US20020006606A1 - MLK inhibitors for the treatment of neurological disorders - Google Patents
MLK inhibitors for the treatment of neurological disorders Download PDFInfo
- Publication number
- US20020006606A1 US20020006606A1 US09/886,964 US88696401A US2002006606A1 US 20020006606 A1 US20020006606 A1 US 20020006606A1 US 88696401 A US88696401 A US 88696401A US 2002006606 A1 US2002006606 A1 US 2002006606A1
- Authority
- US
- United States
- Prior art keywords
- jnk
- mlk
- compound
- cells
- cell death
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003112 inhibitor Substances 0.000 title claims description 52
- 208000012902 Nervous system disease Diseases 0.000 title claims description 16
- 208000025966 Neurological disease Diseases 0.000 title claims description 14
- 238000011282 treatment Methods 0.000 title description 18
- 102100025184 Mitogen-activated protein kinase kinase kinase 13 Human genes 0.000 claims abstract description 144
- 101001005609 Homo sapiens Mitogen-activated protein kinase kinase kinase 13 Proteins 0.000 claims abstract description 133
- 150000001875 compounds Chemical class 0.000 claims abstract description 102
- 230000000694 effects Effects 0.000 claims abstract description 97
- 238000000034 method Methods 0.000 claims abstract description 91
- 230000000926 neurological effect Effects 0.000 claims abstract description 65
- 230000016273 neuron death Effects 0.000 claims abstract description 59
- 241000124008 Mammalia Species 0.000 claims abstract description 41
- 239000003814 drug Substances 0.000 claims abstract description 23
- 230000001404 mediated effect Effects 0.000 claims abstract description 22
- 229940079593 drug Drugs 0.000 claims abstract description 21
- 208000023105 Huntington disease Diseases 0.000 claims abstract description 19
- 208000024827 Alzheimer disease Diseases 0.000 claims abstract description 15
- 108010055717 JNK Mitogen-Activated Protein Kinases Proteins 0.000 claims description 181
- 210000004027 cell Anatomy 0.000 claims description 175
- 102000019145 JUN kinase activity proteins Human genes 0.000 claims description 173
- 101000958409 Homo sapiens Mitogen-activated protein kinase kinase kinase 10 Proteins 0.000 claims description 75
- 102100038243 Mitogen-activated protein kinase kinase kinase 10 Human genes 0.000 claims description 74
- 210000002569 neuron Anatomy 0.000 claims description 70
- 230000006907 apoptotic process Effects 0.000 claims description 68
- 108091000080 Phosphotransferase Proteins 0.000 claims description 50
- 102000020233 phosphotransferase Human genes 0.000 claims description 50
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 38
- 229930195712 glutamate Natural products 0.000 claims description 38
- 239000003795 chemical substances by application Substances 0.000 claims description 33
- 101710137189 Amyloid-beta A4 protein Proteins 0.000 claims description 27
- 102100022704 Amyloid-beta precursor protein Human genes 0.000 claims description 27
- 101710151993 Amyloid-beta precursor protein Proteins 0.000 claims description 27
- DZHSAHHDTRWUTF-SIQRNXPUSA-N amyloid-beta polypeptide 42 Chemical compound C([C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(C)C)C1=CC=CC=C1 DZHSAHHDTRWUTF-SIQRNXPUSA-N 0.000 claims description 27
- 108090000623 proteins and genes Proteins 0.000 claims description 26
- 102000004169 proteins and genes Human genes 0.000 claims description 23
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 claims description 22
- 102100023132 Transcription factor Jun Human genes 0.000 claims description 21
- 101000628949 Homo sapiens Mitogen-activated protein kinase 10 Proteins 0.000 claims description 19
- 102100026931 Mitogen-activated protein kinase 10 Human genes 0.000 claims description 19
- VLSMHEGGTFMBBZ-UHFFFAOYSA-N alpha-Kainic acid Natural products CC(=C)C1CNC(C(O)=O)C1CC(O)=O VLSMHEGGTFMBBZ-UHFFFAOYSA-N 0.000 claims description 19
- 230000003492 excitotoxic effect Effects 0.000 claims description 19
- 231100000063 excitotoxicity Toxicity 0.000 claims description 19
- VLSMHEGGTFMBBZ-OOZYFLPDSA-N kainic acid Chemical compound CC(=C)[C@H]1CN[C@H](C(O)=O)[C@H]1CC(O)=O VLSMHEGGTFMBBZ-OOZYFLPDSA-N 0.000 claims description 19
- 229950006874 kainic acid Drugs 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 18
- 241001465754 Metazoa Species 0.000 claims description 15
- 101000950695 Homo sapiens Mitogen-activated protein kinase 8 Proteins 0.000 claims description 12
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 claims description 12
- 101001005602 Homo sapiens Mitogen-activated protein kinase kinase kinase 11 Proteins 0.000 claims description 12
- 102100037808 Mitogen-activated protein kinase 8 Human genes 0.000 claims description 12
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 claims description 12
- 102100025207 Mitogen-activated protein kinase kinase kinase 11 Human genes 0.000 claims description 12
- 230000001640 apoptogenic effect Effects 0.000 claims description 12
- 239000002581 neurotoxin Substances 0.000 claims description 12
- 231100000618 neurotoxin Toxicity 0.000 claims description 12
- 230000001225 therapeutic effect Effects 0.000 claims description 11
- 229920000155 polyglutamine Polymers 0.000 claims description 9
- 108010040003 polyglutamine Proteins 0.000 claims description 9
- 101001055085 Homo sapiens Mitogen-activated protein kinase kinase kinase 9 Proteins 0.000 claims description 8
- 102100026909 Mitogen-activated protein kinase kinase kinase 9 Human genes 0.000 claims description 8
- 101710138657 Neurotoxin Proteins 0.000 claims description 8
- 102000016252 Huntingtin Human genes 0.000 claims description 7
- 108050004784 Huntingtin Proteins 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 150000001413 amino acids Chemical class 0.000 claims description 6
- GJAWHXHKYYXBSV-UHFFFAOYSA-N quinolinic acid Chemical compound OC(=O)C1=CC=CN=C1C(O)=O GJAWHXHKYYXBSV-UHFFFAOYSA-N 0.000 claims description 6
- 210000004899 c-terminal region Anatomy 0.000 claims description 5
- 230000003833 cell viability Effects 0.000 claims description 5
- 230000002255 enzymatic effect Effects 0.000 claims description 5
- 102000002569 MAP Kinase Kinase 4 Human genes 0.000 claims description 4
- 108010068304 MAP Kinase Kinase 4 Proteins 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- 239000010452 phosphate Substances 0.000 claims description 4
- 238000012216 screening Methods 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 230000003285 pharmacodynamic effect Effects 0.000 claims description 2
- 102100023274 Dual specificity mitogen-activated protein kinase kinase 4 Human genes 0.000 claims 2
- 101710146518 Dual specificity mitogen-activated protein kinase kinase 4 Proteins 0.000 claims 2
- 230000004075 alteration Effects 0.000 claims 1
- 230000035899 viability Effects 0.000 claims 1
- 230000004770 neurodegeneration Effects 0.000 abstract description 18
- 208000015122 neurodegenerative disease Diseases 0.000 abstract description 9
- 230000001988 toxicity Effects 0.000 abstract description 8
- 231100000419 toxicity Toxicity 0.000 abstract description 8
- VLSMHEGGTFMBBZ-OOZYFLPDSA-M Kainate Chemical compound CC(=C)[C@H]1C[NH2+][C@H](C([O-])=O)[C@H]1CC([O-])=O VLSMHEGGTFMBBZ-OOZYFLPDSA-M 0.000 abstract description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 abstract 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 abstract 1
- 238000001890 transfection Methods 0.000 description 46
- 230000014509 gene expression Effects 0.000 description 41
- 230000004913 activation Effects 0.000 description 35
- 239000000203 mixture Substances 0.000 description 26
- 230000002401 inhibitory effect Effects 0.000 description 21
- 239000000872 buffer Substances 0.000 description 19
- 239000013604 expression vector Substances 0.000 description 19
- 235000018102 proteins Nutrition 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 18
- 102000005720 Glutathione transferase Human genes 0.000 description 17
- 108010070675 Glutathione transferase Proteins 0.000 description 17
- 108020001507 fusion proteins Proteins 0.000 description 17
- 102000037865 fusion proteins Human genes 0.000 description 17
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 17
- 102000018899 Glutamate Receptors Human genes 0.000 description 16
- 102220415795 c.161A>G Human genes 0.000 description 16
- 230000009223 neuronal apoptosis Effects 0.000 description 16
- 108010027915 Glutamate Receptors Proteins 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- DHCLVCXQIBBOPH-UHFFFAOYSA-N Glycerol 2-phosphate Chemical compound OCC(CO)OP(O)(O)=O DHCLVCXQIBBOPH-UHFFFAOYSA-N 0.000 description 12
- -1 JNK3) or MLK (e.g. Chemical compound 0.000 description 12
- 230000004186 co-expression Effects 0.000 description 12
- 239000002609 medium Substances 0.000 description 12
- 108090001035 mitogen-activated protein kinase kinase kinase 12 Proteins 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 11
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 11
- 239000013598 vector Substances 0.000 description 11
- 102000000079 Kainic Acid Receptors Human genes 0.000 description 10
- 230000030833 cell death Effects 0.000 description 10
- 239000013592 cell lysate Substances 0.000 description 10
- 239000012139 lysis buffer Substances 0.000 description 10
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 10
- 230000004952 protein activity Effects 0.000 description 10
- 108010069902 Kainic Acid Receptors Proteins 0.000 description 9
- 239000002299 complementary DNA Substances 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 238000002955 isolation Methods 0.000 description 9
- 238000000021 kinase assay Methods 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 108010024636 Glutathione Proteins 0.000 description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 8
- 229920004890 Triton X-100 Polymers 0.000 description 8
- 239000013504 Triton X-100 Substances 0.000 description 8
- 239000011324 bead Substances 0.000 description 8
- 230000007541 cellular toxicity Effects 0.000 description 8
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 8
- 229960003180 glutathione Drugs 0.000 description 8
- 230000005764 inhibitory process Effects 0.000 description 8
- 239000011734 sodium Substances 0.000 description 8
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 108090000426 Caspase-1 Proteins 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 7
- 102000000395 SH3 domains Human genes 0.000 description 7
- 108050008861 SH3 domains Proteins 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 238000012288 TUNEL assay Methods 0.000 description 7
- HMNZFMSWFCAGGW-XPWSMXQVSA-N [3-[hydroxy(2-hydroxyethoxy)phosphoryl]oxy-2-[(e)-octadec-9-enoyl]oxypropyl] (e)-octadec-9-enoate Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(COP(O)(=O)OCCO)OC(=O)CCCCCCC\C=C\CCCCCCCC HMNZFMSWFCAGGW-XPWSMXQVSA-N 0.000 description 7
- 230000002238 attenuated effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 230000037361 pathway Effects 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- 102000004196 processed proteins & peptides Human genes 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 230000000638 stimulation Effects 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 102100035904 Caspase-1 Human genes 0.000 description 6
- 102100029855 Caspase-3 Human genes 0.000 description 6
- 101000793880 Homo sapiens Caspase-3 Proteins 0.000 description 6
- 239000012722 SDS sample buffer Substances 0.000 description 6
- 229920002684 Sepharose Polymers 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 230000000971 hippocampal effect Effects 0.000 description 6
- 230000026731 phosphorylation Effects 0.000 description 6
- 238000006366 phosphorylation reaction Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 206010003591 Ataxia Diseases 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 125000003275 alpha amino acid group Chemical group 0.000 description 5
- 210000003169 central nervous system Anatomy 0.000 description 5
- 230000002068 genetic effect Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 230000001537 neural effect Effects 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 239000012679 serum free medium Substances 0.000 description 5
- 230000019491 signal transduction Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 4
- 239000007995 HEPES buffer Substances 0.000 description 4
- 101150041215 JNK gene Proteins 0.000 description 4
- 108010029485 Protein Isoforms Proteins 0.000 description 4
- 102000001708 Protein Isoforms Human genes 0.000 description 4
- 238000007792 addition Methods 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 210000004556 brain Anatomy 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 230000000699 topical effect Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 206010012289 Dementia Diseases 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 3
- 229930040373 Paraformaldehyde Natural products 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 3
- ZKHQWZAMYRWXGA-KNYAHOBESA-N [[(2r,3s,4r,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] dihydroxyphosphoryl hydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)O[32P](O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KNYAHOBESA-N 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 208000029028 brain injury Diseases 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000003920 cognitive function Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 239000012133 immunoprecipitate Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 208000028867 ischemia Diseases 0.000 description 3
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 3
- 108010052968 leupeptin Proteins 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 229920002866 paraformaldehyde Polymers 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000013042 tunel staining Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 2
- 206010068597 Bulbospinal muscular atrophy congenital Diseases 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 208000027747 Kennedy disease Diseases 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 102000016979 Other receptors Human genes 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000011097 chromatography purification Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- MWEQTWJABOLLOS-UHFFFAOYSA-L disodium;[[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-oxidophosphoryl] hydrogen phosphate;trihydrate Chemical compound O.O.O.[Na+].[Na+].C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP([O-])(=O)OP(O)([O-])=O)C(O)C1O MWEQTWJABOLLOS-UHFFFAOYSA-L 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001114 immunoprecipitation Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000004941 influx Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229940043355 kinase inhibitor Drugs 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000007512 neuronal protection Effects 0.000 description 2
- 230000000324 neuroprotective effect Effects 0.000 description 2
- 230000007135 neurotoxicity Effects 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004017 serum-free culture medium Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- PLRACCBDVIHHLZ-UHFFFAOYSA-N 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Chemical compound C1N(C)CCC(C=2C=CC=CC=2)=C1 PLRACCBDVIHHLZ-UHFFFAOYSA-N 0.000 description 1
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 102100024378 AF4/FMR2 family member 2 Human genes 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 102100032187 Androgen receptor Human genes 0.000 description 1
- 102000007371 Ataxin-3 Human genes 0.000 description 1
- 206010003694 Atrophy Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108091005462 Cation channels Proteins 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 206010008748 Chorea Diseases 0.000 description 1
- 108010077544 Chromatin Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 201000008163 Dentatorubral pallidoluysian atrophy Diseases 0.000 description 1
- 201000010374 Down Syndrome Diseases 0.000 description 1
- 101100015729 Drosophila melanogaster drk gene Proteins 0.000 description 1
- 206010052804 Drug tolerance Diseases 0.000 description 1
- 108030004793 Dual-specificity kinases Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 208000014094 Dystonic disease Diseases 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 208000001914 Fragile X syndrome Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000833172 Homo sapiens AF4/FMR2 family member 2 Proteins 0.000 description 1
- 101000775732 Homo sapiens Androgen receptor Proteins 0.000 description 1
- 101001030705 Homo sapiens Huntingtin Proteins 0.000 description 1
- 101100457330 Homo sapiens MAPK10 gene Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000012825 JNK inhibitor Substances 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 208000002569 Machado-Joseph Disease Diseases 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 101000805948 Mus musculus Harmonin Proteins 0.000 description 1
- 101001135571 Mus musculus Tyrosine-protein phosphatase non-receptor type 2 Proteins 0.000 description 1
- 206010068871 Myotonic dystrophy Diseases 0.000 description 1
- 208000029955 Nervous System Heredodegenerative disease Diseases 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000033063 Progressive myoclonic epilepsy Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102100031426 Ras GTPase-activating protein 1 Human genes 0.000 description 1
- 108050004017 Ras GTPase-activating protein 1 Proteins 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 208000009415 Spinocerebellar Ataxias Diseases 0.000 description 1
- 208000036834 Spinocerebellar ataxia type 3 Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 206010042928 Syringomyelia Diseases 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000037444 atrophy Effects 0.000 description 1
- 230000003376 axonal effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 150000003938 benzyl alcohols Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000030570 cellular localization Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 208000025434 cerebellar degeneration Diseases 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 208000012601 choreatic disease Diseases 0.000 description 1
- 210000003483 chromatin Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000007012 clinical effect Effects 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 208000010118 dystonia Diseases 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940079360 enema for constipation Drugs 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 231100000776 exotoxin Toxicity 0.000 description 1
- 239000002095 exotoxin Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003825 glutamate receptor antagonist Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 150000002307 glutamic acids Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 101150098203 grb2 gene Proteins 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 210000004295 hippocampal neuron Anatomy 0.000 description 1
- 102000054185 human HTT Human genes 0.000 description 1
- 102000048531 human MAP3K10 Human genes 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 208000037906 ischaemic injury Diseases 0.000 description 1
- 230000000366 juvenile effect Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000000626 neurodegenerative effect Effects 0.000 description 1
- 230000007996 neuronal plasticity Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 208000021090 palsy Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000009518 penetrating injury Effects 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 201000003624 spinocerebellar ataxia type 1 Diseases 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 230000006354 stress signaling Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000002889 sympathetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 206010048627 thoracic outlet syndrome Diseases 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 238000003146 transient transfection Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5058—Neurological cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/48—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
- C12Q1/485—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5014—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
- G01N33/5017—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity for testing neoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
- G01N33/6896—Neurological disorders, e.g. Alzheimer's disease
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/04—Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2510/00—Detection of programmed cell death, i.e. apoptosis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2835—Movement disorders, e.g. Parkinson, Huntington, Tourette
Definitions
- Excitotoxicity is related to excessive activation of glutamate receptors which results in neuronal cell death.
- the physiological function of glutamate receptors is the mediation of ligand-gated cation channels with the concomitant influx of calcium, sodium and potassium through this receptor-gated channel.
- the influx of these cations is essential for maintaining membrane potentials and the plasticity of neurons which in itself plays a pivotal role in cognitive function of the central nervous system.
- Excitotoxicity plays an important role in neuronal cell death following acute insults such as hypoxia, ischemia, stroke and trauma, and it also plays a significant role in neuronal loss in AIDS dementia, epilepsy, focal ischemia. Coyle, J. T. & Puttfarken, P., Science, 262:689-695 (1993).
- Neurodegenerative disorders such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of a specific population of neurons in the central nervous system.
- JNKs c-Jun N-terminal kinases
- MLKs Mixed-lineage kinases
- This invention relates to the discovery that inhibiting a JNK or MLK within a hippocampal neuronal cell can protect the cell from apoptosis.
- JNK and MLK can be used as drug targets to screen for therapeutic agents to prevent glutamate or kainic acid mediated toxicity, to block excitotoxicity and to prevent neuronal loss in a variety of neurological conditions, such as Huntington's disease and Alzheimer's disease.
- a method for assessing a compound's ability to inhibit neuronal cell death, and thus to identify compounds that can be used to prevent and/or treat neurological conditions.
- neuronal cells having activated MLK and/or JNK activity are contacted with a compound and the number of neuronal cells that die is determined.
- a decrease in the number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to inhibit neuronal cell death.
- the neuronal cells are apoptotic neurons (i.e., cell death caused by a neurological condition) or neurons that are induced to undergo apoptosis, such as by contacting the neuronal cells with neurotoxin (e.g., glutamate, quinolinic acid or kainic acid); or by genetic manipulation of the neuronal cells.
- neurotoxin e.g., glutamate, quinolinic acid or kainic acid
- HN33 hippocampal neuronal cells are preferred.
- the invention features a method for testing a compound's potential as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition by (1) contacting a compound with a JNK (e.g., JNK3) or MLK (e.g., MLK2); (2) measuring the level of a JNK-associated or MLK-associated activity (e.g., a kinase activity); and (3) comparing the level of the JNK-associated or MLK-associated activity in the presence of the compound with the level of the JNK-associated or MLK-associated activity in the absence of the compound.
- the compound is a potentially useful drug for treating the mammal when the level of the JNK-associated or MLK-associated activity in the presence of the compound is less than the level of the JNK-associated or MLK-associated activity in the absence of the compound.
- the JNK or MLK can be within a cell, which can be an animal (e.g., human) cell in vivo.
- the JNK-associated or MLK-associated activity can be apoptosis, which can be measured by a TUNEL assay (described below).
- Apoptosis within such a cell can be induced by introducing into the cell a huntingtin protein that has at least 40 consecutive glutamic acids (e.g., polyglutamine stretch-expanded huntingtin).
- apoptosis can be induced by introducing info the cell the C-terminal 100 amino acids of an amyloid precursor protein (APP).
- the huntingtin protein or the amyloid precursor protein is introduced by a vector, especially a nucleic acid vector.
- the JNK-associated or MLK-associated activity can be neurodegeneration.
- the invention also features a method for testing a compound's potential as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition by (1) contacting a compound with a neuronal cell containing a JNK (e.g., JNK3) or MLK (e.g., MLK2); (2) measuring the level of a JNK or MLK protein activity (e.g., kinase activity, such as the presence or amount of phosphorylated product) in the cell; and (3) comparing the level of the JNK or MLK protein activity in the cell in the presence of the compound with the level of the JNK or MLK protein activity in the cell in the absence of the compound.
- a mammal e.g., a human
- the compound is a potentially useful drug for treating the mammal when the level of the JNK or MLK protein activity in the cell in the presence of the compound is less than the level of the JNK or MLK protein activity in the cell in the absence of the compound.
- cell viability can be ascertained by determining the degree of neuronal cell death, wherein a decreased number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the cbmpound's ability to inhibit JNK or MLK protein activity, thereby preventing neuronal cell death.
- the invention provides a method for testing the potential of a JNK or MLK inhibitor as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition.
- the method can be performed on compounds identified as JNK and/or MLK inhibitory agents using the methods of this invention to confirm their inhibitory effectiveness under apoptotic conditions.
- the method provides (1) incubating a neuronal cell in the presence of a JNK or MLK inhibitor; (2) contacting surviving cells with an agent that induces apoptosis in the cell; and (3) comparing the occurrence of apoptosis in the cell in the presence of the JNK or MLK inhibitor with the occurrence of apoptosis in the cell in the absence of the JNK or MLK inhibitor.
- the compound is a potentially useful drug for treating the mammal when the occurrence of apoptosis in the cell in the presence of the JNK or MLK inhibitor is less than the occurrence of apoptosis in the cell in the absence of the JNK or MLK inhibitor.
- the methods of the invention are used to identify inhibitors of JNK or MLK which are potentially useful for the treatment of a neurological condition, including neuronal cell death following acute insults such as hypoxia, ischemia, stroke, and trauma.
- Other neurological conditions treatable with compounds identified by the methods of the invention include AIDS dementia, epilepsy, focal ischemia, Huntington's disease, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Each of these conditions are characterized by the progressive loss of a specific population of neurons in the central nervous system.
- the methods of the invention are particularly useful in finding compounds which can be used to prevent and/or treat neurological conditions, including genetic neurological conditions.
- the invention also pertains to compounds, identified using the methods described herein, that inhibit MLK and/or JNK activity and that prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, particularly neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease.
- the invention also provides methods for preventing and/or treating neuronal conditions in a mammal comprising administering to a mammal, in need thereof, an effective therapeutic amount of a compound that inhibits JNK and/or MLK.
- the inhibitory effects of the compound will reduce and/or prevent neuron cell death occurring in a mammal susceptible to or having a neurological condition.
- the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death.
- JNK and/or MLK inhibitors identified using any of the methods described herein are useful as therapeutic or prophylatic drugs to prevent neuronal loss.
- FIG. 1 is a graph illustrating a time course of cell death upon expression of normal or mutated huntingtin in HN33 cells.
- pcDNA1 solid box
- pFL16HD circles
- pFL48HD triangles
- pFL89HG open boxes
- FIG. 2 is a graph illustrating apoptotic cell death induced by expression of mutated huntingtin with 48 or 89 polyglutamine repeats was completely blocked by added the ICE or CPP32 inhibitor in the medium indicating HN33 cells are undergoing apoptotic cell death.
- FIG. 3 is a graph illustrating the fold of increased JNK activity in HN33 cells upon expression of mutated huntingtin with 48 or 89 polyglutamine repeats.
- FIG. 4 is a graph illustrating apoptotic cell death of HN33 cells induced by mutated huntingtin with either 48 or 89 polyglutamine repeats was inhibited by co-expression of dominant negative mutant form of SEK 1 but not wild-type SEK1.
- FIG. 5 is a graph illustrating apoptotic cell death of HN33 cells induced by the treatment of glutamate (250 ⁇ M) or kainic acid (kainate, 200 ⁇ M) was significantly attenuated by expression of dominant negative mutant form of SEK1 (K54R) but not wild-type SEK1, indicating that glutamate or kainate induced the activation of the SEK1-JNK pathway to mediate neuronal apoptosis.
- FIG. 6 is a graph illustrating the fold of increased JNK activity in HN33 cells upon stimulation of glutamate or kainate receptor indicating that glutamate or kainate receptor activation also stimulated the JNK activity like expression of mutated huntingtin.
- FIG. 7 is a graph illustrating a time course of cell death upon following transfection of pcDNA1 (control) APP or APP deletion mutant APP-C-100, pcDNA1 (open box), wild-type APP (solid diamond), APP-C-100 (solid circles).
- FIG. 8 is a graph illustrating the fold of increased JNK activity in HN33 cells following transfection of pcDNA1 (control) APP or APP deletion mutant APP-C-100, indicating that expression of APP-C-100 stimulated the JNK activity.
- FIG. 9 is a graph illustrating apoptotic cell death of HN33 cells induced by expression of APP-C-100 was significantly attenuated by co-expression of dominant negative mutant form of SEK1 (K54R) but not wild-type SEK1, indicating that amyloid precursor protein induced the activation of the SEK1-JNK pathway to mediate neuronal apoptosis.
- FIG. 10 is a graph illustrating a time course of cell death following transfection of pRK5CMV (control), wild-type MLK2 or kinase dead version of MLK2, pRK5CMV (open box), wild-type MLK2 (solid diamond), kinase dead MLK2 (solid circles).
- FIG. 11 is a graph illustrating apoptotic cell death of HN33 cells induced by expression of MLK2 was significantly attenuated by co-expression of dominant negative mutant form of SEK1 (K54R) but not wild-type SEK1, indicating that MLK2 induced the activation of the SEK1-JNK pathway to mediate neuronal apoptosis.
- FIG. 12 is a graph illustrating apoptotic cell death of HN33 cells induced by expression mutated huntingtin with 48 or 89 CAG repeats was blocked by co-expression of kinase dead MLK2, indicating that the MLK2-associated activity mediated neuronal cell death in Huntington's diseases.
- FIG. 13 is a graph illustrating apoptotic cell death of HN33 cells induced by the treatment of glutamate (250 ⁇ M) or kainic acid (kainate 200 ⁇ M) was blocked by expression of kinase dead MLK2 indicating that the MLK2-associated activity mediated neuronal cell death in neuronal excitotoxicity induced by glutamate or kainate receptor activation.
- FIG. 14 is a graph illustrating apoptotic cell death of HN33 cells induced by expression of deletion APP mutant APP-C-100 was blocked by co-expression of kinase dead MLK2, indicating that the MLK2-associated activity mediated neuronal cell death in Alzheimer's diseases.
- the invention relates to the discovery that two families of proteins, JNK and MLK, can serve as targets for the treatment of neurological conditions. It has been discovered that inhibition of JNK 3 , a member of the JNK family, and MLK2, a member of the MLK family, can protect a neuronal cell from apoptosis induced by polyglutamine-expanded huntingtin, whose expression caused HD in humans. The Huntington's Disease Collaborative Research Group, Cell, 72:971-983 (1993). Thus, the invention provides a method for assessing compounds for their potential as drugs for the treatment of neurological conditions, such as Huntington's disease, by determining whether the compound can inhibit a JNK- or MLK-associated activity.
- MLK and JNK participate in a biochemical cascade (activation of MLK-SEK1-JNK1) that mediates neuronal cell toxicity.
- glutamate, kainic acid, or other receptor agonists Upon stimulation by glutamate, kainic acid, or other receptor agonists, the glutamate receptor, located at the cell surface, is activated and interacts with associated proteins (e.g., PDZ domain-containing proteins) whose SH3 domain in turn binds to a MLK protein, thereby activating its kinase activity.
- the MLK protein directly binds to and stimulates a SEK1 protein which in turn binds to and stimulates JNK. Over stimulation of JNK can lead to neuronal apoptosis (cell death).
- MLK is inhibited by a protein, such as normal huntingtin, binding to its SH3 domain thus inhibiting the enzyme's kinase activity. This inhibition prevents the formation of the cascade resulting in no or little JNK activity, thereby preserving neuronal cell viability.
- a protein such as normal huntingtin
- HN33 an immortalized rat hippocampal neuronal cell line
- HN33 has been described in detail in Hammond, D. N., et al., Brain Res., 512:190-200 (1990); the entire teachings of which are incorporated herein by reference.
- the hippocampal neurons serve as a potential target of mutated huntingtin, mutated amyloid precursor protein (APP), as well as glutamate stimulation.
- APP mutated amyloid precursor protein
- JNK activation occurs several hours prior to neuronal apoptosis suggesting that it is an early signal for the induction of neuronal apoptosis.
- SEK1 stress signaling kinase
- JNK is a common cellular mediator for induction of neuronal cell death mediated by both glutamate and mutated huntingtin.
- the mechanism for how mutated huntingtin stimulates JNKs was also examined.
- the huntingtin protein contains multiple SH3 domain binding sites.
- MLK1, MLK2 and MLK3 are the only known kinases that directly activate the SEK1-JNK cascade and contain a SH3 dorhain as well as a SH3 domain binding site.
- MLK2 is a neuronal form of MLKs.
- MLKs in particular MLK2
- MLKs The presence of MLKs, in particular MLK2, appears to be required for mutated huntingtin-mediated JNK activation and neuronal apoptosis.
- MLKs were expressed in HN33 cells where expression of mutated huntingtin induced JNK activation and apoptosis, while in both 293 and CHO cells where MLKs are absent, the expression of mutated huntingtin did not generate any cell toxicity in 293 and CHO cells.
- co-expression of mutated huntingtin along with MLK2 in 293 cells caused rapid apoptotic cell death.
- the SH3 domain of MLKs is required for their proper cellular localization and activation of the SEK1-JNK pathway.
- the SH3 binding motif is found in six other proteins involved in polyglutamine repeat-expanded neurodegenerative hereditary diseases, such as ataxia-1, ataxia-2, ataxia-6, ataxia-7, Kennedy disease, dentatorubral and pallidoluysian atrophy (DRPLA).
- the normal (wild-type) counter-part proteins bind to and suppress MLK activity, in contrast to the mutated protein form which lose such ability, resulting in the over-activation of the MLK2-SEK1-JNK pathway in neurons.
- JNK kinases phosphorylate and activate the transcription factor c-Jun which mediates apoptosis.
- c-Jun may serve as an important mediator for neuronal apoptosis induced by a variety of environmental stresses.
- deprivation of growth factor in these primary cultures lead to persistent activation of JNKs and consequently the phosphorylation of c-Jun.
- Increased c-Jun expression and activation are also implicated in the generation of the neuronal apoptotic process induced by glutamate or kainic acid.
- Administration of glutamate or quinolinic acid, a N-methyl-D-aspartate (NMDA) receptor agonist, or kainic acid in rats results in a rapid induction of c-Jun expression and neuronal apoptosis.
- NMDA N-methyl-D-aspartate
- the over-activation (or stimulation) of the MLK-SEK1-JNK cascade leads to the increase of expression, activation and translocation of c-Jun which is responsible for neuronal cell death in these, and other, neurodegenerative disorders.
- inhibition of this cascade can protect neurons from toxicity induced by endo- and/or exo-toxins including, but not limited to, mutated proteins like huntingtin, quinolinic acid, kainic acid, glutamate over-excitation as well as other etiological agents.
- JNK and MLK can be used as targets for the development of inhibitory compounds of JNK- and MLK-associated activity, and such compounds can be used to prevent neuronal loss, such as induced by excitotoxicity or glutamate- or kainic acid-mediated toxicity.
- a “JNK-associated activity” is any biochemical, cellular, or physiological property that varies with any variation in JNK gene transcription or translation, or JNK protein activity.
- a “MLK-associated activity” is any biochemical, cellular, or physiological property that varies with any variation in MLK gene transcription or translation, or MLK protein activity.
- a JNK or MLK inhibitor is a compound that inhibits a JNK or MLK protein activity.
- a JNK or MLK protein activity is any measurable biochemical activity possessed by the protein, e.g., a kinase activity or an ability to bind to another protein such as c-Jun.
- Inhibitors of MLKs identified by the methods described herein can block persistent activation of glutamate receptor-induced over-activation of MLKs without affecting other receptor functions, such as the involvement of neuronal plasticity and cognitive functions. Inhibition of MLKs will attenuate the JNK activity in neurons and protect neurons from excitotoxicity thereby preventing neuronal loss in these diseases. Inhibitors of JNKs or MLKs identified by the methods described herein can suppress glutamate receptor-induced activation of the MLK-SEK1-JNK cascade and prevent neuronal apoptosis in various neurological diseases.
- neurological condition as used herein is intended to embrace disorders, disease states and disturbances which cause or result in neuronal cell injury, compromise or cell death.
- Neurological conditions can result from axonal degeneration, ischemia due to stroke, heart arrest, exposure, exposure to neurotoxins such as, but not limited to, glutamate, kainic acid and quinolinic acid, MPTP exposure to bacterial or viral toxins, impaired function or dysfunction of neurons such as increase or decrease of neurotransmitter synthesis and/or release.
- Neurological diseases and disturbances include, but are not limited to, Alzheimer's disease; Parkinson's disease; motor neuron diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease and syringomyelia; ataxias, dementias; chorea; dystonia; dyslinesia; encephalomyelopathy; parenchymatous cerebellar degeneration; Kennedy disease; Down syndrome; progressive supernuclear palsy; DRPLA, stroke or other ischemic injuries; thoracic outlet syndrome, trauma; electrical brain injuries; decompression brain injuries; AIDS dementia; multiple sclerosis; epilepsy; concussive or penetrating injuries of the brain or spinal cord; peripheral neuropathy; brain injuries due to exposure of military hazards such as blast over-pressure, ionizing radiation, and genetic neurological conditions.
- ALS amyotrophic lateral sclerosis
- Huntington's disease and syringomyelia a progressive supernuclear palsy
- DRPLA stroke or other
- genetic neurological condition is meant a neurological condition, or a predisposition to it, that is caused at least in part by or correlated with a specific gene or mutation within that gene; for example, a genetic neurological condition can be caused by or correlated with more than one specific gene.
- genetic neurological conditions include, but are not limited to, Alzheimer's disease, Huntington's disease, spinal and bulbar muscular atrophy, fragile X syndrome, FRAXE mental retardation, myotonic dystrophy, spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy, and Machado-Joseph disease.
- a method for assessing a compound's ability to inhibit neuronal cell death.
- neuronal cells having activated MLK and/or JNK activity are contacted with a compound and the number of neuronal cells that die is determined.
- a decrease in the number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to inhibit neuronal cell death.
- the neuronal cells are apoptotic neurons or neurons that are induced to undergo apoptosis neuronal cells with neurotoxin or genetic manipulation.
- a neuronal cell useful in the methods of the invention is preferably susceptible to JNK-dependent or MLK-dependent apoptosis.
- a cell can express a polypeptide known to be associated with or induce a neurodegenerative disease, such as a polyglutamine-expanded polypeptide (e.g., polyglutamine-expanded huntingtin) or the C-terminal 100 amino acid fragment of an amyloid precursor protein.
- a preferred neuronal cell that is useful for assessing MLK and/or JNK inhibitors is an immortalized rat hippocampal neuronal cell line HN33, with or without genetic manipulations to induce apoptosis, as described above.
- the invention features a method for testing a compound's potential as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition by (1) contacting a compound with a JNK (e.g., JNK3) or MLK (e.g., MLK2); (2) measuring the level of a JNK-associated or MLK-associated activity (e.g., a kinase activity); and (3) comparing the level of the JNK-associated or MLK-associated activity in the presence of the compound with the level of the JNK-associated or MLK-associated activity in the absence of the compound.
- the compound is a potentially useful drug for treating the mammal when the level of the JNK-associated or MLK-associated activity in the presence of the compound is less than the level of the JNK-associated or MLK-associated activity in the absence of the compound.
- a putative inhibitory agent is incubated in vitro in the presence of JNK and appropriate JNK substrates, such as c-Jun and a phosphate donor like adenosine triphosphate (ATP), under conditions sufficient for enzymatic activity; followed by isolating the phosphorylated product.
- Isolated JNK protein including JNK1, JNK2 and JNK3, can be obtained for this, as well as other assays, by several different molecular and chromatographic methods known to those skilled in the art.
- the JNK polypeptides useful in the methods of the present invention are preferably wild-type whose sequence is known and readily available.
- the human JNK3 polypeptide is described by Martin et al., Mol.
- JNK proteins useful in the methods of the invention include those described in GenBank Accession Nos. U17743, U49249 and AF006689.
- Isolated JNK protein from about 0.5 ⁇ g to about 2 ⁇ g of purified JNK, is incubated with substrate in an aqueous medium, such as a kinase buffer (containing about: 20 mM HEPES, pH 7.5, 15 mM MgCl 2 , 15 mM ⁇ -glycerophosphate, 0.1 mM Na 2 PO 4 and 2 mM dithiothreitol) at about 30° C. for approximately 15 minutes.
- a kinase buffer containing about: 20 mM HEPES, pH 7.5, 15 mM MgCl 2 , 15 mM ⁇ -glycerophosphate, 0.1 mM Na 2 PO 4 and 2 mM dithiothreitol
- the substrates that can be used in this reaction include, but are not limited to, c-Jun, from about 1 ⁇ g to about 3 ⁇ g, a known substrate for JNK's kinase activity, and the phosphate donor, ATP (approximately 2.5 mM). For detection purposes, 5 ⁇ Ci of [ ⁇ - 32 ]ATP can be used as a co-substrate.
- the assay system can also include in the incubation mixture a putative inhibitory JNK agent. The reaction can be terminated by addition of Laemmeli buffer, approximately 20 ⁇ L. The addition of this buffer will also prepare the sample for product analysis.
- the reaction mixture can be subjected to sodium dodecylsulfate polyacrylamide gel electrophoresis (hereinafter SDS-PAGE) in order to determine the amount of phosphorylated c-Jun that was formed in the reaction.
- SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis
- the radioactivity emitted from the ⁇ 32 P can be measured using conventional radioactivity gel detection systems, such as an X-ray followed by ⁇ -scan.
- the phosphorylated c-Jun product will have a different migration rate along the gel when compared to the labeled ATP co-substrate and therefore will not be confused with the kinase product.
- a determination can then be made concerning whether the test agent inhibited JNK's activity by comparing reaction mixtures having the agent present to reaction mixtures without addition of the compound.
- JNK substrates such as c-Jun and ATP
- a cellular extract containing putative JNK enzyme activity, including JNK1, JNK2 and JNK3.
- An inhibitory agent to be tested can be placed in the reaction vial along with the other reactants to examine the efficacy of the agent.
- the reaction and detection protocol can be conducted in the same manner as that describe above for the in vitro assay without cellular extract.
- the cellular extract can originate from a cell or tissue culture system, or can be prepared from whole tissue employing isolation and purification protocols known to those skilled in the art.
- the invention pertains to contacting a cell with a putative inhibitory agent in order to screen for inhibitory agents of JNK activity, including JNK1, JNK2 and JNK3.
- the cell to be contacted can be of a cell or tissue culture system.
- the putative inhibitory agent is delivered to the cell under conditions sufficient for enzymatic activity in any of a number of ways known to those skilled in the art. If the agent is not membrane permeable, then the agent can be delivered into the cell via electroporation, or if it is a polypeptide, a nucleic acid or viral vector can be employed. If the cell has JNK activity present in an active form, then JNK can be stimulated by delivering to the cell SEK1, a known stimulator of JNK.
- the cell can be transfected with an operatively linked JNK gene.
- “Operatively linked” is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleic acid sequence.
- any number of protocols known to those skilled in the art can be used including, but not limited to, Western blot analysis and apoptosis analysis.
- Antibodies both monoclonal and polyclonal, can be made against epitopes derived from the site on the JNK substrate bound to a phosphate group.
- a SDS-PAGE procedure can be performed on homogenized cell extract and subsequently subjected to Western blot analysis using an antibody specific for a phosphorylated JNK substrate, such as c-Jun.
- An apoptosis analysis can also be performed in order to determine what effect, if any, the putative inhibitory agent has on JNK-associated activity.
- an expression vector encoding JNK3 is transfected into an appropriate target cell to induce apoptosis.
- Target cells are cells that are susceptible to apoptosis.
- Rat hippocampal neuronal cell line HN33 is a preferred target cell.
- target cells which naturally contain JNK can be used. In either event, the target cells are cultured in the presence or absence of a test agent and the occurrence of apoptosis determined using known techniques. For example, staining the cell with Hoechst 3342 (Sigma Chemical Co.) and observing the stained cell under the microscope.
- apoptosis can be determined by using the TUNEL assay as described by Thomas, L. B., et al., Exp. Neurol., 133:265-272 (1995). See also U.S. Pat. No. 5,593,879, for techniques for examples of stains used to distinguish apoptotic cells.
- the invention pertains to a method for screening potential inhibitory agents of JNK activity, including JNK1, JNK2 and JNK3, by administering to an animal, including mammals, the agent and determining what effect, if any, the agent has on the animal's physiological status.
- the animal is given an amount of test agent sufficient to allow for proper pharmacodynamic absorption and tissue distribution in the animal.
- the animal used is an example of a model system mimicking a neurological condition.
- a normal animal is preferably also subjected to the treatment.
- an animal model afflicted with a neurological condition can be administered a JNK and/or MLK inhibitor and the symptoms associated with the neurological condition are evaluated. Attenuation, amelioration or improvement of the neurodegenerative symptoms can be assessed, whereby improvement is indicative of the inhibitors ability to prevent and/or treat the neurological condition.
- MLK substrates include, but are not limited to, ATP and SEK1, a protein known to activate JNKs by phosphorylation.
- MLK polypeptides useful in the methods of the present invention are preferably wild-type whose sequence is known and readily available.
- the human MLK2 polypeptide is described by Dorow, D. S., et al., Eur. J. Biochem., 234:491-500 (1995).
- Another MLK protein useful in the methods of the invention is described in GenBank Accession No. L32976.
- JNK and MLK useful in the methods of the invention are hot limited to the naturally occurring sequences described above. JNK and MLK containing substitutions, deletions, or additions can also be used, provided that those polypeptides retain at least one activity associated with the naturally occurring polypeptide and are at least 70% identical to the naturally occurring sequence.
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid sequence).
- the amino acid residues at corresponding amino acid positions are then compared.
- a position in the first sequence is occupied by the same amino acid residue as the corresponding position in the second sequence, then the molecules are identical at that position.
- the determination of percent homology between two sequences can be accomplished using a mathematical algorithm.
- Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res, 25:3389-3402 (1997).
- BLAST and Gapped BLAST programs When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers et al, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.
- ALIGN program version 2.0
- the percent of identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.
- JNK-GST JNK-gluthathione-S-transferase
- the present invention also pertains to methods for testing the effectiveness of inhibitory compound identified using the methods of this invention for neuronal protection for the prevention and/or treatment of a variety of neurological disorders.
- the effectiveness of neuronal protection by JNK or MLK inhibitors against excitotoxicity stimuli can be assessed by the pre-treatment of HN33 cells with the identified JNK or MLK inhibitors prior to stimulation with glutamate, or other neurotoxins such as kainic acid, MPP, quinolinic acid or transfection of the mutated form of huntingtin or amyloid precursor protein (APP).
- HN33 cells plated on a 96-well plate, are grown in DMEM-F12 medium and prior to experimentation, the medium is removed and cells are washed once with serum-free medium. 0.5 ml of serum free medium is added and cells are incubated at 37° C. cell culture incubator for 10 minutes.
- the identified JNK or MLK inhibitor is added to the serum-free medium and incubation continued for another 5 minutes. Then glutamate or neurotoxin are added to the medium. If the JNK or MLK inhibitor is effective, the amount of apoptotic cells will be significantly reduced or totally inhibited, as compared with the appropriate control.
- the JNK or MLK inhibitor is added during or 2-6 hours after transfection.
- the IC 50 of the JNK or MLK inhibitors in suppression of neuronal apoptosis can be also assessed by this 96-well based assay.
- JNK or MLK inhibitor are added to the medium prior to the treatment with glutamate or other neurotoxins or during transfection of the mutated huntingtin or APP to establish a pharmacological profile for each inhibitor.
- the IC 50 of each inhibitor is a very important value for designing further study of the effectiveness in different animal models and for directing clinical trials of these inhibitors.
- the present invention also pertains to methods for the prevention or treatment of neurological conditions, either through prophylatic administration prior to the occurrence of an event known to cause a neurological condition or therapeutic administration immediately following the event and periodically thereafter.
- Such prophylatic and therapeutic treatments are intended to prevent neuronal cell death or reduce the degree of cell death.
- these two kinases present targets for a therapeutic regime.
- a mammal including human, is administered an effective therapeutic amount of an agent that targets JNK- and/or MLK-associated activity.
- a therapeutic amount for a given agent is that amount administered to achieve the desired result, for example, the inhibition of kinase activity in either JNK or MLK or both, or attenuation, amelioration of or improvement in the symptoms associated with the neurological condition.
- the JNK-associated activity that is targeted is JNK's kinase activity.
- JNK activity to be targeted includes JNK1, JNK2 and JNK3.
- the enzyme activity targeted is MLK. If MLK is not inhibited, then it will directly bind to and phosphorylate SEK1 resulting in its activation which in turn will stimulate JNK, thereby causing neuronal cell death.
- MLK activity including MLK1, MLK2 and MLK3
- the SEK1 phosphorylation and concomitant stimulation can be eliminated, thereby saving neuronal cells from apoptosis.
- This therapeutic approach can be used to prevent and/or treat neurological conditions, as described above.
- the inhibitory agents identified using the methods described herein are particularly useful for suppressing glutamate receptor-induced activation of JNK, glutamate-mediated toxicity and apoptosis caused by excitotoxicity.
- Compounds identified using the methods described herein are designed to selectively inhibit the neuronal isoform of kinase which is involved in neuronal loss in neurodegenerative diseases. These kinase inhibitors will selectively decrease a specific kinase activity in neurons and protect neurons from a variety of oxidative stimuli thereby allowing a broad range of clinical applications. Because the neuronal isoform of kinase is selectively attenuated, side effects in peripheral tissues may be neglectable and because other isoforms of the kinase are present in neurons and will provide complementary function for the inhibited isoforms of the kinase, side effects in the central nervous system may also be minimal.
- a specific inhibitor of MLK2 or JNK3 should be an effective, low toxic neuroprotective drug for the treatment of a wide range of neurodegenerative disorders.
- two different kinases on the same signaling pathway can be targeted. These different kinase inhibitors with similar clinical effects will allow to develop a clinical protocol to avoid drug tolerance and provide a life-long treatment.
- Inhibitory agents of JNK, MLK or both can be administered subcutaneously, intravenously, parenterally, intraperitoneally, intradermally, intramuscularly, topically, enteral (for example, orally), rectally, nasally, buccally, vaginally, by inhalation spray, by drug pump or via an implanted reservoir in dosage formulations containing conventional non-toxic, physiologically (or pharmaceutically) acceptable carriers or vehicles.
- compositions which can opportunistically open the blood brain barrier for a time adequate to deliver the drug there through can be used.
- a composition of 5% mannitose and water can be used.
- the present invention also provides pharmaceutical compositions.
- Such compositions comprise a therapeutically (or prophylactically) effective amount of the agent, and a physiologically acceptable carrier or excipient.
- a carrier includes, but is not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof.
- the carrier and composition can be sterile.
- the formulation should suit the mode of administration.
- Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (for example, NaCl), alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc.
- the pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, for example, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
- auxiliary agents for example, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
- compositions can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents.
- the composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder.
- the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrollidone, sodium saccharine, cellulose, magnesium carbonate, etch
- the compositions can be formulated in accordance with the routine procedure as a pharmaceutical composition adapted for intravenous administration to human beings.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- viscous to semi-solid or solid forms comprising a carrier compatible with topical application and having a dynamic viscosity preferably greater than water.
- suitable formulations include but are not limited to solutions, suspensions, emulsions, creams, ointments, powders, enemas, lotions, sols, liniments, salves, aerosols, etc., which are, if desired, sterilized or mixed with auxiliary agents, for example, preservatives, stabilizers, wetting agents, buffers or salts for influencing osmotic pressure, etc.
- the drug may be incorporated into a cosmetic formulation.
- sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier material, is packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant, e.g., pressurized air.
- a pressurized volatile, normally gaseous propellant e.g., pressurized air.
- the amount of agents which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances.
- full-length huntingtin expression constructs containing 16, 48 or 89 CAG repeats were generated by assembly of a combination of RT-PCR products from normal and human HD lymphoblast and plasmid cDNA clones IT16L and IT15B, which are described in HD Collaborative Research Group, Cell 72:971-983 (1993).
- the first third of the full-length construct was derived by ligation of IT16LL (bp 932-3018) with three different PCR products (bp 2401-3270, bp 637-1429 and 187-858). A 3027 bp cDNA fragment was removed from the resulting construct and ligated to corresponding sites in the cDNA clones IT15B (bp3024-10366).
- the CAG repeat size in the full length huntingtin construct pFL16HD was 16. PCR products were generated from the genomic DNA of an adult patient with 48 CAG repeats and a juvenile onset case with 89 CAG repeats.
- PCR products replaced the corresponding region in pFL16HD to generate the pFL48HD and pFL89HD with 48 and 89 CAG repeats, respectively.
- Colony hybridization and PCR were used to identify the 48 and 89 CAG huntingtin clones and the positive clones were verified by DNA sequence analysis.
- pFL16HD, pFL48HD or pFL89HD were transiently transfected into 293 embryonic kidney cells, and expression of huntingtin was analyzed by immunoblotting using the anti-huntingtin monoclonal antibody 4C8.
- transient expression of normal and polyglutamine-expanded huntingtin 50% to 60% confluent HN33 or 293 cells were washed once with serum free medium prior to transfection. Transfection was performed by using lipofectin (Boehringer Mannheim) according to manufacturer instructions and fetal bovine serum was added to the medium 12 hours after transfection to a final concentration of 1%. Sixty ⁇ g of plasmid with 10 ⁇ l of lipofectin/60 mm plate was used in all transfection experiments. After 72 hours, the transfection medium was removed and replaced by fresh medium with 1% fetal bovine serum.
- Transfection of pcDNA1 (vector) or normal huntingtin with 16 CAG repeats (pFL16HD) did not lead to toxicity in HN33 cells.
- DNA fragmentation was not detectable using Tdt-mediated dUTP-biotin nick end labeling (TUNEL) assay.
- TUNEL Tdt-mediated dUTP-biotin nick end labeling
- the TUNEL assay was performed by using a TUNEL assay kit (Boehringer Mannheim). HN33 cells were plated on a slide culture chamber. Transient transfection as conducted as described above. Transfection medium was removed at specified times post-transfection. The cells were washed once with serum free medium, fixed with 4% paraformaldehyde and then permeabilized with 0.1% of Triton X-100. The TUNEL assay was performed as described in the manufacturer's instructions provided with the kit.
- FIG. 1 indicates that, cell toxicity induced by transfection of pFL89HD was slightly more severe than that mediated by pFL48HD, while transfection of pcDNA1 or pFL16HD did not produce measurable neuronal toxicity.
- Each data point in FIG. 1 is an average of four independent experiments.
- the interleukin 1 ⁇ converting enzyme (ICE) inhibitor zVAD-frm (Sarin et al., J. Exp. Med. 184:2445-2449 (1996)) or CPP32 inhibitor zDEVD-frm (Rodgriguez et al., J. Exp. Med. 184:2067-2072 (1996)) was added to the medium during transfection to a inhibitor concentration of 10 ⁇ g/mL. Both inhibitors were obtained from Enzyme System Products, Inc.
- GST c-Jun (1-89 aa) was utilized as a substrate to measure JNK activity in cell lysates from HN33 cells transfected with pcDNA1 (control), pFL16HD, pFL48HD or pFL89HD.
- HN33 cells were lysed with 1% Triton buffer 16 hours after transfection.
- Cell lysates were incubated with glutatione-S-transferase (GST)-c-jun (1-89) fusion protein immobilized on glutatione sepharose beads to isolate JNK. These beads were resuspended in 30 ⁇ L kinase buffer.
- the kinase reaction was performed at 30° C. for 30 minutes and then stopped by adding SDS sample buffer to the reaction. The reaction was analyzed by Western blotting using a phospho (ser63)-specific c-jun antibody (New England BioLabs).
- JNK is specifically activated by SEK1, which is a dual-specificity kinase that phosphorylates both tyrosine and threonine residues of JNK, thereby activiting it Sanchez et al., Nature, 380:75-79 (1994)).
- SEK1 is a dominant negative mutant of SEK1 (K54R), known to specifically block JNK activation (Lin et al., Science, 268:286-290 (1995); Yan et al., Nature, 372:798-800 (1994)) was used.
- HN33 cells were transiently transfected with various expression plasmids, including the SEK1 and SEK1 (K54R) expression vectors described in Lin, A., et al., Science, 268:286-290 (1995). Forty-eight hours after transfection, the cells were fixed and subjected to the TUNEL assay as described above. The number of living cells transfected with pcDNA1 was designated at 100%. The data is summarized in FIG. 4. Each data point represents an average of three independent experiments.
- HN33 cells were transfected with pEBG (SEK1 expression vector backbone control plasmid), wild-type SEK1 expression vector, or dominant negative mutant SEK1 (K54R) expression vector. Forty-eight hours after transfection, the media covering the cells was replaced with fresh serum-free media supplemented without (control) or with 250 ⁇ M glutamate or 200 ⁇ M kainic acid (kainate). Cells were incubated in 37° C. for six hours. Then cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 5 show that SEK1 (K54R) blocks apoptosis induced by glutamate or kainate receptor activation. Each data point represents the average of three independent experiments.
- HN33 cells were treated with glutamate (250 ⁇ M) or kainic acid (200 ⁇ M) at room temperature for 15 minutes and then lysed in 1% Triton X-100 buffer. Cell lysates were incubated with GST-c-Jun (1-89) fusion protein immobilized on glutathione sepharose beads to isolate JNK. These beads were resuspended in 30 ⁇ l kinase buffer and the kinase reaction was performed at 30° C. for 30 minutes and 10 ⁇ l SDS sample buffer was added to stop the reaction.
- a cDNA fragment encoding the full-length (Kang, J., et al., Nature, 325:733-736 (1987)) or the last C-terminal 100 amino acid of amyloid precursor protein (APP) was inserted into pcDNA1 and the resulting plasmid was designated as APP-C-100.
- HN33 cells (60% of confluence) was transfected with pcDNA1 (control), wild-type APP, APP-C-100 by using lipofectin (Boehringer Mannheim) according to manufacture instruction.
- HN33 cells were transiently transfected with pcDNA1, wild-type APP or APP-C-100 using lipofectin as described above. After eighteen hours, cells were lysed in 1% Triton C-100 buffer. Cell lysates were incubated with GST-c-Jun (1-89) fusion protein immobilized on glutathione sepharose beads to isolate JNK. These beads were resuspended in 30 ⁇ l kinase buffer and the kinase reaction was performed at 30° C. for 30 minutes and 10 ⁇ l SDS sample buffer was added to stop the reaction.
- the JNK activity was analyzed by Western blotting using a phospho (Ser63)-specific c-Jun antibody (New England BioLabs).
- the results in FIG. 8 show that expression of APP-C-100 but not wild-type APP stimulated the JNK activity in HN33 cells.
- HN33 cells were transfected with pcDNA1, wild-type APP expression vector, or mutant SEK1 expression vector using lipofectin (Boehringer Mannheim) according to manufacture instruction. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 9 show that SEK1 (K54R) blocks apoptosis induced by expression of APP-C-100.
- a kinase dead version of MLK2 was generated by introduction of A-G point mutation at position 651 (codon AGG to GAG) by overlapping extension using polymerase chain reaction with mutated oligonucleotides, to result in amino acid substitution of K to E in the ATP binding loop of the MLK2 kinase domain.
- Such a point mutation leads to total loss of kinase activity of MLK2 and a kinase dead version of MLK2 will act as a dominant mutant and inhibit MLK2 activation-mediated actions. Tibbles, L. A., et al., EMBO. J., 15:7026-7036 (1996).
- the cDNA fragment of wild-type or kinase dead MLK2 was inserted into pRK5CMV with a C-terminal myc tag. Nagata, K., et al, EMBO. J., 17:149-158 (1998).
- HN33 cells were transfected with pRK5CMV, wild-type or kinase dead MLK2 expression vector using lipofectin (Boehringer Mannheim) according to manufacture instruction. Forty-eight hours after transfection, cells were fixed and stained with TUNEL, as described above. TUNEL negative cells (living cells) were counted.
- the results in FIG. 10 show that expression of MLK2 induced apoptosis in HN33 cells while expression of the kinase dead version of MLK2 did not generate any cell toxicity.
- HN33 cells were co-transfected with pEBG+pRK5CMV (control), wild-type SEK1 expression vector+wild-type MLK2 expression vector, or dominant negative mutant SEK1 (K54R) expression vector+wild-type MLK2 expression vector. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 11 show that SEK1 (K54R) attenuated apoptosis induced by MLK expression.
- HN33 cells were co-tranfected with pEBG+pRK5CMV (control), normal huntingtin expression vector with 48 or 89 CAG repeats+kinase dead MLK2 expression vector. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 12 show that co-expression of kinase dead MLK2 blocked neuronal apoptosis induced mutated huntingtin and demonstrated that the MLK-associated activity was involved in neuronal loss in Huntington's diseases.
- C-myc-tagged MLK2 was transiently expressed in 293 cells, as described above, 48-72 hours after transfection, 293 cells were harvested and lysed in 1% NP-40 lysate buffer. Cell lysates were incubated with an anti-N-terminus huntingtin antibody 437 or 9E10 for 4-6 hours. The precipitated proteins were resolved on SDS-PAGE, transferred, and immunoblotted with an anti-huntingtin monoclonal antibody 4C8, or anti-c-myc antibody 9E10.
- HN33 cells were transfected with pRK5CMV (control) or kinase dead MLK2 expression vector. Forty-eight hours after transfection, the media covering the cells was replaced with fresh serum-free media supplemented without (control) or with 250 ⁇ M glutamate or 200 ⁇ M kainate. Cells were incubated in 37° C. for six hours, fixed, and then stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 13 show that kinase dead MLK2 blocks apoptosis induced by glutamate or kainate receptor activation in HN33 cells.
- HN33 cells were co-transfected with pcDNA1, wild-type expression vector, with kinase dead MLK2 expression vector. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 14 show that kinase dead MLK 2 blocks apoptosis induced by expression of APP-C-100.
- Glutathione-S-transferase (GST)) c-Jun fusion protein was utilized as the substrate for JNK3 kinase assay and GST SEK1 fusion protein was utilized as the substrate for MLK2 kinase assay.
- GST-c-Jun or GST-SEK1 (K54R) fusion proteins the cDNA fragment encoding the N-terminus of c-Jun 1-89 amino acid residues, or the full-length cDNA of SEK1, was subcloned into a pGEX vector. The vector was subsequently transformed into E. coli and the E. coli carrying pGEX-Jun or PGX-SEK1 was grown in LB medium.
- JNK1, JNK2 and JNK3 isolated JNK protein was used. Isolation may be accomplished by chromatographic purification from tissue or molecular transfection of host cells followed by isolation. For molecular isolation of JNK, a full length cDNA of either JNK1, JNK2 or JNK3 glutathione-S-transferase (GST) fusion construct was inserted into pGEX-2T vector and expressed in a host, such as a bacterial cell (e.g., DH1 cell). The fusion protein was then purified from the host cell using standard techniques known to those skilled in the art. Isolation of the GST-fusion protein was accomplished using a glutathione affinity column.
- GST glutathione-S-transferase
- the resin was washed three times with lysis buffer (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 50 mM ⁇ -glycerophosphate, 1 mM Na 2 PO 4 , 1% Triton X-100, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 ⁇ g/mL leupeptin and 10 ⁇ g/mL aproptinin) and twice with detergent-free lysis buffer.
- the GST-fusion protein was eluted from the resin with 100 ⁇ L of 5 mM glutathione in a detergent-free lysis buffer.
- the in vitro kinase reaction was carried out at 30° C. for 15 minutes in a kinase mixture containing 0.5 ⁇ g of GST-JNK3, 1 ⁇ g of GST-c-Jun, 2.5 mM ATP and 5 ⁇ Ci of [ ⁇ - 32 P] ATP with or without a test compound in 20 ⁇ L of kinase buffer (20 mM HEPES, pH 7.5, 15 mM MgCl 2 , 15 mM ⁇ -glycerophosphate, 0.1 mM Na 2 PO 4 , 2 mM dithiothreitol). The reaction was terminated by adding 20 ⁇ L of SDS sample buffer (Laemmeli buffer). The phosphorylation was detected by SDS-PAGE, and the amount of 32 P incorporated was quantified with an image analyzer. Effectiveness of the test compound as an inhibitor of JNK correlated with inhibitor of 32 P incorporated GST-c-Jun.
- isolated MLK2 protein is used for an in vitro MLK 2 or 3 kinase assay. Isolation may be accomplished by chromatographic purification from tissue or molecular transfection of host cells followed by isolation. For molecular isolation of MLK, a full length cDNA of either MLK2 or MLK3 glutathione-S-transferase (hereinafter GST) fusion construct was inserted into pEGB vector and expressed in 293 host cells using lipofectin, as described above for transfection of mutated huntingtin into HN33 cells.
- GST MLK3 glutathione-S-transferase
- the cells were lysed using 0.5 ml at a lysis buffer (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 50 mM ⁇ -glycerophosphate, 1 mM Na 2 VO 4 , 1% Triton X-100, 10% glycerol, 1 mM phenylmethlylsulfonyl fluoride (PMSF), 10 ⁇ g/ml leupeptin and 10 ⁇ g/ml aproptinin).
- the fusion protein was then purified from the host cell using standard techniques known to those skilled in the art. Isolation of the GST-fusion protein was accomplished using a glutathione affinity column.
- the in vitro kinase reaction was carried out at 30° C. for 45 minutes in a 20 ⁇ L kinase mixture containing 1 ⁇ g of GST-MLK2 or MLK3, 1 ⁇ g of GST-SEK1 (K54R), 2 mM ATP and 5 ⁇ Ci or [ ⁇ - 32 P] ATP in the absence or presence of a test compound in the kinase buffer (20 mM HEPES, pH 7.5, 15 mM MgCl 2 , 15 mM ⁇ -glycerophoshate, 0.1 mM Na 2 VO 4 , 2 mM dithiothreitol).
- reaction was terminated by adding 20 ⁇ L of SDS sample buffer (Laemmeli buffer).
- SDS sample buffer (Laemmeli buffer).
- the phosphorylation was detected by SDS-PAGE, and the amount of 32 P incorporated was quantified with an image analyzer. Effectiveness of the test compound as an inhibitor of MLK2 or MLK3 correlated with inhibition of 32 P incorporated GST-SEK1 (K54R).
- MLK2 immunocomplex kinase assay was used to screen for the MLK 2 or 3 inhibitor and to determine the specificity of the identified MLK inhibitor.
- the full-length cDNA of MLK 2 or 3 was inserted into pRK5 vector and tagged with c-myc at the C-terminus.
- 293 embryonic cells were grown in DMEM with 10% FBS in a 6-well dish and then were transfected with pRK5MLK2 using lipofectin as described above.
- the resin was washed twice with lysis buffer and twice with detergent-free lysis buffer.
- the pellet was then resuspended in 20 ⁇ l of kinase buffer (20 mM HEPES, pH 7.5, 15 mM MgCl 2 , 15 mM ⁇ -glycerophosphate, 0.1 mM Na 2 VO 4 , 2 mM dithiothreitol, 25 ⁇ M ATP, 5 ⁇ Ci of [ ⁇ - 32 P] ATP, and 0.5 ⁇ g of SEK1 (K54R) GST fusion proteins in the presence or absence (control) of 1 nM to 10 ⁇ M of a mixture of compounds or the identified compounds.
- the kinase reaction was carried out at 30° C.
- HN33 cells ( ⁇ 60% of confluence), plated on a 96-well plate, were grown in DMEM-F12 medium supplemented with 10% of fetal bovine serum (FBS). Prior to transfection, the medium was removed and cells were washed with serum-free medium once and 50 ⁇ l of DMEM-F12 medium with 1% of FBS was added.
- the full-length huntingtin expression plasmid containing 16 (control), 48 or 89 CAG repeats or lipofectin solution were diluted with HBS first and mixed 1 ⁇ 1 volume and the mixture was incubated at room temperature for 15 min. Ten ⁇ l of the DNA-lipofectin mixture was added to the culture medium.
- a mixture of compound from a chemical library was added 6 hours after transfection. Twelve hours after transfection, additional FBS was added to the final concentration of 10%. Forty-eight hours after transfection, cells were washed with PBS once and fixed with 4% paraformaldehyde dissolved in PBS and permeabilized with 1% Triton X-100 in PBS containing 1% sodium citrate. Cell were then rinsed twice with PBS containing 1% BSA and cells were incubated with 25 ⁇ l of TUNEL reaction solution for 1 hour at a 37° C. cell culture incubator. Cell were rinsed with PBS for three times and 25 ⁇ l of converter-AP solution was added and cells are returned to the incubator and incubated for 30 min. Cells were rinsed three times with PBS with 1% BSA and cells were incubated in a BCIP solution for 1-5 min at room temperature and rinsed three times with PBS and analyzed under light microscope.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Tropical Medicine & Parasitology (AREA)
- Organic Chemistry (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention describes methods for identifying compounds that inhibit JNK and MLK kinase activity as drugs for treating a mammal susceptible to or having a neurological condition. This invention also discloses methods for preventing neuronal cell death and treating neurological conditions that involve neuronal cell death, particularly neurodegenerative diseases characterized by glutamine or kainate mediated toxicity, such as Huntington's disease and Alzheimer's disease.
Description
- This application claims the benefit of U.S. Provisional Application Ser. No. 60/085,439, filed May 14, 1998, the entire teachings of which are incorporated herein by reference.
- Excitotoxicity is related to excessive activation of glutamate receptors which results in neuronal cell death. The physiological function of glutamate receptors is the mediation of ligand-gated cation channels with the concomitant influx of calcium, sodium and potassium through this receptor-gated channel. The influx of these cations is essential for maintaining membrane potentials and the plasticity of neurons which in itself plays a pivotal role in cognitive function of the central nervous system. Li, H. B., et al.,Behav. Brain Res., 83:225-228 (1997); Roesler, R., et al., Neurology, 50:1195 (1998); Wheal, H. V., et al., Prog. Neurobiol., 55:611-640 (1998); Wangen, K., et al., Brain Res., 99:126-130 (1997). Excitotoxicity plays an important role in neuronal cell death following acute insults such as hypoxia, ischemia, stroke and trauma, and it also plays a significant role in neuronal loss in AIDS dementia, epilepsy, focal ischemia. Coyle, J. T. & Puttfarken, P., Science, 262:689-695 (1993). Neurodegenerative disorders, such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), are characterized by the progressive loss of a specific population of neurons in the central nervous system. Growing evidence suggests that glutamate-mediated excitotoxicity may be a common pathway which contributes to neuronal cell death in a wide range of neurological disorders. Coyle, J. T. & Puttfarken, P., Science, 262:689-695 (1993).
- The molecular mechanisms of excitotoxicity-mediated neuronal cell death remains obscure. Over-production of free radicals that lead to impairment of mitochondrial function is the most widely held hypothesis. Beal, M. F., et al.,Ann. Neurol., 38:357-366 (1995); Coyle, J. T. & Puttfarken, P., Science, 262:689-695 (1993). However, it is unclear whether the increase of free radicals is the precursor that initiates neuronal degeneration or, rather, a subsequent consequence of neuronal degeneration. Interestingly, administration of antioxidants has little neuroprotective effect in patients suffering from various neurodegenerative diseases. Shults, C. W., et al., Neurology, 50:793-795 (1998). Thus, some other mechanism(s) must exist for excitotoxicity-induced neuronal cell death.
- c-Jun N-terminal kinases (JNKs) are identified as kinases which are activated upon stimulation by various environmental stimuli such as UV light, γ irradiation and mitogenic signals. Hibi, M., et al.,Genes Dev., 7:2135-2148 (1993); Kyriakis, J. M., et al., Nature, 369:156-160 (1994). The precise biological function of JNKs remains to be explored. However, some recent reports suggest that JNKs are involved in neuronal apoptosis induced by deprivation of survival factors, i.e., neurotrophic factors which support neuronal survival. Ham, J., et al., Neuron, 14:927-939 (1995).
- Mixed-lineage kinases (MLKs), so called because these proteins contain structural domains associated with a variety of cell types, were cloned from a cDNA library derived from mRNA from cancer tissue. MLKs were initially thought to participate in the oncogenesis of some cancers, although high levels of expression of MLKs were found in the normal brain. Dorow, D. S., et al.,Eur. J. Biochem., 213:701-710 (1993); Dorow, D. S., et al., Eur. J. Biochem., 234:492-500 (1995).
- Searching for biochemical targets which are amenable to screening for neuroprotective therapeutic agents is of central concern in neuroscience today. However, no clinically available pharmaceutical tool to date is employed for blocking excitotoxicity and preventing neuronal cell loss in various neurological disorders due to a lack of suitable biochemical targets. Glutamate receptor antagonists, such as MK-801, although successful in protecting neurons in animal experiments, have all failed in the clinical setting due to their blockage of cognitive function mediated by the receptors, as well as high toxicity to the central nervous system. Thus, an understanding of the molecular mechanism(s) of neuronal cell death induced by excitotoxicity is essential for the identification of new biochemical targets and the establishment of reliable methods for screening new therapeutic drugs from chemical libraries that can be utilized in the treatment of a variety of neurological disorders.
- This invention relates to the discovery that inhibiting a JNK or MLK within a hippocampal neuronal cell can protect the cell from apoptosis. As such, JNK and MLK can be used as drug targets to screen for therapeutic agents to prevent glutamate or kainic acid mediated toxicity, to block excitotoxicity and to prevent neuronal loss in a variety of neurological conditions, such as Huntington's disease and Alzheimer's disease.
- In one aspect of the invention, a method is described for assessing a compound's ability to inhibit neuronal cell death, and thus to identify compounds that can be used to prevent and/or treat neurological conditions. According to the method, neuronal cells having activated MLK and/or JNK activity are contacted with a compound and the number of neuronal cells that die is determined. A decrease in the number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to inhibit neuronal cell death. Preferably, the neuronal cells are apoptotic neurons (i.e., cell death caused by a neurological condition) or neurons that are induced to undergo apoptosis, such as by contacting the neuronal cells with neurotoxin (e.g., glutamate, quinolinic acid or kainic acid); or by genetic manipulation of the neuronal cells. Most preferred are HN33 hippocampal neuronal cells.
- In another embodiment, the invention features a method for testing a compound's potential as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition by (1) contacting a compound with a JNK (e.g., JNK3) or MLK (e.g., MLK2); (2) measuring the level of a JNK-associated or MLK-associated activity (e.g., a kinase activity); and (3) comparing the level of the JNK-associated or MLK-associated activity in the presence of the compound with the level of the JNK-associated or MLK-associated activity in the absence of the compound. The compound is a potentially useful drug for treating the mammal when the level of the JNK-associated or MLK-associated activity in the presence of the compound is less than the level of the JNK-associated or MLK-associated activity in the absence of the compound.
- The JNK or MLK can be within a cell, which can be an animal (e.g., human) cell in vivo. When the JNK or MLK is within a cell, the JNK-associated or MLK-associated activity can be apoptosis, which can be measured by a TUNEL assay (described below). Apoptosis within such a cell can be induced by introducing into the cell a huntingtin protein that has at least 40 consecutive glutamic acids (e.g., polyglutamine stretch-expanded huntingtin). Alternatively, apoptosis can be induced by introducing info the cell the C-
terminal 100 amino acids of an amyloid precursor protein (APP). Preferably, the huntingtin protein or the amyloid precursor protein is introduced by a vector, especially a nucleic acid vector. When the cell is within an animal, the JNK-associated or MLK-associated activity can be neurodegeneration. - The invention also features a method for testing a compound's potential as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition by (1) contacting a compound with a neuronal cell containing a JNK (e.g., JNK3) or MLK (e.g., MLK2); (2) measuring the level of a JNK or MLK protein activity (e.g., kinase activity, such as the presence or amount of phosphorylated product) in the cell; and (3) comparing the level of the JNK or MLK protein activity in the cell in the presence of the compound with the level of the JNK or MLK protein activity in the cell in the absence of the compound. The compound is a potentially useful drug for treating the mammal when the level of the JNK or MLK protein activity in the cell in the presence of the compound is less than the level of the JNK or MLK protein activity in the cell in the absence of the compound. Alternatively, cell viability can be ascertained by determining the degree of neuronal cell death, wherein a decreased number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the cbmpound's ability to inhibit JNK or MLK protein activity, thereby preventing neuronal cell death.
- In another aspect, the invention provides a method for testing the potential of a JNK or MLK inhibitor as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition. The method can be performed on compounds identified as JNK and/or MLK inhibitory agents using the methods of this invention to confirm their inhibitory effectiveness under apoptotic conditions. Accordingly, the method provides (1) incubating a neuronal cell in the presence of a JNK or MLK inhibitor; (2) contacting surviving cells with an agent that induces apoptosis in the cell; and (3) comparing the occurrence of apoptosis in the cell in the presence of the JNK or MLK inhibitor with the occurrence of apoptosis in the cell in the absence of the JNK or MLK inhibitor. The compound is a potentially useful drug for treating the mammal when the occurrence of apoptosis in the cell in the presence of the JNK or MLK inhibitor is less than the occurrence of apoptosis in the cell in the absence of the JNK or MLK inhibitor.
- The methods of the invention are used to identify inhibitors of JNK or MLK which are potentially useful for the treatment of a neurological condition, including neuronal cell death following acute insults such as hypoxia, ischemia, stroke, and trauma. Other neurological conditions treatable with compounds identified by the methods of the invention include AIDS dementia, epilepsy, focal ischemia, Huntington's disease, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Each of these conditions are characterized by the progressive loss of a specific population of neurons in the central nervous system. The methods of the invention are particularly useful in finding compounds which can be used to prevent and/or treat neurological conditions, including genetic neurological conditions. The invention also pertains to compounds, identified using the methods described herein, that inhibit MLK and/or JNK activity and that prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, particularly neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease.
- The invention also provides methods for preventing and/or treating neuronal conditions in a mammal comprising administering to a mammal, in need thereof, an effective therapeutic amount of a compound that inhibits JNK and/or MLK. The inhibitory effects of the compound will reduce and/or prevent neuron cell death occurring in a mammal susceptible to or having a neurological condition. In a preferred embodiment, the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death. JNK and/or MLK inhibitors identified using any of the methods described herein are useful as therapeutic or prophylatic drugs to prevent neuronal loss.
- FIG. 1 is a graph illustrating a time course of cell death upon expression of normal or mutated huntingtin in HN33 cells. pcDNA1 (solid box), pFL16HD (circles), pFL48HD (triangles) and pFL89HG (open boxes).
- FIG. 2 is a graph illustrating apoptotic cell death induced by expression of mutated huntingtin with 48 or 89 polyglutamine repeats was completely blocked by added the ICE or CPP32 inhibitor in the medium indicating HN33 cells are undergoing apoptotic cell death.
- FIG. 3 is a graph illustrating the fold of increased JNK activity in HN33 cells upon expression of mutated huntingtin with 48 or 89 polyglutamine repeats.
- FIG. 4 is a graph illustrating apoptotic cell death of HN33 cells induced by mutated huntingtin with either 48 or 89 polyglutamine repeats was inhibited by co-expression of dominant negative mutant form of SEK1 but not wild-type SEK1.
- FIG. 5 is a graph illustrating apoptotic cell death of HN33 cells induced by the treatment of glutamate (250 μM) or kainic acid (kainate, 200 μM) was significantly attenuated by expression of dominant negative mutant form of SEK1 (K54R) but not wild-type SEK1, indicating that glutamate or kainate induced the activation of the SEK1-JNK pathway to mediate neuronal apoptosis.
- FIG. 6 is a graph illustrating the fold of increased JNK activity in HN33 cells upon stimulation of glutamate or kainate receptor indicating that glutamate or kainate receptor activation also stimulated the JNK activity like expression of mutated huntingtin.
- FIG. 7 is a graph illustrating a time course of cell death upon following transfection of pcDNA1 (control) APP or APP deletion mutant APP-C-100, pcDNA1 (open box), wild-type APP (solid diamond), APP-C-100 (solid circles).
- FIG. 8 is a graph illustrating the fold of increased JNK activity in HN33 cells following transfection of pcDNA1 (control) APP or APP deletion mutant APP-C-100, indicating that expression of APP-C-100 stimulated the JNK activity.
- FIG. 9 is a graph illustrating apoptotic cell death of HN33 cells induced by expression of APP-C-100 was significantly attenuated by co-expression of dominant negative mutant form of SEK1 (K54R) but not wild-type SEK1, indicating that amyloid precursor protein induced the activation of the SEK1-JNK pathway to mediate neuronal apoptosis.
- FIG. 10 is a graph illustrating a time course of cell death following transfection of pRK5CMV (control), wild-type MLK2 or kinase dead version of MLK2, pRK5CMV (open box), wild-type MLK2 (solid diamond), kinase dead MLK2 (solid circles).
- FIG. 11 is a graph illustrating apoptotic cell death of HN33 cells induced by expression of MLK2 was significantly attenuated by co-expression of dominant negative mutant form of SEK1 (K54R) but not wild-type SEK1, indicating that MLK2 induced the activation of the SEK1-JNK pathway to mediate neuronal apoptosis.
- FIG. 12 is a graph illustrating apoptotic cell death of HN33 cells induced by expression mutated huntingtin with 48 or 89 CAG repeats was blocked by co-expression of kinase dead MLK2, indicating that the MLK2-associated activity mediated neuronal cell death in Huntington's diseases.
- FIG. 13 is a graph illustrating apoptotic cell death of HN33 cells induced by the treatment of glutamate (250 μM) or kainic acid (kainate 200 μM) was blocked by expression of kinase dead MLK2 indicating that the MLK2-associated activity mediated neuronal cell death in neuronal excitotoxicity induced by glutamate or kainate receptor activation.
- FIG. 14 is a graph illustrating apoptotic cell death of HN33 cells induced by expression of deletion APP mutant APP-C-100 was blocked by co-expression of kinase dead MLK2, indicating that the MLK2-associated activity mediated neuronal cell death in Alzheimer's diseases.
- The invention relates to the discovery that two families of proteins, JNK and MLK, can serve as targets for the treatment of neurological conditions. It has been discovered that inhibition of JNK3, a member of the JNK family, and MLK2, a member of the MLK family, can protect a neuronal cell from apoptosis induced by polyglutamine-expanded huntingtin, whose expression caused HD in humans. The Huntington's Disease Collaborative Research Group, Cell, 72:971-983 (1993). Thus, the invention provides a method for assessing compounds for their potential as drugs for the treatment of neurological conditions, such as Huntington's disease, by determining whether the compound can inhibit a JNK- or MLK-associated activity.
- MLK and JNK participate in a biochemical cascade (activation of MLK-SEK1-JNK1) that mediates neuronal cell toxicity. Upon stimulation by glutamate, kainic acid, or other receptor agonists, the glutamate receptor, located at the cell surface, is activated and interacts with associated proteins (e.g., PDZ domain-containing proteins) whose SH3 domain in turn binds to a MLK protein, thereby activating its kinase activity. The MLK protein directly binds to and stimulates a SEK1 protein which in turn binds to and stimulates JNK. Over stimulation of JNK can lead to neuronal apoptosis (cell death). Normally MLK is inhibited by a protein, such as normal huntingtin, binding to its SH3 domain thus inhibiting the enzyme's kinase activity. This inhibition prevents the formation of the cascade resulting in no or little JNK activity, thereby preserving neuronal cell viability.
- To determine whether polyglutamine-expanded huntingtin induced cell toxicity in neurons, the expression of huntingtins with 16, 48 or 89 CAG repeats in an immortalized rat hippocampal neuronal cell line (HN33) was examined. HN33 has been described in detail in Hammond, D. N., et al.,Brain Res., 512:190-200 (1990); the entire teachings of which are incorporated herein by reference. The hippocampal neurons serve as a potential target of mutated huntingtin, mutated amyloid precursor protein (APP), as well as glutamate stimulation. The results demonstrated that expression of mutated huntingtin with 48 or 89 CAG repeats stimulated JNKs aid induced apoptotic cell death in HN33 cells, while expression of normal huntingtin with 16 CAG repeats had no toxic effect. JNK activation occurs several hours prior to neuronal apoptosis suggesting that it is an early signal for the induction of neuronal apoptosis. Furthermore, co-expression of a dominant negative form of stress signaling kinase (SEK1), which serve as a specific inhibitor of JNKs, attenuated both JNK activation and neuronal apoptosis induced by mutated huntingtin. This study demonstrates that JNK activation can mediate neuronal cell death in neurological disorders. Like mutated huntingtin, the treatment of HN33 cells with glutamate also resulted in JNK activation and apoptotic cell death. Expression of dominant negative mutant SEK1 significantly attenuated glutamate-induced toxicity. Taken together, these studies indicate that JNK is a common cellular mediator for induction of neuronal cell death mediated by both glutamate and mutated huntingtin.
- The mechanism for how mutated huntingtin stimulates JNKs was also examined. The huntingtin protein contains multiple SH3 domain binding sites. In previous studies, it has been demonstrated that normal huntingtin directly binds to SH3 domain-containing proteins Grb2 and RasGAP, Liu, Y. F., et al.,J. Biol. Chem., 272:8121-8124 (1997). MLK1, MLK2 and MLK3 (MLKs) are the only known kinases that directly activate the SEK1-JNK cascade and contain a SH3 dorhain as well as a SH3 domain binding site. MLK2 is a neuronal form of MLKs. The presence of MLKs, in particular MLK2, appears to be required for mutated huntingtin-mediated JNK activation and neuronal apoptosis. MLKs were expressed in HN33 cells where expression of mutated huntingtin induced JNK activation and apoptosis, while in both 293 and CHO cells where MLKs are absent, the expression of mutated huntingtin did not generate any cell toxicity in 293 and CHO cells. However, co-expression of mutated huntingtin along with MLK2 in 293 cells caused rapid apoptotic cell death. The SH3 domain of MLKs is required for their proper cellular localization and activation of the SEK1-JNK pathway. In the in vitro binding studies, it was shown that normal huntingtin binds to the SH3 domain of MLK2 and inhibits enzyme activity while expansion of the polyglutamine repeats interferes with huntingtin's binding and consequently is not inhibitory with respect to MLK2's activity. Furthermore, expression of kinase dead MLK2 completely blocks mutated huntingtin-induced neuronal cell death. These studies indicate that mutation of huntingtin results in an increase of free MLKs thereby causing over-activation of the MLK-SEK1-JNK cascade which ultimately leads to neuronal cell death.
- The SH3 binding motif is found in six other proteins involved in polyglutamine repeat-expanded neurodegenerative hereditary diseases, such as ataxia-1, ataxia-2, ataxia-6, ataxia-7, Kennedy disease, dentatorubral and pallidoluysian atrophy (DRPLA). The normal (wild-type) counter-part proteins bind to and suppress MLK activity, in contrast to the mutated protein form which lose such ability, resulting in the over-activation of the MLK2-SEK1-JNK pathway in neurons.
- The JNK kinases phosphorylate and activate the transcription factor c-Jun which mediates apoptosis. Recent studies suggest that c-Jun may serve as an important mediator for neuronal apoptosis induced by a variety of environmental stresses. In primary cultured sympathetic, hippocampal or cerebellar granule neurons, deprivation of growth factor in these primary cultures lead to persistent activation of JNKs and consequently the phosphorylation of c-Jun. Ham, J., et al.,Neuron, 14:927-939 (1995); Xia, Z., et al., Science, 270:1326-1330 (1995). Suppression of c-Jun expression by antisense-oligonucleotides, or functional blockade by microinjection of antibodies or expression of dominant negative c-Jun prevents neuronal apoptosis; in contrast, over-expression of c-Jun induces apoptosis in sympathetic neurons. Estus, S., et al., J. Cell Biol., 127:1717-1727 (1994); Ham, J., et al., Neuron, 14:927-939 (1995). Enhanced c-Jun expression occurs in degenerating and apoptotic neurons after ischemia, nerve fiber transection, axotomized brains, UV irradiation and various other types of neuronal injury. Ferrer, I., et al., Eur. J. Neurosci., 8:1286-1298 (1998); Herdegen, T., et al., J. Neurosci., 18:5124-5135 (1998).
- Increased c-Jun expression and activation are also implicated in the generation of the neuronal apoptotic process induced by glutamate or kainic acid. Administration of glutamate or quinolinic acid, a N-methyl-D-aspartate (NMDA) receptor agonist, or kainic acid in rats results in a rapid induction of c-Jun expression and neuronal apoptosis. Coyle, J. T. & Puttfarken, P.,Science, 262:689-695 (1993); Qin, Z. -H., et al., Mol. Pharmacol., 53:33-42 (1997). These physiological events can be blocked by the NMDA receptor antagonist MK-801. Qin, Z. -H., et al., Mol. Pharmacol., 53:33-42 (1997).
- Over-activation of the c-Jun-mediated JNK cascade has also been implicated in various other neurodegenerative disorders. Enhanced c-Jun expression is observed in the brains from patients suffering from multiple sclerosis, AD and ALS. Anderson, A. J., et al.,Exp. Neurol., 125:286-295 (1994); Martin, D. G., et al., Neurosci. Lett., 212:95-98 (1996). These studies support the basis of the present invention in that the over-activation (or stimulation) of the MLK-SEK1-JNK cascade leads to the increase of expression, activation and translocation of c-Jun which is responsible for neuronal cell death in these, and other, neurodegenerative disorders. Thus, inhibition of this cascade can protect neurons from toxicity induced by endo- and/or exo-toxins including, but not limited to, mutated proteins like huntingtin, quinolinic acid, kainic acid, glutamate over-excitation as well as other etiological agents.
- Based upon these findings, JNK and MLK can be used as targets for the development of inhibitory compounds of JNK- and MLK-associated activity, and such compounds can be used to prevent neuronal loss, such as induced by excitotoxicity or glutamate- or kainic acid-mediated toxicity. As used herein, a “JNK-associated activity” is any biochemical, cellular, or physiological property that varies with any variation in JNK gene transcription or translation, or JNK protein activity. Likewise, a “MLK-associated activity” is any biochemical, cellular, or physiological property that varies with any variation in MLK gene transcription or translation, or MLK protein activity. A JNK or MLK inhibitor is a compound that inhibits a JNK or MLK protein activity. A JNK or MLK protein activity is any measurable biochemical activity possessed by the protein, e.g., a kinase activity or an ability to bind to another protein such as c-Jun.
- Inhibitors of MLKs identified by the methods described herein can block persistent activation of glutamate receptor-induced over-activation of MLKs without affecting other receptor functions, such as the involvement of neuronal plasticity and cognitive functions. Inhibition of MLKs will attenuate the JNK activity in neurons and protect neurons from excitotoxicity thereby preventing neuronal loss in these diseases. Inhibitors of JNKs or MLKs identified by the methods described herein can suppress glutamate receptor-induced activation of the MLK-SEK1-JNK cascade and prevent neuronal apoptosis in various neurological diseases.
- The term “neurological condition” as used herein is intended to embrace disorders, disease states and disturbances which cause or result in neuronal cell injury, compromise or cell death. Neurological conditions can result from axonal degeneration, ischemia due to stroke, heart arrest, exposure, exposure to neurotoxins such as, but not limited to, glutamate, kainic acid and quinolinic acid, MPTP exposure to bacterial or viral toxins, impaired function or dysfunction of neurons such as increase or decrease of neurotransmitter synthesis and/or release. Neurological diseases and disturbances include, but are not limited to, Alzheimer's disease; Parkinson's disease; motor neuron diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease and syringomyelia; ataxias, dementias; chorea; dystonia; dyslinesia; encephalomyelopathy; parenchymatous cerebellar degeneration; Kennedy disease; Down syndrome; progressive supernuclear palsy; DRPLA, stroke or other ischemic injuries; thoracic outlet syndrome, trauma; electrical brain injuries; decompression brain injuries; AIDS dementia; multiple sclerosis; epilepsy; concussive or penetrating injuries of the brain or spinal cord; peripheral neuropathy; brain injuries due to exposure of military hazards such as blast over-pressure, ionizing radiation, and genetic neurological conditions. By “genetic neurological condition” is meant a neurological condition, or a predisposition to it, that is caused at least in part by or correlated with a specific gene or mutation within that gene; for example, a genetic neurological condition can be caused by or correlated with more than one specific gene. Examples of genetic neurological conditions include, but are not limited to, Alzheimer's disease, Huntington's disease, spinal and bulbar muscular atrophy, fragile X syndrome, FRAXE mental retardation, myotonic dystrophy,
spinocerebellar ataxia type 1, dentatorubral-pallidoluysian atrophy, and Machado-Joseph disease. - In one aspect of the invention, a method is described for assessing a compound's ability to inhibit neuronal cell death. According to the method, neuronal cells having activated MLK and/or JNK activity are contacted with a compound and the number of neuronal cells that die is determined. A decrease in the number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to inhibit neuronal cell death. Preferably, the neuronal cells are apoptotic neurons or neurons that are induced to undergo apoptosis neuronal cells with neurotoxin or genetic manipulation.
- A neuronal cell useful in the methods of the invention is preferably susceptible to JNK-dependent or MLK-dependent apoptosis. To facilitate apoptosis, such a cell can express a polypeptide known to be associated with or induce a neurodegenerative disease, such as a polyglutamine-expanded polypeptide (e.g., polyglutamine-expanded huntingtin) or the C-
terminal 100 amino acid fragment of an amyloid precursor protein. A preferred neuronal cell that is useful for assessing MLK and/or JNK inhibitors is an immortalized rat hippocampal neuronal cell line HN33, with or without genetic manipulations to induce apoptosis, as described above. - In another embodiment, the invention features a method for testing a compound's potential as a drug for treating a mammal (e.g., a human) susceptible to or having a neurological condition by (1) contacting a compound with a JNK (e.g., JNK3) or MLK (e.g., MLK2); (2) measuring the level of a JNK-associated or MLK-associated activity (e.g., a kinase activity); and (3) comparing the level of the JNK-associated or MLK-associated activity in the presence of the compound with the level of the JNK-associated or MLK-associated activity in the absence of the compound. The compound is a potentially useful drug for treating the mammal when the level of the JNK-associated or MLK-associated activity in the presence of the compound is less than the level of the JNK-associated or MLK-associated activity in the absence of the compound.
- In another aspect of the invention, a putative inhibitory agent is incubated in vitro in the presence of JNK and appropriate JNK substrates, such as c-Jun and a phosphate donor like adenosine triphosphate (ATP), under conditions sufficient for enzymatic activity; followed by isolating the phosphorylated product. Isolated JNK protein, including JNK1, JNK2 and JNK3, can be obtained for this, as well as other assays, by several different molecular and chromatographic methods known to those skilled in the art. The JNK polypeptides useful in the methods of the present invention are preferably wild-type whose sequence is known and readily available. The human JNK3 polypeptide is described by Martin et al.,Mol. Brain Res., 35:47-57 (1996). Other JNK proteins useful in the methods of the invention include those described in GenBank Accession Nos. U17743, U49249 and AF006689. Isolated JNK protein, from about 0.5 μg to about 2 μg of purified JNK, is incubated with substrate in an aqueous medium, such as a kinase buffer (containing about: 20 mM HEPES, pH 7.5, 15 mM MgCl2, 15 mM β-glycerophosphate, 0.1 mM Na2PO4 and 2 mM dithiothreitol) at about 30° C. for approximately 15 minutes. The substrates that can be used in this reaction include, but are not limited to, c-Jun, from about 1 μg to about 3 μg, a known substrate for JNK's kinase activity, and the phosphate donor, ATP (approximately 2.5 mM). For detection purposes, 5 μCi of [γ-32]ATP can be used as a co-substrate. The assay system can also include in the incubation mixture a putative inhibitory JNK agent. The reaction can be terminated by addition of Laemmeli buffer, approximately 20 μL. The addition of this buffer will also prepare the sample for product analysis. The reaction mixture can be subjected to sodium dodecylsulfate polyacrylamide gel electrophoresis (hereinafter SDS-PAGE) in order to determine the amount of phosphorylated c-Jun that was formed in the reaction. The radioactivity emitted from the γ32P can be measured using conventional radioactivity gel detection systems, such as an X-ray followed by β-scan. The phosphorylated c-Jun product will have a different migration rate along the gel when compared to the labeled ATP co-substrate and therefore will not be confused with the kinase product. A determination can then be made concerning whether the test agent inhibited JNK's activity by comparing reaction mixtures having the agent present to reaction mixtures without addition of the compound.
- Alternatively, JNK substrates, such as c-Jun and ATP, can be incubated in the presence of a cellular extract containing putative JNK enzyme activity, including JNK1, JNK2 and JNK3. An inhibitory agent to be tested can be placed in the reaction vial along with the other reactants to examine the efficacy of the agent. The reaction and detection protocol can be conducted in the same manner as that describe above for the in vitro assay without cellular extract. The cellular extract can originate from a cell or tissue culture system, or can be prepared from whole tissue employing isolation and purification protocols known to those skilled in the art.
- In another embodiment, the invention pertains to contacting a cell with a putative inhibitory agent in order to screen for inhibitory agents of JNK activity, including JNK1, JNK2 and JNK3. The cell to be contacted can be of a cell or tissue culture system. The putative inhibitory agent is delivered to the cell under conditions sufficient for enzymatic activity in any of a number of ways known to those skilled in the art. If the agent is not membrane permeable, then the agent can be delivered into the cell via electroporation, or if it is a polypeptide, a nucleic acid or viral vector can be employed. If the cell has JNK activity present in an active form, then JNK can be stimulated by delivering to the cell SEK1, a known stimulator of JNK. If the cell lacks a JNK gene or functional JNK gene or transcript or translational product, the cell can be transfected with an operatively linked JNK gene. “Operatively linked” is intended to mean that the nucleotide sequence is linked to a regulatory sequence in a manner which allows expression of the nucleic acid sequence.
- To detect the phosphorylated product, any number of protocols known to those skilled in the art can be used including, but not limited to, Western blot analysis and apoptosis analysis. Antibodies, both monoclonal and polyclonal, can be made against epitopes derived from the site on the JNK substrate bound to a phosphate group. A SDS-PAGE procedure can be performed on homogenized cell extract and subsequently subjected to Western blot analysis using an antibody specific for a phosphorylated JNK substrate, such as c-Jun.
- An apoptosis analysis can also be performed in order to determine what effect, if any, the putative inhibitory agent has on JNK-associated activity. For example, an expression vector encoding JNK3 is transfected into an appropriate target cell to induce apoptosis. Target cells are cells that are susceptible to apoptosis. Rat hippocampal neuronal cell line HN33 is a preferred target cell. Alternatively, target cells which naturally contain JNK can be used. In either event, the target cells are cultured in the presence or absence of a test agent and the occurrence of apoptosis determined using known techniques. For example, staining the cell with Hoechst 3342 (Sigma Chemical Co.) and observing the stained cell under the microscope. Apoptotic cells appear containing clearly segmented, condensed chromatin. Alternatively, apoptosis can be determined by using the TUNEL assay as described by Thomas, L. B., et al.,Exp. Neurol., 133:265-272 (1995). See also U.S. Pat. No. 5,593,879, for techniques for examples of stains used to distinguish apoptotic cells.
- In another embodiment, the invention pertains to a method for screening potential inhibitory agents of JNK activity, including JNK1, JNK2 and JNK3, by administering to an animal, including mammals, the agent and determining what effect, if any, the agent has on the animal's physiological status. The animal is given an amount of test agent sufficient to allow for proper pharmacodynamic absorption and tissue distribution in the animal. Preferably, the animal used is an example of a model system mimicking a neurological condition. However, to test the safety of the putative agent, a normal animal is preferably also subjected to the treatment. Following administration of the agent, the animal can be sacrificed and tissue sections from the brain, as well as other tissues, can be harvested and examined for apoptosis using, for example, the TUNEL assay. Yang, D. D., et al.,Nature, 389:865-870 (1997). In another embodiment, an animal model afflicted with a neurological condition (e.g., neurodegenerative disorder) can be administered a JNK and/or MLK inhibitor and the symptoms associated with the neurological condition are evaluated. Attenuation, amelioration or improvement of the neurodegenerative symptoms can be assessed, whereby improvement is indicative of the inhibitors ability to prevent and/or treat the neurological condition.
- The methods described above can be likewise employed to identify/screen for inhibitory agents of MLK-associated activity, including MLK1, MLK2 and MLK3. Appropriate MLK substrates include, but are not limited to, ATP and SEK1, a protein known to activate JNKs by phosphorylation. The MLK polypeptides useful in the methods of the present invention are preferably wild-type whose sequence is known and readily available. The human MLK2 polypeptide is described by Dorow, D. S., et al.,Eur. J. Biochem., 234:491-500 (1995). Another MLK protein useful in the methods of the invention is described in GenBank Accession No. L32976.
- The JNK and MLK useful in the methods of the invention are hot limited to the naturally occurring sequences described above. JNK and MLK containing substitutions, deletions, or additions can also be used, provided that those polypeptides retain at least one activity associated with the naturally occurring polypeptide and are at least 70% identical to the naturally occurring sequence.
- To determine the percent identity of two polypeptide sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid sequence). The amino acid residues at corresponding amino acid positions are then compared. When a position in the first sequence is occupied by the same amino acid residue as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions×100).
- The determination of percent homology between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin et al.,Proc. Natl. Acad. Sci. USA, 90:5873-5877 (1993). Such an algorithm is incorporated into the NBLAST and XBLAST program, score=50, wordlength=3 to obtain amino acid sequence homologous to protein molecules useful in the methods of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al., Nucleic Acids Res, 25:3389-3402 (1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers et al, CABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used.
- The percent of identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.
- An example of a JNK or MLK that is not naturally occurring, though useful in the methods of the invention, is a JNK-gluthathione-S-transferase (JNK-GST) fusion protein. Such a protein can be produced in large quantities in bacteria and isolated. The JNK fusion protein can then be used in an in vitro kinase assay in the presence or absence of a candidate drug for treating neurological conditions.
- The present invention also pertains to methods for testing the effectiveness of inhibitory compound identified using the methods of this invention for neuronal protection for the prevention and/or treatment of a variety of neurological disorders. In one embodiment of the invention, the effectiveness of neuronal protection by JNK or MLK inhibitors against excitotoxicity stimuli can be assessed by the pre-treatment of HN33 cells with the identified JNK or MLK inhibitors prior to stimulation with glutamate, or other neurotoxins such as kainic acid, MPP, quinolinic acid or transfection of the mutated form of huntingtin or amyloid precursor protein (APP). For example, HN33 cells, plated on a 96-well plate, are grown in DMEM-F12 medium and prior to experimentation, the medium is removed and cells are washed once with serum-free medium. 0.5 ml of serum free medium is added and cells are incubated at 37° C. cell culture incubator for 10 minutes. In the case of the treatment with glutamate or other neurotoxins to induce apoptosis, the identified JNK or MLK inhibitor is added to the serum-free medium and incubation continued for another 5 minutes. Then glutamate or neurotoxin are added to the medium. If the JNK or MLK inhibitor is effective, the amount of apoptotic cells will be significantly reduced or totally inhibited, as compared with the appropriate control. Such a result indicates that these inhibitors are effective for the prevention of neuronal death in various neurological disorders. In the case of expression of mutated huntingtin or APP-C-100 (vector which expresses the c-
terminal 100 amino acids of APP) to induce apoptosis, the JNK or MLK inhibitor is added during or 2-6 hours after transfection. In a particular embodiment, the IC50 of the JNK or MLK inhibitors in suppression of neuronal apoptosis can be also assessed by this 96-well based assay. In this case, different concentrations of JNK or MLK inhibitor are added to the medium prior to the treatment with glutamate or other neurotoxins or during transfection of the mutated huntingtin or APP to establish a pharmacological profile for each inhibitor. The IC50 of each inhibitor is a very important value for designing further study of the effectiveness in different animal models and for directing clinical trials of these inhibitors. - The present invention also pertains to methods for the prevention or treatment of neurological conditions, either through prophylatic administration prior to the occurrence of an event known to cause a neurological condition or therapeutic administration immediately following the event and periodically thereafter. Such prophylatic and therapeutic treatments are intended to prevent neuronal cell death or reduce the degree of cell death. Given the involvement of JNK and MLK in the cascade leading to neuronal cell death, these two kinases present targets for a therapeutic regime. According to the method, a mammal, including human, is administered an effective therapeutic amount of an agent that targets JNK- and/or MLK-associated activity. A therapeutic amount for a given agent is that amount administered to achieve the desired result, for example, the inhibition of kinase activity in either JNK or MLK or both, or attenuation, amelioration of or improvement in the symptoms associated with the neurological condition.
- In one embodiment, the JNK-associated activity that is targeted is JNK's kinase activity. By inhibiting JNK's activity with an agent, neuronal cell death can be avoided. The JNK activity to be targeted includes JNK1, JNK2 and JNK3. In another embodiment, the enzyme activity targeted is MLK. If MLK is not inhibited, then it will directly bind to and phosphorylate SEK1 resulting in its activation which in turn will stimulate JNK, thereby causing neuronal cell death. By inhibiting MLK activity, including MLK1, MLK2 and MLK3, the SEK1 phosphorylation and concomitant stimulation can be eliminated, thereby saving neuronal cells from apoptosis. This therapeutic approach can be used to prevent and/or treat neurological conditions, as described above. The inhibitory agents identified using the methods described herein are particularly useful for suppressing glutamate receptor-induced activation of JNK, glutamate-mediated toxicity and apoptosis caused by excitotoxicity.
- Compounds identified using the methods described herein are designed to selectively inhibit the neuronal isoform of kinase which is involved in neuronal loss in neurodegenerative diseases. These kinase inhibitors will selectively decrease a specific kinase activity in neurons and protect neurons from a variety of oxidative stimuli thereby allowing a broad range of clinical applications. Because the neuronal isoform of kinase is selectively attenuated, side effects in peripheral tissues may be neglectable and because other isoforms of the kinase are present in neurons and will provide complementary function for the inhibited isoforms of the kinase, side effects in the central nervous system may also be minimal. A specific inhibitor of MLK2 or JNK3 should be an effective, low toxic neuroprotective drug for the treatment of a wide range of neurodegenerative disorders. In particular, two different kinases on the same signaling pathway can be targeted. These different kinase inhibitors with similar clinical effects will allow to develop a clinical protocol to avoid drug tolerance and provide a life-long treatment.
- Inhibitory agents of JNK, MLK or both, identified according to the methods of this invention, can be administered subcutaneously, intravenously, parenterally, intraperitoneally, intradermally, intramuscularly, topically, enteral (for example, orally), rectally, nasally, buccally, vaginally, by inhalation spray, by drug pump or via an implanted reservoir in dosage formulations containing conventional non-toxic, physiologically (or pharmaceutically) acceptable carriers or vehicles.
- In a specific embodiment, it may be desirable to administer the agents of the invention locally to a localized area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, transdermal patches, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes or fibers.
- In a specific embodiment when it is desirable to direct the drug to the central nervous system, techniques which can opportunistically open the blood brain barrier for a time adequate to deliver the drug there through can be used. For example, a composition of 5% mannitose and water can be used. The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically (or prophylactically) effective amount of the agent, and a physiologically acceptable carrier or excipient. Such a carrier includes, but is not limited to, saline, buffered saline, dextrose, water, glycerol, ethanol, and combinations thereof. The carrier and composition can be sterile. The formulation should suit the mode of administration.
- Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions (for example, NaCl), alcohols, gum arabic, vegetable oils, benzyl alcohols, polyethylene glycols, gelatin, carbohydrates such as lactose, amylose or starch, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid esters, hydroxymethylcellulose, polyvinyl pyrolidone, etc. The pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, for example, lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
- The compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. The composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, polyvinyl pyrollidone, sodium saccharine, cellulose, magnesium carbonate, etch The compositions can be formulated in accordance with the routine procedure as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water, saline or dextrose/water. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- For topical application, there are employed as nonsprayable forms, viscous to semi-solid or solid forms comprising a carrier compatible with topical application and having a dynamic viscosity preferably greater than water. Suitable formulations include but are not limited to solutions, suspensions, emulsions, creams, ointments, powders, enemas, lotions, sols, liniments, salves, aerosols, etc., which are, if desired, sterilized or mixed with auxiliary agents, for example, preservatives, stabilizers, wetting agents, buffers or salts for influencing osmotic pressure, etc. The drug may be incorporated into a cosmetic formulation. For topical application, also suitable are sprayable aerosol preparations wherein the active ingredient, preferably in combination with a solid or liquid inert carrier material, is packaged in a squeeze bottle or in admixture with a pressurized volatile, normally gaseous propellant, e.g., pressurized air.
- The amount of agents which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro or in vivo assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances.
- The invention will now be further and specifically described by the following examples which are not intended to be limiting in any way. All publications cited herein are incorporated by reference in their entirety.
- Developing a Model for Neurodegeneration Based on Huntingtin Expression
- To develop a cell-based system in which apoptosis can be induced, polyglutamine-expanded huntingtin was introduced into cell lines.
- To assess whether polyglutamine-expanded huntingtin causes toxicity, full-length huntingtin expression constructs containing 16, 48 or 89 CAG repeats were generated by assembly of a combination of RT-PCR products from normal and human HD lymphoblast and plasmid cDNA clones IT16L and IT15B, which are described in HD Collaborative Research Group,Cell 72:971-983 (1993).
- To construct the huntingtin expression vector with 16, 48, or 89 CAG repeats, the first third of the full-length construct was derived by ligation of IT16LL (bp 932-3018) with three different PCR products (bp 2401-3270, bp 637-1429 and 187-858). A 3027 bp cDNA fragment was removed from the resulting construct and ligated to corresponding sites in the cDNA clones IT15B (bp3024-10366). The CAG repeat size in the full length huntingtin construct pFL16HD was 16. PCR products were generated from the genomic DNA of an adult patient with 48 CAG repeats and a juvenile onset case with 89 CAG repeats. These PCR products replaced the corresponding region in pFL16HD to generate the pFL48HD and pFL89HD with 48 and 89 CAG repeats, respectively. Colony hybridization and PCR were used to identify the 48 and 89 CAG huntingtin clones and the positive clones were verified by DNA sequence analysis.
- The resulting constructs pFL16HD, pFL48HD or pFL89HD were transiently transfected into 293 embryonic kidney cells, and expression of huntingtin was analyzed by immunoblotting using the anti-huntingtin monoclonal antibody 4C8. Trottier, Y., et al.,Nature Genet., 10:104-110 (1995).
- For transient expression of normal and polyglutamine-expanded huntingtin, 50% to 60% confluent HN33 or 293 cells were washed once with serum free medium prior to transfection. Transfection was performed by using lipofectin (Boehringer Mannheim) according to manufacturer instructions and fetal bovine serum was added to the medium 12 hours after transfection to a final concentration of 1%. Sixty μg of plasmid with 10 μl of lipofectin/60 mm plate was used in all transfection experiments. After 72 hours, the transfection medium was removed and replaced by fresh medium with 1% fetal bovine serum. For immunoprecipitation and Western blotting, 293 cells were harvested 48-72 hours after transfection and lysed in 1% NP-40 lysate buffer. For the immunoprecipitation experiment, cell lysates were incubated with an affinity-purified anti-N-terminus huntingtin polyclonal antibody 437 for 4-6 hours. Liu, Y. F., et al.,J. Biol. Chem., 272:8121-8124 (1997). Cell lysates or precipitated proteins were resolved on SDS-PAGE, transferred and immunoblotted with an anti-huntingtin monoclonal antibody 4C8. All three huntingtin constructs constitutively expressed the huntingtin protein. Transfection of pcDNA1 (vector) or normal huntingtin with 16 CAG repeats (pFL16HD) did not lead to toxicity in HN33 cells. In addition, DNA fragmentation was not detectable using Tdt-mediated dUTP-biotin nick end labeling (TUNEL) assay. However, cell proliferation was slightly suppressed.
- The TUNEL assay was performed by using a TUNEL assay kit (Boehringer Mannheim). HN33 cells were plated on a slide culture chamber. Transient transfection as conducted as described above. Transfection medium was removed at specified times post-transfection. The cells were washed once with serum free medium, fixed with 4% paraformaldehyde and then permeabilized with 0.1% of Triton X-100. The TUNEL assay was performed as described in the manufacturer's instructions provided with the kit.
- Expression of mutated huntingtin with 48 or 89 CAG repeats (pFL48HD or pFL89HD) induced cell toxicity in HN33 cells. Apoptosis was initially observed between 20 and 24 hours after transfection by TUNEL staining. At 48 hours, about 75% of transfected cells were apoptotic.
- A time-course of HN33 cell survival after transfection with pcDNA1, pFL16HD, pFL48HD or pFL89HD was performed forty eight hours after transfection, HN33 cells were fixed and stained with TUNEL. Living and apoptotic cells were counted in the high power field. The number of living cells in pcDNA1 transfectants is designated as 100%. FIG. 1 indicates that, cell toxicity induced by transfection of pFL89HD was slightly more severe than that mediated by pFL48HD, while transfection of pcDNA1 or pFL16HD did not produce measurable neuronal toxicity. Each data point in FIG. 1 is an average of four independent experiments.
- To further confirm that the polyglutamine-expanded huntingtin-induced cell death described above was apoptotic, the interleukin 1β converting enzyme (ICE) inhibitor zVAD-frm (Sarin et al.,J. Exp. Med. 184:2445-2449 (1996)) or CPP32 inhibitor zDEVD-frm (Rodgriguez et al., J. Exp. Med. 184:2067-2072 (1996)) was added to the medium during transfection to a inhibitor concentration of 10 μg/mL. Both inhibitors were obtained from Enzyme System Products, Inc. It was shown that ICE and CPP32 participated in apoptosis and that inhibitors zVAD-frm and zDEVD-frm blocked mutated huntingtin-mediated apoptotic cell death at 48 hours post-transfection (FIG. 2). ICE cleaves inactive CPP32 participated in apoptosis and that inhibitors zVAD-frm and zDEVD-frm blocked mutated huntington-mediated apoptotic cell death at 48 hours post-transfection (FIG. 2). (Vaux et al., Proc. Natl. Acad. Sci. USA, 93:2239-2244 (1996)). It was known that ICE cleaves inactive CPP32 precursor thereby activating the enzyme. This result therefore suggests that expression of polyglutamine-expanded hungtingtin stimulates ICE, which in turn activates CPP32 to induce apoptotic cell death.
- Role of JNK in Neuronal Apoptosis
- Whether expression of polyglutamine-expanded huntingtin induces activation of JNK was investigated. GST c-Jun (1-89 aa) was utilized as a substrate to measure JNK activity in cell lysates from HN33 cells transfected with pcDNA1 (control), pFL16HD, pFL48HD or pFL89HD.
- HN33 cells were lysed with 1% Triton buffer 16 hours after transfection. Cell lysates were incubated with glutatione-S-transferase (GST)-c-jun (1-89) fusion protein immobilized on glutatione sepharose beads to isolate JNK. These beads were resuspended in 30 μL kinase buffer. The kinase reaction was performed at 30° C. for 30 minutes and then stopped by adding SDS sample buffer to the reaction. The reaction was analyzed by Western blotting using a phospho (ser63)-specific c-jun antibody (New England BioLabs).
- A low level of JNK activation was observed in control cells. Transfection of a plasmid encoding normal huntingtin with 16 CAG repeats did not further increase the amount of serine phosphorylated GST c-Jun and thus did not stimulate JNK activity. Expression of mutated huntingtin with 48 or 89 CAG repeats, however, significantly increased the levels of JNK activity. Serine phosphorylated GST c-Jun was increased 7- to 8-fold, similar to the level induced by 30 minutes of ultraviolet light irradiation. These results indicated that polyglutamine repeat expansion in huntingtin activated JNK in HN33 cells (FIG. 3).
- Whether activation of JNK is responsible for polyglutamine-expanded huntingtin-induced apoptotic cell death in HN33 cells was next examined. It was known that JNK is specifically activated by SEK1, which is a dual-specificity kinase that phosphorylates both tyrosine and threonine residues of JNK, thereby activiting it Sanchez et al.,Nature, 380:75-79 (1994)). A dominant negative mutant of SEK1 (K54R), known to specifically block JNK activation (Lin et al., Science, 268:286-290 (1995); Yan et al., Nature, 372:798-800 (1994)) was used.
- HN33 cells were transiently transfected with various expression plasmids, including the SEK1 and SEK1 (K54R) expression vectors described in Lin, A., et al.,Science, 268:286-290 (1995). Forty-eight hours after transfection, the cells were fixed and subjected to the TUNEL assay as described above. The number of living cells transfected with pcDNA1 was designated at 100%. The data is summarized in FIG. 4. Each data point represents an average of three independent experiments.
- Transient expression of wild-type or dominant negative SEK1 alone had little effect on the proliferation and survival of HN33 cells. Co-expression of pcDNA1 with pEBG (SEK1 expression vector backbone control plasmid) also did not lead to cell toxicity. However, co-transfection of wild-type SEK1 vector with pFL48HD or pFL89HD did not affect neuronal toxicity induced by mutated huntingtin. Co-expression of dominant negative mutant SEK1 (K54R) significantly prevented apoptotic cell death induced by mutated huntingtin. At 48 hours after transfection, about 25% to 30% of cells had undergone apoptosis, compared to about 75% of cells containing pFL48HD or pFL89HD alone.
- The foregoing data showed that a specific inhibitor of JNK, SEK1 (K54R), can inhibit polyglutamine-expanded huntingtin-induced apoptosis and may be a useful drug for treating a neurological condition. Thus it was possible to test a compound's potential as a drug by contacting the compound with a JNK inside a cell.
- To determine whether the SEK1-JNK signal transduction pathway is involved in neuronal cell death induced by excitotoxicity induced by glutamate or kainate receptors, HN33 cells were transfected with pEBG (SEK1 expression vector backbone control plasmid), wild-type SEK1 expression vector, or dominant negative mutant SEK1 (K54R) expression vector. Forty-eight hours after transfection, the media covering the cells was replaced with fresh serum-free media supplemented without (control) or with 250 μM glutamate or 200 μM kainic acid (kainate). Cells were incubated in 37° C. for six hours. Then cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 5 show that SEK1 (K54R) blocks apoptosis induced by glutamate or kainate receptor activation. Each data point represents the average of three independent experiments.
- To determine further the role of JNK in glutamate-induced neuronal apoptosis, HN33 cells were treated with glutamate (250 μM) or kainic acid (200 μM) at room temperature for 15 minutes and then lysed in 1% Triton X-100 buffer. Cell lysates were incubated with GST-c-Jun (1-89) fusion protein immobilized on glutathione sepharose beads to isolate JNK. These beads were resuspended in 30 μl kinase buffer and the kinase reaction was performed at 30° C. for 30 minutes and 10 μl SDS sample buffer was added to stop the reaction. The samples were resolved by electrophoresis and transferred to a PVDF membrane (Millipore) and the JNK activity was analyzed by Western blotting using a phospho (Ser63)-specific c-Jun antibody (New England Biolabs). The results in FIG. 6 show that glutamate or kainate receptor activation induced elevation of the JNK activity. Each data point represents an average of three independent experiments.
- To determine the role of activation of the SEK1-JNK signal transduction pathway in Alzheimer's diseases, a cDNA fragment encoding the full-length (Kang, J., et al., Nature, 325:733-736 (1987)) or the last C-
terminal 100 amino acid of amyloid precursor protein (APP) was inserted into pcDNA1 and the resulting plasmid was designated as APP-C-100. HN33 cells (60% of confluence) was transfected with pcDNA1 (control), wild-type APP, APP-C-100 by using lipofectin (Boehringer Mannheim) according to manufacture instruction. Thirty μl of lipofectin/50 mm plate was used in all transfection experiments. Twelve to seventy-two hours after transfection, HN33 cells were fixed with 4% paraformaldehyde and permeabilized with 0.1% of Triton X-100. The TUNEL staining was performed by using a TUNEL staining kit (Boehringer Mannheim) as described in manufacture instructions provided with the kit. TUNEL negative cells were counted under light microscope. The results in FIG. 7 show that expression of APP-C-100 induced rapid neuronal apoptosis. Cell death was initially observed between twenty to twenty-four hours after transfection and at seventy-two hours, all cells were apoptotic, while expression of pcDNA1 (control) or wild-type APP did not induce neuronal cell death. - To determine the role of the JNK activity in neuronal cell death induced by APP-C-100, HN33 cells were transiently transfected with pcDNA1, wild-type APP or APP-C-100 using lipofectin as described above. After eighteen hours, cells were lysed in 1% Triton C-100 buffer. Cell lysates were incubated with GST-c-Jun (1-89) fusion protein immobilized on glutathione sepharose beads to isolate JNK. These beads were resuspended in 30 μl kinase buffer and the kinase reaction was performed at 30° C. for 30 minutes and 10 μl SDS sample buffer was added to stop the reaction. The JNK activity was analyzed by Western blotting using a phospho (Ser63)-specific c-Jun antibody (New England BioLabs). The results in FIG. 8 show that expression of APP-C-100 but not wild-type APP stimulated the JNK activity in HN33 cells.
- To further determine the role of activation of the JNK activation in Alzheimer's diseases, HN33 cells were transfected with pcDNA1, wild-type APP expression vector, or mutant SEK1 expression vector using lipofectin (Boehringer Mannheim) according to manufacture instruction. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 9 show that SEK1 (K54R) blocks apoptosis induced by expression of APP-C-100.
- Taken together, these results indicate the elevation of the JNK activity is a common cause of neuronal cell death, regardless of the cause. Since excitotoxicity is a final common pathway for neuronal loss in neurodegenerative disease as well as in acute insults, inhibition of the JNK activity will prevent neuronal death in these neurological conditions.
- Role of MLK in Neuronal Apoptosis
- A kinase dead version of MLK2 was generated by introduction of A-G point mutation at position 651 (codon AGG to GAG) by overlapping extension using polymerase chain reaction with mutated oligonucleotides, to result in amino acid substitution of K to E in the ATP binding loop of the MLK2 kinase domain. Such a point mutation leads to total loss of kinase activity of MLK2 and a kinase dead version of MLK2 will act as a dominant mutant and inhibit MLK2 activation-mediated actions. Tibbles, L. A., et al.,EMBO. J., 15:7026-7036 (1996). The cDNA fragment of wild-type or kinase dead MLK2 was inserted into pRK5CMV with a C-terminal myc tag. Nagata, K., et al, EMBO. J., 17:149-158 (1998).
- To examine whether expression of MLK2 induces neuronal cell death, HN33 cells were transfected with pRK5CMV, wild-type or kinase dead MLK2 expression vector using lipofectin (Boehringer Mannheim) according to manufacture instruction. Forty-eight hours after transfection, cells were fixed and stained with TUNEL, as described above. TUNEL negative cells (living cells) were counted. The results in FIG. 10 show that expression of MLK2 induced apoptosis in HN33 cells while expression of the kinase dead version of MLK2 did not generate any cell toxicity.
- To determine whether the role of the SEK1-JNK signal transduction pathway in neuronal cell death induced by expression of MLK2, HN33 cells were co-transfected with pEBG+pRK5CMV (control), wild-type SEK1 expression vector+wild-type MLK2 expression vector, or dominant negative mutant SEK1 (K54R) expression vector+wild-type MLK2 expression vector. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 11 show that SEK1 (K54R) attenuated apoptosis induced by MLK expression.
- To determine the role of MLK2 in neuronal loss in Huntington's disease, HN33 cells were co-tranfected with pEBG+pRK5CMV (control), normal huntingtin expression vector with 48 or 89 CAG repeats+kinase dead MLK2 expression vector. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 12 show that co-expression of kinase dead MLK2 blocked neuronal apoptosis induced mutated huntingtin and demonstrated that the MLK-associated activity was involved in neuronal loss in Huntington's diseases.
- The potential association of huntingtin with MLK2 was examined in 293 cells transfected with MLK2, normal huntingtin, or polyglutamine-expanded huntingtin in 293 cells at 48 hours after transfection. Expression of normal or mutated huntingtin failed to activate JNKs. Since 293 cells are rich in huntingtin (Liu, Y. F., et al.,J. Biol. Chem., 272:8121-8124 (1997)), the interaction of MLK2 with normal huntingtin in 293 cells was examined. C-Myc tagged MLK2 was transiently expressed in 293 cells, and MLK2 was precipitated with anti-c-myc tag 9E10 antibody (Santa Crutz).
- C-myc-tagged MLK2 was transiently expressed in 293 cells, as described above, 48-72 hours after transfection, 293 cells were harvested and lysed in 1% NP-40 lysate buffer. Cell lysates were incubated with an anti-N-terminus huntingtin antibody 437 or 9E10 for 4-6 hours. The precipitated proteins were resolved on SDS-PAGE, transferred, and immunoblotted with an anti-huntingtin monoclonal antibody 4C8, or anti-c-myc antibody 9E10.
- In cell lysates from 293 cells transfected without or with pRK5CMV control vector described above, 9E10 failed to co-precipitate huntingtin. However, when the 293 cells were transfected with c-myc tagged MLK2, huntingtin was easily detected in both 9E10 and 4C8 (anti-huntingtin) immunoprecipitates. Thus, MLK2 is associated with huntingtin.
- Conversely, whether an anti-huntingtin antibody precipiated MLK2 was determined. Cell lysates from 293 cells with or without transfection of a MLK2 expression vector were incubated with 437, an anti-huntingtin antibody, or 9E10. MLK2 was detectable in both 9E10 and 437 immunoprecipitates of 293 cell lysates transfected with MLK2. In non-tranfected 293 cells, MLK2 was not found in either 9E10 or 437 immunoprecipitates. These results demonstrate that huntingtin is associated with MLK2 in vivo.
- Next, we tried to examine the novel association of MLK2 with mutated huntingtin containing 48 CAG repeats in 293 cells. Expression of MLK2 or mutated huntingtin alone did not generate any cell toxic effect. Co-expression of MLK2 with normal huntingtin containing 16 CAG repeats also did not produce any cell toxicity while co-expression of mutated huntingtin with induced rapid cell death.
- To determine whether the role of MLK2 in neuronal cell death induced by glutamate or kainate receptor activation, HN33 cells were transfected with pRK5CMV (control) or kinase dead MLK2 expression vector. Forty-eight hours after transfection, the media covering the cells was replaced with fresh serum-free media supplemented without (control) or with 250 μM glutamate or 200 μM kainate. Cells were incubated in 37° C. for six hours, fixed, and then stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 13 show that kinase dead MLK2 blocks apoptosis induced by glutamate or kainate receptor activation in HN33 cells.
- To determine further the role of activation of the MLK activation in Alzheimer's diseases, HN33 cells were co-transfected with pcDNA1, wild-type expression vector, with kinase dead MLK2 expression vector. Forty-eight hours after transfection, cells were fixed and stained with TUNEL. TUNEL negative cells (living cells) were counted. The results in FIG. 14 show that kinase dead MLK2 blocks apoptosis induced by expression of APP-C-100.
- Taken together, these results shown that the MLK-associated activity mediated neuronal degeneration in Huntington's disease, Alzlieimer's disease and excitotoxicity induced by glutamate or kainate receptor activation. Since excitotoxicity is a final common pathway for neuronal loss in neurodegenerative disease as well as in acute insults, inhibition of the MLK2 activity will prevent neuronal death in these neurological conditions.
- Preparation and Purification of GST Fusion Proteins
- Glutathione-S-transferase (GST)) c-Jun fusion protein was utilized as the substrate for JNK3 kinase assay and GST SEK1 fusion protein was utilized as the substrate for MLK2 kinase assay. To generate GST-c-Jun or GST-SEK1 (K54R) fusion proteins, the cDNA fragment encoding the N-terminus of c-Jun 1-89 amino acid residues, or the full-length cDNA of SEK1, was subcloned into a pGEX vector. The vector was subsequently transformed intoE. coli and the E. coli carrying pGEX-Jun or PGX-SEK1 was grown in LB medium. Expression of these GST fusion proteins was. induced by 0.1 mM isopropyl-b-D-thiogalactopyraside (IPTG). Cells were pelleted and resuspended in {fraction (1/60)} culture volume of MT PBS (150 mM NaCl, 16 mM Na2HPO4, 4 mM NaH2PO4, pH 7.3) and then lysed by mild sonication after adding Triton X-100 to the final concentration of 1% followed by centrifugation at 10,000× g for 5 min at 4° C. The supernatant was mixed at room temperature in a 50 ml polypropylene tube on a rotating platform with 1-2 ml 50% glutathione agarose beads. After absorption for 2 min, beads were collected by brief centrifugation at 500× g and washed three times with 50 ml MT PBS. The c-Jun or SEK1 GST fusion proteins were eluted by competition with free glutathione using 2×2 min washes twice with the same buffer, and stored. The purified GST fusion proteins were stored at −80° C. in MT PBS at 4° C. as a 50% solution.
- Transfection and JNK in vitro Kinase Assay
- For an in vitro JNK kinase assay, including JNK1, JNK2 and JNK3, isolated JNK protein was used. Isolation may be accomplished by chromatographic purification from tissue or molecular transfection of host cells followed by isolation. For molecular isolation of JNK, a full length cDNA of either JNK1, JNK2 or JNK3 glutathione-S-transferase (GST) fusion construct was inserted into pGEX-2T vector and expressed in a host, such as a bacterial cell (e.g., DH1 cell). The fusion protein was then purified from the host cell using standard techniques known to those skilled in the art. Isolation of the GST-fusion protein was accomplished using a glutathione affinity column. Approximately 5 μL of glutathione-Sepharose was used to recover the fusion protein. The resin was washed three times with lysis buffer (20 mM Tris-HCl, pH 8.0, 2 mM EDTA, 50 mM β-glycerophosphate, 1 mM Na2PO4, 1% Triton X-100, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 10 μg/mL leupeptin and 10 μg/mL aproptinin) and twice with detergent-free lysis buffer. The GST-fusion protein was eluted from the resin with 100 μL of 5 mM glutathione in a detergent-free lysis buffer.
- The in vitro kinase reaction was carried out at 30° C. for 15 minutes in a kinase mixture containing 0.5 μg of GST-JNK3, 1 μg of GST-c-Jun, 2.5 mM ATP and 5 μCi of [γ-32P] ATP with or without a test compound in 20 μL of kinase buffer (20 mM HEPES, pH 7.5, 15 mM MgCl2, 15 mM β-glycerophosphate, 0.1 mM Na2PO4, 2 mM dithiothreitol). The reaction was terminated by adding 20 μL of SDS sample buffer (Laemmeli buffer). The phosphorylation was detected by SDS-PAGE, and the amount of 32P incorporated was quantified with an image analyzer. Effectiveness of the test compound as an inhibitor of JNK correlated with inhibitor of 32P incorporated GST-c-Jun.
- Transfection and MLK2 or MLK3 in vitro Kinase Assay
- For an in vitro
MLK - The in vitro kinase reaction was carried out at 30° C. for 45 minutes in a 20 μL kinase mixture containing 1 μg of GST-MLK2 or MLK3, 1 μg of GST-SEK1 (K54R), 2 mM ATP and 5 μCi or [γ-32P] ATP in the absence or presence of a test compound in the kinase buffer (20 mM HEPES, pH 7.5, 15 mM MgCl2, 15 mM β-glycerophoshate, 0.1 mM Na2VO4, 2 mM dithiothreitol). The reaction was terminated by adding 20 μL of SDS sample buffer (Laemmeli buffer). The phosphorylation was detected by SDS-PAGE, and the amount of 32P incorporated was quantified with an image analyzer. Effectiveness of the test compound as an inhibitor of MLK2 or MLK3 correlated with inhibition of 32P incorporated GST-SEK1 (K54R).
- MLK2 Immunocomplex Kinase Assay
- An MLK2 immunocomplex kinase assay was used to screen for the
MLK MLK - 96-Well Cell Based Assay
- HN33 cells (˜60% of confluence), plated on a 96-well plate, were grown in DMEM-F12 medium supplemented with 10% of fetal bovine serum (FBS). Prior to transfection, the medium was removed and cells were washed with serum-free medium once and 50 μl of DMEM-F12 medium with 1% of FBS was added. The full-length huntingtin expression plasmid containing 16 (control), 48 or 89 CAG repeats or lipofectin solution were diluted with HBS first and mixed 1×1 volume and the mixture was incubated at room temperature for 15 min. Ten μl of the DNA-lipofectin mixture was added to the culture medium. A mixture of compound from a chemical library was added 6 hours after transfection. Twelve hours after transfection, additional FBS was added to the final concentration of 10%. Forty-eight hours after transfection, cells were washed with PBS once and fixed with 4% paraformaldehyde dissolved in PBS and permeabilized with 1% Triton X-100 in PBS containing 1% sodium citrate. Cell were then rinsed twice with PBS containing 1% BSA and cells were incubated with 25 μl of TUNEL reaction solution for 1 hour at a 37° C. cell culture incubator. Cell were rinsed with PBS for three times and 25 μl of converter-AP solution was added and cells are returned to the incubator and incubated for 30 min. Cells were rinsed three times with PBS with 1% BSA and cells were incubated in a BCIP solution for 1-5 min at room temperature and rinsed three times with PBS and analyzed under light microscope.
- While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (43)
1. A method for assessing a compound's ability to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
a) contacting a compound with neuronal cells having activated MLK and/or JNK activity;
b) determining the number of neuronal cells that die;
wherein a decreased number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
2. The method of claim 1 , wherein the neuronal cells are transfected with a mutated protein or treated with a neurotoxin to induce apoptosis.
3. The method of claim 2 , wherein the neuronal cells are HN33 cells.
4. The method of claim 2 , wherein the mutated protein is polyglutamine stretch-expanded huntingtin or C-terminal 100 amino acids of amyloid precursor protein.
5. The method of claim 2 , wherein the neurotoxin is glutamate, quinolinic acid or kainic acid.
6. The method of claim 1 , wherein the neuronal cells are apoptotic neurons.
7. The method of claim 1 , wherein the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death.
8. The method of claim 1 , wherein the neurological condition is Huntington's disease or Alzheimer's disease.
9. A method for assessing a compound's ability to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
a) contacting a compound with neuronal cells transfected with a mutated protein or treated with a neurotoxin that induces neuronal cell death; and
b) determining the number of neuronal cells that die;
wherein a decreased number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
10. The method of claim 9 , wherein the neuronal cells are HN33 cells.
11. The method of claim 9 , wherein the mutated protein is polyglutamine stretch-expanded huntingtin or C-terminal 100 amino acids of amyloid precursor protein.
12. The method of claim 9 , wherein the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death.
13. The method of claim 9 , wherein the neurological condition is Huntington's disease or Alzheimer's disease.
14. A method for assessing the ability of a JNK and/or MLK inhibitor to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
a) contacting a JNK and/or MLK inhibitor with neuronal cells having activated MLK and/or JNK activity;
b) contacting, in the presence of the compound, surviving cells from step (a) with an agent that induces apoptosis; and
c) comparing the level of apoptosis in the cell in the presence of the JNK and/or MLK inhibitor with the level of apoptosis in the cell in the absence of the JNK and/or MLK inhibitor;
wherein the JNK and/or MLK inhibitor is a potentially useful drug for treating the mammal when the level of apoptosis in the cell in the presence of the JNK and/or MLK inhibitor is less than the level of apoptosis in the cell in the absence of the JNK and/or MLK inhibitor.
15. The method of claim 14 , wherein the apoptotic agent is a neurotoxin.
16. The method of claim 14 , wherein the neurotoxin is glutamate, quinolinic acid or kainic acid.
17. The method of claim 14 , wherein step (b) is performed by transfecting the surviving neuronal cells with a mutated form of huntingtin or amyloid precursor protein.
18. The method of claim 14 , wherein the neuronal cells are HN33 cells.
19. A method for screening a compound's ability to inhibit JNK and/or MLK activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
a) contacting a compound with a JNK and/or MLK protein and substrate therefor;
b) measuring the level of JNK and/or MLK activity;
c) comparing the level of JNK and/or MLK activity in the presence of the compound with the level of JNK and/or MLK activity in the absence of the compound, wherein a decrease in JNK and/or MLK activity in the presence of the compound is indicative that the compound is a JNK and/or MLK inhibitor;
d) contacting the compound with neuronal cells having activated MLK and/or JNK activity;
e) comparing the occurrence of apoptosis in the cell in the presence of the compound with the occurrence of apoptosis in the cell in the absence of the JNK and/or MLK inhibitor;
wherein the JNK and/or MLK inhibitor is a potentially useful drug for treating the mammal when the occurrence of apoptosis in the cell in the presence of the JNK and/or MLK inhibitor is less than the occurrence of apoptosis in the cell in the absence of the JNK and/or MLK inhibitor.
20. The method of claim 19 , wherein JNK is JNK1, JNK2 or JNK3 and MLK is MLK1, MLK2 or MLK3, or combinations thereof.
21. The method of claim 20 , wherein the JNK and/or MLK activity is a kinase activity.
22. The method of claim 19 , wherein the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death.
23. The method of claim 19 , wherein the neurological condition is Huntington's disease or Alzheimer's disease.
24. A method for assessing a compound's ability to inhibit JNK and/or MLK activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
a) incubating a compound in the presence of JNK and/or MLK and appropriate JNK and/or MLK substrate therefor, under conditions sufficient for enzymatic activity; and
b) determining the presence or amount of phosphorylated product;
wherein a change in amount of phosphorylated product, when compared to incubating JNK and/or MLK with appropriate substrates absent the compound, is indicative of the compound's ability to inhibit the enzymatic activity of JNK and/or MLK and thereby prevent neuronal cell death in a mammal susceptible to or having a neurological condition.
25. The method of claim 24 , wherein JNK is JNK1, JNK2 or JNK3 and MLK is MLK1, MLK2 or MLK3, or combinations thereof.
26. The method of claim 24 , wherein JNK substrates include c-Jun and a phosphate donor.
27. The method of claim 24 , wherein phosphorylated product of step (b) is phosphorylated c-Jun or phosphorylated SEK1.
28. The method of claim 27 , wherein the MLK substrates include SEK1 and a phosphate donor.
29. A method for assessing a compound's ability to inhibit JNK and/or MLK kinase activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
(a) contacting a neuronal cell with a compound under conditions sufficient for JNK and/or MLK enzymatic activity; and
(b) determining the presence or amount of phosphorylated JNK and/or MLK product;
wherein a change in amount of phosphorylated product, when compared to incubating a cell absent the compound, is indicative of the compound's ability to inhibit JNK and/or MLK kinase activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
30. The method of claim 29 further comprising:
(c) determining cell viability after step (a);
wherein any increase in the cell's viability status relative to a control is indicative of the compound's ability to inhibit JNK and/or MLK kinase activity thereby affecting the viability of the cell.
31. The method of claim 29 , wherein alteration in the cell's viability status includes apoptosis.
32. The method of claim 29 , wherein JNK is JNK1, JNK2 or JNK3 and MLK is MLK1, MLK2 or MLK3, or combinations thereof.
33. A method for assessing a compound's ability to inhibit MLK and/or JNK kinase activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
(a) administering to an animal an amount of compound under conditions sufficient to allow for proper pharmacodynamic absorption and distribution thereof in the animal; and
(b) determining the physiological status of the animal;
wherein a change in physiological status, when compared to an animal not administered the compound, is indicative of the compound's ability to inhibit MLK and/or JNK kinase activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
34. The method of claim 33 , wherein MLK is MLK1, MLK2 or MLK3 and JNK is JNK1, JNK2 or JNK3, or combinations thereof.
35. The method of claim 33 , wherein the animal is a mammal.
36. A method for treating a neurological disorder in a mammal in need thereof, comprising administering to the mammal an effective therapeutic amount of a compound that inhibits JNK and/or MLK activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
37. The method of claim 36 , wherein the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death.
38. The method of claim 36 , wherein the neurological condition is Huntington's disease or Alzheimer's disease.
39. The method of claim 36 , wherein JNK is JNK1, JNK2 or JNK3 and MLK is MLK1, MLK2 or MLK3, or combinations thereof.
40. A method for preventing neuronal cell death in a mammal susceptible to or having a neurological condition, comprising administering to the mammal in need thereof an effective therapeutic amount of a compound that inhibits JNK and/or MLK activity in a neuronal cell and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
41. The method of claim 40 , wherein the neurological condition is a neurological disease whereby glutamate or kainic acid mediated excitotoxicity is involved in neuronal cell death.
42. The method of claim 40 , wherein the neurological condition is Huntington's disease or Alzheimer's disease.
43. A method for treating a neurological disorder in a mammal in need thereof, comprising administering to the mammal an effective therapeutic amount of a compound that inhibits JNK and/or MLK activity and thereby prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, wherein the compound is identified by a method for assessing a compound's ability to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition, comprising:
a) contacting a compound with neuronal cells having activated MLK and/or JNK activity;
b) determining the number of neuronal cells that die;
wherein a decreased number of dead neuronal cells in the presence of the compound compared to the number of dead neuronal cells in the absence of the compound is indicative of the compound's ability to prevent neuronal cell death occurring in a mammal susceptible to or having a neurological condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/886,964 US20020006606A1 (en) | 1998-05-14 | 2001-06-21 | MLK inhibitors for the treatment of neurological disorders |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8543998P | 1998-05-14 | 1998-05-14 | |
US09/156,367 US6811992B1 (en) | 1998-05-14 | 1998-09-17 | Method for identifying MLK inhibitors for the treatment of neurological conditions |
US09/886,964 US20020006606A1 (en) | 1998-05-14 | 2001-06-21 | MLK inhibitors for the treatment of neurological disorders |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/156,367 Division US6811992B1 (en) | 1998-05-14 | 1998-09-17 | Method for identifying MLK inhibitors for the treatment of neurological conditions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020006606A1 true US20020006606A1 (en) | 2002-01-17 |
Family
ID=26772721
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/156,367 Expired - Lifetime US6811992B1 (en) | 1998-05-14 | 1998-09-17 | Method for identifying MLK inhibitors for the treatment of neurological conditions |
US09/886,964 Abandoned US20020006606A1 (en) | 1998-05-14 | 2001-06-21 | MLK inhibitors for the treatment of neurological disorders |
US10/042,614 Expired - Fee Related US7452686B2 (en) | 1998-05-14 | 2002-01-09 | JNK inhibitors for the treatment of neurological disorders |
US10/360,463 Expired - Fee Related US7264942B2 (en) | 1998-05-14 | 2003-02-05 | Method for identifying JNK and MLK inhibitors for treatment of neurological conditions |
US11/881,441 Expired - Fee Related US7544479B2 (en) | 1998-05-14 | 2007-07-27 | Method for identifying MLK inhibitors for treatment of neurological conditions |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/156,367 Expired - Lifetime US6811992B1 (en) | 1998-05-14 | 1998-09-17 | Method for identifying MLK inhibitors for the treatment of neurological conditions |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/042,614 Expired - Fee Related US7452686B2 (en) | 1998-05-14 | 2002-01-09 | JNK inhibitors for the treatment of neurological disorders |
US10/360,463 Expired - Fee Related US7264942B2 (en) | 1998-05-14 | 2003-02-05 | Method for identifying JNK and MLK inhibitors for treatment of neurological conditions |
US11/881,441 Expired - Fee Related US7544479B2 (en) | 1998-05-14 | 2007-07-27 | Method for identifying MLK inhibitors for treatment of neurological conditions |
Country Status (5)
Country | Link |
---|---|
US (5) | US6811992B1 (en) |
EP (1) | EP1078268A1 (en) |
JP (1) | JP2002514767A (en) |
CA (1) | CA2331680A1 (en) |
WO (1) | WO1999058982A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6811992B1 (en) | 1998-05-14 | 2004-11-02 | Ya Fang Liu | Method for identifying MLK inhibitors for the treatment of neurological conditions |
HUP0103079A3 (en) * | 1998-08-26 | 2004-03-01 | Cephalon Inc | Modulating multiple lineage kinase proteins |
JP4989830B2 (en) * | 1999-07-21 | 2012-08-01 | サーントゥル ナシオナル ドゥ ラ ルシェルシュ シャーンティフィク | Use of a beta-naphthoquinone derivative to produce a drug that exhibits an inhibitory effect on glutamate release by the brain |
IL154311A0 (en) * | 2000-08-11 | 2003-09-17 | Cephalon Inc | Modulating multiple lineage kinase proteins |
US7018999B2 (en) | 2001-05-16 | 2006-03-28 | Cephalon, Inc. | Methods for the treatment and prevention of pain |
US20040092464A1 (en) * | 2002-11-11 | 2004-05-13 | Isis Pharmaceuticals Inc. | Modulation of mitogen-activated protein kinase kinase kinase 11 expression |
WO2005095630A2 (en) * | 2004-03-02 | 2005-10-13 | Bayer Healthcare Ag | Diagnostics and therapeutics for diseases associated with mitogen-activated protein kinase kinase kinase 10 (map3k10) |
US20060094753A1 (en) * | 2004-10-29 | 2006-05-04 | Alcon, Inc. | Use of inhibitors of Jun N-terminal kinases for the treatment of glaucomatous retinopathy and ocular diseases |
ZA200704889B (en) * | 2004-11-23 | 2008-09-25 | Celgene Corp | JNK inhibitors for treatment of CNS injury |
WO2007031098A1 (en) | 2005-09-12 | 2007-03-22 | Xigen S.A. | Cell-permeable peptide inhibitors of the jnk signal transduction pathway |
US20090252717A1 (en) * | 2006-05-26 | 2009-10-08 | Scott Thomas Brady | Compositions and Methods for Treating Polyglutamine-Expansion Neurodegenerative Diseases |
WO2008024776A1 (en) * | 2006-08-22 | 2008-02-28 | Children's Medical Center Corporation | Inhibiting jnk signaling promotes cns axon regeneration |
CA2693694A1 (en) * | 2007-06-08 | 2008-12-11 | University Of Massachusetts | Mixed lineage kinases and metabolic disorders |
WO2009020601A2 (en) | 2007-08-03 | 2009-02-12 | Cornell University | Atf4 inhibitors and their use for neural protection, repair, regeneration, and plasticity |
TWI468417B (en) | 2007-11-30 | 2015-01-11 | Genentech Inc | Anti-vegf antibodies |
EP2240783A2 (en) * | 2008-02-04 | 2010-10-20 | Galapagos N.V. | Molecular targets and compounds, methods to identify the same, useful in the treatment of neurodegenerative diseases. |
WO2009143865A1 (en) | 2008-05-30 | 2009-12-03 | Xigen S.A. | Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of various diseases |
WO2009143864A1 (en) | 2008-05-30 | 2009-12-03 | Xigen S.A. | Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of chronic or non-chronic inflammatory digestive diseases |
KR20110081862A (en) | 2008-10-22 | 2011-07-14 | 제넨테크, 인크. | Regulation of Axon Degeneration |
AU2015202365B2 (en) * | 2008-10-22 | 2016-11-24 | Genentech, Inc. | Modulation of axon degeneration |
WO2010072228A1 (en) | 2008-12-22 | 2010-07-01 | Xigen S.A. | Novel transporter constructs and transporter cargo conjugate molecules |
WO2011160653A1 (en) | 2010-06-21 | 2011-12-29 | Xigen S.A. | Novel jnk inhibitor molecules |
CA2807036C (en) | 2010-10-14 | 2018-01-16 | Xigen S.A. | Use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of chronic or non-chronic inflammatory eye diseases |
WO2013091670A1 (en) | 2011-12-21 | 2013-06-27 | Xigen S.A. | Novel jnk inhibitor molecules for treatment of various diseases |
CN104884059B (en) | 2012-11-30 | 2018-08-10 | 罗切斯特大学 | Mixing pedigree kinase inhibitor for HIV/AIDS treatments |
WO2015197097A1 (en) | 2014-06-26 | 2015-12-30 | Xigen Inflammation Ltd. | New use for jnk inhibitor molecules for treatment of various diseases |
WO2014206427A1 (en) | 2013-06-26 | 2014-12-31 | Xigen Inflammation Ltd. | New use of cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of various diseases |
EP3013353B1 (en) | 2013-06-26 | 2021-04-21 | Xigen Inflammation Ltd. | Cell-permeable peptide inhibitors of the jnk signal transduction pathway for the treatment of cystitis |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980281A (en) * | 1988-02-10 | 1990-12-25 | Housey Gerard M | Method of screening for protein inhibitors and activators |
US5385915A (en) * | 1990-05-16 | 1995-01-31 | The Rockefeller University | Treatment of amyloidosis associated with Alzheimer disease using modulators of protein phosphorylation |
US5461146A (en) * | 1992-07-24 | 1995-10-24 | Cephalon, Inc. | Selected protein kinase inhibitors for the treatment of neurological disorders |
US5468872A (en) * | 1993-09-16 | 1995-11-21 | Cephalon, Inc. | K-252a functional derivatives potentiate neurotrophin-3 for the treatment of neurological disorders |
US5475110A (en) * | 1994-10-14 | 1995-12-12 | Cephalon, Inc. | Fused Pyrrolocarbazoles |
US5534426A (en) * | 1993-07-19 | 1996-07-09 | The Regents Of The University Of California | Oncoprotein protein kinase |
US5554523A (en) * | 1994-03-01 | 1996-09-10 | Children's Hospital Of Philadelphia | Nucleic acid sequences encoding human leucine-zipper protein-kinase |
US5591855A (en) * | 1994-10-14 | 1997-01-07 | Cephalon, Inc. | Fused pyrrolocarbazoles |
US5593884A (en) * | 1993-07-19 | 1997-01-14 | Karin; Michael | Oncoprotein protein kinase |
US5594009A (en) * | 1994-10-14 | 1997-01-14 | Cephalon, Inc. | Fused pyrrolocarbazoles |
US5705511A (en) * | 1994-10-14 | 1998-01-06 | Cephalon, Inc. | Fused pyrrolocarbazoles |
US5750555A (en) * | 1992-12-21 | 1998-05-12 | Goedecke Aktiengesellschaft | Bis-indolyl maleinimide or indolopyrrolo carbazole containing an amino acid as PKC inhibitors |
US5756494A (en) * | 1992-07-24 | 1998-05-26 | Cephalon, Inc. | Protein kinase inhibitors for treatment of neurological disorders |
US6127401A (en) * | 1998-06-05 | 2000-10-03 | Cephalon, Inc. | Bridged indenopyrrolocarbazoles |
US6159948A (en) * | 1996-04-26 | 2000-12-12 | University Of Ottawa | Therapeutic and drug screening methods for the treatment and prevention of neuronal disease |
US6159984A (en) * | 1997-06-17 | 2000-12-12 | Schering Corporation | Farnesyl protein transferase inhibitors |
US6162613A (en) * | 1998-02-18 | 2000-12-19 | Vertex Pharmaceuticals, Inc. | Methods for designing inhibitors of serine/threonine-kinases and tyrosine kinases |
US20020028815A1 (en) * | 2000-05-09 | 2002-03-07 | Ator Mark A. | Novel multicyclic compounds and the use thereof |
US20020061920A1 (en) * | 2000-08-25 | 2002-05-23 | Gingrich Diane E. | Selected fused pyrrolocarbazoles |
US6455525B1 (en) * | 1999-11-04 | 2002-09-24 | Cephalon, Inc. | Heterocyclic substituted pyrazolones |
US20020198219A1 (en) * | 2000-08-08 | 2002-12-26 | Grant Elfrida R. | 2-pyridinamine compositions and related methods |
US6573044B1 (en) * | 1997-08-07 | 2003-06-03 | The Regents Of The University Of California | Methods of using chemical libraries to search for new kinase inhibitors |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US575055A (en) * | 1897-01-12 | Pcters | ||
AU3482493A (en) | 1992-01-22 | 1993-09-01 | New England Deaconess Hospital | Novel protein tyrosine kinases |
US5621101A (en) | 1992-07-24 | 1997-04-15 | Cephalon, Inc. | Protein kinase inhibitors for treatment of neurological disorders |
US5621100A (en) | 1992-07-24 | 1997-04-15 | Cephalon, Inc. | K-252a derivatives for treatment of neurological disorders |
IL104422A (en) | 1993-01-18 | 1996-03-31 | Labaton Isaac J | Method and apparatus for magnetically writing on plastic cards |
US5405941A (en) * | 1993-04-15 | 1995-04-11 | National Jewish Center For Immunology And Respiratory Medicine | MEKK protein, capable of phosphorylating MEK |
CA2148898A1 (en) | 1994-05-09 | 1995-11-10 | John M. Kyriakis | P54 stress-activated protein kinases |
US6087366A (en) * | 1996-03-07 | 2000-07-11 | The Trustees Of Columbia University In The City Of New York | Use of flavopiridol or a pharmaceutically acceptable salt thereof for inhibiting cell damage or cell death |
US5840509A (en) * | 1996-07-22 | 1998-11-24 | Eli Lilly And Company | Protease and related nucleic acid compounds |
US5817479A (en) * | 1996-08-07 | 1998-10-06 | Incyte Pharmaceuticals, Inc. | Human kinase homologs |
WO1998022608A2 (en) * | 1996-11-18 | 1998-05-28 | Mcgill University | Post-mitotic neurons containing adenovirus vectors that modulate apoptosis and growth |
US6943000B2 (en) | 1997-10-03 | 2005-09-13 | University Of Massachusetts | JNK3 modulators and methods of use |
US6811992B1 (en) | 1998-05-14 | 2004-11-02 | Ya Fang Liu | Method for identifying MLK inhibitors for the treatment of neurological conditions |
HUP0103079A3 (en) | 1998-08-26 | 2004-03-01 | Cephalon Inc | Modulating multiple lineage kinase proteins |
US6841567B1 (en) | 1999-02-12 | 2005-01-11 | Cephalon, Inc. | Cyclic substituted fused pyrrolocarbazoles and isoindolones |
IL154311A0 (en) | 2000-08-11 | 2003-09-17 | Cephalon Inc | Modulating multiple lineage kinase proteins |
-
1998
- 1998-09-17 US US09/156,367 patent/US6811992B1/en not_active Expired - Lifetime
-
1999
- 1999-05-12 WO PCT/US1999/010416 patent/WO1999058982A1/en not_active Application Discontinuation
- 1999-05-12 JP JP2000548734A patent/JP2002514767A/en not_active Withdrawn
- 1999-05-12 EP EP99922972A patent/EP1078268A1/en not_active Withdrawn
- 1999-05-12 CA CA002331680A patent/CA2331680A1/en not_active Abandoned
-
2001
- 2001-06-21 US US09/886,964 patent/US20020006606A1/en not_active Abandoned
-
2002
- 2002-01-09 US US10/042,614 patent/US7452686B2/en not_active Expired - Fee Related
-
2003
- 2003-02-05 US US10/360,463 patent/US7264942B2/en not_active Expired - Fee Related
-
2007
- 2007-07-27 US US11/881,441 patent/US7544479B2/en not_active Expired - Fee Related
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980281A (en) * | 1988-02-10 | 1990-12-25 | Housey Gerard M | Method of screening for protein inhibitors and activators |
US5385915A (en) * | 1990-05-16 | 1995-01-31 | The Rockefeller University | Treatment of amyloidosis associated with Alzheimer disease using modulators of protein phosphorylation |
US5461146A (en) * | 1992-07-24 | 1995-10-24 | Cephalon, Inc. | Selected protein kinase inhibitors for the treatment of neurological disorders |
US5756494A (en) * | 1992-07-24 | 1998-05-26 | Cephalon, Inc. | Protein kinase inhibitors for treatment of neurological disorders |
US5750555A (en) * | 1992-12-21 | 1998-05-12 | Goedecke Aktiengesellschaft | Bis-indolyl maleinimide or indolopyrrolo carbazole containing an amino acid as PKC inhibitors |
US5605808A (en) * | 1993-07-19 | 1997-02-25 | The Regents Of The University Of California | Oncoprotein protein kinase |
US6514745B1 (en) * | 1993-07-19 | 2003-02-04 | The Regents Of The University Of California | Oncoprotein protein kinase |
US5534426A (en) * | 1993-07-19 | 1996-07-09 | The Regents Of The University Of California | Oncoprotein protein kinase |
US5593884A (en) * | 1993-07-19 | 1997-01-14 | Karin; Michael | Oncoprotein protein kinase |
US5468872A (en) * | 1993-09-16 | 1995-11-21 | Cephalon, Inc. | K-252a functional derivatives potentiate neurotrophin-3 for the treatment of neurological disorders |
US5516772A (en) * | 1993-09-16 | 1996-05-14 | Cephalon, Inc. | K-252 derivatives which enhance neurotrophin-induced activity |
US5676945A (en) * | 1994-03-01 | 1997-10-14 | Children's Hospital Of Philadelphia | Human leucine-zipper protein kinase and methods of use |
US5554523A (en) * | 1994-03-01 | 1996-09-10 | Children's Hospital Of Philadelphia | Nucleic acid sequences encoding human leucine-zipper protein-kinase |
US5594009A (en) * | 1994-10-14 | 1997-01-14 | Cephalon, Inc. | Fused pyrrolocarbazoles |
US5705511A (en) * | 1994-10-14 | 1998-01-06 | Cephalon, Inc. | Fused pyrrolocarbazoles |
US5591855A (en) * | 1994-10-14 | 1997-01-07 | Cephalon, Inc. | Fused pyrrolocarbazoles |
US5475110A (en) * | 1994-10-14 | 1995-12-12 | Cephalon, Inc. | Fused Pyrrolocarbazoles |
US6159948A (en) * | 1996-04-26 | 2000-12-12 | University Of Ottawa | Therapeutic and drug screening methods for the treatment and prevention of neuronal disease |
US6159984A (en) * | 1997-06-17 | 2000-12-12 | Schering Corporation | Farnesyl protein transferase inhibitors |
US6573044B1 (en) * | 1997-08-07 | 2003-06-03 | The Regents Of The University Of California | Methods of using chemical libraries to search for new kinase inhibitors |
US6162613A (en) * | 1998-02-18 | 2000-12-19 | Vertex Pharmaceuticals, Inc. | Methods for designing inhibitors of serine/threonine-kinases and tyrosine kinases |
US6127401A (en) * | 1998-06-05 | 2000-10-03 | Cephalon, Inc. | Bridged indenopyrrolocarbazoles |
US6455525B1 (en) * | 1999-11-04 | 2002-09-24 | Cephalon, Inc. | Heterocyclic substituted pyrazolones |
US20020028815A1 (en) * | 2000-05-09 | 2002-03-07 | Ator Mark A. | Novel multicyclic compounds and the use thereof |
US20020198219A1 (en) * | 2000-08-08 | 2002-12-26 | Grant Elfrida R. | 2-pyridinamine compositions and related methods |
US20020061920A1 (en) * | 2000-08-25 | 2002-05-23 | Gingrich Diane E. | Selected fused pyrrolocarbazoles |
Also Published As
Publication number | Publication date |
---|---|
US7544479B2 (en) | 2009-06-09 |
US20030148395A1 (en) | 2003-08-07 |
US7264942B2 (en) | 2007-09-04 |
US7452686B2 (en) | 2008-11-18 |
US6811992B1 (en) | 2004-11-02 |
CA2331680A1 (en) | 1999-11-12 |
WO1999058982A1 (en) | 1999-11-18 |
EP1078268A1 (en) | 2001-02-28 |
US20020058245A1 (en) | 2002-05-16 |
US20070298442A1 (en) | 2007-12-27 |
JP2002514767A (en) | 2002-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7544479B2 (en) | Method for identifying MLK inhibitors for treatment of neurological conditions | |
Kanekura et al. | Characterization of amyotrophic lateral sclerosis-linked P56S mutation of vesicle-associated membrane protein-associated protein B (VAPB/ALS8) | |
Wang et al. | The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function | |
JP5668201B2 (en) | Screening method | |
Kundu et al. | 14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation | |
Ueberham et al. | Cyclin C expression is involved in the pathogenesis of Alzheimer’s disease | |
Brunet et al. | A trs20 mutation that mimics an SEDT‐causing mutation blocks selective and non‐selective autophagy: a model for TRAPP III organization | |
Shimojo et al. | Characterization of the REST/NRSF‐interacting LIM domain protein (RILP): localization and interaction with REST/NRSF | |
Blazejczyk et al. | Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling | |
Szymanska et al. | Regulation of canonical Wnt signalling by the ciliopathy protein MKS1 and the E2 ubiquitin-conjugating enzyme UBE2E1 | |
US7265214B2 (en) | Germinal center kinase proteins, compositions and methods of use | |
De Thonel et al. | Protein kinase Cζ regulates Cdk5/p25 signaling during myogenesis | |
US8080367B2 (en) | Regulation of cell survival by HSP90 and IP6K2 | |
US20050142630A1 (en) | Interaction of NMDA receptor with the protein tyrosine phosphatase step in psychotic disorders | |
US10254283B2 (en) | Biomarker for MELK activity and methods of using same | |
AU2014348780B2 (en) | Biomarker for MELK activity and methods of using same | |
US20050118644A1 (en) | Interaction of NMDA receptor with protein tyrosine phosphatase | |
US20050221411A1 (en) | Interaction of NMDA receptor with the protein tyrosine phosphatase step in psychotic disorders | |
US20050266509A1 (en) | Interaction of NMDA receptor with protein tyrosine phosphatase | |
Kondapalli et al. | Helen I. Woodroof1, 2, David G. Campbell1, Robert Gourlay1, Lynn Burchell4, Helen Walden4, Thomas J. Macartney1, Maria Deak1, Axel Knebel1, Dario R. Alessi1 and Miratul MK Muqit1, 3 | |
Alessi et al. | PINK1 is activated by mitochondrial membrane potential | |
Liu | A study of protein phosphatase 2C in cystic fibrosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |