US20020003039A1 - Submerged riser tensioner - Google Patents
Submerged riser tensioner Download PDFInfo
- Publication number
- US20020003039A1 US20020003039A1 US09/874,345 US87434501A US2002003039A1 US 20020003039 A1 US20020003039 A1 US 20020003039A1 US 87434501 A US87434501 A US 87434501A US 2002003039 A1 US2002003039 A1 US 2002003039A1
- Authority
- US
- United States
- Prior art keywords
- collar
- riser
- floatation
- drilling rig
- inflatable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 claims abstract description 35
- 239000004744 fabric Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 14
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000005188 flotation Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
- E21B17/012—Risers with buoyancy elements
Definitions
- Floating drilling rigs often need riser floatation to maintain safe working conditions. By buoying up the riser, the deck load on the rig can be reduced, and a low center of gravity can be maintained. For this reason, a number of riser floatation devices or riser tensioners, have been proposed. However, those in commercial use have a number of drawbacks.
- a band-shaped floatation collar for a marine riser.
- the floatation collar has a longitudinal axis and is formed from a sidewall body having a longitudinally extending slit extending through the sidewall body.
- the slit enables the floatation collar to be transversely mounted onto the marine riser. The mounting can easily be accomplished without substantial modification of the drilling rig, such as in the moon pool area.
- a floatation collar for a drilling riser.
- the floatation collar has an upper end and a lower end and a longitudinal axis extending from the upper end to the lower end.
- a first generally cylindrical sidewall surface defines an inside periphery for the flotation collar and is coaxial with the longitudinal axis.
- a second generally cylindrical sidewall surface defines an outside periphery for the floatation collar and is positioned radially outwardly from the first generally cylindrical sidewall surface and is additionally coaxial with the longitudinal axis.
- An arcuate upper end closure surface joins the first generally cylindrical sidewall surface with the second generally cylindrical sidewall at the upper end of the collar.
- An arcuate lower end closure surface joins the first generally cylindrical sidewall surface with the second generally cylindrical sidewall surface at the lower end of the floatation collar.
- a first generally rectangular panel surface joins the first generally cylindrical sidewall surface, the second generally cylindrical sidewall surface, the arcuate upper end closure surface, and the arcuate lower end closure surface and is positioned in a plane extending near radially from the longitudinal axis.
- a second generally rectangular panel surface joins the first generally cylindrical sidewall surface, the second generally cylindrical sidewall surface, the arcuate upper end closure surface, and the arcuate lower end closure surface and is positioned closely alongside the first generally cylindrical panel surface.
- a slit is formed between the first generally rectangular panel surface and the second generally rectangular panel surface.
- the collar is preferably formed by a plurality of wall members defining the various surfaces which enables it to be inflated to provide the necessary buoyancy. Using gas to provide the buoyant force is inexpensive and highly efficient.
- the device can be smaller than foam filled or metal walled buoys of the same lift, lessening drag by ocean currents. By using fabric wall members, the device can be easily shipped, stored, and deployed. The slit facilitates mounting the device on a riser.
- a drilling unit comprising a floating drilling rig, a subsea wellhead, and a riser connecting the subsea drilling rig with the subsea wellhead.
- a floatation collar encircles the riser so as to reduce deck load on the floating drilling rig.
- the floatation collar comprises a hollow fabric body filled with gas.
- a method for adding buoyancy to a riser extending beneath a marine drilling rig and into the water is carried out by lowering a first riser section to beneath the drilling rig main deck.
- a gripping collar is attached to the first riser section.
- a plurality of straps are attached to the gripping collar.
- a second riser section is attached to an upper end of the first riser section.
- the second riser section is lower to beneath the drilling rig main deck.
- An inflatable collar is positioned around the second riser section.
- the inflatable collar is attached to the gripping collar via the plurality of straps.
- the inflatable collar is inflated and the second riser section carrying the inflatable collar is submerged to provide the buoyancy.
- the amount of buoyance is easily adjusted depending on need by varying the number and/or size of the collars employed. As the working depth of the collars increases, the gas pressure required to provide a given amount of lift will increase. However, the pressure difference across the sidewall of the float will remain at low levels, enabling the device to be constructed inexpensively of fabric.
- FIG. 1 schematically illustrates use of one embodiment of the invention employing a plurality of floatation cells.
- FIG. 2 is a pictorial representation of a single flotation cell schematically shown in FIG. 1.
- FIG. 3 is a top plan view of a portion of the cell shown in FIG. 2.
- FIG. 4 is a side view of the cell portion shown in FIG. 3 when viewed along lines 4 - 4 .
- FIG. 5 is a bottom plan view of a portion of the cell shown in FIG. 2.
- FIG. 6 is a side view of the cell portion shown in FIG. 5 when viewed along lines 5 - 5 .
- FIGS. 7 - 10 are plan views of additional cell portions employed in a preferred embodiment of the invention.
- FIG. 11 is a plan view of a portion of the cell shown in FIG. 2 prior to assembly.
- FIG. 12 is a side view of the cell portion shown in FIG. 11 when view along lines 12 - 12 .
- FIG. 13 is a plan view of another portion of the cell shown in FIG. 2 prior to assembly.
- FIG. 14 is a side view of the cell portion shown in FIG. 13 when view along lines 14 - 14 .
- FIG. 15 is a plan view a another portion of the cell shown in FIG. 2 prior to assembly.
- FIG. 16 is a plan view of another portion of the cell shown in FIG. 2 prior to assembly.
- a band-shaped floatation collar 2 for a marine riser 4 there is s provided a band-shaped floatation collar 2 for a marine riser 4 .
- the floatation collar has a longitudinal axis and is formed from a sidewall body having a longitudinally extending slit 6 extending through the sidewall body.
- the slit enables the floatation collar to be transversely mounted onto the marine riser, and generally speaking, leads from a generally cylindrical outside surface to a generally cylindrical inside surface of the collar body.
- the collar 2 has an upper end and a lower end.
- a plurality of straps 8 extend from the lower end of the collar for securing the collar to the riser.
- the collar surfaces are preferably formed by a plurality of gas impermeable walls such as walls A, B, G and H shown in FIGS. 3 - 6 and 11 - 14 .
- the plurality of gas impermeable walls preferably define a closed chamber.
- Suitable fittings and valves preferably extend through one or more of the walls to provide for pressurization and depressurization of the chamber by gas. These fittings and valves can be mounted to fabric pieces C, D, E and F shown in FIGS. 7 - 10 , for example, and mounted on the top or bottom wall structures.
- a plurality of first fastener halves 10 , 10 ′ are mounted to the outside generally cylindrical surface on one side of the slit and a plurality of second fastener halves 12 , 12 ′ are mounted to the outside generally cylindrical surface on the other side of the slit to provide for fastening the floatation collar 2 circumferentially around the marine riser 4 .
- the preferred collar is formed by a plurality of wall members which enable it to be inflated to provide the necessary buoyancy and is illustrated, prior to assembly, by FIGS. 3 - 16 .
- a first generally cylindrical sidewall (H, FIG. 13) defines an inside periphery for the flotation collar and is coaxial with the longitudinal axis of the collar.
- a second generally cylindrical sidewall (G, FIG. 11) defines an outside periphery for the floatation collar and is positioned radially outwardly from the first generally cylindrical sidewall and is additionally coaxial with the longitudinal axis of the collar.
- An arcuate upper end closure (A, FIG. 3) joins the first generally cylindrical sidewall with the second generally cylindrical sidewall at the upper end of the collar.
- An arcuate lower end closure joins the first generally cylindrical sidewall with the second generally cylindrical sidewall at the lower end of the floatation collar.
- a first generally rectangular panel portion joins the first generally cylindrical sidewall, the second generally cylindrical sidewall, the arcuate upper end closure, and the arcuate lower end closure and is positioned in a plane extending near radially from the longitudinal axis (first end portion of G, FIG. 11, extending along segment A 1 -A 3 , FIG. 3, and B 3 -B 4 , FIG. 5).
- the slit 6 (See FIG. 2) is formed between the first generally rectangular panel portion and the second generally rectangular panel portion.
- the arcuate upper end closure A is generally annularly shaped and has a generally circular inner periphery A 6 and a generally circular outer periphery AS.
- a split 14 extends generally radially from the outer periphery to the inner periphery and is defined by a first generally radially extending edge surface A 1 -A 3 and a second generally radially extending edge surface A 2 -A 4 .
- the arcuate lower end closure is generally annularly shaped and has a generally circular inner periphery B 6 and a generally circular outer periphery B 5 .
- a split 16 extends generally radially from the outer periphery to the inner periphery defined by a first generally radially extending edge surface (B 3 -B 4 ) and a second generally radially extending edge surface (B 2 -B 1 ).
- the arcuate upper end closure and the arcuate lower end closure are substantially identically shaped and, once assembled, are positioned in generally parallel planes.
- a plurality of outer straps I having a first end and a second end attached by their first end to the second generally cylindrical sidewall which defines the outside periphery for the floatation collar and extend beyond the lower end of the floatation collar.
- a plurality of inner straps I having a first end and a second end are attached by their first end to the first generally cylindrical sidewall which defines the inside periphery for the floatation collar and extend beyond the lower end of the floatation collar.
- the inner straps can be attached as described in the example.
- FIG. 2 illustrates outer straps attached to the cylindrical sidewall.
- the cells could be made of one piece. Strips could be added to quarter the cells internally, leaving them open at the bottom to allow redundancy, if desired.
- the cells can be constructed from urethane coated polyester woven type or a urethane coated nylon woven type. Preferred materials of this type are available from Cooley Industries. The pieces can be attached by welding or sewing. Most preferably, aramid fabric such as Kevlar (TM) is used. The fabric can be coated as necessary to prevent water or air infiltration. For certain applications, the cells could be constructed of foam or metal sidewalls. However, such cells would be more difficult to store and have less lift than the preferred embodiment of the invention, and may need additional hardware for proper operability, such as a hinge opposite the slit.
- TM Kevlar
- a drilling unit comprising a floating drilling rig 20 , a subsea wellhead 22 , and a riser 4 connecting the drilling rig with the subsea wellhead.
- a floatation collar 2 encircles the riser so as to reduce deck load on the floating drilling rig.
- the floatation collar comprises a hollow fabric body filled with gas, and can be as described hereinabove.
- a blow out preventer (BOP) 23 is generally also present on the wellhead and the riser connects to the BOP.
- the riser is generally formed from a plurality of pipe joints connected in end to end relationship. As shown in FIG. 2, it is preferred that the floatation collar surrounds a first pipe joint 24 . A means 26 for attaching the floatation collar to a second pipe joint 28 positioned beneath the first pipe joint is preferably employed so as to reduce deck load on the floating drilling rig.
- the means 26 preferably comprises a metal collar 32 extending circumferentially around the second pipe joint 28 and fixedly attached thereto, and a plurality of straps 8 each having a first end and a second end and attached by its first end to the metal collar and by its second end to the floatation collar.
- the floatation collar will generally be employed in combination with a gas compressor 34 positioned on the floating drilling rig 20 and a fluid flow line 36 extending from the gas compressor to the floatation collar to provide buoyant gas to the floatation collar.
- the invention can be employed to carry out a method for adding buoyancy to a riser extending beneath a marine drilling rig and into the water.
- the method is carried out by lowering a first riser section to beneath the drilling rig main deck, such as to the moon pool area.
- a gripping collar is attached to the first riser section.
- a plurality of straps are attached to the gripping collar.
- a second riser section is attached to an upper end of the first riser section.
- the second riser section is lowered to beneath the drilling rig main deck.
- An inflatable collar is positioned around the second riser section.
- the inflatable collar is attached to the gripping collar via the plurality of straps.
- the inflatable collar is inflated and the second riser section carrying the inflatable collar is submerged to provide the buoyancy.
- the collar is preferably provided with a split so that it can be transversely installed on the riser in the moon pool area. This is carried out by opening the inflatable collar to expose a pocket for receiving the second riser section, receiving the second riser section in the pocket of the inflatable collar; and closing the inflatable collar to retain the inflatable collar in position on the second riser section.
- the float is preferably deployed by attachment of a gas line to the inflatable collar and supplying gas to the inflatable collar after submerging via the gas line.
- outside diameter is dictated by the size of piece A (top end wall). Overall length is dictated by the length of piece G (outside sidewall), edge G 1 (vertical). The width of piece G is dictated by the dimensions of piece A, overall length of the circumference of edge A 5 plus the distance from corner A 1 to corner A 2 plus the distance between corner A 3 and corner A 4 .
- Piece B bottom end wall size is dictated by piece A, of which piece B is a mirror image.
- Piece H inside sidewall size (width) is dictated by the diameter of the inside circumference A 6 of piece A 1 , and overall length by piece G edge G 1 .
- the straps, piece I and piece J are attached to pieces G and H respectively, prior to the attachment of all the combined pieces, as are the pieces C and D, onto piece A, and pieces E and F onto piece B.
- Pieces C, D, E, F are composed merely of a square patch 12′′ by 12′′ patch made in a suitable fashion and incorporating a pipe sized female fitting attached to the top, piece A and the bottom, piece B for the use of inflation and use of control ports for the medium of compressed gas which is to be used to inflate the cell...(air, nitrogen, helium . . . etc.)
- Attach piece I to piece G 10 placing the first of a plurality of pieces “I”, beginning the distance as dictated from A 1 to A 3 , away from the edge of piece G side G 1 in a direction towards G 2 . Measure the distance from G 6 to G 2 and attach I onto G 3 side G 10 . Attach I onto G 10 parallel to G 1 . Upon reaching the edge of G 4 with I 2 cut an additional 40′′ to the overall length of I beyond the intersection of I 2 and G 3 , Attach I 2 back on the surface of I to form a 2 inch attachment eye in the end. Repeat attachment of subsequent copies spaced equally at 12′′ intervals across the surface of G 10 , all parallel to G 1 until reaching the point before reaching edge G 2 as previously measured for the first I piece that was attached.
- a drilling rig is equipped with a BOP that weighs 240,000 pounds.
- the LMRP weighs 120,000 pounds. Operation in 2500 feet of water will require fifty 50-foot joints of riser that weigh 9370 pounds each, which, without floatation, will weigh 468,000 pounds.
- Floatation in accordance with the invention can be provided with a 1 hp 20 cfm compressor, 1 hose reel, 1 check valve, 1 valve, 4 BOP Buoy bags 10′ ⁇ 12′ or 942 cubic feet each, 4 LMRP bags of 752 cubic feet each, 1 hose reel and 2500 feet of hose, use of some pod function or the ROV, and four 8 ⁇ 50 foot SRTs, each of which will provide about 160,000 pounds of lift.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Abstract
In one embodiment of the invention, there is provided a drilling unit comprising a floating drilling rig, a subsea wellhead, and a riser connecting the subsea drilling rig with the subsea wellhead. A floatation collar encircles the riser so as to reduce deck load on the floating drilling rig. The floatation collar comprises a hollow fabric body filled with gas. The floatation collar has a longitudinal axis and is formed from a sidewall body having a longitudinally extending slit extending through the sidewall body. The slit enables the floatation collar to be transversely mounted onto the marine riser.
Description
- This application is a division of copending application Ser. No. 09/042,906, filed Mar. 17, 1998, now
- Floating drilling rigs often need riser floatation to maintain safe working conditions. By buoying up the riser, the deck load on the rig can be reduced, and a low center of gravity can be maintained. For this reason, a number of riser floatation devices or riser tensioners, have been proposed. However, those in commercial use have a number of drawbacks.
- Slipping conventional riser tensioners is dangerous business, extremely dangerous when on a moving rig in rough weather.
- Further, conventional riser tensioners consume large quantities of wire rope, and for that reason have a high operating cost in addition to the high costs of fluid and repair parts used to keep them operational.
- Also, conventional riser floatation is expensive, and is bulky to ship. Periodic removal, inspection and reinstallation of conventional floatation is a labor intensive and expensive operation.
- It is an object of this invention to provide a floatation device for a marine riser that reduces top tension in the riser.
- It is another object of this invention to provide a floatation device for a marine riser that reduces deck load on a drilling platform above the riser.
- It is a further object of this invention to provide a floatation device for a marine riser that results in an increase in the life of wire rope life which is used in the drilling operations.
- It is another object of this invention to provide a floatation device for a marine riser that enables drilling rigs to operate at greater depths than before.
- It is another object of this invention to provide a floatation device for a marine riser that is inexpensive as compared to floatation devices currently in commercial use, and which is lighter and more compact to store and ship.
- It is another object of this invention to provide a floatation device for a marine riser which has lower maintenance requirements than currently used floatation devices, and which is easier to inspect and replace.
- It is another object of this invention to provide a riser floatation device for which a rig can be upgraded without shipyard modification.
- In one embodiment of the invention, there is provided a band-shaped floatation collar for a marine riser. The floatation collar has a longitudinal axis and is formed from a sidewall body having a longitudinally extending slit extending through the sidewall body. The slit enables the floatation collar to be transversely mounted onto the marine riser. The mounting can easily be accomplished without substantial modification of the drilling rig, such as in the moon pool area.
- In another embodiment of the invention, there is provided a floatation collar for a drilling riser. The floatation collar has an upper end and a lower end and a longitudinal axis extending from the upper end to the lower end. A first generally cylindrical sidewall surface defines an inside periphery for the flotation collar and is coaxial with the longitudinal axis. A second generally cylindrical sidewall surface defines an outside periphery for the floatation collar and is positioned radially outwardly from the first generally cylindrical sidewall surface and is additionally coaxial with the longitudinal axis. An arcuate upper end closure surface joins the first generally cylindrical sidewall surface with the second generally cylindrical sidewall at the upper end of the collar. An arcuate lower end closure surface joins the first generally cylindrical sidewall surface with the second generally cylindrical sidewall surface at the lower end of the floatation collar. A first generally rectangular panel surface joins the first generally cylindrical sidewall surface, the second generally cylindrical sidewall surface, the arcuate upper end closure surface, and the arcuate lower end closure surface and is positioned in a plane extending near radially from the longitudinal axis. A second generally rectangular panel surface joins the first generally cylindrical sidewall surface, the second generally cylindrical sidewall surface, the arcuate upper end closure surface, and the arcuate lower end closure surface and is positioned closely alongside the first generally cylindrical panel surface. A slit is formed between the first generally rectangular panel surface and the second generally rectangular panel surface.
- The collar is preferably formed by a plurality of wall members defining the various surfaces which enables it to be inflated to provide the necessary buoyancy. Using gas to provide the buoyant force is inexpensive and highly efficient. The device can be smaller than foam filled or metal walled buoys of the same lift, lessening drag by ocean currents. By using fabric wall members, the device can be easily shipped, stored, and deployed. The slit facilitates mounting the device on a riser.
- In another embodiment of the invention, there is provided a drilling unit comprising a floating drilling rig, a subsea wellhead, and a riser connecting the subsea drilling rig with the subsea wellhead. A floatation collar encircles the riser so as to reduce deck load on the floating drilling rig. The floatation collar comprises a hollow fabric body filled with gas.
- In yet another embodiment of the invention, there is provided a method for adding buoyancy to a riser extending beneath a marine drilling rig and into the water. The method is carried out by lowering a first riser section to beneath the drilling rig main deck. A gripping collar is attached to the first riser section. A plurality of straps are attached to the gripping collar. A second riser section is attached to an upper end of the first riser section. The second riser section is lower to beneath the drilling rig main deck. An inflatable collar is positioned around the second riser section. The inflatable collar is attached to the gripping collar via the plurality of straps. The inflatable collar, is inflated and the second riser section carrying the inflatable collar is submerged to provide the buoyancy.
- The amount of buoyance is easily adjusted depending on need by varying the number and/or size of the collars employed. As the working depth of the collars increases, the gas pressure required to provide a given amount of lift will increase. However, the pressure difference across the sidewall of the float will remain at low levels, enabling the device to be constructed inexpensively of fabric.
- FIG. 1 schematically illustrates use of one embodiment of the invention employing a plurality of floatation cells.
- FIG. 2 is a pictorial representation of a single flotation cell schematically shown in FIG. 1.
- FIG. 3 is a top plan view of a portion of the cell shown in FIG. 2.
- FIG. 4 is a side view of the cell portion shown in FIG. 3 when viewed along lines4-4.
- FIG. 5 is a bottom plan view of a portion of the cell shown in FIG. 2.
- FIG. 6 is a side view of the cell portion shown in FIG. 5 when viewed along lines5-5.
- FIGS.7-10 are plan views of additional cell portions employed in a preferred embodiment of the invention.
- FIG. 11 is a plan view of a portion of the cell shown in FIG. 2 prior to assembly.
- FIG. 12 is a side view of the cell portion shown in FIG. 11 when view along lines12-12.
- FIG. 13 is a plan view of another portion of the cell shown in FIG. 2 prior to assembly.
- FIG. 14 is a side view of the cell portion shown in FIG. 13 when view along lines14-14.
- FIG. 15 is a plan view a another portion of the cell shown in FIG. 2 prior to assembly.
- FIG. 16 is a plan view of another portion of the cell shown in FIG. 2 prior to assembly.
- With reference to FIG. 2, there is s provided a band-shaped
floatation collar 2 for amarine riser 4. The floatation collar has a longitudinal axis and is formed from a sidewall body having alongitudinally extending slit 6 extending through the sidewall body. The slit enables the floatation collar to be transversely mounted onto the marine riser, and generally speaking, leads from a generally cylindrical outside surface to a generally cylindrical inside surface of the collar body. - The
collar 2 has an upper end and a lower end. A plurality ofstraps 8 extend from the lower end of the collar for securing the collar to the riser. - The collar surfaces are preferably formed by a plurality of gas impermeable walls such as walls A, B, G and H shown in FIGS.3-6 and 11-14. The plurality of gas impermeable walls preferably define a closed chamber. Suitable fittings and valves preferably extend through one or more of the walls to provide for pressurization and depressurization of the chamber by gas. These fittings and valves can be mounted to fabric pieces C, D, E and F shown in FIGS. 7-10, for example, and mounted on the top or bottom wall structures.
- A plurality of first fastener halves10, 10′ are mounted to the outside generally cylindrical surface on one side of the slit and a plurality of second fastener halves 12, 12′ are mounted to the outside generally cylindrical surface on the other side of the slit to provide for fastening the
floatation collar 2 circumferentially around themarine riser 4. - The preferred collar is formed by a plurality of wall members which enable it to be inflated to provide the necessary buoyancy and is illustrated, prior to assembly, by FIGS.3-16. A first generally cylindrical sidewall (H, FIG. 13) defines an inside periphery for the flotation collar and is coaxial with the longitudinal axis of the collar. A second generally cylindrical sidewall (G, FIG. 11) defines an outside periphery for the floatation collar and is positioned radially outwardly from the first generally cylindrical sidewall and is additionally coaxial with the longitudinal axis of the collar. An arcuate upper end closure (A, FIG. 3) joins the first generally cylindrical sidewall with the second generally cylindrical sidewall at the upper end of the collar. An arcuate lower end closure (B, FIG. 5) joins the first generally cylindrical sidewall with the second generally cylindrical sidewall at the lower end of the floatation collar. A first generally rectangular panel portion joins the first generally cylindrical sidewall, the second generally cylindrical sidewall, the arcuate upper end closure, and the arcuate lower end closure and is positioned in a plane extending near radially from the longitudinal axis (first end portion of G, FIG. 11, extending along segment A1-A3, FIG. 3, and B3-B4, FIG. 5). A second generally rectangular panel portion joining the first generally cylindrical sidewall, the second generally cylindrical sidewall, the arcuate upper end closure, and the arcuate lower end closure and is positioned closely alongside the first generally cylindrical panel member (second end portion of G, FIG. 11, extending along segment A2-A4, FIG. 3, and B1-B2, FIG. 5). The slit 6 (See FIG. 2) is formed between the first generally rectangular panel portion and the second generally rectangular panel portion.
- The arcuate upper end closure A is generally annularly shaped and has a generally circular inner periphery A6 and a generally circular outer periphery AS. A split 14 extends generally radially from the outer periphery to the inner periphery and is defined by a first generally radially extending edge surface A1-A3 and a second generally radially extending edge surface A2-A4. The arcuate lower end closure is generally annularly shaped and has a generally circular inner periphery B6 and a generally circular outer periphery B5. A split 16 extends generally radially from the outer periphery to the inner periphery defined by a first generally radially extending edge surface (B3-B4) and a second generally radially extending edge surface (B2-B1). The arcuate upper end closure and the arcuate lower end closure are substantially identically shaped and, once assembled, are positioned in generally parallel planes.
- A plurality of outer straps I having a first end and a second end attached by their first end to the second generally cylindrical sidewall which defines the outside periphery for the floatation collar and extend beyond the lower end of the floatation collar. Preferably, a plurality of inner straps I having a first end and a second end are attached by their first end to the first generally cylindrical sidewall which defines the inside periphery for the floatation collar and extend beyond the lower end of the floatation collar. The inner straps can be attached as described in the example. FIG. 2 illustrates outer straps attached to the cylindrical sidewall.
- The cells could be made of one piece. Strips could be added to quarter the cells internally, leaving them open at the bottom to allow redundancy, if desired.
- The cells can be constructed from urethane coated polyester woven type or a urethane coated nylon woven type. Preferred materials of this type are available from Cooley Industries. The pieces can be attached by welding or sewing. Most preferably, aramid fabric such as Kevlar (™) is used. The fabric can be coated as necessary to prevent water or air infiltration. For certain applications, the cells could be constructed of foam or metal sidewalls. However, such cells would be more difficult to store and have less lift than the preferred embodiment of the invention, and may need additional hardware for proper operability, such as a hinge opposite the slit.
- Referring to FIG. 1, there is shown a drilling unit comprising a floating
drilling rig 20, asubsea wellhead 22, and ariser 4 connecting the drilling rig with the subsea wellhead. Afloatation collar 2 encircles the riser so as to reduce deck load on the floating drilling rig. The floatation collar comprises a hollow fabric body filled with gas, and can be as described hereinabove. A blow out preventer (BOP) 23 is generally also present on the wellhead and the riser connects to the BOP. - As is known in the art, the riser is generally formed from a plurality of pipe joints connected in end to end relationship. As shown in FIG. 2, it is preferred that the floatation collar surrounds a first pipe joint24. A means 26 for attaching the floatation collar to a second pipe joint 28 positioned beneath the first pipe joint is preferably employed so as to reduce deck load on the floating drilling rig.
- By attaching the float to a riser joint beneath the riser joint on which it is positioned, it is impossible for the float to be longitudinally displaced on the riser, due to the presence of
joint connection 30. The means 26 preferably comprises ametal collar 32 extending circumferentially around the second pipe joint 28 and fixedly attached thereto, and a plurality ofstraps 8 each having a first end and a second end and attached by its first end to the metal collar and by its second end to the floatation collar. - In use, the floatation collar will generally be employed in combination with a
gas compressor 34 positioned on the floatingdrilling rig 20 and afluid flow line 36 extending from the gas compressor to the floatation collar to provide buoyant gas to the floatation collar. - The invention can be employed to carry out a method for adding buoyancy to a riser extending beneath a marine drilling rig and into the water. The method is carried out by lowering a first riser section to beneath the drilling rig main deck, such as to the moon pool area. A gripping collar is attached to the first riser section. A plurality of straps are attached to the gripping collar. A second riser section is attached to an upper end of the first riser section. The second riser section is lowered to beneath the drilling rig main deck. An inflatable collar is positioned around the second riser section. The inflatable collar is attached to the gripping collar via the plurality of straps. The inflatable collar is inflated and the second riser section carrying the inflatable collar is submerged to provide the buoyancy.
- The collar is preferably provided with a split so that it can be transversely installed on the riser in the moon pool area. This is carried out by opening the inflatable collar to expose a pocket for receiving the second riser section, receiving the second riser section in the pocket of the inflatable collar; and closing the inflatable collar to retain the inflatable collar in position on the second riser section. The float is preferably deployed by attachment of a gas line to the inflatable collar and supplying gas to the inflatable collar after submerging via the gas line.
- General
- Refer to FIGS.3-16.
- Outside diameter is dictated by the size of piece A (top end wall). Overall length is dictated by the length of piece G (outside sidewall), edge G1 (vertical). The width of piece G is dictated by the dimensions of piece A, overall length of the circumference of edge A5 plus the distance from corner A1 to corner A2 plus the distance between corner A3 and corner A4.
- Piece B (bottom end wall) size is dictated by piece A, of which piece B is a mirror image. Piece H (inside sidewall) size (width) is dictated by the diameter of the inside circumference A6 of piece A1, and overall length by piece G edge G1. The straps, piece I and piece J are attached to pieces G and H respectively, prior to the attachment of all the combined pieces, as are the pieces C and D, onto piece A, and pieces E and F onto piece B. Pieces C, D, E, F are composed merely of a
square patch 12″ by 12″ patch made in a suitable fashion and incorporating a pipe sized female fitting attached to the top, piece A and the bottom, piece B for the use of inflation and use of control ports for the medium of compressed gas which is to be used to inflate the cell...(air, nitrogen, helium . . . etc.) - Installing the Vertical Straps onto the Inner Cylinder
- Beginning 6 inches away from corner H5, attach piece I parallel to Hi until reaching H6. Upon reaching H6 with piece I cut I2 40 inches past H6 and attach I2 back on top of 1. Attach I2 on I to form an
eye 2 inches in diameter in the end of piece I. Attach similar pieces of I onto H10, all parallel to H1, spaced equally apart 12 inches, until reaching a point as measured from 3 inches before reaching H2. - Installing Vertical Straps on Outer Cylinder
- Attach piece I to piece G10 placing the first of a plurality of pieces “I”, beginning the distance as dictated from A1 to A3, away from the edge of piece G side G1 in a direction towards G2. Measure the distance from G6 to G2 and attach I onto G3 side G10. Attach I onto G10 parallel to G1. Upon reaching the edge of G4 with I2 cut an additional 40″ to the overall length of I beyond the intersection of I2 and G3, Attach I2 back on the surface of I to form a 2 inch attachment eye in the end. Repeat attachment of subsequent copies spaced equally at 12″ intervals across the surface of G10, all parallel to G1 until reaching the point before reaching edge G2 as previously measured for the first I piece that was attached.
- Installing Horizontal Straps on Outer Cylinder
- Beginning a distance of 8 inches from J1 on piece J, attach J1 to G10, Attachment beginning the same distance as measured from A1 to A3 on piece A, attach J1 from edge G1 side G10. Attach J to G10 beginning 3′ down from edge G3 towards edge G4 but parallel to edge G3 until reaching a point as measured back from edge G4 as measured from A1 to A3 plus 2 inches. After attachment of J place J2 on to of J to form an
eye 2 inches in diameter and attach J2 to J. Attach the end J1 back on top of J and repeat as done for end J2. Continue attachment of identical pieces, all placed parallel to edge G3, 12″ apart until reaching a place 3 inches before edge G4. - Installing Pipe Fittings Top and Bottom
- At a place along the same radius at the radius of side A6, attach piece C onto side A7 equally spaced from edge A5 and A6 to be the place of the placement radius, one half the distance as measured from between corner A1 and corner A3. At a place along the same radius place and attach piece D two feet from the placement of piece C.
- Do the same on Piece B, attaching pieces E and F.
- Attaching Inside Cylinder Wall to Top End Wall
- Beginning with corner H5 side H9, attach H5 to A corner A3. Attach edge H3 onto edge A6 side A7, finishing when attachment of A4 to H7 concludes.
- Attaching Outside Cylinder Wall to Top End Wall
- Continuing with corner G5 of piece G, side G9, attach G5 to part A, side A7, starting at corner A3. Attach edge G3 of piece G to piece A, along the line connecting A3 to A1, reaching corner A1, continue attachment of edge G3 to piece G, side G9, to edge AS, continuing attachment to edge G3 along the line connecting A2 and A4 concluding with the attachment of corner G7 and corner A4.
- Attaching Inside and Outside Cylinder Walls to Form Slit
- Continuing at corner H5, Part H, side H9, attach H5 to G5, side G9. Continue attachment of edges G1 of part G side G9 to edge of part H side H9 edge H1, continuing with the attachment of corners G6 and H6. Proceed attachment of corners G7 to H7, attach edge G2 with edge H2, ending with the attachment of corner G8 and corner H8.
- Attaching Inside Cylinder Wall to Bottom End Wall
- Continuing with piece B, side B8, with side B8 facing opposite side A7, attach corner B2 to corner H6 side H10. Continue attachment of edge H4 to edge B6, ending with the attachment of corners H8 and B4.
- Attaching Outside Cylinder Wall to Bottom End Wall
- Concluding with corner B4 of piece B, side B8, attach B4 to corner H8, side H10 of piece H. Attach edge B6 to edge H4, until reaching the attachment of corners B2 and H6. Attach corners G6 and B4 and attach G4 along the edge connecting B4 with B3. Attach edge G4 with edge B5 ending by attaching B1 and G4. Attach edge G4 to the edge between corners B2 and B1 concluding and ending by attaching G4 at corner B11.
- A drilling rig is equipped with a BOP that weighs 240,000 pounds. The LMRP weighs 120,000 pounds. Operation in 2500 feet of water will require fifty 50-foot joints of riser that weigh 9370 pounds each, which, without floatation, will weigh 468,000 pounds.
- Floatation in accordance with the invention can be provided with a 1
hp 20 cfm compressor, 1 hose reel, 1 check valve, 1 valve, 4BOP Buoy bags 10′×12′ or 942 cubic feet each, 4 LMRP bags of 752 cubic feet each, 1 hose reel and 2500 feet of hose, use of some pod function or the ROV, and four 8×50 foot SRTs, each of which will provide about 160,000 pounds of lift. - While certain preferred embodiments of the invention have been described herein, the invention is not be to construed as being so limited, except to the extent that such limitations are found in the claims.
Claims (9)
1. Apparatus comprising
a floating drilling rig;
a subsea wellhead;
a riser connecting the subsea drilling rig with the subsea wellhead; and
a floatation collar encircling the riser so as to reduce deck load on the floating drilling rig, wherein
the floatation collar comprises a hollow fabric body filled with gas.
2. Apparatus as in claim 1 wherein
the riser is formed from a plurality of pipe joints connected in end to end relationship, and
the floatation collar surrounds a first pipe joint,
said apparatus further comprising
means for attaching the floatation collar to a second pipe joint positioned beneath the first pipe joint so as to reduce deck load on the floating drilling rig.
3. Apparatus as in claim 1 wherein the means for attaching comprises
a metal collar extending circumferentially around the second pipe joint and fixedly attached thereto; and
a plurality of straps each having a first end and a second end and attached by its first end to the metal collar and by its second end to the floatation collar.
4. Apparatus as in claim 3 further comprising
a gas compressor positioned on the floating drilling rig;
a fluid flow line extending from the gas compressor to the floatation collar to provide buoyant gas to the floatation collar.
5. Apparatus as in claim 14 wherein the floatation collar is band-shaped and is formed from a sidewall body having a longitudinally extending slit extending through the sidewall body to enable the floatation collar to be transversely mounted onto the riser.
6. Apparatus as in claim 15 further comprising a plurality of straps joining the sidewall body across the slit to retain the floatation collar in position on the riser.
7. A method for adding buoyancy to a riser extending beneath a marine drilling rig and into the water, said method comprising
lowering a first riser section to beneath the drilling rig main deck,
attaching a gripping collar to said first riser section,
attaching a plurality of straps to the gripping collar,
attaching a second riser section to an upper end of the first riser section,
lowering the second riser section to beneath the drilling rig main deck;
attaching an inflatable collar around the second riser section, wherein the inflatable collar is attached to the gripping collar via the plurality of straps;
inflating the inflatable collar, and
submerging the second riser section carrying the inflatable collar.
8. A method as in claim 7 further comprising
opening the inflatable collar to expose a pocket for receiving the second riser section;
receiving the second riser section in the pocket of the inflatable collar; and
closing the inflatable collar to retain the inflatable collar in position on the second riser section.
9. A method as in claim 8 further comprising
attaching a gas line to the inflatable collar; and
supplying gas to the inflatable collar after submerging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/874,345 US6457527B2 (en) | 1998-03-17 | 2001-06-05 | Apparatus and method for adding buoyancy to riser with inflatable floatation collar |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/042,906 US6257337B1 (en) | 1998-03-17 | 1998-03-17 | Submerged riser tensioner |
US09/874,345 US6457527B2 (en) | 1998-03-17 | 2001-06-05 | Apparatus and method for adding buoyancy to riser with inflatable floatation collar |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/042,906 Division US6257337B1 (en) | 1998-03-17 | 1998-03-17 | Submerged riser tensioner |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020003039A1 true US20020003039A1 (en) | 2002-01-10 |
US6457527B2 US6457527B2 (en) | 2002-10-01 |
Family
ID=21924375
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/042,906 Expired - Fee Related US6257337B1 (en) | 1998-03-17 | 1998-03-17 | Submerged riser tensioner |
US09/874,345 Expired - Fee Related US6457527B2 (en) | 1998-03-17 | 2001-06-05 | Apparatus and method for adding buoyancy to riser with inflatable floatation collar |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/042,906 Expired - Fee Related US6257337B1 (en) | 1998-03-17 | 1998-03-17 | Submerged riser tensioner |
Country Status (1)
Country | Link |
---|---|
US (2) | US6257337B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100282157A1 (en) * | 2009-05-06 | 2010-11-11 | David Welch | Floatation collar for an undersea acoustic receiver and a method of positioning the same |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6257337B1 (en) * | 1998-03-17 | 2001-07-10 | Granville Louis Wells | Submerged riser tensioner |
NO20000831L (en) * | 1999-03-25 | 2000-09-26 | Pgs Offshore Technology As | Production deck with well valves on deck |
FR2796441B1 (en) * | 1999-07-13 | 2001-10-05 | Bouygues Offshore | BOTTOM SURFACE CONNECTION DEVICE COMPRISING AN UNDERWATER PIPE ASSEMBLED WITH AT LEAST ONE FLOAT AND METHOD FOR INSTALLING SAID SUBSEA PIPE WITH A LARGE DEPTH |
US6571878B2 (en) * | 1999-09-16 | 2003-06-03 | Shell Oil Company | Smooth buoyancy system for reducing vortex induced vibration in subsea systems |
GB2386140B8 (en) * | 1999-12-07 | 2005-08-25 | Fmc Technologies | Collapsible buoyancy device for risers on offshorestructures |
WO2002016727A2 (en) * | 2000-08-21 | 2002-02-28 | Cso Aker Maritime, Inc. | Engineered material buoyancy system, device, and method |
US6517289B1 (en) * | 2000-09-28 | 2003-02-11 | The United States Of America As Represented By The Secretary Of The Navy | Inflatable vibration reducing fairing |
US6579040B2 (en) * | 2001-07-26 | 2003-06-17 | Cso Aker Maritime, Inc. | Method and apparatus for air can vent systems |
GB2393152B (en) * | 2001-09-15 | 2004-08-04 | Crp Group Ltd | Buoyancy element and module |
GB2379681A (en) * | 2001-09-17 | 2003-03-19 | Balmoral Group | Marine buoyancy unit |
WO2008023987A1 (en) * | 2006-08-22 | 2008-02-28 | Amek Holding As | A method, kit and device for installation of an inflatable sub sea structure |
US20080187401A1 (en) * | 2007-02-02 | 2008-08-07 | Tom Bishop | Riser tensioner for an offshore platform |
WO2009023222A2 (en) * | 2007-08-13 | 2009-02-19 | Paul Boudreau | Buoyancy tensioning systems for offshore marine risers and methods of use |
SE533894C2 (en) * | 2008-07-07 | 2011-02-22 | Gva Consultants Ab | RIB |
US8443896B2 (en) | 2009-06-04 | 2013-05-21 | Diamond Offshore Drilling, Inc. | Riser floatation with anti-vibration strakes |
CA2798094C (en) | 2010-05-04 | 2018-08-14 | Oxus Recovery Solutions Inc. | Submerged hydrocarbon recovery apparatus |
US20140262310A1 (en) * | 2013-03-12 | 2014-09-18 | Albert Michael Regan | Riser tension augmentation |
CN105625949A (en) * | 2014-11-03 | 2016-06-01 | 上海海郑海洋建设工程技术有限公司 | Marine riser and offshore drilling system |
CN105179815B (en) * | 2015-09-11 | 2017-06-16 | 中国海洋石油总公司 | Gas injection draining sealing mechanism under a kind of drawing state |
US10822065B2 (en) | 2017-07-28 | 2020-11-03 | Cameron International Corporation | Systems and method for buoyancy control of remotely operated underwater vehicle and payload |
US10900317B2 (en) * | 2017-07-28 | 2021-01-26 | Cameron International Corporation | Systems for retrievable subsea blowout preventer stack modules |
US11105174B2 (en) | 2017-07-28 | 2021-08-31 | Schlumberger Technology Corporation | Systems and method for retrievable subsea blowout preventer stack modules |
CN109292548B (en) * | 2018-08-31 | 2020-04-03 | 王志博 | Automatic flexible flow guide ribbon storage system capable of inhibiting vibration |
US12275096B2 (en) * | 2018-11-01 | 2025-04-15 | Fusematic Corporation | Buoyancy provisions for facilitating underwater friction welding |
CN112761543B (en) * | 2021-02-07 | 2022-03-29 | 西南石油大学 | High-pressure sealing washing pipe capable of adapting to axial and radial offset |
GB2626354A (en) | 2023-01-19 | 2024-07-24 | Advanced Innergy Ltd | Buoyancy module |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1293900A (en) * | 1918-07-18 | 1919-02-11 | Frederick W Pendergast | Apparatus for raising sunken vessels. |
US2395892A (en) * | 1944-09-12 | 1946-03-05 | Dudley M Lontz | Float |
US3090976A (en) * | 1961-12-15 | 1963-05-28 | Gen Dynamics Corp | Flexible deep sea buoy |
US3359741A (en) * | 1966-03-11 | 1967-12-26 | Arthur J Nelson | Deep water support system |
US3410096A (en) * | 1966-12-07 | 1968-11-12 | Atlantic Richfield Co | Streamlined riser pipe |
US3486555A (en) * | 1968-06-25 | 1969-12-30 | Pan American Petroleum Corp | Small diameter riser pipe system |
US3602300A (en) * | 1969-06-30 | 1971-08-31 | Westinghouse Electric Corp | Down-hole installation, recovery, and maintenance tool for wells |
US3594835A (en) * | 1969-09-17 | 1971-07-27 | Pipeline Products And Services | Float device for pipelines |
US3633369A (en) * | 1970-04-20 | 1972-01-11 | Brown & Root | Method and apparatus for transporting and launching an offshore tower |
US3729756A (en) * | 1971-02-17 | 1973-05-01 | Data Packaging Corp | Flotation assembly |
US3721292A (en) * | 1971-08-05 | 1973-03-20 | Vetco Offshore Ind Inc | Marine riser liner apparatus and methods of installing such apparatus |
US3858840A (en) | 1971-08-19 | 1975-01-07 | Gen Motors Corp | Shift inhibitors for power transmission |
US3765185A (en) * | 1971-12-22 | 1973-10-16 | Aqua Systems Inc | Pipeline positioning system and method |
US3835656A (en) * | 1972-09-01 | 1974-09-17 | Shell Oil Co | Method and apparatus for supplying temporary buoyancy to an underwater pipeline |
US3855656A (en) * | 1973-03-30 | 1974-12-24 | Amoco Prod Co | Underwater buoy for a riser pipe |
GB1471540A (en) * | 1973-11-20 | 1977-04-27 | Shll Int Res Ms Bv | Marine risers and buoyancy means therefor |
GB1519203A (en) * | 1974-10-02 | 1978-07-26 | Chevron Res | Marine risers in offshore drilling |
US3955621A (en) * | 1975-02-14 | 1976-05-11 | Houston Engineers, Inc. | Riser assembly |
US4037425A (en) * | 1975-06-09 | 1977-07-26 | H. B. Contracting Ltd. | Buoyancy apparatus |
US3992889A (en) * | 1975-06-09 | 1976-11-23 | Regan Offshore International, Inc. | Flotation means for subsea well riser |
US4040264A (en) * | 1975-11-28 | 1977-08-09 | Armco Steel Corporation | Controlled buoyancy underwater riser system |
GB1526239A (en) * | 1975-12-30 | 1978-09-27 | Shell Int Research | Marine riser system and method for installing the same |
FR2339799A1 (en) * | 1976-01-27 | 1977-08-26 | Doris Dev Richesse Sous Marine | IMPROVEMENTS IN THE LAYING OF UNDERWATER PIPES |
US4121529A (en) * | 1976-09-20 | 1978-10-24 | B & B Insulation, Inc. | Buoyancy systems |
US4102142A (en) * | 1976-12-30 | 1978-07-25 | Hitco | Underwater riser buoyancy |
US4098333A (en) * | 1977-02-24 | 1978-07-04 | Compagnie Francaise Des Petroles | Marine production riser system |
US4234047A (en) * | 1977-10-14 | 1980-11-18 | Texaco Inc. | Disconnectable riser for deep water operation |
US4176986A (en) | 1977-11-03 | 1979-12-04 | Exxon Production Research Company | Subsea riser and flotation means therefor |
DE2841819C3 (en) * | 1978-09-22 | 1981-07-09 | Mannesmann AG, 4000 Düsseldorf | Ring seals for telescopic connectors of riser pipes for underwater drilling |
CA1136545A (en) * | 1979-09-28 | 1982-11-30 | Neville E. Hale | Buoyancy system for large scale underwater risers |
US4474129A (en) * | 1982-04-29 | 1984-10-02 | W. R. Grace & Co. | Riser pipe fairing |
US4477207A (en) * | 1982-08-26 | 1984-10-16 | Johnson Arne I | Marine riser buoyancy assembly |
FR2536456B1 (en) * | 1982-11-19 | 1986-05-16 | Commissariat Energie Atomique | DRILLING SYSTEM FROM A SWELL BODY |
US4624318A (en) * | 1983-05-26 | 1986-11-25 | Chevron Research Company | Method and means for storing a marine riser |
NL8402545A (en) * | 1984-08-20 | 1985-08-01 | Shell Int Research | METHOD AND APPARATUS FOR INSTALLING A FLEXIBLE PIPE BETWEEN A PLATFORM AND AN UNDERWATER BUOY. |
US4646840A (en) * | 1985-05-02 | 1987-03-03 | Cameron Iron Works, Inc. | Flotation riser |
US4657439A (en) * | 1985-12-18 | 1987-04-14 | Shell Offshore Inc. | Buoyant member riser tensioner method and apparatus |
US5435667A (en) * | 1986-02-20 | 1995-07-25 | Slickbar Products Corp. | Protection of piles |
US4909327A (en) * | 1989-01-25 | 1990-03-20 | Hydril Company | Marine riser |
JP2543405B2 (en) * | 1989-02-28 | 1996-10-16 | 株式会社ゼニライトブイ | Super buoy type boring turret and mooring device |
FR2653162B1 (en) * | 1989-10-17 | 1995-11-17 | Inst Francais Du Petrole | RISING COLUMN FOR LARGE DEPTH OF WATER. |
US5046896A (en) * | 1990-05-30 | 1991-09-10 | Conoco Inc. | Inflatable buoyant near surface riser disconnect system |
US5676209A (en) * | 1995-11-20 | 1997-10-14 | Hydril Company | Deep water riser assembly |
US5722340A (en) * | 1996-12-11 | 1998-03-03 | Mobil Oil Corporation | Fairing for marine risers |
US6257337B1 (en) * | 1998-03-17 | 2001-07-10 | Granville Louis Wells | Submerged riser tensioner |
-
1998
- 1998-03-17 US US09/042,906 patent/US6257337B1/en not_active Expired - Fee Related
-
2001
- 2001-06-05 US US09/874,345 patent/US6457527B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100282157A1 (en) * | 2009-05-06 | 2010-11-11 | David Welch | Floatation collar for an undersea acoustic receiver and a method of positioning the same |
US8444345B2 (en) * | 2009-05-06 | 2013-05-21 | David Welch | Floatation collar for protecting and positioning a sensor package |
Also Published As
Publication number | Publication date |
---|---|
US6457527B2 (en) | 2002-10-01 |
US6257337B1 (en) | 2001-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6457527B2 (en) | Apparatus and method for adding buoyancy to riser with inflatable floatation collar | |
RU2167781C2 (en) | Buoy used for loading and unloading fluid material | |
US4892495A (en) | Subsurface buoy mooring and transfer system for offshore oil and gas production | |
US8776706B2 (en) | Buoyancy device and a method for stabilizing and controlling the lowering or raising of a structure between the surface and the bed of the sea | |
US7008141B2 (en) | Collapsible buoyancy device for risers on offshore structures | |
US5549164A (en) | Method and apparatus for production of subsea hydrocarbon formations | |
US5305703A (en) | Vessel mooring system | |
US6652192B1 (en) | Heave suppressed offshore drilling and production platform and method of installation | |
US4234047A (en) | Disconnectable riser for deep water operation | |
US8231420B2 (en) | Submersible mooring system | |
US6701861B2 (en) | Semi-submersible floating production facility | |
US20110274496A1 (en) | Undersea leak remediation device and method | |
US6688348B2 (en) | Submerged flowline termination buoy with direct connection to shuttle tanker | |
US5515803A (en) | Method and apparatus for mooring a vessel to a submerged mooring element | |
US5012756A (en) | Floating construction | |
US4630681A (en) | Multi-well hydrocarbon development system | |
US6269761B1 (en) | Buoyancy device | |
US6460476B1 (en) | Buoyancy device | |
US10647390B2 (en) | Buoy device | |
US5237948A (en) | Mooring system for oil tanker storage vessel or the like | |
US4632663A (en) | Mooring and transfer system and method | |
US3934289A (en) | Marine fluid transfer apparatus | |
US20130020801A1 (en) | Sleeve For Tendon Bottom Connector | |
US20040192128A1 (en) | Buoyancy device | |
US6349663B1 (en) | Temporary storage barge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20061001 |