+

US20020005560A1 - Shallow trench isolation having an etching stop layer and method for fabricating same - Google Patents

Shallow trench isolation having an etching stop layer and method for fabricating same Download PDF

Info

Publication number
US20020005560A1
US20020005560A1 US09/089,241 US8924198A US2002005560A1 US 20020005560 A1 US20020005560 A1 US 20020005560A1 US 8924198 A US8924198 A US 8924198A US 2002005560 A1 US2002005560 A1 US 2002005560A1
Authority
US
United States
Prior art keywords
layer
shallow trench
substrate
silicon
etching stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/089,241
Inventor
Chung Yuan Lee
Yih-Ren Shao
Pei-Ing Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanya Technology Corp
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Assigned to NAN YA TECHNOLOGY CORPORATION reassignment NAN YA TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAO, CHUNG-PENG, HUANG, CHUNG-LIN, LEE, CHUNG-YUAN, LEE, PEI-ING, SHAO, YIH-REN
Priority to US09/695,144 priority Critical patent/US6403483B1/en
Publication of US20020005560A1 publication Critical patent/US20020005560A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Definitions

  • the present invention relates to a shallow trench isolation (STI) and its method of fabrication, and more particularly to a shallow trench isolation (STI) having an etching stop layer and its method of fabrication.
  • STI shallow trench isolation
  • FIGS. 1 through FIG. 9 the cross-sectional side views of a conventional method for fabricating a shallow trench are depicted in sequence.
  • FIG. 1 a cross-sectional view of the starting step is schematically shown.
  • the stacked structure 11 consisting of a silicon oxide layer 12 , a polysilicon layer 14 and a silicon nitride layer 16 , is formed on the surface of the substrate 10 .
  • a resist layer 20 is formed on the surface of the silicon nitride layer 16 by photolithographic technique. Then, using the resist layer 20 as a mask, the stacked structure 11 and the substrate 10 are sequentially etched to form a shallow trench 22 .
  • the resist layer 20 is removed. Afterward, a thin oxide 30 is formed, by thermal oxidation, on the bottom and side walls of the shallow trench 22 .
  • the silicon oxide layer 40 is formed over the substrate 100 , so as to fill the shallow trench 22 .
  • a portion of the silicon oxide layer 40 is removed, usually by chemical mechanical polishing (CMP) and then etching, to leave the silicon oxide layer 40 a (e.g. Conventional isolation), within the shallow trench 22 , whose upper surface is higher than the upper surface of the polysilicon layer 14 .
  • CMP chemical mechanical polishing
  • the silicon nitride layer 16 is removed.
  • the polysilicon layer 60 and the silicide layer 62 are formed overlaying the substrate 10 .
  • the silicide 62 , the polysilicon layer 60 , and the polysilicon layer 14 are etched by using anisotropic etching to form polycide gates 71 and 73 .
  • an oxide layer 81 is formed to serve as a passivation.
  • the resist pattern 80 is formed to expose a portion surface of the oxide layer 81 .
  • a portion of oxide layer 81 is etched, by conventional dry etching, to form a contact hole 85 . Because of the occurrence of a misalignment, silicon oxide layer 40 a (e.g. Conventional isolation) would be etched into a gap 86 . A conductive material is filled in the contact hole 85 and the gap 86 , thereby forming a conductive plug 91 and an interconnection 90 .
  • silicon oxide layer 40 a e.g. Conventional isolation
  • the silicon oxide 40 a will be etched into a gap within the substrate. Moreover, the conductive material in the gap will result in a substrate leakage.
  • an object of the invention is to provide a method for fabricating a shallow trench isolation having an etching stop layer, thereby preventing the gap within the shallow trench isolation.
  • a method for fabricating a shallow trench isolation having an etching stop layer comprising the steps of: (a) providing a substrate; (b) forming a stacked structure consisting of a first insulated layer, a conductive layer, and a first shield layer in sequence, on said substrate; (c) defining said stacked structure and said substrate so as to form a shallow trench; (d) forming a second insulated layer over said substrate, to fill said shallow trench; (e) etching said second insulated layer so as to leave a portion of said second insulated layer remaining in said shallow trench, and to form a concave portion in the top position of said shallow trench; (f) removing said first shield layer; (g) forming a second shield layer over said substrate, to fill said concave portion; and (h) etching said second shield layer so as to leave a portion of said second shield layer in the concave portion, to serve as an etching stop layer.
  • the above object is attained by providing a method for fabricating a shallow trench isolation having an etching stop layer, comprising the steps of: (a) providing a silicon substrate; (b) forming a stacked structure consisting of a first silicon oxide layer, a polysilicon layer, and a first silicon nitride layer in sequence on said silicon substrate; (c) defining said stacked structure and said silicon substrate so as to form a shallow trench; (d) forming a second silicon oxide layer over said substrate, to fill said shallow trench using a high density plasma deposition; (e) polishing said second silicon oxide layer so as to leave a portion of said second silicon oxide layer remaining in said shallow trench, and to form a concave portion in the top position of said shallow trench, by chemical mechanical polishing; (f) removing said first silicon nitride layer; (g) forming a second silicon nitride layer over said silicon substrate, to fill said concave portion; and (h) polishing said second silicon nitride layer
  • FIGS. 1 through FIG. 9 are cross-sectional side views showing the manufacturing steps of a contact hole on the silicon substrate having a conventional isolation structure
  • FIGS. 10 through FIG. 20 are cross-sectional side views showing the manufacturing steps of a contact hole on the silicon substrate having a isolation structure according to the invention.
  • FIG. 21 is a cross-sectional view showing a shallow trench isolation structure having an etching stop layer of the preferred embodiment of the invention.
  • substrate 100 can be made of a semiconductor material such as silicon.
  • the stacked structure 110 consisting of an insulated layer 120 , a conductive layer 140 and a shield layer 160 , is formed on the surface of the substrate 100 .
  • the insulated layer 120 can be a silicon oxide layer having a thickness in the range of approximately 40 to 120 angstroms, serving as a gate oxide, and is grown by thermal oxidation.
  • the conductive layer 140 such as a polysilicon layer having a thickness in the range of approximately 1000 to 2500 angstroms, is deposited by low-pressure chemical vapor deposition (LPCVD) using S 1 H 4 as the primary reactive gas.
  • the shield layer 160 such as a silicon nitride, has a thickness in the range of approximately 2000 to 4000 angstroms.
  • a resist pattern 200 is formed on the surface of the shield layer 160 by photolithographic technique. Then, using the resist pattern 200 as a mask, the stacked structure 110 and the substrate 100 are sequentially etched to form a shallow trench 220 by anisotropic reactive ion etching (RIE), which uses CHF 3 as the etching reactive gas.
  • RIE anisotropic reactive ion etching
  • the depth of the shallow trench 220 , within the substrate 100 is in the range of 0.3 ⁇ m to 0.4. ⁇ m.
  • the resist pattern 200 is removed. Afterward, a thin oxide 300 is formed, preferably by thermal oxidation, on the bottom and side walls of the shallow trench 220 .
  • the insulated layer 400 such as silicon oxide, is formed over the substrate 100 , so as to fill the shallow trench 220 .
  • the insulated layer 400 is deposited, for example, by high density plasma (HDP) such as inductive coupled plasma (ICP) or electron cyclotron resonance (ECR).
  • HDP high density plasma
  • ICP inductive coupled plasma
  • ECR electron cyclotron resonance
  • a portion of the insulated layer 400 is removed, usually by etching back or chemical mechanical polishing (CMP) and then etching, to leave the insulated layer 400 a within the shallow trench, whose upper surface is lower than the upper surface of the conductive layer 140 , and to form a concave portion 410 . Subsequently, the shield layer 160 is removed.
  • CMP chemical mechanical polishing
  • the shield layer 500 such as silicon nitride, is formed, usually by chemical vapor deposition (CVD), overlaying the substrate 100 to fill the concave portion 410 .
  • CVD chemical vapor deposition
  • an etching or CMP is used to remove a portion of shield layer 500 to carry out the shallow trench isolation, which includes the shield layer 500 a within the concave portion 410 and an insulated layer 400 a .
  • the shield layer 500 a is used as an etching stop layer.
  • the doped polysilicon layer 600 and the silicide layer 620 are formed overlaying the substrate 100 .
  • the doped polysilicon layer 600 , the silicide layer 620 , and the conductive layer 140 are etched to form the polycide gates 710 and 730 .
  • the oxide layer 810 is formed by plasma-enhanced chemical vapor deposition(PECVD), which uses tetraethyl-ortho-silicate (TEOS) as the reactive gas.
  • PECVD plasma-enhanced chemical vapor deposition
  • the resist pattern 800 is formed to expose the surface of a portion of oxide layer 810 .
  • the resist pattern 800 is disposed overlaying the oxide layer 810 in a misalignment position.
  • a portion of oxide layer 810 is etched, by conventional dry etching, to form a contact hole 850 until the surface of the substrate 100 is exposed.
  • the conductive plug 900 is then formed by filling in conductive material.
  • the metal interconnect 950 such as W, A 1 Si, A 1 SiCu, or A 1 Cu, is formed on the substrate 100 , for connecting two devices.
  • FIG. 21 depicts a cross-sectional view of a shallow trench isolation structure having an etching stop layer of the preferred embodiment of the invention.
  • the shallow trench isolation includes a substrate 100 in which is formed a shallow trench 220 in the predetermined position, a isolation structure filling in the shallow trench 220 , wherein the isolation structure consists of an insulated layer 400 a and an etching stop layer 500 a .
  • the thin oxide layer 300 is formed on the side walls and bottom of the shallow trench 220 .
  • shield layer 500 a e.g. etching stop layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

A shallow trench isolation having an etching stop layer and its method of fabrication. The method utilizes a shield layer such as a silicon nitride layer to serve as an etching stop layer. The etching stop layer is formed in the top position of the shallow trench isolation.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a shallow trench isolation (STI) and its method of fabrication, and more particularly to a shallow trench isolation (STI) having an etching stop layer and its method of fabrication. [0002]
  • 2. Description of the prior art [0003]
  • Referring to FIGS. [0004] 1 through FIG. 9, the cross-sectional side views of a conventional method for fabricating a shallow trench are depicted in sequence.
  • Referring now to FIG. 1, a cross-sectional view of the starting step is schematically shown. In FIG.[0005] 1, the stacked structure 11, consisting of a silicon oxide layer 12, a polysilicon layer 14 and a silicon nitride layer 16, is formed on the surface of the substrate 10.
  • Next, as shown in FIG. 2, a [0006] resist layer 20 is formed on the surface of the silicon nitride layer 16 by photolithographic technique. Then, using the resist layer 20 as a mask, the stacked structure 11 and the substrate 10 are sequentially etched to form a shallow trench 22.
  • Now as shown in FIG. 3, the [0007] resist layer 20 is removed. Afterward, a thin oxide 30 is formed, by thermal oxidation, on the bottom and side walls of the shallow trench 22.
  • Referring now to FIG. 4, the [0008] silicon oxide layer 40 is formed over the substrate 100, so as to fill the shallow trench 22.
  • Now as shown in FIG. 5, a portion of the [0009] silicon oxide layer 40 is removed, usually by chemical mechanical polishing (CMP) and then etching, to leave the silicon oxide layer 40 a (e.g. Conventional isolation), within the shallow trench 22, whose upper surface is higher than the upper surface of the polysilicon layer 14.
  • Referring to FIG. 6, the [0010] silicon nitride layer 16 is removed. The polysilicon layer 60 and the silicide layer 62 are formed overlaying the substrate 10.
  • Next, referring to FIG. 7, the [0011] silicide 62, the polysilicon layer 60, and the polysilicon layer 14 are etched by using anisotropic etching to form polycide gates 71 and 73.
  • Then, as shown in FIG. 8, an [0012] oxide layer 81 is formed to serve as a passivation. Afterward, using photolithographic technique, the resist pattern 80 is formed to expose a portion surface of the oxide layer 81.
  • Next, referring to FIG. 9, using the [0013] resist pattern 80 as a mask, a portion of oxide layer 81 is etched, by conventional dry etching, to form a contact hole 85. Because of the occurrence of a misalignment, silicon oxide layer 40 a (e.g. Conventional isolation) would be etched into a gap 86. A conductive material is filled in the contact hole 85 and the gap 86, thereby forming a conductive plug 91 and an interconnection 90.
  • As a result of the misalignment in the photolithographic process, the [0014] silicon oxide 40 a will be etched into a gap within the substrate. Moreover, the conductive material in the gap will result in a substrate leakage.
  • SUMMARY OF THE INVENTION
  • In view of the above disadvantage, an object of the invention is to provide a method for fabricating a shallow trench isolation having an etching stop layer, thereby preventing the gap within the shallow trench isolation. [0015]
  • The above object is attained by providing a method for fabricating a shallow trench isolation having an etching stop layer, comprising the steps of: (a) providing a substrate; (b) forming a stacked structure consisting of a first insulated layer, a conductive layer, and a first shield layer in sequence, on said substrate; (c) defining said stacked structure and said substrate so as to form a shallow trench; (d) forming a second insulated layer over said substrate, to fill said shallow trench; (e) etching said second insulated layer so as to leave a portion of said second insulated layer remaining in said shallow trench, and to form a concave portion in the top position of said shallow trench; (f) removing said first shield layer; (g) forming a second shield layer over said substrate, to fill said concave portion; and (h) etching said second shield layer so as to leave a portion of said second shield layer in the concave portion, to serve as an etching stop layer. [0016]
  • Furthermore, the above object is attained by providing a method for fabricating a shallow trench isolation having an etching stop layer, comprising the steps of: (a) providing a silicon substrate; (b) forming a stacked structure consisting of a first silicon oxide layer, a polysilicon layer, and a first silicon nitride layer in sequence on said silicon substrate; (c) defining said stacked structure and said silicon substrate so as to form a shallow trench; (d) forming a second silicon oxide layer over said substrate, to fill said shallow trench using a high density plasma deposition; (e) polishing said second silicon oxide layer so as to leave a portion of said second silicon oxide layer remaining in said shallow trench, and to form a concave portion in the top position of said shallow trench, by chemical mechanical polishing; (f) removing said first silicon nitride layer; (g) forming a second silicon nitride layer over said silicon substrate, to fill said concave portion; and (h) polishing said second silicon nitride layer so as to leave a portion of said second silicon nitride layer in the concave portion, to serve as an etching stop layer. [0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The preferred embodiment of the invention is hereinafter described with reference to the accompanying drawings in which [0018]
  • FIGS. [0019] 1 through FIG. 9 are cross-sectional side views showing the manufacturing steps of a contact hole on the silicon substrate having a conventional isolation structure;
  • FIGS. [0020] 10 through FIG. 20 are cross-sectional side views showing the manufacturing steps of a contact hole on the silicon substrate having a isolation structure according to the invention; and
  • FIG. 21 is a cross-sectional view showing a shallow trench isolation structure having an etching stop layer of the preferred embodiment of the invention.[0021]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The preferred embodiment of the invention is illustrated in FIGS. [0022] 10 through FIG. 21 of the drawings.
  • Referring now to FIG. 10, a cross-sectional view of the starting step is schematically shown. In FIG.[0023] 10, substrate 100 can be made of a semiconductor material such as silicon. The stacked structure 110, consisting of an insulated layer 120, a conductive layer 140 and a shield layer 160, is formed on the surface of the substrate 100.
  • The insulated [0024] layer 120 can be a silicon oxide layer having a thickness in the range of approximately 40 to 120 angstroms, serving as a gate oxide, and is grown by thermal oxidation. Preferably, the conductive layer 140, such as a polysilicon layer having a thickness in the range of approximately 1000 to 2500 angstroms, is deposited by low-pressure chemical vapor deposition (LPCVD) using S1H4 as the primary reactive gas. The shield layer 160, such as a silicon nitride, has a thickness in the range of approximately 2000 to 4000 angstroms.
  • Next, as shown in FIG. 11, a [0025] resist pattern 200 is formed on the surface of the shield layer 160 by photolithographic technique. Then, using the resist pattern 200 as a mask, the stacked structure 110 and the substrate 100 are sequentially etched to form a shallow trench 220 by anisotropic reactive ion etching (RIE), which uses CHF3 as the etching reactive gas. The depth of the shallow trench 220, within the substrate 100, is in the range of 0.3 μm to 0.4.μm.
  • Now as shown in FIG. 12, the [0026] resist pattern 200 is removed. Afterward, a thin oxide 300 is formed, preferably by thermal oxidation, on the bottom and side walls of the shallow trench 220.
  • Referring now to FIG. 13, the [0027] insulated layer 400,such as silicon oxide, is formed over the substrate 100, so as to fill the shallow trench 220. The insulated layer 400 is deposited, for example, by high density plasma (HDP) such as inductive coupled plasma (ICP) or electron cyclotron resonance (ECR).
  • Now as shown in FIG. 14, a portion of the insulated [0028] layer 400 is removed, usually by etching back or chemical mechanical polishing (CMP) and then etching, to leave the insulated layer 400 a within the shallow trench, whose upper surface is lower than the upper surface of the conductive layer 140, and to form a concave portion 410. Subsequently, the shield layer 160 is removed.
  • Referring to FIG. 15, the [0029] shield layer 500, such as silicon nitride, is formed, usually by chemical vapor deposition (CVD), overlaying the substrate 100 to fill the concave portion 410.
  • Next, referring to FIG. 16, an etching or CMP is used to remove a portion of [0030] shield layer 500 to carry out the shallow trench isolation, which includes the shield layer 500 a within the concave portion 410 and an insulated layer 400 a. The shield layer 500 a is used as an etching stop layer. Afterward, the doped polysilicon layer 600 and the silicide layer 620 are formed overlaying the substrate 100.
  • Then, as shown in FIG. 17, by utilizing photolithographic technique and anisotropic etching, the doped [0031] polysilicon layer 600, the silicide layer 620, and the conductive layer 140 are etched to form the polycide gates 710 and 730.
  • As shown in FIG. 18, the [0032] oxide layer 810,used as a passivation, is formed by plasma-enhanced chemical vapor deposition(PECVD), which uses tetraethyl-ortho-silicate (TEOS) as the reactive gas.
  • Afterward, using photolithographic technique, the [0033] resist pattern 800 is formed to expose the surface of a portion of oxide layer 810. The resist pattern 800 is disposed overlaying the oxide layer 810 in a misalignment position.
  • Next, referring to FIG. 19, using the [0034] resist pattern 800 as a mask, a portion of oxide layer 810 is etched, by conventional dry etching, to form a contact hole 850 until the surface of the substrate 100 is exposed. The conductive plug 900 is then formed by filling in conductive material.
  • As shown in FIG. 20, the [0035] metal interconnect 950, such as W, A1Si, A1SiCu, or A1Cu, is formed on the substrate 100, for connecting two devices.
  • Finally, FIG. 21 depicts a cross-sectional view of a shallow trench isolation structure having an etching stop layer of the preferred embodiment of the invention. The shallow trench isolation includes a [0036] substrate 100 in which is formed a shallow trench 220 in the predetermined position, a isolation structure filling in the shallow trench 220, wherein the isolation structure consists of an insulated layer 400 a and an etching stop layer 500 a. Preferably, the thin oxide layer 300 is formed on the side walls and bottom of the shallow trench 220.
  • Due to the existence of [0037] shield layer 500 a (e.g. etching stop layer), a gap as depicted in FIG. 9 will not be produced, thereby preventing substrate leakage.

Claims (18)

What is claimed is:
1. A method for fabricating a shallow trench isolation having an etching stop layer, comprising the steps of:
(a) providing a substrate;
(b) forming a stacked structure consisting of a first insulated layer, a conductive layer, and a first shield layer in sequence on said substrate;
(c) defining said stacked structure and said substrate so as to form a shallow trench;
(d) forming a second insulated layer over said substrate, to fill said shallow trench;
(e) etching said second insulated layer so as to leave a portion of said second insulated layer remaining in said shallow trench, and to form a concave portion in the top position of said shallow trench;
(f) removing said first shield layer;
(g) forming a second shield layer over said substrate, to fill said concave portion; and
(h) etching said second shield layer so as to leave a portion of said second shield layer in the concave portion, to serve as an etching stop layer.
2. A method as claimed in claim 1, wherein said substrate is a silicon substrate.
3. A method as claimed in claim 1, wherein said first insulated layer is a silicon oxide layer.
4. A method as claimed in claim 1, wherein said conductive layer is a polysilicon layer.
5. A method as claimed in claim 1, wherein said shield layer is a silicon nitride layer.
6. A method as claimed in claim 1, wherein said second insulated layer is a silicon oxide layer.
7. A method as claimed in claim 1, wherein said etching stop layer in the step (h) is a silicon nitride layer.
8. A method as claimed in claim 1, wherein said first and second shield layers are silicon nitride layers deposited by low pressure chemical vapor deposition which uses SiH2Cl2 and NH3 as a reaction gas.
9. A method as claimed in claim 1, wherein said concave portion in step (e) is formed by an etching back method.
10. A method as claimed in claim 1, wherein said concave portion in step (e) is formed by the sequential steps of chemical mechanical polishing and dry etching.
11. A method as claimed in claim 1, wherein said etching stop layer in step (h) is attained by removing a portion of said second shield layer using chemical mechanical polishing.
12. A method for fabricating a shallow trench isolation having an etching stop layer, comprising the steps of:
(a) providing a silicon substrate;
(b) forming a stacked structure consisting of a first silicon oxide layer, a polysilicon layer, and a first silicon nitride layer in sequence on said silicon substrate;
(c) defining said stacked structure and said silicon substrate so as to form a shallow trench; (d) forming a second silicon oxide layer over said substrate, to fill said shallow trench using a high density plasma deposition;
(e) polishing said second silicon oxide layer so as to leave a portion of said second silicon oxide layer remaining in said shallow trench, and to form a concave portion in the top position of said shallow trench, by chemical mechanical polishing;
(f) removing said first silicon nitride layer;
(g) forming a second silicon nitride layer over said silicon substrate, to fill said concave portion; and
(h) polishing said second silicon nitride layer so as to leave a portion of said second silicon nitride layer in the concave portion, to serve as an etching stop layer.
13. A shallow trench isolation having an etching stop layer, comprising:
a substrate in which is formed a shallow trench in the predetermined position;
an isolation structure filling in said shallow trench, wherein said isolation structure consists of an insulated layer and an etching stop layer disposed on said insulated layer.
14. A shallow trench isolation as claimed in claim 13, wherein said substrate is a silicon substrate.
15. A shallow trench isolation as claimed in claim 13, wherein said first insulated layer is a silicon oxide layer.
16. A shallow trench isolation as claimed in claim 13, wherein said stop etching stop layer is a silicon nitride layer.
17. A shallow trench isolation as claimed in claim 13, further comprising a silicon oxide layer, which is formed on the side walls and bottom of said shallow trench.
18. A shallow trench isolation having an etching stop layer, comprising:
a silicon substrate in which is formed a shallow trench in the predetermined position;
an isolation structure filling in said shallow trench, wherein said isolation structure consists of a silicon oxide layer and a silicon nitride layer disposed on said silicon oxide layer.
US09/089,241 1998-02-05 1998-06-02 Shallow trench isolation having an etching stop layer and method for fabricating same Abandoned US20020005560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/695,144 US6403483B1 (en) 1998-02-05 2000-10-25 Shallow trench isolation having an etching stop layer and method for fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW87101538 1998-02-05
TW87101538 1998-02-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/695,144 Division US6403483B1 (en) 1998-02-05 2000-10-25 Shallow trench isolation having an etching stop layer and method for fabricating same

Publications (1)

Publication Number Publication Date
US20020005560A1 true US20020005560A1 (en) 2002-01-17

Family

ID=21629439

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/089,241 Abandoned US20020005560A1 (en) 1998-02-05 1998-06-02 Shallow trench isolation having an etching stop layer and method for fabricating same
US09/695,144 Expired - Lifetime US6403483B1 (en) 1998-02-05 2000-10-25 Shallow trench isolation having an etching stop layer and method for fabricating same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/695,144 Expired - Lifetime US6403483B1 (en) 1998-02-05 2000-10-25 Shallow trench isolation having an etching stop layer and method for fabricating same

Country Status (1)

Country Link
US (2) US20020005560A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018676A1 (en) * 2001-03-23 2004-01-29 Park Tai-Su Semiconductor device having a trench isolation structure and method for fabricating the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461963B1 (en) * 2000-08-30 2002-10-08 Micron Technology, Inc. Utilization of disappearing silicon hard mask for fabrication of semiconductor structures
JP2002170877A (en) * 2000-12-01 2002-06-14 Sharp Corp Method for fabricating semiconductor device
KR100421911B1 (en) * 2001-09-20 2004-03-11 주식회사 하이닉스반도체 Method for Forming Isolation Area in Semiconductor Device
US6869857B2 (en) * 2001-11-30 2005-03-22 Chartered Semiconductor Manufacturing Ltd. Method to achieve STI planarization
US6559028B1 (en) * 2002-01-18 2003-05-06 Advanced Micro Devices, Inc. Method of topography management in semiconductor formation
TW538500B (en) * 2002-06-12 2003-06-21 Nanya Technology Corp Method of manufacturing gate of field effect transistor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118295A (en) * 1997-06-16 1999-01-12 Nec Corp Semiconductor device and its manufacture
US5943590A (en) * 1997-09-15 1999-08-24 Winbond Electronics Corp. Method for improving the planarity of shallow trench isolation
US6287939B1 (en) * 1998-12-21 2001-09-11 Taiwan Semiconductor Manufacturing Company Method for fabricating a shallow trench isolation which is not susceptible to buried contact trench formation
US6225225B1 (en) * 1999-09-09 2001-05-01 Chartered Semiconductor Manufacturing Ltd. Method to form shallow trench isolation structures for borderless contacts in an integrated circuit
US6197691B1 (en) * 1999-11-15 2001-03-06 Chartered Semiconductor Manufacturing Ltd. Shallow trench isolation process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040018676A1 (en) * 2001-03-23 2004-01-29 Park Tai-Su Semiconductor device having a trench isolation structure and method for fabricating the same
US6900090B2 (en) * 2001-03-23 2005-05-31 Samsung Electronics Co., Ltd Semiconductor device having a trench isolation structure and method for fabricating the same

Also Published As

Publication number Publication date
US6403483B1 (en) 2002-06-11

Similar Documents

Publication Publication Date Title
US5098856A (en) Air-filled isolation trench with chemically vapor deposited silicon dioxide cap
US6265302B1 (en) Partially recessed shallow trench isolation method for fabricating borderless contacts
US6849919B2 (en) Method of fabricating a semiconductor device with a trench isolation structure and resulting semiconductor device
US6461934B2 (en) Method of manufacturing semiconductor device having trench type element isolation regions
US6743728B2 (en) Method for forming shallow trench isolation
US20010006839A1 (en) Method for manufacturing shallow trench isolation in semiconductor device
US6613644B2 (en) Method for forming a dielectric zone in a semiconductor substrate
US6777336B2 (en) Method of forming a shallow trench isolation structure
US6071794A (en) Method to prevent the formation of a thinner portion of insulating layer at the junction between the side walls and the bottom insulator
US20050023634A1 (en) Method of fabricating shallow trench isolation structure and microelectronic device having the structure
US6403483B1 (en) Shallow trench isolation having an etching stop layer and method for fabricating same
US6133113A (en) Method of manufacturing shallow trench isolation
US7361550B2 (en) Methods of fabricating semiconductor memory devices including electrode contact structures having reduced contact resistance
US20020142606A1 (en) Method for forming a borderless contact of a semiconductor device
US6225225B1 (en) Method to form shallow trench isolation structures for borderless contacts in an integrated circuit
US20020030290A1 (en) Semiconductor device and method for manufacturing the same
KR100244493B1 (en) Method for manufacturing isolation structure of semiconductor device
US6649486B1 (en) Method to form shallow trench isolations
US6828208B2 (en) Method of fabricating shallow trench isolation structure
US6040233A (en) Method of making a shallow trench isolation with thin nitride as gate dielectric
KR100671661B1 (en) Device Separator Formation Method of Semiconductor Device
US6423612B1 (en) Method of fabricating a shallow trench isolation structure with reduced topography
US6133089A (en) Method for fabricating a DRAM capacitor
US6190956B1 (en) Forming a capacitor structure of a semiconductor
US7981802B2 (en) Method for manufacturing shallow trench isolation layer of semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NAN YA TECHNOLOGY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAO, CHUNG-PENG;HUANG, CHUNG-LIN;LEE, CHUNG-YUAN;AND OTHERS;REEL/FRAME:009221/0047

Effective date: 19980427

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载