US20020002192A1 - Novel cyclohexene derivatives useful as antagonists of the motilin receptor - Google Patents
Novel cyclohexene derivatives useful as antagonists of the motilin receptor Download PDFInfo
- Publication number
- US20020002192A1 US20020002192A1 US09/803,572 US80357201A US2002002192A1 US 20020002192 A1 US20020002192 A1 US 20020002192A1 US 80357201 A US80357201 A US 80357201A US 2002002192 A1 US2002002192 A1 US 2002002192A1
- Authority
- US
- United States
- Prior art keywords
- alkyl
- substituted
- compound
- phenylcarbonyl
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102000057413 Motilin receptors Human genes 0.000 title claims abstract description 13
- 108700040483 Motilin receptors Proteins 0.000 title claims abstract description 13
- 239000005557 antagonist Substances 0.000 title abstract description 9
- 125000000596 cyclohexenyl group Chemical class C1(=CCCCC1)* 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 76
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 claims abstract description 22
- 229960003276 erythromycin Drugs 0.000 claims abstract description 11
- -1 pyridinylcarbonyl Chemical group 0.000 claims description 64
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 claims description 32
- 229910052739 hydrogen Inorganic materials 0.000 claims description 29
- 239000001257 hydrogen Substances 0.000 claims description 29
- 229910052736 halogen Inorganic materials 0.000 claims description 25
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 125000001424 substituent group Chemical group 0.000 claims description 18
- 125000005843 halogen group Chemical group 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 16
- 150000002367 halogens Chemical group 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 11
- 239000011593 sulfur Chemical group 0.000 claims description 11
- 229910052717 sulfur Inorganic materials 0.000 claims description 11
- 125000005842 heteroatom Chemical group 0.000 claims description 10
- 229910052757 nitrogen Chemical group 0.000 claims description 8
- 150000001204 N-oxides Chemical group 0.000 claims description 7
- 239000008194 pharmaceutical composition Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 125000002373 5 membered heterocyclic group Chemical group 0.000 claims description 6
- 125000004070 6 membered heterocyclic group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 230000002496 gastric effect Effects 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 150000003573 thiols Chemical group 0.000 claims description 5
- 125000004217 4-methoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1OC([H])([H])[H])C([H])([H])* 0.000 claims description 4
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 claims description 4
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 claims description 4
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 claims description 4
- 125000005466 alkylenyl group Chemical group 0.000 claims description 4
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 4
- 125000002619 bicyclic group Chemical group 0.000 claims description 4
- 208000021302 gastroesophageal reflux disease Diseases 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 208000002551 irritable bowel syndrome Diseases 0.000 claims description 4
- 125000006678 phenoxycarbonyl group Chemical group 0.000 claims description 4
- 150000003462 sulfoxides Chemical group 0.000 claims description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 2
- 125000005222 heteroarylaminocarbonyl group Chemical group 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 2
- 150000002825 nitriles Chemical group 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- 125000004953 trihalomethyl group Chemical group 0.000 claims description 2
- LVRVABPNVHYXRT-BQWXUCBYSA-N 52906-92-0 Chemical compound C([C@H](N)C(=O)N[C@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)C1=CC=CC=C1 LVRVABPNVHYXRT-BQWXUCBYSA-N 0.000 abstract description 29
- 101800002372 Motilin Proteins 0.000 abstract description 27
- 102000002419 Motilin Human genes 0.000 abstract description 27
- 230000004044 response Effects 0.000 abstract description 6
- 210000002460 smooth muscle Anatomy 0.000 abstract description 5
- 208000018522 Gastrointestinal disease Diseases 0.000 abstract description 3
- 239000003446 ligand Substances 0.000 abstract description 3
- 230000003042 antagnostic effect Effects 0.000 abstract description 2
- CTMHWPIWNRWQEG-UHFFFAOYSA-N 1-methylcyclohexene Chemical compound CC1=CCCCC1 CTMHWPIWNRWQEG-UHFFFAOYSA-N 0.000 description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 10
- 239000000543 intermediate Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 9
- 241000283973 Oryctolagus cuniculus Species 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 150000002431 hydrogen Chemical group 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- NFRVLMTXPYZFGJ-UHFFFAOYSA-N CC.CC.CN(CC1=CC=CC=C1)CC1=CC(C)(N(C)C)CCC1 Chemical compound CC.CC.CN(CC1=CC=CC=C1)CC1=CC(C)(N(C)C)CCC1 NFRVLMTXPYZFGJ-UHFFFAOYSA-N 0.000 description 6
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 150000001299 aldehydes Chemical class 0.000 description 5
- 150000001412 amines Chemical class 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 210000005095 gastrointestinal system Anatomy 0.000 description 5
- 125000001072 heteroaryl group Chemical group 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000012280 lithium aluminium hydride Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000012044 organic layer Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 241000282412 Homo Species 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000019439 ethyl acetate Nutrition 0.000 description 4
- 210000003205 muscle Anatomy 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 0 *C1(C=C(CN(*)*)CCC1)N(*)* Chemical compound *C1(C=C(CN(*)*)CCC1)N(*)* 0.000 description 3
- XWFFQPHIXRTAMR-UHFFFAOYSA-N 3-benzylcyclohept-2-en-1-one Chemical compound O=C1CCCCC(CC=2C=CC=CC=2)=C1 XWFFQPHIXRTAMR-UHFFFAOYSA-N 0.000 description 3
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 241000282472 Canis lupus familiaris Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- GNVQZAIWPXZNAS-UHFFFAOYSA-N O=C(C1=CC(F)=C(F)C=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1.O=C(NC1=CC=CC=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1 Chemical compound O=C(C1=CC(F)=C(F)C=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1.O=C(NC1=CC=CC=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1 GNVQZAIWPXZNAS-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000001072 colon Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 210000001198 duodenum Anatomy 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 229940086542 triethylamine Drugs 0.000 description 3
- GJKDIZMUFTYFRA-UHFFFAOYSA-N 3-benzylcyclohept-2-en-1-ol Chemical compound OC1CCCCC(CC=2C=CC=CC=2)=C1 GJKDIZMUFTYFRA-UHFFFAOYSA-N 0.000 description 2
- NHQDETIJWKXCTC-UHFFFAOYSA-N 3-chloroperbenzoic acid Chemical compound OOC(=O)C1=CC=CC(Cl)=C1 NHQDETIJWKXCTC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DRUIESSIVFYOMK-UHFFFAOYSA-N Trichloroacetonitrile Chemical compound ClC(Cl)(Cl)C#N DRUIESSIVFYOMK-UHFFFAOYSA-N 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- OIPILFWXSMYKGL-UHFFFAOYSA-N acetylcholine Chemical compound CC(=O)OCC[N+](C)(C)C OIPILFWXSMYKGL-UHFFFAOYSA-N 0.000 description 2
- 229960004373 acetylcholine Drugs 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000012230 colorless oil Substances 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940093499 ethyl acetate Drugs 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 239000006186 oral dosage form Substances 0.000 description 2
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 2
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 2
- QKFJKGMPGYROCL-UHFFFAOYSA-N phenyl isothiocyanate Chemical compound S=C=NC1=CC=CC=C1 QKFJKGMPGYROCL-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012746 preparative thin layer chromatography Methods 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- QAEDZJGFFMLHHQ-UHFFFAOYSA-N trifluoroacetic anhydride Chemical compound FC(F)(F)C(=O)OC(=O)C(F)(F)F QAEDZJGFFMLHHQ-UHFFFAOYSA-N 0.000 description 2
- HDDNBUNZJIQDBQ-UHFFFAOYSA-N 1-(3-chloropropyl)piperidine Chemical compound ClCCCN1CCCCC1 HDDNBUNZJIQDBQ-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical class CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 125000005273 2-acetoxybenzoic acid group Chemical group 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- RPQWXGVZELKOEU-UHFFFAOYSA-N 3,4-difluorobenzoyl chloride Chemical compound FC1=CC=C(C(Cl)=O)C=C1F RPQWXGVZELKOEU-UHFFFAOYSA-N 0.000 description 1
- KFOWCFUJSYGZMB-UHFFFAOYSA-N 3-(2-morpholin-4-ylethoxy)aniline Chemical compound NC1=CC=CC(OCCN2CCOCC2)=C1 KFOWCFUJSYGZMB-UHFFFAOYSA-N 0.000 description 1
- QLRBBFCAMQQYSG-UHFFFAOYSA-N 3-(3-aminopropyl)phenol Chemical compound NCCCC1=CC=CC(O)=C1 QLRBBFCAMQQYSG-UHFFFAOYSA-N 0.000 description 1
- KFFUEVDMVNIOHA-UHFFFAOYSA-N 3-aminobenzenethiol Chemical compound NC1=CC=CC(S)=C1 KFFUEVDMVNIOHA-UHFFFAOYSA-N 0.000 description 1
- CWLKGDAVCFYWJK-UHFFFAOYSA-N 3-aminophenol Chemical compound NC1=CC=CC(O)=C1 CWLKGDAVCFYWJK-UHFFFAOYSA-N 0.000 description 1
- CVOGBHWKYXUUSC-UHFFFAOYSA-N 3-ethoxycyclohept-2-en-1-one Chemical compound CCOC1=CC(=O)CCCC1 CVOGBHWKYXUUSC-UHFFFAOYSA-N 0.000 description 1
- PIAZYBLGBSMNLX-UHFFFAOYSA-N 4-(3-chloropropyl)morpholine Chemical compound ClCCCN1CCOCC1 PIAZYBLGBSMNLX-UHFFFAOYSA-N 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- XDUGRLQOVHGTIS-UHFFFAOYSA-M CC1=CC(=O)CCCC1.ClCCCN1CCOCC1.FC1=CC=C(C[Mg]Br)C=C1.NC1=CC(O)=CC=C1.NC1=CC(OCCCN2CCOCC2)=CC=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=CCCCC1)C(Cl)(Cl)Cl.O=C(NC1(CC2=CC=C(F)C=C2)CC=C(CNC2=CC=CC(OCCCN3CCOCC3)=C2)CC1)C(Cl)(Cl)Cl.O=C1C=C(CC2=CC=C(F)C=C2)CCCC1.O=CC1=CCC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CC1.OC1C=C(CC2=CC=C(F)C=C2)CCCC1 Chemical compound CC1=CC(=O)CCCC1.ClCCCN1CCOCC1.FC1=CC=C(C[Mg]Br)C=C1.NC1=CC(O)=CC=C1.NC1=CC(OCCCN2CCOCC2)=CC=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=CCCCC1)C(Cl)(Cl)Cl.O=C(NC1(CC2=CC=C(F)C=C2)CC=C(CNC2=CC=CC(OCCCN3CCOCC3)=C2)CC1)C(Cl)(Cl)Cl.O=C1C=C(CC2=CC=C(F)C=C2)CCCC1.O=CC1=CCC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CC1.OC1C=C(CC2=CC=C(F)C=C2)CCCC1 XDUGRLQOVHGTIS-UHFFFAOYSA-M 0.000 description 1
- POJHLDZYXDAZTC-UHFFFAOYSA-N CN(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=CC(OCCN2CCOCC2)=C1.CN(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=CC(OCC[N+]2([O-])CCOCC2)=C1 Chemical compound CN(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=CC(OCCN2CCOCC2)=C1.CN(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=CC(OCC[N+]2([O-])CCOCC2)=C1 POJHLDZYXDAZTC-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Cc1ccccc1 Chemical compound Cc1ccccc1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- BHZLDMOPYARDCA-UHFFFAOYSA-N ClCCCN1CCCCC1.NC1=CC=C(N(CC2=CC(CC3=CC=C(F)C=C3)(NC(=O)C(Cl)(Cl)Cl)CCC2)C(=O)C2=CC=CC=C2)C=C1.NOOC1=CC=C(N)C=C1.O=C(C1=CC=CC=C1)N(CC1=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=C(N(CCCN2CCCCC2)CCCN2CCCCC2)C=C1.O=C(C1=CC=CC=C1)N(CC1=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=C(NCCCN2CCCCC2)C=C1.O=C(C1=CC=CC=C1)N(CC1=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=C([N+](=O)[O-])C=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CNC2=CC=C([N+](=O)[O-])C=C2)CCC1)C(Cl)(Cl)Cl Chemical compound ClCCCN1CCCCC1.NC1=CC=C(N(CC2=CC(CC3=CC=C(F)C=C3)(NC(=O)C(Cl)(Cl)Cl)CCC2)C(=O)C2=CC=CC=C2)C=C1.NOOC1=CC=C(N)C=C1.O=C(C1=CC=CC=C1)N(CC1=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=C(N(CCCN2CCCCC2)CCCN2CCCCC2)C=C1.O=C(C1=CC=CC=C1)N(CC1=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=C(NCCCN2CCCCC2)C=C1.O=C(C1=CC=CC=C1)N(CC1=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC=C([N+](=O)[O-])C=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CNC2=CC=C([N+](=O)[O-])C=C2)CCC1)C(Cl)(Cl)Cl BHZLDMOPYARDCA-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000007818 Grignard reagent Substances 0.000 description 1
- 101500028621 Homo sapiens Motilin Proteins 0.000 description 1
- 206010021518 Impaired gastric emptying Diseases 0.000 description 1
- 201000005081 Intestinal Pseudo-Obstruction Diseases 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- AXYBGUQLGBIUSB-UHFFFAOYSA-N NC1(CC2=CC=C(F)C=C2)C=CCCCC1.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CNC2=CC(OCCCN3CCOCC3)=CC=C2)CCC1)C(F)(F)F.O=C(NC1(CC2=CC=C(F)C=C2)C=CCCCC1)C(F)(F)F Chemical compound NC1(CC2=CC=C(F)C=C2)C=CCCCC1.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CNC2=CC(OCCCN3CCOCC3)=CC=C2)CCC1)C(F)(F)F.O=C(NC1(CC2=CC=C(F)C=C2)C=CCCCC1)C(F)(F)F AXYBGUQLGBIUSB-UHFFFAOYSA-N 0.000 description 1
- DDMKKQHIWZWGHC-UHFFFAOYSA-N NCCCC1=CC=CC(O)=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CN(CCCC2=CC(O)=CC=C2)C(=S)NC2=CC=CC=C2)CCC1)C(Cl)(Cl)Cl.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CN(CCCC2=CC(OCCCN3CCCCC3)=CC=C2)C(=S)NC2=CC=CC=C2)CCC1)C(Cl)(Cl)Cl.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CNCCCC2=CC(O)=CC=C2)CCC1)C(Cl)(Cl)Cl Chemical compound NCCCC1=CC=CC(O)=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CN(CCCC2=CC(O)=CC=C2)C(=S)NC2=CC=CC=C2)CCC1)C(Cl)(Cl)Cl.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CN(CCCC2=CC(OCCCN3CCCCC3)=CC=C2)C(=S)NC2=CC=CC=C2)CCC1)C(Cl)(Cl)Cl.O=C(NC1(CC2=CC=C(F)C=C2)C=C(CNCCCC2=CC(O)=CC=C2)CCC1)C(Cl)(Cl)Cl DDMKKQHIWZWGHC-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- YITAAAZWANOCAH-UHFFFAOYSA-N O=C(C1=CC(F)=C(F)C=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1 Chemical compound O=C(C1=CC(F)=C(F)C=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1 YITAAAZWANOCAH-UHFFFAOYSA-N 0.000 description 1
- NFCBEZBHUUFGRH-UHFFFAOYSA-N O=C(C1=CC=CC=C1)N(CC1C=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CC1)C1=CC(OCCCN2CCOCC2)=CC=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=CC(CN(C(=S)NC2=CC=CC=C2)C2=CC(OCCCN3CCOCC3)=CC=C2)CC1)C(Cl)(Cl)Cl.O=C(NC1=CC=CC=C1)N(CC1C=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CC1)C1=CC(OCCCN2CCOCC2)=CC=C1 Chemical compound O=C(C1=CC=CC=C1)N(CC1C=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CC1)C1=CC(OCCCN2CCOCC2)=CC=C1.O=C(NC1(CC2=CC=C(F)C=C2)C=CC(CN(C(=S)NC2=CC=CC=C2)C2=CC(OCCCN3CCOCC3)=CC=C2)CC1)C(Cl)(Cl)Cl.O=C(NC1=CC=CC=C1)N(CC1C=CC(CC2=CC=C(F)C=C2)(NC(=O)C(Cl)(Cl)Cl)CC1)C1=CC(OCCCN2CCOCC2)=CC=C1 NFCBEZBHUUFGRH-UHFFFAOYSA-N 0.000 description 1
- XXJKTCQOPWTZKF-UHFFFAOYSA-N O=C(NC1=CC=CC=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1 Chemical compound O=C(NC1=CC=CC=C1)N(CC1=CC(CC2=CC=CC=C2)(NC(=O)C(Cl)(Cl)Cl)CCC1)C1=CC(OCCN2CCOCC2)=CC=C1 XXJKTCQOPWTZKF-UHFFFAOYSA-N 0.000 description 1
- 108700030158 OHM 11526 Proteins 0.000 description 1
- 241000283977 Oryctolagus Species 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- FEXQMRQHXTYLDS-UHFFFAOYSA-M [Br-].FC1=CC=C(C[Mg+])C=C1 Chemical compound [Br-].FC1=CC=C(C[Mg+])C=C1 FEXQMRQHXTYLDS-UHFFFAOYSA-M 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 150000005528 benzodioxoles Chemical class 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001743 benzylic group Chemical group 0.000 description 1
- 125000002618 bicyclic heterocycle group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000012043 crude product Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 150000001935 cyclohexenes Chemical class 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 125000002433 cyclopentenyl group Chemical class C1(=CCCC1)* 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000030136 gastric emptying Effects 0.000 description 1
- 239000003629 gastrointestinal hormone Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 230000010243 gut motility Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 208000013617 idiopathic gastroparesis Diseases 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- SCEZYJKGDJPHQO-UHFFFAOYSA-M magnesium;methanidylbenzene;chloride Chemical compound [Mg+2].[Cl-].[CH2-]C1=CC=CC=C1 SCEZYJKGDJPHQO-UHFFFAOYSA-M 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- RJSYSGCOVNBMEN-UHFFFAOYSA-N n-(1-benzylcyclohept-2-en-1-yl)-2,2,2-trichloroacetamide Chemical compound C=1C=CC=CC=1CC1(NC(=O)C(Cl)(Cl)Cl)CCCCC=C1 RJSYSGCOVNBMEN-UHFFFAOYSA-N 0.000 description 1
- VBEGHXKAFSLLGE-UHFFFAOYSA-N n-phenylnitramide Chemical class [O-][N+](=O)NC1=CC=CC=C1 VBEGHXKAFSLLGE-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 108010091212 pepstatin Proteins 0.000 description 1
- 229950000964 pepstatin Drugs 0.000 description 1
- FAXGPCHRFPCXOO-LXTPJMTPSA-N pepstatin A Chemical compound OC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C[C@H](O)[C@H](CC(C)C)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C(C)C)NC(=O)CC(C)C FAXGPCHRFPCXOO-LXTPJMTPSA-N 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 229940117953 phenylisothiocyanate Drugs 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000011555 rabbit model Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000016160 smooth muscle contraction Effects 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000003556 thioamides Chemical class 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 210000001113 umbilicus Anatomy 0.000 description 1
- JABYJIQOLGWMQW-UHFFFAOYSA-N undec-4-ene Chemical compound CCCCCCC=CCCC JABYJIQOLGWMQW-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/08—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
- C07D295/084—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
- C07D295/088—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/06—Anti-spasmodics, e.g. drugs for colics, esophagic dyskinesia
Definitions
- This invention relates to a series of novel cyclohexene derivatives, pharmaceutical compositions containing them and intermediates used in their manufacture.
- the compounds of the invention are useful as non-peptidyl antagonists of the motilin receptor.
- Motilin is a peptide of 22 amino acids which is produced in the gastrointestinal system of a number of species. Although the sequence of the peptide varies from species to species, there are a great deal of similarities. For example, human motilin and porcine motilin are identical; while motilin isolated from the dog and the rabbit differ by five and four amino acids, respectively. Motilin induces smooth muscle contractions in the stomach tissue of dogs, rabbits, and humans as well as in the colon of rabbits. Apart from local gastrointestinal intestinal tissues, motilin and its receptors have been found in other tissues.
- motilin has been found in circulating plasma, where a rise in the concentration of motilin has been associated with gastric effects which occur during fasting in dogs and humans (Itoh, Z. et al., 1976, Scand. J. Gastroenterol. 11:93-110; Vantrappen, G. et al., 1979, Dig. Dis Sci 24, 497-500).
- motilin when intravenously administered to humans it was found to increase gastric emptying and gut hormone release (Christofides, N. D. et al., 1979, Gastroenterology 76:903-907).
- motilin and erythromycin are agonists of the motilin receptor, there is a need for antagonists of this receptor as well.
- the nausea, abdominal cramping, and diarrhea which are associated with motilin agonsits are not always welcome physiological events.
- the increased gut motility induced by motilin has been implicated in diseases such as Irritable Bowel Syndrome and esophageal reflux. Therefore researchers have been searching for motilin antagonists.
- OHM-11526 is a peptide derived from porcine motilin which competes with both motilin and erythromycin for the motilin receptor in a number of species, including rabbits and humans.
- this peptide is an antagonist of the contractile smooth muscle response to both erythromycin and motilin in an in vitro rabbit model (Depoortere, I. et al., 1995, European Journal of Pharmacology, 286, 241-47).
- R 1 is selected from hydrogen, C 1-5 alkyl optionally substituted with halogen, aminoC 1-5 alkyl, C 1-5 alkylaminoC 1-5 alkyl, di-C 1-5 alkylaminoC 1-5 alkyl, C 1-5 alkylcarbonyl, C 1-5 alkoxycarbonyl, aminocarbonyl, C 1-9 alkylaminocarbonyl, cycloC 3-9 alkylaminocarbonyl, heteroarylaminocarbonyl optionally substituted with one or more C 1-5 alkyl, pyridinylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C 1-5 alkyl, thiophenecarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C 1-5 alkyl, phenyl, phenylC 1-5 alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl
- R 2 is selected from hydrogen, C 1-5 alkyl, C 1-5 alkoxy, phenyl optionally substituted with one or more substituents selected from the group consisting of halogen and C 1-5 alkyl, and phenylC 1-5 alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C 1-5 alkyl, C 1-5 alkoxy, halo and di-C 1-5 alkylamino;
- R 3 is selected from hydrogen, C 1-5 alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C 1-5 alkyl, C 1-5 alkoxy, amino, C 1-5 alkylamino, and di-C 1-5 alkylamino;
- R 4 is selected from hydrogen, C 1-5 alkyl, C 1-5 alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C 1-5 alkyl, C 1-5 alkoxy, amino, C 1-5 alkylamino, and di-C 1-5 alkylamino;
- n 0-3;
- m is 1-5;
- t is 0-1;
- X is oxygen, CH 2 , sulfur, hydroxy, thiol, or NR c , wherein
- R c is selected from hydrogen, C 1-5 alkyl, morpholinoC 1-5 alkyl, piperidinylC 1-5 alkyl, N-phenylmethylpiperidinyl, and piperazinylC 1-5 alkyl,
- A is C 1-5 alkoxycarbonyl, phenylcarbonyl, or R 7 R 8 N—
- R 7 and R 8 are independently selected from hydrogen, C 1-5 alkyl, and cycloC 1-9 alkyl, or R 7 and R 8 form a 5- or 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and sulfoxides and N-oxides thereof; and
- R 6 is selected from hydrogen, halogen, C 1-5 alkoxy, C 1-5 alkylamino, and di-C 1-5 alkylamino;
- the compounds of Formula I are useful in treating gastrointestinal disorders associated with the motilin receptor.
- the compounds compete with erythromycin and motilin for the motilin receptor.
- the compounds are antagonists of the contractile smooth muscle response to those ligands.
- the present invention also comprises pharmaceutical compositions containing one or more of the compounds of Formula I as well as methods for the treatment of disorders related to the gastrointestinal system which are associated with the motilin receptor.
- diseases include Irritable Bowel Syndrome, esophageal reflux, and the gastrointestinal side effects of erythromycin.
- alkyl refers to straight, cyclic and branched-chain alkyl groups and “alkoxy” refers 0-alkyl where alkyl is as defined supra.
- Halogen or “halo” means F, Cl, Br, and I.
- Ph refers to phenyl.
- fused bicyclic aromatic includes fused aromatic rings such as naphthyl and the like.
- fused bicyclic heterocycle includes benzodioxoles and the like.
- heteroaryl represents a stable five or six membered monocyclic aromatic ring system which consists of carbon atoms and from one to three heteroatoms selected from N, O, or S.
- the heteroaryl group may be attached at any heteroatom or carbon atom which results in the creation of a stable structure.
- heteroaryl groups include, but are not limited to, triazole, thiazole, thiadiazole, oxazole, imidazole, pyrazole, pyrimidine, isothiazole, isoindole, isoxazole and the like.
- the heteroaryl group may be further substituted with one or more groups such as alkyl, substituted alkyl, and halogen. More particularly, the heteroaryl group may be substituted with methyl.
- subject refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
- the compounds of the invention may be prepared as a single stereoisomer or in racemic form as a mixture of some possible stereoisomers.
- the non-racemic forms may be obtained by either synthesis or resolution.
- the compounds may, for example, be resolved into their components enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation.
- the compounds may also be resolved by covalent linkage to a chiral auxiliary, followed by chromatographic separation and/or crystallographic separation, and removal of the chiral auxiliary.
- the compounds may be resolved using chiral chromatography.
- acid addition salts may be prepared and may be chosen from hydrochloric, hydrobromic, hydroiodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, pyruvic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, cinnamic, mandelic, methanesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, 2-phenoxybenzoic, 2-acetoxybenzoic, saccharin, and the like.
- Such salts can be made by reacting the free base of compounds of formula I with the acid and isolating the salt.
- Compounds of the present invention may be prepared by known methods such as those disclosed in U.S. Pat. No. 5,972,939 to Chen et al., which is hereby incorporated by reference in its entirety.
- the compounds of the invention may be prepared by the following procedures, where some schemes produce more than one embodiment of the invention. In those cases, the choice of scheme is a matter of discretion which is within the capabilities of those skilled in the art.
- Scheme 1 assembles two halves of the molecule and couples them.
- 3-ethoxy-2-cylclohepten-1 -one, 1a (a known compound), may be the starting material.
- 1a may be treated with a Grignard reagent, 1b such as 4-fluorobenzyl magnesium bromide (a known compound) preferably at room temperature (rt) under an inert atmosphere, using ether as a solvent to give the ⁇ , ⁇ -unsaturated ketone derivative 1c.
- a reducing agent such as lithium aluminum hydride (LAH) preferably at 0° C. to room temperature will give the alcohol, Id.
- LAH lithium aluminum hydride
- This alcohol may be treated with a strong base such as NaH and trichloroacetonitrile preferably from 0° C. to room temperature to give the amide 1e.
- This seven-membered ring amide may be sequentially treated on dry ice with ozone, dimethylsulfide, and a catalytic amount of acid such as toluene sulfonic acid. Once addition is complete, the mixture can be warmed to room temperature over to give the six membered ring aldehyde, 1f, as a racemic mixture.
- an aromatic alcohol 1 g such as 3-hydroxyaniline may be treated with a mild base, such as K 2 CO 3 , in a suitable solvent such as ethanol (EtOH) at reflux.
- a suitable solvent such as ethanol (EtOH) at reflux.
- This mixture may be subsequently treated with a halide derivative 1h, such as 3-chloropropylmorpholine preferably at room temperature to give the amine 1i.
- This amine may be treated with the aldehyde 1f and NaCNBH 3 in methanol (MeOH) preferably at room temperature to give a compound of the invention Ic, as a racemic mixture.
- pure enantiomers may be obtained in any of three stages of the synthesis.
- the alcohol 1d, the aldehyde 1f, and the product Ic may all be separated via HPLC using chiral columns or methods well known in the art. With respect to all three compounds, they may be further manipulated to give other compounds of the invention without sacrificing their enantiomeric purity.
- Scheme 1 may be used to produce other compounds of the invention.
- reagent 1h simply replace reagent 1h with an aromatic thiol, such as 3-aminothiophenol and carry out the remaining steps of the Scheme.
- the products of Scheme 1 may be used to produce other compounds of the invention as shown in Scheme 3.
- compound Ic may be treated with a phenyl isocyanate preferably at room temperature.
- Ic may be treated preferably at room temperature with acid chloride derivatives such as benzoyl chloride.
- thiols Iq compounds of type Ic may be treated with isothiocyanates, such as phenylisothiocyanate preferably at room temperature.
- isothiocyanates such as phenylisothiocyanate preferably at room temperature.
- Scheme 4 makes use of the intermediate of Scheme 1.
- a nitroaniline derivative 4a (a known compound), and NaCNBH 3 preferably at room temperature gives the coupled intermediate 4b.
- This intermediate may be acylated with benzoyl chloride and a mild base such as triethylamine to give the N-acyl intermediate 4c.
- 4c may be treated with a reducing agent such as Pd/C to give the aniline compound Ih.
- This compound may be coupled with a halogen derivative 4d, such as 3-chloropropylpiperidine, using 1,8.
- Diazabieyclo (5,4,0) undec-7-ene (DBU) and an alcoholic solvent at reflux to give a mixture of mono- and di-amine products (Ii and Ij).
- the compounds of the invention were tested for their ability to compete with radiolabeled motilin (porcine) for the motilin receptors located on the colon of mature rabbits.
- the colon from mature New Zealand rabbits was removed, dissected free from the mucosa and serosa layers, and diced into small pieces.
- the muscle tissues were homogenized in 10 volumes of buffer (50 mM Tris-Cl, 10 mM MgCl 2 , 0.1 mg/mL bactracin, and 0.25 mM Peflabloc, pH 7.5) in a Polytron (29,000 rpm, 4 ⁇ 15 seconds). The homogenate was centrifuged at 1000 ⁇ g for 15 min. and the supernatant discarded.
- the binding assay contained the following components added sequentially: buffer (50 mM Tris-Cl, 10 mM MgCl 2 , 1 mM EDTA, 15 mg/mL BSA, 5 ⁇ g/mL leupeptin, aprotinin, and pepstatin, and 0.1 mg/mL, bactracin), I 125 motilin (Amersham, ca 50,000-70,000 cpm, 25-40 pM), the test compound (the initial concentration was 2 mM/100% DMSO, which was diluted with H 2 O to a final concentration of 10 ⁇ M) and membrane protein (100-300 ⁇ g).
- buffer 50 mM Tris-Cl, 10 mM MgCl 2 , 1 mM EDTA, 15 mg/mL BSA, 5 ⁇ g/mL leupeptin, aprotinin, and pepstatin, and 0.1 mg/mL, bactracin
- I 125 motilin Amersham, ca
- the material was cooled on ice and centrifuged at 13,000 ⁇ g for 1 minute.
- the pellet was washed with 1 mL 0.9% saline and centrifuged at 13,000 ⁇ g for 15 seconds.
- the pellet was washed again with cold saline and the supernatant was removed.
- the pellet was counted in the gamma counter to determine the percentage of unbound motilin and thereby the percent inhibition of the test compound.
- Compounds of the invention may be evaluated for their ability to inhibit motilin and erythromycin induced contractions in the rabbit duodenum smooth muscle. Rabbits may be fasted 24-48 h and euthanized. The venral midline incision may be made approximately 7.5 cm above the umbilicus up to the xyphoid process, exposing the upper peritoneal cavity.
- the first 8 cm of the duodenum starting at the pyloric valve may be quickly removed and placed in Krebs solution containing NaCl (120 mM), KCl (4.7 mM), MgSO 4 *7 H 2 O (1.2 mM), CaCl 2 *2 H 2 O (2.4 mM), KH 2 PO 4 (1 mM), D-glucose (10 mM), and NaHCO 3 (24 mM).
- the lumen may be flushed with Krebs solution and excess tissue removed.
- the tissue may be cut lengthwise, splayed open with the longitudinal muscle layer facing up, and the longitudinal muscle layer released away from the circular muscle and cut into 3 ⁇ 30 mm strips.
- a pre-tied 4-0 silk ligature with a loop may be placed at the middle of the strip and the strip folded over the loop so the strip is half its original length.
- the tissues may be mounted in a 10 mL tissue bath (Radnotti Glass Technology, Inc., Monrovia, Calif.) containing Krebs solution gassed with 95% O 2 +5% CO 2 at 37° C.
- the tissues may be attached to a force displacement transducer (FT03, Grass Instruments, Quincy, Mass.) and resting tension slowly increased to 1 g.
- the tissues may be allowed to equilibrate for 60-90 min with 2-3 wash cycles.
- the tissues may be equilibrated with two initial contractions induced by a concentration of acetylcholine (1 ⁇ 10 ⁇ 4 M) that produces a maximal contraction (0.1 mM), with the highest taken as 100% maximal contraction of that tissue.
- Base line and response levels may be expressed as grams tension developed and as a percent of the response to acetylcholine.
- the test compounds may be dissolved in DMSO (2 mM/I 100% DMSO) and applied to the prepared strips 5-15 minutes prior to the addition of porcine motilin. After addition, the tension is constantly monitored over 5 min and the maximum tension is recorded. The percent contraction may be measured at four ascending concentrations and where appropriate IC 50 's may be determined.
- R 1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
- R 2 is phenylC 1-5 alkyl, substituted phenylC 1-5 alkyl or phenyl;
- R 3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C 1-5 alkylcarbonyl;
- R 4 is hydrogen or C 1-5 alkyl
- A is C 1-5 alkoxycarbonyl or R 7 R 8 N— wherein R 7 and R 8 are as described above;
- n O
- m is 1.
- R 1 is phenylaminocarbonyl or substituted phenylcarbonyl
- R 2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl
- R 3 is substituted C 1-5 alkylcarbonyl
- R 4 is hydrogen
- R 6 is hydrogen
- A is R 7 R 8 N— wherein R 7 and R 8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof;
- X is oxygen
- R 1 is phenylaminocarbonyl or halo substituted benzoyl
- R 3 is halo substituted C 1-5 alkylcarbonyl
- A is morpolinyl.
- compositions of this invention one or more compounds or salts thereof, as the active ingredient, is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral.
- a pharmaceutical carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral.
- any of the usual pharmaceutical media may be employed.
- suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like;
- suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques.
- the carrier will usually comprise sterile water, though other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included.
- injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
- the pharmaceutical compositions herein will preferably contain per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, from about 5 to about 500 mg of the active ingredient, although other unit dosages may be employed.
- the compounds of this invention may be administered in an amount of from about 0.5 to 100 mg/kg 1-2 times per day orally.
- the compounds may be administered via injection at 0.1-10 mg/kg per day. Determination of optimum dosages for a particular situation is within the capabilities of formulators.
- NaCNBH 4 (23 mg, 0.61 mM.) was added to a solution of 3-benzyl-3-trichloroacetamido-2-cyclohexenecarboxaldehyde (63 mg, 0.17 mmol), 3-(2-morpholinoethoxy) aniline (130 mg, 0.59 mmol) acetic acid (0.05 mL) in methanol (10 mL) at room temperature under N 2 and stirred for 30 min. Most of methanol was removed in vacuo and the residue was diluted with methylene chloride, washed with 1N. NaOH and dried.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The compounds of formula I are useful in treating gastrointestinal disorders associated with antagonizing the motilin receptor. The compounds compete with erythromycin and motilin for the motilin receptor. In addition the compounds are antagonists of the contractile smooth muscle response to those ligands.
Description
- This invention relates to a series of novel cyclohexene derivatives, pharmaceutical compositions containing them and intermediates used in their manufacture. The compounds of the invention are useful as non-peptidyl antagonists of the motilin receptor.
- In mammals, the digestion of nutrients and the elimination of waste is controlled by the gastrointestinal system. This system is, to say the least, complicated. There are a number of natural peptides, ligands, enzymes, and receptors which play a vital role in this system and are potential targets for drug discovery. Modifying the production of, or responses to these endogenous substances can have an effect upon the physiological responses such as diarrhea, nausea, and abdominal cramping. One example of an endogenous substance which affects the gastrointestinal system is motilin.
- Motilin is a peptide of 22 amino acids which is produced in the gastrointestinal system of a number of species. Although the sequence of the peptide varies from species to species, there are a great deal of similarities. For example, human motilin and porcine motilin are identical; while motilin isolated from the dog and the rabbit differ by five and four amino acids, respectively. Motilin induces smooth muscle contractions in the stomach tissue of dogs, rabbits, and humans as well as in the colon of rabbits. Apart from local gastrointestinal intestinal tissues, motilin and its receptors have been found in other tissues. For example, motilin has been found in circulating plasma, where a rise in the concentration of motilin has been associated with gastric effects which occur during fasting in dogs and humans (Itoh, Z. et al., 1976,Scand. J. Gastroenterol. 11:93-110; Vantrappen, G. et al., 1979, Dig. Dis Sci 24, 497-500). In addition, when motilin was intravenously administered to humans it was found to increase gastric emptying and gut hormone release (Christofides, N. D. et al., 1979, Gastroenterology 76:903-907).
- Aside from motilin itself, there are other substances which are agonists of the motilin receptor and which elicit gastrointestinal emptying. One of those agents is the antibiotic erythromycin. Even though erythromycin is a useful drug, a great number of patients are affected by the drug's gastrointestinal side effects. Studies have shown that erythromycin elicits biological responses that are comparable to motilin itself and therefore may be useful in the treatment of diseases such as chronic idiopathic intestinal pseudo-obstruction and gastroparesis (Weber, F. et al., 1993,The American Journal of Gastroenterology, 88:4, 485-90).
- Although motilin and erythromycin are agonists of the motilin receptor, there is a need for antagonists of this receptor as well. The nausea, abdominal cramping, and diarrhea which are associated with motilin agonsits are not always welcome physiological events. The increased gut motility induced by motilin has been implicated in diseases such as Irritable Bowel Syndrome and esophageal reflux. Therefore researchers have been searching for motilin antagonists.
- One such antagonist is OHM-11526. This is a peptide derived from porcine motilin which competes with both motilin and erythromycin for the motilin receptor in a number of species, including rabbits and humans. In addition, this peptide is an antagonist of the contractile smooth muscle response to both erythromycin and motilin in an in vitro rabbit model (Depoortere, I. et al., 1995,European Journal of Pharmacology, 286, 241-47).
- Although this substance is potent in that model, it is a peptide and as such it is susceptible to the enzymes of the digestive tract (Zen Itoh,Motilin, xvi, 1990). Therefore it is desirable to find other agents which are not peptides as potential motilin antagonists. The compounds of this invention are such agents.
- U.S. Pat. No. 5,972,939 to Chen et al. describes cyclopentene derivatives which are useful in treating gastrointestinal disorders associated with antagonizing the motilin receptor.
-
- wherein
- R1 is selected from hydrogen, C1-5alkyl optionally substituted with halogen, aminoC1-5alkyl, C1-5alkylaminoC1-5alkyl, di-C1-5alkylaminoC1-5alkyl, C1-5alkylcarbonyl, C1-5alkoxycarbonyl, aminocarbonyl, C1-9alkylaminocarbonyl, cycloC3-9alkylaminocarbonyl, heteroarylaminocarbonyl optionally substituted with one or more C1-5alkyl, pyridinylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, thiophenecarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl, said phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl being optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, trihalomethyl, C1-5alkoxy, amino, nitrile, nitro, C1-5alkylamino, and di-C1-5alkylamino, which substituents may be taken together to form a fused bicyclic aromatic ring or taken together with the phenyl ring to form a fused bicyclic 7-10 membered heterocyclic ring having one or two heteroatoms selected from oxygen, sulfur and nitrogen, and RaRbN-C1-5alkyl wherein Ra and Rb are independently selected from hydrogen and C1-5alkyl, or taken together to form a morpholine, piperazine, piperidine, or N-substituted piperidine wherein the N-substitutent is C1-5alkyl or phenylC1-5alkyl;
- R2 is selected from hydrogen, C1-5alkyl, C1-5alkoxy, phenyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, and phenylC1-5alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, halo and di-C1-5alkylamino;
- R3 is selected from hydrogen, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
- R4 is selected from hydrogen, C1-5alkyl, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
- n is 0-3;
- m is 1-5;
-
- wherein:
- q is 0-3;
- t is 0-1;
- X is oxygen, CH2, sulfur, hydroxy, thiol, or NRc, wherein
- Rc is selected from hydrogen, C1-5alkyl, morpholinoC1-5alkyl, piperidinylC1-5alkyl, N-phenylmethylpiperidinyl, and piperazinylC1-5alkyl,
- with the proviso that if q and t are O, X is hydroxy, thiol, or amino,
- A is C1-5alkoxycarbonyl, phenylcarbonyl, or R7R8N—
- wherein R7 and R8 are independently selected from hydrogen, C1-5alkyl, and cycloC1-9alkyl, or R7 and R8 form a 5- or 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and sulfoxides and N-oxides thereof; and
- R6 is selected from hydrogen, halogen, C1-5alkoxy, C1-5alkylamino, and di-C1-5alkylamino;
- or a pharmaceutically acceptable salt thereof.
- The compounds of Formula I are useful in treating gastrointestinal disorders associated with the motilin receptor. The compounds compete with erythromycin and motilin for the motilin receptor. In addition, the compounds are antagonists of the contractile smooth muscle response to those ligands.
- The present invention also comprises pharmaceutical compositions containing one or more of the compounds of Formula I as well as methods for the treatment of disorders related to the gastrointestinal system which are associated with the motilin receptor. Such diseases include Irritable Bowel Syndrome, esophageal reflux, and the gastrointestinal side effects of erythromycin.
- The terms used in describing the invention are commonly used and known to those skilled in the art. However, the terms that could have other meanings are defined. “Independently” means that when there are more than one substituent, the substituents may be different. The term “alkyl” refers to straight, cyclic and branched-chain alkyl groups and “alkoxy” refers 0-alkyl where alkyl is as defined supra. “Halogen” or “halo” means F, Cl, Br, and I. The symbol “Ph” refers to phenyl. The term “fused bicyclic aromatic” includes fused aromatic rings such as naphthyl and the like. The term “fused bicyclic heterocycle” includes benzodioxoles and the like. The term “heteroaryl” as used herein represents a stable five or six membered monocyclic aromatic ring system which consists of carbon atoms and from one to three heteroatoms selected from N, O, or S. The heteroaryl group may be attached at any heteroatom or carbon atom which results in the creation of a stable structure. Examples of heteroaryl groups include, but are not limited to, triazole, thiazole, thiadiazole, oxazole, imidazole, pyrazole, pyrimidine, isothiazole, isoindole, isoxazole and the like. The heteroaryl group may be further substituted with one or more groups such as alkyl, substituted alkyl, and halogen. More particularly, the heteroaryl group may be substituted with methyl.
- The term “subject” as used herein, refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
- Since the compounds of the invention have a chiral center, they may be prepared as a single stereoisomer or in racemic form as a mixture of some possible stereoisomers. The non-racemic forms may be obtained by either synthesis or resolution. The compounds may, for example, be resolved into their components enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation. The compounds may also be resolved by covalent linkage to a chiral auxiliary, followed by chromatographic separation and/or crystallographic separation, and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using chiral chromatography.
- When compounds contain a basic moiety, acid addition salts may be prepared and may be chosen from hydrochloric, hydrobromic, hydroiodic, perchloric, sulfuric, nitric, phosphoric, acetic, propionic, glycolic, lactic, pyruvic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, benzoic, cinnamic, mandelic, methanesulfonic, p-toluenesulfonic, cyclohexanesulfamic, salicylic, 2-phenoxybenzoic, 2-acetoxybenzoic, saccharin, and the like. Such salts can be made by reacting the free base of compounds of formula I with the acid and isolating the salt.
- Compounds of the present invention may be prepared by known methods such as those disclosed in U.S. Pat. No. 5,972,939 to Chen et al., which is hereby incorporated by reference in its entirety.
- The compounds of the invention may be prepared by the following procedures, where some schemes produce more than one embodiment of the invention. In those cases, the choice of scheme is a matter of discretion which is within the capabilities of those skilled in the art.
- Essentially, Scheme 1 assembles two halves of the molecule and couples them. For one half, 3-ethoxy-2-cylclohepten-1 -one, 1a (a known compound), may be the starting material. 1a may be treated with a Grignard reagent, 1b such as 4-fluorobenzyl magnesium bromide (a known compound) preferably at room temperature (rt) under an inert atmosphere, using ether as a solvent to give the α,β-unsaturated ketone derivative 1c. Treatment of 1c with a reducing agent such as lithium aluminum hydride (LAH) preferably at 0° C. to room temperature will give the alcohol, Id. This alcohol may be treated with a strong base such as NaH and trichloroacetonitrile preferably from 0° C. to room temperature to give the amide 1e. This seven-membered ring amide may be sequentially treated on dry ice with ozone, dimethylsulfide, and a catalytic amount of acid such as toluene sulfonic acid. Once addition is complete, the mixture can be warmed to room temperature over to give the six membered ring aldehyde, 1f, as a racemic mixture.
- To assemble the other half, an aromatic alcohol 1 g, such as 3-hydroxyaniline may be treated with a mild base, such as K2CO3, in a suitable solvent such as ethanol (EtOH) at reflux. This mixture may be subsequently treated with a halide derivative 1h, such as 3-chloropropylmorpholine preferably at room temperature to give the amine 1i. This amine may be treated with the aldehyde 1f and NaCNBH3 in methanol (MeOH) preferably at room temperature to give a compound of the invention Ic, as a racemic mixture.
- If pure enantiomers are desired, they may be obtained in any of three stages of the synthesis. The alcohol 1d, the aldehyde 1f, and the product Ic may all be separated via HPLC using chiral columns or methods well known in the art. With respect to all three compounds, they may be further manipulated to give other compounds of the invention without sacrificing their enantiomeric purity.
-
-
- The products of Scheme 1 may be used to produce other compounds of the invention as shown in Scheme 3. For example, to produce compounds of type Ie, compound Ic may be treated with a phenyl isocyanate preferably at room temperature. To produce compounds of type If, Ic may be treated preferably at room temperature with acid chloride derivatives such as benzoyl chloride. In order to produce thiols Iq, compounds of type Ic may be treated with isothiocyanates, such as phenylisothiocyanate preferably at room temperature. As discussed earlier, if pure enantiomers are desired, they may be obtained by chromatography of the reactant Ic or the products.
-
-
-
- Radiolabeled Motilin
- The compounds of the invention were tested for their ability to compete with radiolabeled motilin (porcine) for the motilin receptors located on the colon of mature rabbits. The colon from mature New Zealand rabbits was removed, dissected free from the mucosa and serosa layers, and diced into small pieces. The muscle tissues were homogenized in 10 volumes of buffer (50 mM Tris-Cl, 10 mM MgCl2, 0.1 mg/mL bactracin, and 0.25 mM Peflabloc, pH 7.5) in a Polytron (29,000 rpm, 4×15 seconds). The homogenate was centrifuged at 1000×g for 15 min. and the supernatant discarded. The pellet was washed twice before being suspended in homogenizing buffer. This crude homogenate was then passed first through a 19 gauge needle then a 23 gauge needle to further suspend the material and stored at −80° C. In a total volume of 0.50 mL, the binding assay contained the following components added sequentially: buffer (50 mM Tris-Cl, 10 mM MgCl2, 1 mM EDTA, 15 mg/mL BSA, 5 μg/mL leupeptin, aprotinin, and pepstatin, and 0.1 mg/mL, bactracin), I125 motilin (Amersham, ca 50,000-70,000 cpm, 25-40 pM), the test compound (the initial concentration was 2 mM/100% DMSO, which was diluted with H2O to a final concentration of 10 μM) and membrane protein (100-300 μg). After 30 min at 30° C., the material was cooled on ice and centrifuged at 13,000×g for 1 minute. The pellet was washed with 1 mL 0.9% saline and centrifuged at 13,000×g for 15 seconds. The pellet was washed again with cold saline and the supernatant was removed. The pellet was counted in the gamma counter to determine the percentage of unbound motilin and thereby the percent inhibition of the test compound.
- % inhibition was determined for some compounds by standard techniques:
- 3-Benzyl-3-trichloroacetamido-1-( N-phenylaminocarbonyl )-N-[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (Example 6): 62% @ 50 nM;
- 3-Benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (Example 7): 59% @ 50 nM.
- Rabbit duo denum Smooth Muscle
- Compounds of the invention may be evaluated for their ability to inhibit motilin and erythromycin induced contractions in the rabbit duodenum smooth muscle. Rabbits may be fasted 24-48 h and euthanized. The venral midline incision may be made approximately 7.5 cm above the umbilicus up to the xyphoid process, exposing the upper peritoneal cavity. The first 8 cm of the duodenum starting at the pyloric valve may be quickly removed and placed in Krebs solution containing NaCl (120 mM), KCl (4.7 mM), MgSO4*7 H2O (1.2 mM), CaCl2*2 H2O (2.4 mM), KH2PO4 (1 mM), D-glucose (10 mM), and NaHCO3 (24 mM). The lumen may be flushed with Krebs solution and excess tissue removed. The tissue may be cut lengthwise, splayed open with the longitudinal muscle layer facing up, and the longitudinal muscle layer released away from the circular muscle and cut into 3×30 mm strips. A pre-tied 4-0 silk ligature with a loop may be placed at the middle of the strip and the strip folded over the loop so the strip is half its original length. The tissues may be mounted in a 10 mL tissue bath (Radnotti Glass Technology, Inc., Monrovia, Calif.) containing Krebs solution gassed with 95% O2+5% CO2 at 37° C. The tissues may be attached to a force displacement transducer (FT03, Grass Instruments, Quincy, Mass.) and resting tension slowly increased to 1 g. The tissues may be allowed to equilibrate for 60-90 min with 2-3 wash cycles. The tissues may be equilibrated with two initial contractions induced by a concentration of acetylcholine (1×10−4 M) that produces a maximal contraction (0.1 mM), with the highest taken as 100% maximal contraction of that tissue. Base line and response levels may be expressed as grams tension developed and as a percent of the response to acetylcholine. The test compounds may be dissolved in DMSO (2 mM/I 100% DMSO) and applied to the prepared strips 5-15 minutes prior to the addition of porcine motilin. After addition, the tension is constantly monitored over 5 min and the maximum tension is recorded. The percent contraction may be measured at four ascending concentrations and where appropriate IC50's may be determined.
- The preferred compounds are those wherein:
- R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
- R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
- R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
- R4 is hydrogen or C1-5alkyl;
- q is2or 3;
- A is C1-5alkoxycarbonyl or R7R8N— wherein R7 and R8 are as described above;
- t is1;
- n is O; and
- m is 1.
- In another preferred embodiment of the invention:
- R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
- R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
- R3 is substituted C1-5alkylcarbonyl;
- R4 is hydrogen;
- R6 is hydrogen;
- q is 2;
- A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
- X is oxygen.
- Also illustrative of the present invention is the compound of Formula I wherein:
- R1 is phenylaminocarbonyl or halo substituted benzoyl;
- R3 is halo substituted C1-5alkylcarbonyl; and
- A is morpolinyl.
- To prepare the pharmaceutical compositions of this invention, one or more compounds or salts thereof, as the active ingredient, is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., oral or parenteral. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed. Thus for liquid oral preparations, such as for example, suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like; for solid oral preparations such as, for example, powders, capsules and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques. For parenterals, the carrier will usually comprise sterile water, though other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. The pharmaceutical compositions herein will preferably contain per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, from about 5 to about 500 mg of the active ingredient, although other unit dosages may be employed.
- In therapeutic use for treating disorders of the gastrointestinal system in mammals, the compounds of this invention may be administered in an amount of from about 0.5 to 100 mg/kg 1-2 times per day orally. In addition, the compounds may be administered via injection at 0.1-10 mg/kg per day. Determination of optimum dosages for a particular situation is within the capabilities of formulators.
- In order to illustrate the invention, the following examples are included. These examples do not limit the invention. They are meant to illustrate and suggest a method of practicing the invention. Although there are other methods of practicing this invention, those methods are deemed to be within the scope of this invention.
- A solution of 3-ethoxy-2-cyclohepten-1-one(5 g, 0.89 mol) in THF (70 mL) was added at room temperature to a solution of 2M benzyl magnesium chloride (800 ml) under N2 and stirred for 6 h. The resulting mixture was poured into a solution of 30% H2SO4 and stirred for 5 h. The resulting organic layer was separated, and the aqueous layer was extracted with several portions of ether. The combined organic layer was dried (MgSO4), and concentrated in vacuo to give 3-benzyl-2-cyclohepten-1-one (3.1 g, 65%) as a colorless oil. NMR (CDCl3); 3.45(s,2H1benzylic protons), 5.97 (bs, 1H, olefinic proton), 7.22 (m, 5H, aromatic protons).
- A solution of 3-benzyl-2-cyclohepten-1-one (3.1 g, 18 mmol) in either 100 mL) was slowly added to a suspension of lithium aluminum hydride (LAH) (684 mg, 0.87 mol) and ether (100 mL) at 0° C. under N2. The resulting mixture was stirred overnight at ambient temperature and cooled to 0° C. Saturated K2CO3 solution was added to quench the excess LAH, the mixture was filtered through Celite and washed with several portions of ether. The combined organic layers were dried (MgSO4) and concentrated in vacuo to give the title compound (3 g, 93%) as a colorless oil. NMR (CDCl3):3.32(ABq,J=6 Hz,2H, benzylic protons), 4.42 (bs, 1H, CHOH), 5.58 (bs, 1H, olefinic proton), 7.22 (m, 5H, aromatic protons).
- A solution of 3-benzyl-2-cycloheptene-1-ol (1.1 g, 5.45 mmol) in ether (50 mL) was added to a suspension of hexane washed 60% NaH (230 mg, 5.75 mol) in ether (5 mL) at 0° C. under N2 and stirred for 1 h. Trichloroacetonitrile (0.8 g, 5.54 mmol) was slowly added and the resulting mixture was allowed to warm to ambient temperature and stirred overnight. The solvent was removed in vacuo, hexane (25 mL) was added and the mixture was cooled to 0° C. Methanol (1 mL) was added and the resulting solid was filtered through Celite. The organic solvent was removed in vacuo to give a crude intermediate. This intermediate was dissolved in xylene (75 mL) and heated to reflux for 3 h under N2. The solvent was removed in vacuo, and the residue was purified by column on silica gel (100 g, ethylacetate (EtOAc)/hexane (1:9)) to give the title compound (207 mg, 11%) as a white crystal. MS (MH+=346).
- A solution of 3-benzyl-3-trichloroacetamidocycloheptene (207 mg, 0.60 mmol) in methylene chloride (80 mL) was treated with ozone at −78° C. until the solution turned blue. The excess of ozone was removed with a stream of N2, dimethyl sulfide (0.2 mL) was added and the mixture was allowed to warm to room temperature paratoluene sulfonic acid-monohydrate (TsOH—H2O) (20 mg) was added and the resulting mixture was stirred for three days. The resulting mixture was treated with 1N NaOH (20 mL). The organic layer was separated and the aqueous layer was extracted with methylene chloride (2×15 mL). The combined organic layer was dried and the solvent was removed in vacuo. The residue was purified by column on silica gel. gel (EtOAc/hexane (1:9˜2:9) to give the aldehyde (63 mg, 30%) as a thick brown oil (crude product), which was carried to Example 5 as its starting material.
- NaCNBH4 (23 mg, 0.61 mM.) was added to a solution of 3-benzyl-3-trichloroacetamido-2-cyclohexenecarboxaldehyde (63 mg, 0.17 mmol), 3-(2-morpholinoethoxy) aniline (130 mg, 0.59 mmol) acetic acid (0.05 mL) in methanol (10 mL) at room temperature under N2 and stirred for 30 min. Most of methanol was removed in vacuo and the residue was diluted with methylene chloride, washed with 1N. NaOH and dried. The solvent was removed in vacuo and residue was purified by column chromatography on silica gel using hexane:ethyl acetate (1:9) to give the title compound (58 mg, 60%) a a light brown oil. MS (MH+=566).
- A solution of 3-benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (28 mg, 0.05 mM), phenyl isocyanate (59 mg, 0.49 mM) and triethyl amine (100 mg) in methylene chloride (5 mL) was stirred at room temperature for 16 hours. Most of solvent was removed in vacuo and the residue was purified by preparative TLC to give 3-Benzyl-3-trichloroacetylamino-1-(N-phenylcarbonyl)-N-[(3-(2-morpholinoethyl)phenyl)amino]methylcyclohexene as a thick oil (21 mg). MS (MH+=685). This was converted to the mono-hydrochloride salt mp 103-105 (dec).
- 3,4-Difluorobenzoyl chloride (31 mg, 0.18 mM) was added to a solution of 3-benzyl-3-trichloroacetamido-1-N[(3-(2-morpholinoethoxy)phenyl)amino]methylcyclohexene (26 mg, 0.05 mM) and triethylamine (0.2 mL) in methylene chloride (3 mL) at room temperature under N2 and stirred for 2 hours. Most of solvent was removed in vacuo and the oily residue was purified by preparative TLC to give the title compound as a thick oil (22 mg, 58%). MS (MH+=706). This was converted to the mono-hydrochloride salt mp 103-105 (dec).
Claims (19)
1. A compound of Formula (I):
wherein
R1 is selected from hydrogen, C1-5alkyl optionally substituted with halogen, aminoC1-5alkyl, C1-5alkylaminoC1-5alkyl, di-C1-5alkylaminoC1-5alkyl, C1-5alkylcarbonyl, C1-5alkoxycarbonyl, aminocarbonyl, C1-9alkylaminocarbonyl, cycloC3-9alkylaminocarbonyl, heteroarylaminocarbonyl optionally substituted with one or more C1-5alkyl, pyridinylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, thiophenecarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl, said phenyl, phenylC1-5alkyl, phenoxycarbonyl, phenylcarbonyl, diphenylmethylcarbonyl, phenylaminocarbonyl, phenylthiocarbonyl, phenylaminothiocarbonyl being optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, trihalomethyl, C1-5alkoxy, amino, nitrile, nitro, C1-5alkylamino, and di-C1-5alkylamino, which substituents may be taken together to form a fused bicyclic aromatic ring or taken together with the phenyl ring to form a fused bicyclic 7-10 membered heterocyclic ring having one or two heteroatoms selected from oxygen, sulfur and nitrogen, and RaRbN-C1-5alkyl wherein Ra and Rb are independently selected from hydrogen and C1-5alkyl, or taken together to form a morpholine, piperazine, piperidine, or N-substituted piperidine wherein the N-substitutent is C1-5alkyl or phenylC1-5alkyl;
R2 is selected from hydrogen, C1-5alkyl, C1-5alkoxy, phenyl optionally substituted with one or more substituents selected from the group consisting of halogen and C1-5alkyl, and phenylC1-5alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, halo and di-C1-5alkylamino;
R3 is selected from hydrogen, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
R4 is selected from hydrogen, C1-5alkyl, C1-5alkylcarbonyl optionally substituted with halogen, and phenylcarbonyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-5alkyl, C1-5alkoxy, amino, C1-5alkylamino, and di-C1-5alkylamino;
n is 0-3;
m is 1-5;
R5 is
wherein:
q is 0-3;
t is 0-1;
X is oxygen, CH2, sulfur, hydroxy, thiol, or NRC, wherein
Rc is selected from hydrogen, C1-5alkyl, morpholinoC1-5alkyl, piperidinylC1-5alkyl, N-phenylmethylpiperidinyl, and piperazinylC1-5alkyl,
with the proviso that if q and t are 0, X is hydroxy, thiol, or amino,
A is C1-5alkoxycarbonyl, phenylcarbonyl, or R7R8N—
wherein R7 and R8 are independently selected from hydrogen, C1-5alkyl, and cycloC1-9alkyl, or R7 and R8 form a 5- or 6-membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and sulfoxides and N-oxides thereof; and
R6 is selected from hydrogen, halogen, C1-5alkoxy, C1-5alkylamino, and di-C1-5alkylamino;
or a pharmaceutically acceptable salt thereof.
2. A compound of claim 1 wherein
R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
R4 is hydrogen or C1-5alkyl;
q is 2or 3;
A is C1-5alkoxycarbonyl or R7R8N— wherein R7and R8 are as claimed in claim 1;
t is 1;
n is 0; and
m is 1.
3. A compound of claim 1 , wherein
R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
R3 is substituted C1-5alkylcarbonyl;
R4 is hydrogen;
R6 is hydrogen;
q is 2;
A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
X is oxygen.
4. A compound according to claim 1 , wherein R1 is phenylaminocarbonyl or halo substituted benzoyl;
R3 is halo substituted C1-5alkylcarbonyl; and
A is morpolinyl.
7. A pharmaceutical composition comprising an effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier.
8. A pharmaceutical composition comprising an effective amount of a compound of claim 2 and a pharmaceutically acceptable carrier.
10. A method of treating a condition associated with motilin receptor activity comprising administering to a subject an effective amount of a compound of claim 1 .
11. A method of claim 10 , wherein the condition is irritable bowel syndrome or esophageal reflux.
12. A method of claim 10 , wherein the compound is a compound of Formula (I)
wherein
R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
R4 is hydrogen or C1-5alkyl;
q is2or 3;
A is C1-5alkoxycarbonyl or R7R8N— wherein R7 and R8 are as claimed in claim 1;
t is 1;
n is 0; and
m is 1.
13. A method of claim 10 , wherein the compound is a compound of Formula (I)
wherein
R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
R3 is substituted C1-5alkylcarbonyl;
R4 is hydrogen;
R6 is hydrogen;
q is 2;
A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
X is oxygen.
15. A method of treating a gastrointestinal side effect resulting from administration of erythromycin, which comprises administering to a subject an effective amount of a compound of claim 1 .
16. A method of claim 15 , wherein the condition is irritable bowel syndrome or esophageal reflux.
17. A method of claim 15 , wherein the compound is a compound of Formula (I)
wherein
R1 is selected from phenylaminocarbonyl, substituted phenylaminocarbonyl, phenylcarbonyl, and substituted phenylcarbonyl;
R2 is phenylC1-5alkyl, substituted phenylC1-5alkyl or phenyl;
R3 is phenylcarbonyl, substituted phenylcarbonyl, or substituted C1-5alkylcarbonyl;
R4 is hydrogen or C1-5alkyl;
q is 2 or 3;
A is C1-5alkoxycarbonyl or R7R8N— wherein R7 and R8 are as claimed in claim 1;
t is 1;
n is 0; and
m is 1.
18. A method of claim 15 , wherein the compound is a compound of Formula (I)
wherein
R1 is phenylaminocarbonyl or substituted phenylcarbonyl;
R2 is benzyl, 3-Cl benzyl, or 4-methoxybenzyl;
R3 is substituted C1-5alkylcarbonyl;
R4 is hydrogen;
R6 is hydrogen;
q is 2;
A is R7R8N— wherein R7 and R8 taken together form a 5 or 6 membered heterocyclic ring with one or more heteroatoms selected from the group consisting of oxygen, nitrogen, sulfur, and N-oxides thereof; and
X is oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/803,572 US6423714B2 (en) | 2000-03-13 | 2001-03-09 | Cyclohexene derivatives useful as antagonists of the motilin receptor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18873200P | 2000-03-13 | 2000-03-13 | |
US09/803,572 US6423714B2 (en) | 2000-03-13 | 2001-03-09 | Cyclohexene derivatives useful as antagonists of the motilin receptor |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020002192A1 true US20020002192A1 (en) | 2002-01-03 |
US6423714B2 US6423714B2 (en) | 2002-07-23 |
Family
ID=22694307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/803,572 Expired - Lifetime US6423714B2 (en) | 2000-03-13 | 2001-03-09 | Cyclohexene derivatives useful as antagonists of the motilin receptor |
Country Status (4)
Country | Link |
---|---|
US (1) | US6423714B2 (en) |
AR (1) | AR029896A1 (en) |
AU (1) | AU2001250820A1 (en) |
WO (1) | WO2001068621A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050054562A1 (en) * | 2003-06-18 | 2005-03-10 | Tranzyme Pharma Inc. | Macrocyclic antagonists of the motilin receptor |
US20080214625A1 (en) * | 2005-03-07 | 2008-09-04 | Koninklijke Hilips Electronics, N.V. | Roflumilast for the Treatment of Diabetes Mellitus |
US20080287371A1 (en) * | 2007-05-17 | 2008-11-20 | Tranzyme Pharma Inc. | Macrocyclic antagonists of the motilin receptor for modulation of the migrating motor complex |
US20090192160A1 (en) * | 2006-06-28 | 2009-07-30 | Glaxo Group Limited | Compounds |
EP2431380A2 (en) | 2006-09-11 | 2012-03-21 | Tranzyme Pharma, Inc. | Macrocyclic antagonist of the motilin receptor for treatment of gastrointestinal dysmotility disorders |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005072560A2 (en) * | 2004-01-29 | 2005-08-11 | Applied Materials, Inc. | Methods and apparatus for installing a scrubber brush on a mandrel |
US7596395B2 (en) * | 2004-10-21 | 2009-09-29 | Nokia Corporation | Depressible hinge and mobile stations using same |
GB0611907D0 (en) | 2006-06-15 | 2006-07-26 | Glaxo Group Ltd | Compounds |
EP1902022A1 (en) | 2005-07-12 | 2008-03-26 | Glaxo Group Limited | Piperazine heteroaryl derivates as gpr38 agonists |
ES2390812T3 (en) * | 2005-07-26 | 2012-11-16 | Glaxo Group Limited | Benzylpiperazine derivatives useful for the treatment of gastrointestinal disorders |
TWI351991B (en) * | 2006-03-07 | 2011-11-11 | Applied Materials Inc | Scrubber brush with sleeve and brush mandrel for u |
MX2011008857A (en) | 2009-02-27 | 2011-09-30 | Raqualia Pharma Inc | Oxyindole derivatives with motilin receptor agonistic activity. |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU202195B (en) * | 1987-12-31 | 1991-02-28 | Egyt Gyogyszervegyeszeti Gyar | Process for producing new substituted styrene derivatives and medical compositions comprising such compounds |
FR2636628B1 (en) | 1988-08-25 | 1990-12-28 | Sanofi Sa | THIADIAZOLE-1,3,4 DERIVATIVES, PROCESS FOR OBTAINING SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING SAME |
DK0777659T3 (en) | 1994-08-15 | 2001-09-03 | Merck Sharp & Dohme | Morpholine derivatives and their use as therapeutic agents |
US5972939A (en) * | 1997-10-28 | 1999-10-26 | Ortho-Mcneil Pharmaceutical, Inc. | Cyclopentene derivatives useful as antagonists of the motilin receptor |
-
2001
- 2001-03-09 US US09/803,572 patent/US6423714B2/en not_active Expired - Lifetime
- 2001-03-09 WO PCT/US2001/007701 patent/WO2001068621A1/en active Application Filing
- 2001-03-09 AU AU2001250820A patent/AU2001250820A1/en not_active Abandoned
- 2001-03-13 AR ARP010101167A patent/AR029896A1/en unknown
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8497242B2 (en) | 2003-06-18 | 2013-07-30 | Tranzyme Pharma Inc. | Processes for intermediates for macrocyclic compounds |
US10040751B2 (en) | 2003-06-18 | 2018-08-07 | Ocera Therapeutics, Inc. | Intermediates for macrocyclic compounds |
US7521420B2 (en) | 2003-06-18 | 2009-04-21 | Tranzyme Pharma, Inc. | Macrocyclic antagonists of the motilin receptor |
US8129561B2 (en) | 2003-06-18 | 2012-03-06 | Tranzyme Pharma Inc. | Processes for intermediates for macrocyclic compounds |
EP2210612A2 (en) | 2003-06-18 | 2010-07-28 | Tranzyme Pharma Inc. | Macrocyclic antagonists of the motilin receptor |
US20050054562A1 (en) * | 2003-06-18 | 2005-03-10 | Tranzyme Pharma Inc. | Macrocyclic antagonists of the motilin receptor |
US9181298B2 (en) | 2003-06-18 | 2015-11-10 | Ocera Therapeutics, Inc. | Intermediates for macrocyclic compounds |
US20080214625A1 (en) * | 2005-03-07 | 2008-09-04 | Koninklijke Hilips Electronics, N.V. | Roflumilast for the Treatment of Diabetes Mellitus |
US8541456B2 (en) | 2005-03-08 | 2013-09-24 | Takeda Gmbh | Roflumilast for the treatment of diabetes mellitus type 2 |
US8017633B2 (en) | 2005-03-08 | 2011-09-13 | Nycomed Gmbh | Roflumilast for the treatment of diabetes mellitus |
US8853218B2 (en) | 2006-06-28 | 2014-10-07 | Glaxo Group Limited | Compounds |
US20090192160A1 (en) * | 2006-06-28 | 2009-07-30 | Glaxo Group Limited | Compounds |
EP2431380A2 (en) | 2006-09-11 | 2012-03-21 | Tranzyme Pharma, Inc. | Macrocyclic antagonist of the motilin receptor for treatment of gastrointestinal dysmotility disorders |
US20080287371A1 (en) * | 2007-05-17 | 2008-11-20 | Tranzyme Pharma Inc. | Macrocyclic antagonists of the motilin receptor for modulation of the migrating motor complex |
Also Published As
Publication number | Publication date |
---|---|
AR029896A1 (en) | 2003-07-23 |
WO2001068621A1 (en) | 2001-09-20 |
US6423714B2 (en) | 2002-07-23 |
AU2001250820A1 (en) | 2001-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6291476B1 (en) | Pyrazole carboxamides useful for the treatment of obesity and other disorders | |
US6117882A (en) | 5-HT4 agonists and antagonists | |
US5972939A (en) | Cyclopentene derivatives useful as antagonists of the motilin receptor | |
CZ20032696A3 (en) | Thiohydantoins and their use when treating diabetes mellitus | |
US6423714B2 (en) | Cyclohexene derivatives useful as antagonists of the motilin receptor | |
CA2244879A1 (en) | Compositions and kits comprising alpha-adrenergic receptor antagonists and nitric oxide donors and methods of use | |
PT90001B (en) | METHOD FOR PREPARING HETEROCYCLIC DERIVATIVES OF ETHYLENODIAMINE | |
US6667309B2 (en) | Cyclobutene derivatives useful as antagonists of the motilin receptor | |
FR2871463A1 (en) | AROYL-O-PIPERIDINE-STRUCTURED DERIVATIVES, PROCESSES FOR THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS CONTAINING THEM AND THERAPEUTIC APPLICATIONS THEREOF | |
US6624165B2 (en) | Cyclopentene derivatives useful as antagonists of the motilin receptor | |
TW200946118A (en) | Soluble epoxide hydrolase inhibitors | |
PT89805B (en) | PROCESS FOR THE PREPARATION OF DIHYDROPYRIDINES | |
US5643917A (en) | 4-aminomethyl-1-azaadamantane derived benzamides | |
JP3496061B2 (en) | Arginine analogs active as inhibitors of NO synthase | |
US4758563A (en) | 3-alkoxy-2-aminopropyamines, cardiovascular compositions and use | |
IE46928B1 (en) | -halomethyl derivatives of amino acids | |
US4100349A (en) | α-Acetylenic derivatives of histamine and related compounds | |
NO166788B (en) | PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVE TETRAHYDROBENZOFURO (2,3-C) PYRIDINES. | |
MXPA00004133A (en) | Cyclopentene derivatives useful as antagonists of the motilin receptor | |
JPS63227579A (en) | Novel n-substituted derivatives of alpha- mercaptomethylbenzenepropaneamide, manufacture, use as drug and composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ORTHO-MCNEIL PHARMACEUTICAL, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHEN, ROBERT H.;XIANG, MIN A.;REEL/FRAME:011826/0533 Effective date: 20010507 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |