydroxylated vitamin D compound to favor a chair conformation that presents the 1α-hydroxyl in the axial orientation. This is accomplished by either locking the chair conformation of the A-ring in a geometry having an axially orientated 1α-hydroxyl, or by the addition of one or more substituents to the A-ring which interact with other substituents in the molecule or on the A-ring to provide a driving force to the A-ring to adopt a chair conformation which presents the 1α-hydroxyl in the axial orientation.
- As used in the description and in the claims, the term “hydroxy-protecting group” signifies any group commonly used for the temporary protection of hydroxy functions, such as for example, alkoxycarbonyl, acyl, alkylsilyl or alkylarylsilyl groups (hereinafter referred to simply as “silyl” groups), and alkoxyalkyl groups. Alkoxycarbonyl protecting groups are alkyl-O—CO— groupings such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, tert-butoxycarbonyl, benzyloxycarbonyl or allyloxycarbonyl. The term “acyl” signifies an alkanoyl group of 1 to 6 carbons, in all of its isomeric forms, or a carboxyalkanoyl group of 1 to 6 carbons, such as an oxalyl, malonyl, succinyl, glutaryl group, or an aromatic acyl group such as benzoyl, or a halo, nitro or alkyl substituted benzoyl group. The word “alkyl” as used in the description of the claims, denotes a straight-chain or branched alkyl radical of 1 to 10 carbons, in all its isomeric forms. Alkoxyalkyl protecting groups are groupings such as methoxymethyl, ethoxymethyl, methoxyethoxymethyl, or tetrahydrofuranyl and tetrahydropyranyl. Preferred silyl-protecting groups are trimethylsilyl, triethylsilyl, t-butyldimethylsilyl, dibutylmethylsilyl, diphenylmethylsilyl, phenyldimethylsilyl, diphenyl-t-butylsilyl and analogous alkylated silyl radicals. The term “aryl” specifies a phenyl-, or an alkyl-, nitro- or halo-substituted phenyl group.
- A “protected hydroxy” group is a hydroxy group derivatised or protected by any of the above groups commonly used for the temporary or permanent protection of hydroxy functions, e.g. the silyl, alkoxyalkyl, acyl or alkoxycarbonyl groups, as previously defined. The terms “hydroxyalkyl”, “deuteroalkyl”, “aminoalkyl”, “halogenalkyl”, “alkoxyallyl”, “aryloxyalkyl”, and “fluoroalkyl” refer to an alkyl radical substituted by one or more hydroxy, deuterium, arnino, halogen, alkoxy, aryloxy, or fluoro group respectively. A “halogen” group includes any of the five elements fluorine, chlorine, bromine, iodine and astatine that form a part of group VIIA of the periodic table.
-
- where the definitions of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8 and R are as previously set forth herein. The preferred analogs are the following:
- 1. 2-substituted 1α-hydroxy vitamin D compounds
- 1.1. 2α-substitution
-
- where U is selected from the group consisting of a methyl, a substituted methyl group described by general formula CR1R2R3, an amino group or substituted amino group described by general formula NR1R2, a phosphino group or substituted phosphino group described by general formula PR1R2, an alkyl- or arylsulfinyl group, an alkyl- or arylsulfonyl group, and aryl, and where R1, R2 and R3 are each independently selected from the group consisting of hydrogen, alkyl, hydroxyalkyl, aminoalkyl, halogenalkyl, alkoxyalkyl, aryloxyalkyl, aryl, halogen, hydroxyl, protected hydroxy, alkoxyl, aryloxyl, acyl, an amino group, an amino group substituted with alkyl or aryl substitutents and where R1 and R2, taken together, represent an oxo group, or a group —CH2)m— where m is an integer having a value of from 2 to 5.
- 1.2. 2α-substitution and formation of a ring with 3 β—O
-
- where R1 and R2 are as described above, and wherein n is an integer having a value of from 1 to 4, and wherein any of the groups CR1R2- may be replaced by an oxygen, sulfur or nitrogen atom.
- 1.3. 2-alkylidene compounds
- Vitamins in which 2-methylene group is further substituted by U. The vitamins are characterized by cis-orientation of substituents of the terminal olefinic atoms of the 1,4-dimethylenecyclohexane system of the ring A, i.e. cis-orientation between C(6)-C(7) bond and C(1′)-U bond. Substituent U due to its size strongly interacts with equatorial 1α—OH and, therefore, the inverted A-ring chair conformer is favored, having 1α-hydroxyl in an axial orientation:
- where U is as described above with the proviso that U cannot be an —OH group.
- 1.4. 2-alkylidene compounds with an additional connection with 3β—O.
- Vitamins that contain a flattening bond system, i.e., an exocyclic 2-methylene group that is further substituted and forms a ring with C(3)—O. The vitamins are characterized by trans-orientation of substituents of the terminal olefinic atoms of the 1,4-dimethylenecyclohexane system of the ring A, i.e., trans-orientation between C(6)-C(7) bond and C(1′)-C(2′)R1R2 bond. Therefore, these vitamins have C(3)—O substituent in equatorial disposition and 1α-hydroxy in an axial orientation:
- where R1 and R2 are as described above, and wherein s is an integer having a value of from 1 to 3, and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom.
- 2. 4α-substitution and formation of a ring with 3β-O
-
- where R1 and R2 are as described above, and wherein n is an integer having a value of from 1 to 4, and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom.
- 3. 10β-substitution
-
- where U is as described previously.
- 4. 1,3-diaxially bridged compounds
- 4.1. 2β,4β-bridged
-
- where R1 and R2 are as described above, and wherein r is an integer having a value of from 1 to 5, and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom.
- 4.2. 2β,10β-bridged
-
- where R1 and R2 are as described above, and wherein r is an integer having a value of from 1 to 5, and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom.
- 4.3 4β,10β-bridged
-
- where R1 and R2 are as described above, and wherein r is an integer having a value of from 1 to 5, and wherein any of the groups —CR1R2— may be replaced by an oxygen, sulfur or nitrogen atom.
- Methods of making compounds of formulae I and 1.1-4.3 are known. Specifically, reference is made to Zhu et al, Chem. Rev. 95, 1877 (1995) and Dai et al, Synthesis 1383 (1994) which describe a method of synthesizing such compounds.
- It should be noted in this description that the term “24-homo” refers to the addition of one methylene group and the term “24-dihomo” refers to the addition of two methylene groups at the carbon 24 position in the side chain. Likewise, the term “trihomo” refers to the addition of three methylene groups. Also, the term “26,27-dimethyl” refers to the addition of a methyl group at carbon 26 and 27 positions so that for example R3 and R4 are ethyl groups. Likewise, the term “26,27-diethyl” refers to the addition of an ethyl group at the 26 and 27 positions so that R3 and R4 are propyl groups.
- In the following lists of compounds, the particular substituents attached on the A-ring should be added to the nomenclature. For example, if a methyl group is the alkyl substituent attached at the carbon 2 position on the A-ring, the term “2-methyl” should precede each of the named compounds. If an ethyl group is the alkyl substituent attached at the carbon 2 position on the A-ring, the term “2-ethyl” should precede each of the named compounds, and so on. In addition, if the methyl group attached at the carbon 20 position is in its epi or unnatural configuration, the term “20(S)” or “20-epi” should be included in each of the following named compounds. The named compounds could also be of the vitamin D2 type if desired.
- Specific and preferred examples of the compounds of structure I when the side chain is unsaturated are:
- 19-nor-24-homo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-24-dihomo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-24-trihomo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-dimethyl-24-homo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-dimethyl-24-dihomo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-dimethyl-24-trihomo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-diethyl-24-homo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-diethyl-24-dihomo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-diethyl-24-trihomo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-dipropyl-24-homo-1,25-dihydroxy-22-dehydrovitamin D3;
- 19-nor-26,27-dipropyl-24-dihomo-1,25-dihydroxy-22-dehydrovitamin D3; and
- 19-nor-26,27-dipropyl-24-trihomo-1,25-dihydroxy-22-dehydrovitamin D3.
- Specific and preferred examples of the compounds of structure I when the side chain is saturated are:
- 19-nor-24,homo-1,25-dihydroxyvitamin D3;
- 19-nor-24-dihomo-1,25-dihydroxyvitamin D3;
- 19-nor-24-dihomo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-dimethyl-24-homo-1,25dihydroxyvitamin D3;
- 19-nor-26,27-dimethyl-24-dihomo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-dimethyl-24-trihomo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-diethyl-24-homo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-diethyl-24-dihomo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-diehtyl-24-trihomo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-dipropyl-24-homo-1,25-dihydroxyvitamin D3;
- 19-nor-26,27-dipropyl-24-dihomo-1,25-dihydroxyvitamin D3; and
- 19-nor-26,27-dipropyl-24-trihomo-1,25-dihydroxyvitamin D3.
- For treatment purposes, the novel compounds of this invention defined by formula I may be formulated for pharmaceutical applications as a solution in innocuous solvents, or as an emulsion, suspension or dispersion in suitable solvents or carriers, or as pills, tablets or capsules, together with solid carriers, according to conventional methods known in the art. Any such formulations may also contain other pharmaceutically-acceptable and non-toxic excipients such as stabilizers, anti-oxidants, binders, coloring agents or emulsifying or taste-modifying agents.
- The compounds may be administered orally, topically, parenterally or transdermally. The compounds are advantageously administered by injection or by intravenous infusion or suitable sterile solutions, or in the form of liquid oral doses or solid doses via the alimentary canal, or in the form of creams, ointments, patches, or similar vehicles suitable for transdermal applications. Doses of from 0.01 μg to 100 μg per day, preferably 0.1 μg to 50 μg per day, of the compounds are appropriate for treatment purposes, such doses being adjusted according to the disease to be treated, its severity and the response of the subject as is well understood in the art. Since the new compounds exhibit specificity of action, each may be suitably administered alone, or together with graded doses of another active vitamin D compound—e.g. 1α-hydroxyvitamin D2 or D3, or 1α,25-dihydroxyvitamin D3—in situations where different degrees of bone mineral mobilization and calcium transport stimulation is found to be advantageous.
- Compositions for use in the above-mentioned cell differentiation treatments, e.g. psoriasis and other malignancies comprise an effective amount of one or more vitamin D compound as defined by the above formula I as the active ingredient, and a suitable carrier. An effective amount of such compounds for use in accordance with this invention is from about 0.01 μg to about 100 μg per gm of composition, and may be administered topically, transdermally, orally or parenterally in dosages of from about 0.1 μg/day to about 100 μg/day.
- The compounds may be formulated as creams, lotions, ointments, topical patches, pills, capsules or tablets, or in liquid form as solutions, emulsions, dispersions, or suspensions in pharmaceutically innocuous and acceptable solvents or oils, and such preparations may contain in addition other pharmaceutically innocuous or beneficial components, such as stabilizers, antioxidants, emulsifiers, coloring agents, binders or taste-modifying agents.
- The compounds are advantageously administered in amounts sufficient to effect the differentiation of promyelocytes to normal macrophages. Dosages are described above are suitable, it being understood that the amounts given are to be adjusted in accordance with the severity of the disease, and the condition and response of the subject as is well understood in the art.
- The formulations of the present invention comprise an active ingredient in association with a pharmaceutically acceptable carrier therefore and optionally other therapeutic ingredients. The carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulations and not deleterious to the recipient thereof.
- Formulations of the present invention suitable for oral administration may be in the form of discrete units as capsules, sachets, tablets or lozenges, each containing a predetermined amount of the active ingredient; in the form of a powder or granules; in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid; or in the form of an oil-in-water emulsion or a water-in-oil emulsion.
- Formulations for rectal administration may be in the form of a suppository incorporating the active ingredient and a carrier such as cocoa butter, or in the form of an enema.
- Formulations suitable for parenteral administration conveniently comprise a sterile oily or aqueous preparation of the active ingredient which is preferably isotonic with the blood of the recipient.
- Formulations suitable for topical administration include liquid or semi-liquid preparations such as liniments, lotions, applicants, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes; or solutions or suspensions such as drops; or as sprays.
- For asthma treatment, inhalation of powder, self-propelling or spray formulations, dispensed with a spray can, a nebulizer or an atomizer can be used. The formulations, when dispensed, preferably have a particle size in the range of 10 to 100μ.
- The formulations may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. The term “dosage unit” is meant a unitary, i.e. a single dose which is capable of being administered to a patient as a physically and chemically stable unit dose comprising either the active ingredient as such or a mixture of it with solid or liquid pharmaceutical diluentes or carriers.
- In its broadest application, the present invention relates to any analog of vitamin D which have the vitamin D nucleus. By “vitamin D nucleus”, it is meant a central part consisting of a substituted chain of five carbon atoms which correspond to positions 8, 14, 13, 17 and 20 of vitamin D3 and at the ends of which are connected at position 20 a structural moiety representing any of the typical side chains known for vitamin D type compounds (such as R as previously defined herein), and at position 8 the 5,7-diene moiety connected to the A-ring of an active 1α-hydroxy vitamin D analog (as illustrated by formula I herein). Thus, various known modifications to the six-membered C-ring and the five-membered D-ring typically present in vitamin D3 such as the lack of one or the other or both, are also embraced by the present invention.
-
- In the above formula Ia, the definitions of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8 and Z are as previously set forth herein. With respect to X1, X2, X3, X4, X5, X6, X7, X8 and X9, these substituents may be the same or different and are selected from hydrogen or lower alky, i.e. a C1-5 alkyl such as methyl, ethyl or n-propyl. In addition, paired substituents X1 and X4 or X5, X2 or X3 and X6 or X7, X4 or X5 and X8 or X9, when taken together with the three adjacent carbon atoms of the central part of the compound, which correspond to positions 8, 14, 13 or 14, 13, 17 or 13, 17, 20 respectively, can be the same or different and form a saturated or unsaturated, substituted or unsubstituted, carbocyclic 3, 4, 5, 6 or 7 membered ring.
-
- In the above formulae Ib, Ic, Id, Ie, If, Ig and Ih, the definitions of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, R, Z, X1, X2, X3, X4, X5, X6, X7 and X8 are as previously set forth herein. The substituent Q represents a saturated or unsaturated, substituted or unsubstituted, hydrocarbon chain comprised of 0, 1, 2, 3 or 4 carbon atoms, but is preferably the group —(CH2)k- where k is an integer equal to 2 or 3.
- Methods for making compounds of formulae Ia-Ih are known. Specifically, reference is made to International Application Number PCT/EP94/02294 filed Jul. 7, 1994 and published Jan. 19, 1995 under International Publication Number WO95/01960.
Claims (79)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/835,742 US6482812B2 (en) | 1998-05-21 | 2001-04-16 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US09/909,818 US6458827B2 (en) | 1998-05-21 | 2001-07-20 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/082,776 US6114317A (en) | 1998-05-21 | 1998-05-21 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US09/553,206 US6369099B1 (en) | 1998-05-21 | 2000-04-20 | Method of locking 1 α-OH of vitamin D compounds in axial orientation |
US09/835,742 US6482812B2 (en) | 1998-05-21 | 2001-04-16 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US09/909,818 US6458827B2 (en) | 1998-05-21 | 2001-07-20 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/835,742 Division US6482812B2 (en) | 1998-05-21 | 2001-04-16 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020006917A1 true US20020006917A1 (en) | 2002-01-17 |
US6458827B2 US6458827B2 (en) | 2002-10-01 |
Family
ID=22173397
Family Applications (9)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/082,776 Expired - Lifetime US6114317A (en) | 1998-05-21 | 1998-05-21 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US09/553,206 Expired - Lifetime US6369099B1 (en) | 1998-05-21 | 2000-04-20 | Method of locking 1 α-OH of vitamin D compounds in axial orientation |
US09/835,742 Expired - Fee Related US6482812B2 (en) | 1998-05-21 | 2001-04-16 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US09/909,818 Expired - Fee Related US6458827B2 (en) | 1998-05-21 | 2001-07-20 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US10/001,623 Expired - Fee Related US6506912B2 (en) | 1998-05-21 | 2001-10-31 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US10/241,555 Expired - Fee Related US6890914B2 (en) | 1998-05-21 | 2002-09-11 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US11/083,570 Expired - Fee Related US7071179B2 (en) | 1998-05-21 | 2005-03-18 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US11/083,577 Expired - Fee Related US7056904B2 (en) | 1998-05-21 | 2005-03-18 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US11/083,628 Expired - Fee Related US7094776B2 (en) | 1998-05-21 | 2005-03-18 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/082,776 Expired - Lifetime US6114317A (en) | 1998-05-21 | 1998-05-21 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US09/553,206 Expired - Lifetime US6369099B1 (en) | 1998-05-21 | 2000-04-20 | Method of locking 1 α-OH of vitamin D compounds in axial orientation |
US09/835,742 Expired - Fee Related US6482812B2 (en) | 1998-05-21 | 2001-04-16 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/001,623 Expired - Fee Related US6506912B2 (en) | 1998-05-21 | 2001-10-31 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US10/241,555 Expired - Fee Related US6890914B2 (en) | 1998-05-21 | 2002-09-11 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US11/083,570 Expired - Fee Related US7071179B2 (en) | 1998-05-21 | 2005-03-18 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US11/083,577 Expired - Fee Related US7056904B2 (en) | 1998-05-21 | 2005-03-18 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US11/083,628 Expired - Fee Related US7094776B2 (en) | 1998-05-21 | 2005-03-18 | Method of locking 1α-OH of vitamin D compounds in axial orientation |
Country Status (10)
Country | Link |
---|---|
US (9) | US6114317A (en) |
EP (1) | EP1077937A1 (en) |
JP (1) | JP2002515481A (en) |
KR (1) | KR100623127B1 (en) |
CN (1) | CN1308609A (en) |
AU (1) | AU768724B2 (en) |
CA (1) | CA2333103A1 (en) |
FI (1) | FI20002540L (en) |
NZ (1) | NZ508717A (en) |
WO (1) | WO1999059966A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010002397A1 (en) * | 1998-05-29 | 2001-05-31 | Bone Care International, Inc | 24-Hydroxyvitamin D, analogs and uses thereof |
US20020128240A1 (en) * | 1996-12-30 | 2002-09-12 | Bone Care International, Inc. | Treatment of hyperproliferative diseases using active vitamin D analogues |
US20030045509A1 (en) * | 2000-07-18 | 2003-03-06 | Bone Care International, Inc. | Stabilized hydroxyvitamin D |
US6531464B1 (en) | 1999-12-07 | 2003-03-11 | Inotek Pharmaceutical Corporation | Methods for the treatment of neurodegenerative disorders using substituted phenanthridinone derivatives |
US20030129194A1 (en) * | 1997-02-13 | 2003-07-10 | Bone Care International, Inc. | Targeted therapeutic delivery of vitamin D compounds |
US20030176403A1 (en) * | 1997-08-29 | 2003-09-18 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Combination chemotherapy |
US20030207810A1 (en) * | 1996-12-30 | 2003-11-06 | Bone Care International, Inc. | Method of treating malignancy associated hypercalcemia using active vitamin D analogues |
US20040023934A1 (en) * | 1993-09-10 | 2004-02-05 | Bone Care International, Inc. | Method of treating prostatic diseases using active vitamin D analogues |
US20060003950A1 (en) * | 2004-06-30 | 2006-01-05 | Bone Care International, Inc. | Method of treating prostatic diseases using a combination of vitamin D analogues and other agents |
US20060003021A1 (en) * | 2004-06-30 | 2006-01-05 | Bone Care International, Inc. | Method of treating breast cancer using a combination of vitamin d analogues and other agents |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6392071B1 (en) * | 1997-03-17 | 2002-05-21 | Wisconsin Alumni: Research Foundation | 26,27-homologated-20-EPI-2-alkylidene-19-nor-vitamin D compounds |
US6316642B1 (en) * | 1997-03-17 | 2001-11-13 | Wisconsin Alumni Research Foundation | 26,27-Homologated-20-EPI-2alkyl-19-nor-vitamin D compounds |
CA2326117A1 (en) * | 1998-03-27 | 1999-10-07 | Oregon Health Sciences University | Vitamin d and its analogs in the treatment of tumors and other hyperproliferative disorders |
US6114317A (en) * | 1998-05-21 | 2000-09-05 | Wisconsin Alumni Research Foundation | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US6800287B2 (en) | 1998-09-25 | 2004-10-05 | Yeda Research And Development Co., Ltd. | Copolymer 1 related polypeptides for use as molecular weight markers and for therapeutic use |
JP2005504279A (en) * | 2001-09-27 | 2005-02-10 | ザ・コカ−コーラ・カンパニー | Vitamin fortification of food |
KR100657048B1 (en) * | 2001-12-04 | 2006-12-12 | 테바 파마슈티컬 인더스트리즈 리미티드 | Processes for the measurement of the potency of glatiramer acetate |
EP1603530A1 (en) * | 2003-03-04 | 2005-12-14 | Teva Pharmaceutical Industries Limited | Combination therapy with glatiramer acetate and alphacalcidol for the treatment of multiple sclerosis |
AU2004247108A1 (en) * | 2003-06-11 | 2004-12-23 | Novacea, Inc | Treatment of immune-mediated disorders with active vitamin D compounds alone or in combination with other therapeutic agents |
US20050031699A1 (en) * | 2003-06-26 | 2005-02-10 | L'oreal | Porous particles loaded with cosmetically or pharmaceutically active compounds |
US6894037B2 (en) * | 2003-07-03 | 2005-05-17 | Wisconsin Alumni Research Foundation | 2-methylene-19-nor-20(S)-25-methyl-1α-hydroxycalciferol and its uses |
US20050009792A1 (en) * | 2003-07-08 | 2005-01-13 | Deluca Hector F. | (20S)-1alpha-hydroxy-2-methylene-19-nor-vitamin D3 and its uses |
US7214671B2 (en) * | 2004-02-19 | 2007-05-08 | Wisconsin Alumni Research Foundation | Use of 2-methylene-19-nor-20(S)-1α,25-dihydroxyvitamin D3 for the prophylaxis of bone diseases |
US7713951B2 (en) * | 2004-04-09 | 2010-05-11 | Wisconsin Alumni Research Foundation | 2-alkylidene-18,19-dinor-vitamin D compounds |
WO2006032053A2 (en) * | 2004-09-14 | 2006-03-23 | Teva Pharmaceutical Industries, Ltd. | Methods of treating symptoms of multiple sclerosis using vitamin d and related compounds |
US9338083B2 (en) * | 2007-12-28 | 2016-05-10 | At&T Intellectual Property I, Lp | ECMP path tracing in an MPLS enabled network |
EA201691980A1 (en) | 2009-01-27 | 2017-07-31 | БЕРГ ЭлЭлСи | WAYS TO REDUCE SIDE EFFECTS ASSOCIATED WITH CHEMOTHERAPY |
KR101880032B1 (en) | 2009-08-14 | 2018-07-20 | 베르그 엘엘씨 | Vitamin D3 and analogs thereof for treating alopecia |
US8217023B2 (en) * | 2009-10-02 | 2012-07-10 | Wisconsin Alumni Research Foundation | 19-nor-vitamin D analogs with 1,2- or 3,2-cyclopentene ring |
ES2545403T3 (en) * | 2010-03-23 | 2015-09-10 | Wisconsin Alumni Research Foundation | (20S) -2-methylene-19-nor-22-dimethyl-1alpha, 25-dihydroxyvitamin D3 and (20R) -2-methylene-19-nor-22-dimethyl-1alpha, 25-hydroxyvitamin D3 |
US8664206B2 (en) | 2010-03-23 | 2014-03-04 | Wisconsin Alumni Research Foundation | Diastereomers of 2-methylene-19-nor-22-methyl-1α,25-dihydroxyvitamin D3 |
WO2011119622A1 (en) * | 2010-03-23 | 2011-09-29 | Wisconsin Alumni Research Foundation | DIASTEREOMERS OF 2-METHYLENE-19-NOR-22-METHYL-1α,25- DIHYDROXYVITAMIN D3 |
US9141831B2 (en) | 2010-07-08 | 2015-09-22 | Texas Instruments Incorporated | Scheduler, security context cache, packet processor, and authentication, encryption modules |
JP6114292B2 (en) * | 2011-10-21 | 2017-04-12 | ウイスコンシン アラムニ リサーチ ファンデーション | 2-Methylene-vitamin D analogs and their use |
CA2913543C (en) | 2013-05-29 | 2024-01-09 | Berg Llc | Preventing or mitigating chemotherapy induced alopecia using vitamin d |
JP6971966B2 (en) * | 2015-08-05 | 2021-11-24 | ウイスコンシン アラムニ リサーチ ファンデーション | Synthesis and bioactivity of 2-methylene analogs of calcitriol and related compounds |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4666634A (en) * | 1984-12-05 | 1987-05-19 | Chugai Seiyaku Kabushiki Kaisha | vitamin D3 derivatives having a substituent at 2-position |
NZ232734A (en) * | 1989-03-09 | 1991-11-26 | Wisconsin Alumni Res Found | 19-nor vitamin d derivatives and pharmaceutical compositions |
AU650751B2 (en) * | 1991-05-28 | 1994-06-30 | Wisconsin Alumni Research Foundation | Novel synthesis of 19-nor vitamin D compounds |
JP3213092B2 (en) * | 1991-11-01 | 2001-09-25 | 中外製薬株式会社 | Vitamin D derivative having substituent at 2β position |
EP0619306B1 (en) * | 1993-04-05 | 1996-09-11 | Wisconsin Alumni Research Foundation | 19-Nor-vitamin D3 compounds with substituent at 2-position |
WO1996001811A1 (en) * | 1994-07-11 | 1996-01-25 | The Johns-Hopkins University | 2-substituted 1,25-dihydroxyvitamin d3 derivatives |
US5877168A (en) * | 1995-02-10 | 1999-03-02 | Chugai Seiyaku Kabushiki Kaisha | Vitamin D derivative with substituent at the 2β-position |
US5945410A (en) * | 1997-03-17 | 1999-08-31 | Wisconsin Alumni Research Foundation | 2-alkyl-19-nor-vitamin D compounds |
US6114317A (en) * | 1998-05-21 | 2000-09-05 | Wisconsin Alumni Research Foundation | Method of locking 1α-OH of vitamin D compounds in axial orientation |
US20030059749A1 (en) * | 2001-09-26 | 2003-03-27 | Keller Mary M. | Method for training advisors to students in highly mobile populations |
-
1998
- 1998-05-21 US US09/082,776 patent/US6114317A/en not_active Expired - Lifetime
-
1999
- 1999-03-10 CN CN99808426A patent/CN1308609A/en active Pending
- 1999-03-10 KR KR1020007013074A patent/KR100623127B1/en not_active IP Right Cessation
- 1999-03-10 NZ NZ508717A patent/NZ508717A/en not_active IP Right Cessation
- 1999-03-10 JP JP2000549585A patent/JP2002515481A/en active Pending
- 1999-03-10 EP EP99912367A patent/EP1077937A1/en not_active Withdrawn
- 1999-03-10 AU AU30754/99A patent/AU768724B2/en not_active Ceased
- 1999-03-10 WO PCT/US1999/005204 patent/WO1999059966A1/en active IP Right Grant
- 1999-03-10 CA CA002333103A patent/CA2333103A1/en not_active Abandoned
-
2000
- 2000-04-20 US US09/553,206 patent/US6369099B1/en not_active Expired - Lifetime
- 2000-11-20 FI FI20002540A patent/FI20002540L/en not_active IP Right Cessation
-
2001
- 2001-04-16 US US09/835,742 patent/US6482812B2/en not_active Expired - Fee Related
- 2001-07-20 US US09/909,818 patent/US6458827B2/en not_active Expired - Fee Related
- 2001-10-31 US US10/001,623 patent/US6506912B2/en not_active Expired - Fee Related
-
2002
- 2002-09-11 US US10/241,555 patent/US6890914B2/en not_active Expired - Fee Related
-
2005
- 2005-03-18 US US11/083,570 patent/US7071179B2/en not_active Expired - Fee Related
- 2005-03-18 US US11/083,577 patent/US7056904B2/en not_active Expired - Fee Related
- 2005-03-18 US US11/083,628 patent/US7094776B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040023934A1 (en) * | 1993-09-10 | 2004-02-05 | Bone Care International, Inc. | Method of treating prostatic diseases using active vitamin D analogues |
US20030207810A1 (en) * | 1996-12-30 | 2003-11-06 | Bone Care International, Inc. | Method of treating malignancy associated hypercalcemia using active vitamin D analogues |
US20020128240A1 (en) * | 1996-12-30 | 2002-09-12 | Bone Care International, Inc. | Treatment of hyperproliferative diseases using active vitamin D analogues |
US20070043005A1 (en) * | 1996-12-30 | 2007-02-22 | Genzyme Corporation | Treatment of hyperproliferative diseases using high doses of active vitamin d |
US20030129194A1 (en) * | 1997-02-13 | 2003-07-10 | Bone Care International, Inc. | Targeted therapeutic delivery of vitamin D compounds |
US20030176403A1 (en) * | 1997-08-29 | 2003-09-18 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Combination chemotherapy |
US20030216359A1 (en) * | 1997-08-29 | 2003-11-20 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Combination chemotherapy |
US20080003304A1 (en) * | 1997-08-29 | 2008-01-03 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Combination chemotherapy |
US20010002397A1 (en) * | 1998-05-29 | 2001-05-31 | Bone Care International, Inc | 24-Hydroxyvitamin D, analogs and uses thereof |
US20060211661A1 (en) * | 1998-05-29 | 2006-09-21 | Genzyme Corporation | 24 hydroxyvitamin d, analogs and uses thereof |
US7122530B2 (en) | 1998-05-29 | 2006-10-17 | Genzyme Corporation | 24-hydroxyvitamin D, analogs and uses thereof |
US6531464B1 (en) | 1999-12-07 | 2003-03-11 | Inotek Pharmaceutical Corporation | Methods for the treatment of neurodegenerative disorders using substituted phenanthridinone derivatives |
US6903083B2 (en) | 2000-07-18 | 2005-06-07 | Bone Care International, Inc. | Stabilized hydroxyvitamin D |
US20030045509A1 (en) * | 2000-07-18 | 2003-03-06 | Bone Care International, Inc. | Stabilized hydroxyvitamin D |
US20060003950A1 (en) * | 2004-06-30 | 2006-01-05 | Bone Care International, Inc. | Method of treating prostatic diseases using a combination of vitamin D analogues and other agents |
US20060003021A1 (en) * | 2004-06-30 | 2006-01-05 | Bone Care International, Inc. | Method of treating breast cancer using a combination of vitamin d analogues and other agents |
US7094775B2 (en) | 2004-06-30 | 2006-08-22 | Bone Care International, Llc | Method of treating breast cancer using a combination of vitamin D analogues and other agents |
Also Published As
Publication number | Publication date |
---|---|
JP2002515481A (en) | 2002-05-28 |
US6890914B2 (en) | 2005-05-10 |
US6506912B2 (en) | 2003-01-14 |
WO1999059966A1 (en) | 1999-11-25 |
US20050182035A1 (en) | 2005-08-18 |
US7056904B2 (en) | 2006-06-06 |
KR20010043737A (en) | 2001-05-25 |
CN1308609A (en) | 2001-08-15 |
NZ508717A (en) | 2004-01-30 |
US20050182034A1 (en) | 2005-08-18 |
US6482812B2 (en) | 2002-11-19 |
US6458827B2 (en) | 2002-10-01 |
US7094776B2 (en) | 2006-08-22 |
US6114317A (en) | 2000-09-05 |
FI20002540L (en) | 2001-01-04 |
EP1077937A1 (en) | 2001-02-28 |
KR100623127B1 (en) | 2006-09-12 |
US20020068723A1 (en) | 2002-06-06 |
CA2333103A1 (en) | 1999-11-25 |
US6369099B1 (en) | 2002-04-09 |
US20030040508A1 (en) | 2003-02-27 |
AU3075499A (en) | 1999-12-06 |
AU768724B2 (en) | 2004-01-08 |
US7071179B2 (en) | 2006-07-04 |
US20050164995A1 (en) | 2005-07-28 |
US20010025036A1 (en) | 2001-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6369099B1 (en) | Method of locking 1 α-OH of vitamin D compounds in axial orientation | |
US6806262B2 (en) | 2-ethyl and 2-ethylidene-19-nor-vitamin D compounds | |
US6440953B1 (en) | 1α-hydroxy-2-methylene-19-nor-homopregnacalciferol and its uses | |
US7741313B2 (en) | 17,20(E)-dehydro vitamin D analogs and their uses | |
US20040053813A1 (en) | Method of extending the dose range of vitamin D compounds | |
EP1143949B1 (en) | 19-nor-vitamin d3 compounds with calcemic activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: HERCULES TECHNOLOGY GROWTH CAPITAL, INC., CALIFORN Free format text: SECURITY AGREEMENT;ASSIGNOR:QUATRX PHARMACEUTICALS COMPANY;REEL/FRAME:022584/0669 Effective date: 20090330 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20141001 |