US20020001212A1 - Voltage transformer with clock pulse generator - Google Patents
Voltage transformer with clock pulse generator Download PDFInfo
- Publication number
- US20020001212A1 US20020001212A1 US09/449,150 US44915099A US2002001212A1 US 20020001212 A1 US20020001212 A1 US 20020001212A1 US 44915099 A US44915099 A US 44915099A US 2002001212 A1 US2002001212 A1 US 2002001212A1
- Authority
- US
- United States
- Prior art keywords
- voltage
- user
- power supply
- voltage transformer
- nominal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 14
- 229910052736 halogen Inorganic materials 0.000 description 9
- 150000002367 halogens Chemical class 0.000 description 9
- 238000009499 grossing Methods 0.000 description 7
- 238000009434 installation Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
- B66F9/07504—Accessories, e.g. for towing, charging, locking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
- B66F9/20—Means for actuating or controlling masts, platforms, or forks
- B66F9/24—Electrical devices or systems
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B39/00—Circuit arrangements or apparatus for operating incandescent light sources
- H05B39/04—Controlling
- H05B39/041—Controlling the light-intensity of the source
- H05B39/044—Controlling the light-intensity of the source continuously
- H05B39/047—Controlling the light-intensity of the source continuously with pulse width modulation from a DC power source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Definitions
- This invention relates generally to a voltage converter to connect an electrical user, such as a lighting device, to a power supply, the voltage of which power supply is higher than a nominal voltage of the user.
- the invention also relates to an industrial truck with a direct current power supply and at least one electrical lighting device in a housing, wherein the power supply voltage is higher than the nominal voltage of the lighting device, which industrial truck has a voltage transformer to connect the lighting device to the power supply.
- the invention further relates to a method of supplying power to an electrical user, in particular a lighting device, in which the power supply voltage is higher than the nominal voltage of the electrical user.
- Halogen lamps have been found to be highly reliable for use in headlights and floodlights on account of their particularly high light output and the high quality of their light.
- Commercially available halogen lamps generally have a nominal voltage of 12 V or 24 V. If electrically powered fork lift trucks are provided with a halogen lighting system, it is customary to transform the battery voltage of the fork lift truck, which is generally 48 V or 80 V, to 12 V or 24 V by means of a voltage transformer to power the lighting system.
- 48 V and 80 V incandescent lamps are available, but on account of their deficient impact strength compared to halogen lamps, these incandescent lamps are typically deemed unsuitable for use on fork lift trucks and on industrial trucks in general.
- a voltage transformer is generally used which, in addition to providing the power supply for the headlights, is also used for other applications.
- Such voltage transformers are provided with a very complex and expensive regulation system and an output section. These measures are necessary because for many applications, a constant voltage must be guaranteed under different loads.
- an object of this invention to provide a voltage transformer and a method of supplying power to an electrical user of the type described above, wherein the voltage transformer has fewer components and is smaller than similar transformers of the known art.
- An additional object of the invention is to provide an industrial truck of the type described above in which the installation space required for the voltage transformer and for the lighting system can be reduced over that typically required.
- the invention teaches that these objects can be accomplished with a voltage transformer in which a clock pulse generator is located in a circuit between a power supply and an electrical user, which clock pulse generator applies the power supply to the user in pulses so that the power delivered to the user, averaged over time, preferably does not exceed the nominal power of the user.
- the power supply voltage is applied in short pulses to the user, so that the power delivered to the user, averaged over time, preferably does not exceed the nominal power of the user.
- the invention recognizes the ability of many users to withstand, for a brief period, electrical power levels that are above the nominal power of the user. Therefore, in contrast to the voltage transformers used in the known art, the power supply voltage in the practice of the invention is not transformed down to the nominal voltage of the user. Rather, the full power supply voltage is applied to the user in brief pulses. During the pulses, of course, the nominal power of the user is exceeded, but in an average over time, e.g., from the beginning of one pulse until the end of the next pulse, this nominal level is maintained. Damage to the consumer can be prevented by an appropriate choice of the pulse length and the pulse frequency.
- This invention is particularly well suited for the connection of electrical lighting means or devices to a power supply voltage.
- electrical lighting means refers to all types of lighting devices that operate on electrical energy and give off light, such as, for example but not to be considered as limiting to the invention, incandescent lamps, incandescent bulbs and halogen lamps and the like.
- incandescent bulbs on account of the mass of the filament and its related inertia, can withstand, for brief periods, power levels that are significantly higher than the nominal power levels reached in continuous operation without the filament burning out.
- the length and/or the frequency of the pulses of the voltage transformer are preferably variable.
- the pulse length and/or the pulse frequency are advantageously adapted to the power supply voltage and to the respective consumers. On one hand, this makes it possible to connect the same user to different power supply voltages and, on the other hand, the voltage transformer can be optimized to the voltage required by the user.
- clocked or switched-mode voltage transformers operate in the frequency range from 10 kHz to 100 kHz. It is now recognized that such high frequencies are not necessary for many users, in particular for lighting means such as incandescent lamps.
- the frequency of the pulses is between about 100 Hz and about 1000 Hz, and more preferably between about 200 Hz and about 500 Hz.
- the choice of this frequency range has the advantage that on one hand the electromagnetic interference and the dynamic losses are negligible, but on the other hand the users still work satisfactorily on account of their inertia. In other words, on account of their inertia, incandescent bulbs, for example, do not begin to flicker.
- a voltage transformer supplies only this type of user, it is advantageous not to provide in the voltage transformer any means to smooth the voltage applied to the users.
- the voltage transformation preferably occurs without any output-side voltage smoothing, or at any rate with only very simple output-side voltage smoothing.
- the level of the power supply voltage and/or the nominal voltage of the user are preferably fixed, and the mark-to-space ratio of the clock pulse generator is automatically adjusted to the level of the power supply voltage and the nominal voltage of the user. In this manner, a continuous, automatic voltage recognition is achieved, as a result of which, for example, the entire voltage range from about 24 V to about 96 V is allowable for use with a nominal voltage of about 12 V or about 24 V.
- the pulse length and/or the pulse frequency is set so that when the user is turned on, it is initially supplied with a lower power than in subsequent continuous operation. In this manner, a type of soft startup action is realized for the user. Following start-up, the pulse length is slowly increased from zero to the length required for the nominal power of the user.
- the duration of this startup process is preferably set by the capacity of a variable capacitor. The slow increase of the power supplied to the user has been found to be very advantageous in terms of the useful life of the user.
- the power-up process i.e. the time required until the nominal power is reached, is preferably approximately one second.
- the invention teaches that it is particularly advantageous to use the voltage transformer of the invention to supply power to electrical lighting means located in a housing, for example to a halogen lamp in a headlight casing. In that case, it is advantageous for reasons of space to integrate the voltage transformer into the housing, e.g., to locate it in the immediate vicinity of the housing or to attach it to the exterior of the housing.
- the voltage transformer has been found to be particularly favorable, because it is particularly space-saving, to integrate the voltage transformer directly into the lighting means. If the voltage transformer is integrated into the base of an incandescent bulb, for example, the incandescent bulb can be used in a broad voltage range, for example from about 12 V to about 80 V.
- the invention also relates to an industrial truck, in particular to a fork lift truck, with a direct current power supply and at least one lighting means located in a housing, wherein the power supply voltage is greater than the nominal voltage of the lighting means, with a voltage transformer to connect the lighting means to the power supply voltage.
- the invention teaches that the space required for the installation of the voltage transformer and the lighting means can be reduced if the voltage transformer is located inside the housing or in the immediate vicinity of the housing.
- the voltage converter does not include means to smooth the voltage applied to the lighting means.
- smoothing means are generally required on the voltage transformer and lighting system of the known art that are located at a significant distance from each other because when the lines are long and there is no output filtering, excessive interference builds up in the lines.
- the housing is advantageously realized so that it acts as an electromagnetic shield. Thus, there is no need for additional measures directly on the voltage transformer to prevent electromagnetic interference.
- the invention is suitable in particular for use on industrial trucks with a power supply voltage of more than about 24 V and for lighting means with a nominal voltage of about 12 V or about 24 V.
- FIG. 1 is a schematic drawing of a headlight with an integrated voltage transformer
- FIG. 2 is a schematic diagram of a voltage transformer of the invention.
- FIG. 1 shows, by way of example, a main headlight 1 installed on a fork lift truck.
- the electrical user e.g., lighting means, preferably a halogen lamp 2 , used in this headlight preferably has a nominal voltage of about 24 V.
- the battery 3 of the fork lift truck provides a higher power supply voltage, e.g., of about 80 V.
- a voltage transformer 4 is therefore provided to transform the battery voltage to the nominal voltage of the lamp 2 in accordance with the invention.
- the voltage transformer 4 is preferably integrated into the headlight 1 , i.e., is located inside the housing of the headlight 1 . Because the lamp 2 is relatively insensitive to electromagnetic interference, direct current voltage fluctuations and noise, the voltage transformer 4 preferably does not have any filter or other means for voltage smoothing on the output side. The invention teaches that the elimination of smoothing means for the output voltage is made possible by a shortest possible connection between the halogen lamp 2 and the voltage transformer 4 .
- the construction of the voltage transformer 4 is illustrated schematically in FIG. 2.
- the input 5 of the voltage transformer 4 is connected with the battery 3 of the fork lift truck.
- a direct current voltage of about 80 V is therefore applied to the input 5 .
- the input voltage of 80 V is delivered on one hand directly to a final stage 6 , e.g., a power transistor, and on the other hand via a voltage divider 7 and a triangle generator 8 to a clock pulse generator 9 .
- the clock pulse generator 9 delivers the power supply voltage of 80 V made available by the battery 3 to the output 10 of the voltage transformer 4 . Smoothing of the output voltage and a galvanic separation are unnecessary.
- the voltage of the battery 3 is applied to the lamp 2 in short pulses lasting about 1 ms at a frequency of about 200 Hz. It has been found that commercial incandescent lamps and halogen lamps do not burn out even at about ten times the nominal power over periods of about 1 ms, as long as, in an average over time of the mark-to-space ratio, the nominal power is substantially maintained. To increase the useful life of the lamp 2 , the pulse length is slowly increased immediately after the lamp is turned on from about zero to about 1 ms over approximately one second.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Lighting Device Outwards From Vehicle And Optical Signal (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Dc-Dc Converters (AREA)
Abstract
An industrial truck is provided with a direct current power supply and at least one electrical user (2), e.g., a lighting device located in a housing, wherein the power supply voltage of the power supply (3) is greater than the nominal voltage of the user (2). To connect the user (2) to the power supply, there is a voltage transformer (4) which is located inside the housing or in the immediate vicinity of the housing. The invention also relates to a voltage transformer which applies a power supply voltage to a user (2) in pulses, so that the power delivered to the user, as an average over time, does not exceed the nominal power of the user (2).
Description
- This invention relates generally to a voltage converter to connect an electrical user, such as a lighting device, to a power supply, the voltage of which power supply is higher than a nominal voltage of the user. The invention also relates to an industrial truck with a direct current power supply and at least one electrical lighting device in a housing, wherein the power supply voltage is higher than the nominal voltage of the lighting device, which industrial truck has a voltage transformer to connect the lighting device to the power supply. The invention further relates to a method of supplying power to an electrical user, in particular a lighting device, in which the power supply voltage is higher than the nominal voltage of the electrical user.
- Halogen lamps have been found to be highly reliable for use in headlights and floodlights on account of their particularly high light output and the high quality of their light. Commercially available halogen lamps generally have a nominal voltage of 12 V or 24 V. If electrically powered fork lift trucks are provided with a halogen lighting system, it is customary to transform the battery voltage of the fork lift truck, which is generally 48 V or 80 V, to 12 V or 24 V by means of a voltage transformer to power the lighting system. Of course, 48 V and 80 V incandescent lamps are available, but on account of their deficient impact strength compared to halogen lamps, these incandescent lamps are typically deemed unsuitable for use on fork lift trucks and on industrial trucks in general.
- A voltage transformer is generally used which, in addition to providing the power supply for the headlights, is also used for other applications. Such voltage transformers are provided with a very complex and expensive regulation system and an output section. These measures are necessary because for many applications, a constant voltage must be guaranteed under different loads.
- Therefore, it is an object of this invention to provide a voltage transformer and a method of supplying power to an electrical user of the type described above, wherein the voltage transformer has fewer components and is smaller than similar transformers of the known art. An additional object of the invention is to provide an industrial truck of the type described above in which the installation space required for the voltage transformer and for the lighting system can be reduced over that typically required.
- The invention teaches that these objects can be accomplished with a voltage transformer in which a clock pulse generator is located in a circuit between a power supply and an electrical user, which clock pulse generator applies the power supply to the user in pulses so that the power delivered to the user, averaged over time, preferably does not exceed the nominal power of the user.
- In terms of the method of the invention, the power supply voltage is applied in short pulses to the user, so that the power delivered to the user, averaged over time, preferably does not exceed the nominal power of the user.
- The invention recognizes the ability of many users to withstand, for a brief period, electrical power levels that are above the nominal power of the user. Therefore, in contrast to the voltage transformers used in the known art, the power supply voltage in the practice of the invention is not transformed down to the nominal voltage of the user. Rather, the full power supply voltage is applied to the user in brief pulses. During the pulses, of course, the nominal power of the user is exceeded, but in an average over time, e.g., from the beginning of one pulse until the end of the next pulse, this nominal level is maintained. Damage to the consumer can be prevented by an appropriate choice of the pulse length and the pulse frequency.
- This invention is particularly well suited for the connection of electrical lighting means or devices to a power supply voltage. The term “electrical lighting means” as used herein refers to all types of lighting devices that operate on electrical energy and give off light, such as, for example but not to be considered as limiting to the invention, incandescent lamps, incandescent bulbs and halogen lamps and the like. For example, incandescent bulbs, on account of the mass of the filament and its related inertia, can withstand, for brief periods, power levels that are significantly higher than the nominal power levels reached in continuous operation without the filament burning out.
- The length and/or the frequency of the pulses of the voltage transformer are preferably variable. The pulse length and/or the pulse frequency are advantageously adapted to the power supply voltage and to the respective consumers. On one hand, this makes it possible to connect the same user to different power supply voltages and, on the other hand, the voltage transformer can be optimized to the voltage required by the user.
- Conventionally, clocked or switched-mode voltage transformers operate in the frequency range from 10 kHz to 100 kHz. It is now recognized that such high frequencies are not necessary for many users, in particular for lighting means such as incandescent lamps. Preferably, therefore, the frequency of the pulses is between about 100 Hz and about 1000 Hz, and more preferably between about 200 Hz and about 500 Hz. The choice of this frequency range has the advantage that on one hand the electromagnetic interference and the dynamic losses are negligible, but on the other hand the users still work satisfactorily on account of their inertia. In other words, on account of their inertia, incandescent bulbs, for example, do not begin to flicker.
- With some users, in particular with lighting means, small fluctuations in the applied voltage can be tolerated. If a voltage transformer supplies only this type of user, it is advantageous not to provide in the voltage transformer any means to smooth the voltage applied to the users. The voltage transformation preferably occurs without any output-side voltage smoothing, or at any rate with only very simple output-side voltage smoothing.
- The level of the power supply voltage and/or the nominal voltage of the user are preferably fixed, and the mark-to-space ratio of the clock pulse generator is automatically adjusted to the level of the power supply voltage and the nominal voltage of the user. In this manner, a continuous, automatic voltage recognition is achieved, as a result of which, for example, the entire voltage range from about 24 V to about 96 V is allowable for use with a nominal voltage of about 12 V or about 24 V.
- It is advantageous if the pulse length and/or the pulse frequency is set so that when the user is turned on, it is initially supplied with a lower power than in subsequent continuous operation. In this manner, a type of soft startup action is realized for the user. Following start-up, the pulse length is slowly increased from zero to the length required for the nominal power of the user. The duration of this startup process is preferably set by the capacity of a variable capacitor. The slow increase of the power supplied to the user has been found to be very advantageous in terms of the useful life of the user. The power-up process, i.e. the time required until the nominal power is reached, is preferably approximately one second.
- The invention teaches that it is particularly advantageous to use the voltage transformer of the invention to supply power to electrical lighting means located in a housing, for example to a halogen lamp in a headlight casing. In that case, it is advantageous for reasons of space to integrate the voltage transformer into the housing, e.g., to locate it in the immediate vicinity of the housing or to attach it to the exterior of the housing.
- It has been found to be particularly favorable, because it is particularly space-saving, to integrate the voltage transformer directly into the lighting means. If the voltage transformer is integrated into the base of an incandescent bulb, for example, the incandescent bulb can be used in a broad voltage range, for example from about 12 V to about 80 V.
- For safety reasons it is appropriate to provide more than one voltage transformer for all the users. For example, to take precautions against a total failure of the lighting system of a vehicle, it is favorable, if a plurality of voltage transformers are used, to have each of them supply only some of the lighting means. For example, it is appropriate in particular for each main headlight of the lighting system to have its own voltage transformer.
- The invention also relates to an industrial truck, in particular to a fork lift truck, with a direct current power supply and at least one lighting means located in a housing, wherein the power supply voltage is greater than the nominal voltage of the lighting means, with a voltage transformer to connect the lighting means to the power supply voltage.
- The invention teaches that the space required for the installation of the voltage transformer and the lighting means can be reduced if the voltage transformer is located inside the housing or in the immediate vicinity of the housing.
- As a result of the installation or attachment of the voltage transformer in or on the housing of the lighting means, only very short lines or connections are required between the voltage transformer and the lighting means. This spatial proximity makes it possible to do without an output-side voltage smoothing on the voltage transformer. Preferably, therefore, the voltage converter does not include means to smooth the voltage applied to the lighting means. Such smoothing means are generally required on the voltage transformer and lighting system of the known art that are located at a significant distance from each other because when the lines are long and there is no output filtering, excessive interference builds up in the lines.
- The housing is advantageously realized so that it acts as an electromagnetic shield. Thus, there is no need for additional measures directly on the voltage transformer to prevent electromagnetic interference.
- The invention is suitable in particular for use on industrial trucks with a power supply voltage of more than about 24 V and for lighting means with a nominal voltage of about 12 V or about 24 V.
- The invention and further details of the invention are explained in greater detail below with reference to the exemplary embodiments illustrated in the accompanying drawing figures, in which:
- FIG. 1 is a schematic drawing of a headlight with an integrated voltage transformer; and
- FIG. 2 is a schematic diagram of a voltage transformer of the invention.
- FIG. 1 shows, by way of example, a main headlight1 installed on a fork lift truck. The electrical user, e.g., lighting means, preferably a
halogen lamp 2, used in this headlight preferably has a nominal voltage of about 24 V. The battery 3 of the fork lift truck, on the other hand, provides a higher power supply voltage, e.g., of about 80 V. A voltage transformer 4 is therefore provided to transform the battery voltage to the nominal voltage of thelamp 2 in accordance with the invention. - The voltage transformer4 is preferably integrated into the headlight 1, i.e., is located inside the housing of the headlight 1. Because the
lamp 2 is relatively insensitive to electromagnetic interference, direct current voltage fluctuations and noise, the voltage transformer 4 preferably does not have any filter or other means for voltage smoothing on the output side. The invention teaches that the elimination of smoothing means for the output voltage is made possible by a shortest possible connection between thehalogen lamp 2 and the voltage transformer 4. - The construction of the voltage transformer4 is illustrated schematically in FIG. 2. The
input 5 of the voltage transformer 4 is connected with the battery 3 of the fork lift truck. A direct current voltage of about 80 V is therefore applied to theinput 5. The input voltage of 80 V is delivered on one hand directly to a final stage 6, e.g., a power transistor, and on the other hand via a voltage divider 7 and a triangle generator 8 to a clock pulse generator 9. The clock pulse generator 9 delivers the power supply voltage of 80 V made available by the battery 3 to theoutput 10 of the voltage transformer 4. Smoothing of the output voltage and a galvanic separation are unnecessary. - The voltage of the battery3 is applied to the
lamp 2 in short pulses lasting about 1 ms at a frequency of about 200 Hz. It has been found that commercial incandescent lamps and halogen lamps do not burn out even at about ten times the nominal power over periods of about 1 ms, as long as, in an average over time of the mark-to-space ratio, the nominal power is substantially maintained. To increase the useful life of thelamp 2, the pulse length is slowly increased immediately after the lamp is turned on from about zero to about 1 ms over approximately one second. - It will readily be appreciated by those skilled in the art that modifications may be made to the invention without departing from the concepts disclosed in the foregoing description. Such modifications are to be considered as included within the scope of the invention. Accordingly, the particular embodiments described in detail hereinabove are illustrative only and are not limiting as to the scope of the invention, which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Claims (18)
1. A voltage transformer to connect an electrical user to a power supply voltage that is greater than a nominal voltage of the user, comprising:
a power supply having a power supply voltage;
a user connected to the power supply and having a nominal voltage; and
a clock pulse generator located between the power supply and the user, the clock pulse generator configured to apply the power supply voltage to the user in pulses, so that the power delivered to the user, as an average over time, does not exceed the nominal voltage of the user.
2. The voltage transformer as claimed in claim 1 , wherein at least one of the length and the frequency of the pulses is variable.
3. The voltage transformer as claimed in claim 1 , wherein a frequency of the pulses is between about 100 Hz and about 1000 Hz.
4. The voltage transformer as claimed in claim 1 , wherein there are no means to smooth the voltage applied to the user.
5. The voltage transformer as claimed in claim 1 , wherein the electrical user is a lighting means and the voltage transformer is integrated into the lighting means.
6. An industrial truck comprising:
a direct current power supply having a power supply voltage;
at least one electrical lighting means located in a housing and having a nominal voltage, wherein the power supply voltage is greater than the nominal voltage of the lighting means; and
a voltage transformer connecting the lighting means to the power supply, wherein the voltage transformer is located inside the housing or in the immediate vicinity of the housing.
7. The industrial truck as claimed in claim 6 , wherein the housing is in the form of electromagnetic shielding.
8. The industrial truck as claimed in claim 6 , wherein the power supply voltage of the industrial truck is greater than about 12 V.
9. The industrial truck as claimed in claim 6 , wherein the nominal voltage of the lighting means is about 12 V or about 24 V.
10. A method for supplying power from a power supply having a power supply voltage to an electrical user having a nominal voltage, in which the power supply voltage is greater than the nominal voltage of the electrical user, comprising the step of:
applying the power supply voltage to the user in pulses so that the power delivered to the user, as an average over time, does not exceed the nominal voltage of the user.
11. The method as claimed in claim 10 , wherein a frequency of the pulses is between about 100 Hz and about 1000 Hz.
12. The method as claimed in claim 10 , wherein the user has a nominal voltage of 12 V or 24 V.
13. The method as claimed in claim 10 , wherein the electrical user is a lighting means of an industrial truck.
14. The method as claimed in claim 10 , wherein the electrical user is a lighting means having a housing and wherein a voltage transformer is located inside the housing or in the immediate vicinity of the housing.
15. The method as claimed in claim 10 , wherein a level of at least one of the power supply voltage and the nominal voltage is fixed, and the method includes automatically adapting at least one of the length and frequency of the pulses to the level of the power supply voltage and of the nominal voltage.
16. The method as claimed in claim 10 , including setting at least one of the length and the frequency of the pulses so that when the user is being powered up, a lower power is delivered than in continuous operation.
17. The voltage transformer as claimed in claim 1 , wherein a frequency of the pulses is between about 200 Hz and about 500 Hz.
18. The method as claimed in claim 10 , wherein a frequency of the pulses is between about 200 Hz and about 500 Hz.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19854416 | 1998-11-25 | ||
DE19854416.2 | 1998-11-25 | ||
DE19854416A DE19854416A1 (en) | 1998-11-25 | 1998-11-25 | Voltage converter and industrial truck with DC voltage supply |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020001212A1 true US20020001212A1 (en) | 2002-01-03 |
US6392347B2 US6392347B2 (en) | 2002-05-21 |
Family
ID=7889003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/449,150 Expired - Fee Related US6392347B2 (en) | 1998-11-25 | 1999-11-24 | Industrial truck with a voltage transformer to supply pulsed DC to a lamp |
Country Status (3)
Country | Link |
---|---|
US (1) | US6392347B2 (en) |
EP (1) | EP1005256A3 (en) |
DE (1) | DE19854416A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6307330B1 (en) * | 2000-04-25 | 2001-10-23 | Ford Global Technologies, Inc. | System and method for operating incandescent lamps with high voltage source |
WO2003015237A1 (en) * | 2001-08-06 | 2003-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Energy storage device |
DE10138515A1 (en) * | 2001-08-06 | 2003-02-20 | Fraunhofer Ges Forschung | Device for storing energy has a storage cell with a power output for storing energy and a voltage converter with power input and output for converting an output voltage for the storage cell into a preset voltage. |
DE10152473A1 (en) * | 2001-10-24 | 2003-06-18 | Hella Kg Hueck & Co | Power supply device for the clocked operation of a 12V halogen lamp in a motor vehicle with a 42V electrical system |
DE10334362B4 (en) * | 2003-07-25 | 2016-06-02 | Conti Temic Microelectronic Gmbh | Method and control device for operating an incandescent lamp, motor vehicle with such a drive device and method for determining the natural resonant frequency of a filament |
US6942061B2 (en) * | 2003-12-17 | 2005-09-13 | Jones Exhaust Systems, Inc. | Muffler for internal combustion engine |
FR2865884B1 (en) * | 2004-02-02 | 2006-06-16 | Valeo Vision | DEVICE FOR REGULATING THE FLOW OF HALOGEN LAMPS FOR LIGHTING AND / OR SIGNALING DEVICE |
DE102004016761B4 (en) * | 2004-04-01 | 2007-01-11 | Walter Kraus Gmbh | headlights |
US7696701B2 (en) * | 2007-04-05 | 2010-04-13 | Osram Sylvania Inc. | Power supply for halogen lamp having an inverter and output circuit |
DE102009049499A1 (en) | 2009-10-15 | 2011-04-21 | Linde Material Handling Gmbh | Flasher for use in direction indicator standard relay housing to control LED direction indicators of e.g. fork-lift truck utilized for internal transportation of goods, has lighting elements controlled with associated power consumptions |
DE102012022204A1 (en) | 2012-11-13 | 2014-05-15 | Jungheinrich Aktiengesellschaft | Voltage converter for connecting electrical load to supply voltage, has clock generator that adjusts pulse width for electrical consumer, such that power supplied to load does not exceeds the rated voltage of load on average over time |
CA3069342A1 (en) | 2017-07-13 | 2019-01-17 | Econtrols, Llc | Modular lithium-ion battery system for fork lifts |
US12266953B1 (en) | 2020-08-17 | 2025-04-01 | Econtrols, Llc | Dual chemistry rechargeable battery system for use in electric APU-equipped commercial trucks |
WO2022256730A1 (en) | 2021-06-04 | 2022-12-08 | Econtrols, Llc | Lithium-ion battery charging system for fork lifts |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3733540A (en) * | 1972-02-03 | 1973-05-15 | Motorola Inc | Switching regulator sweep starting protection circuit |
FI772029A7 (en) * | 1976-08-18 | 1978-02-19 | Royal Industries | FOERFARANDE OCH ANORDNING FOER INBESPARING AV ENERGI |
US4237405A (en) * | 1978-03-10 | 1980-12-02 | Lear Siegler, Inc. | Method and apparatus for conserving energy |
US4677345A (en) * | 1980-08-14 | 1987-06-30 | Nilssen Ole K | Inverter circuits |
US4238709A (en) * | 1978-07-05 | 1980-12-09 | Wallace John M | Head lamp control circuit |
AU8831982A (en) * | 1981-10-09 | 1983-04-14 | Toowoomba Foundry Pty. Ltd. | Regulating solar generator output |
DE3147619A1 (en) * | 1981-12-02 | 1983-06-09 | Blaupunkt-Werke Gmbh, 3200 Hildesheim | Circuit for illuminating an LCD display in motor vehicles |
DE3800950A1 (en) * | 1988-01-15 | 1989-10-05 | Minox Gmbh | Electrical circuit |
DE3809481A1 (en) * | 1988-03-22 | 1989-10-12 | Philips Patentverwaltung | CIRCUIT ARRANGEMENT FOR GENERATING A PULSE SUPPLY VOLTAGE FOR A CONSUMER FROM A DC VOLTAGE |
GB2219896A (en) * | 1988-06-14 | 1989-12-20 | Bosch Gmbh Robert | Operating incandescent light bulbs to prevent surge currents |
US4988942A (en) * | 1988-11-08 | 1991-01-29 | Spectra-Physics, Inc. | Switched resistor regulator control when transfer function includes discontinuity |
US5053680A (en) * | 1989-06-07 | 1991-10-01 | U.S. Philips Corporation | Switching device |
US5278490A (en) * | 1990-09-04 | 1994-01-11 | California Institute Of Technology | One-cycle controlled switching circuit |
DE4218968A1 (en) * | 1992-06-10 | 1993-12-16 | Technology Service Inc | Electrical current supply circuit for LV fluorescent lamp - uses flat capacitor allowing compact incorporation in housing for choke coil or transformer |
US5504395A (en) * | 1993-03-08 | 1996-04-02 | Beacon Light Products, Inc. | Lamp bulb having integrated RFI suppression and method of restricting RFI to selected level |
JP2596314B2 (en) * | 1993-05-31 | 1997-04-02 | 日本電気株式会社 | Switching power supply circuit |
DE4324331A1 (en) * | 1993-07-20 | 1995-01-26 | Sokolov Vladimir Dipl El Ing | Supply system for feeding electrical bulb having specified rated voltage |
US5510698A (en) * | 1993-08-05 | 1996-04-23 | Massachusetts Institute Of Technology | Markov chain controlled random modulation of switching signals in power converters |
US5757214A (en) * | 1995-07-19 | 1998-05-26 | Stoddard; Robert J. | PWM driver for an inductive load with detector of a not regulating PWM condition |
DE29516831U1 (en) * | 1995-10-18 | 1997-02-13 | Wemas GmbH, 33334 Gütersloh | Economy circuit |
JPH1042553A (en) * | 1996-07-25 | 1998-02-13 | Rohm Co Ltd | Power supply device |
DE19630644C2 (en) * | 1996-07-30 | 2003-04-03 | Eberspaecher J Gmbh & Co | Electric lighting device |
JP3661904B2 (en) * | 1997-02-03 | 2005-06-22 | ソニー株式会社 | Charging apparatus and charging method |
DE19804539A1 (en) * | 1998-02-05 | 1999-08-19 | Bosch Gmbh Robert | Circuit for stabilizing the voltage on a lamp, especially for headlight lamps of a motor vehicle |
US5969515A (en) * | 1998-02-27 | 1999-10-19 | Motorola, Inc. | Apparatus and method for digital control of a power converter current |
US5969513A (en) * | 1998-03-24 | 1999-10-19 | Volterra Semiconductor Corporation | Switched capacitor current source for use in switching regulators |
JP2000069746A (en) * | 1998-08-21 | 2000-03-03 | Fujitsu Ltd | Control method of DC-DC converter, control circuit of DC-DC converter, and DC-DC converter |
US6198258B1 (en) * | 1999-04-28 | 2001-03-06 | Rohm Co., Ltd. | DC-DC converter capable of soft starting function by slowly raising reference voltage |
US6154375A (en) * | 1999-10-08 | 2000-11-28 | Philips Electronics North America Corporation | Soft start scheme for resonant converters having variable frequency control |
US6163140A (en) * | 2000-02-01 | 2000-12-19 | Micrel Incorporated | Start-up circuit for voltage regulators |
US6307330B1 (en) * | 2000-04-25 | 2001-10-23 | Ford Global Technologies, Inc. | System and method for operating incandescent lamps with high voltage source |
-
1998
- 1998-11-25 DE DE19854416A patent/DE19854416A1/en not_active Withdrawn
-
1999
- 1999-11-23 EP EP99123340A patent/EP1005256A3/en not_active Withdrawn
- 1999-11-24 US US09/449,150 patent/US6392347B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6392347B2 (en) | 2002-05-21 |
EP1005256A2 (en) | 2000-05-31 |
DE19854416A1 (en) | 2000-05-31 |
EP1005256A3 (en) | 2003-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6392347B2 (en) | Industrial truck with a voltage transformer to supply pulsed DC to a lamp | |
EP0240049B1 (en) | Circuit arrangement for operating a high-pressure descharge lamp | |
US6181084B1 (en) | Ballast circuit for high intensity discharge lamps | |
US6731078B2 (en) | Ballast for operating electric lamps | |
EP2131631A1 (en) | Electric discharge lamp operating device, lighting equipment and lighting system | |
KR101477158B1 (en) | LED converter with two steps dimming function | |
US5528111A (en) | Ballast circuit for powering gas discharge lamp | |
WO1994027419A1 (en) | System and method for distributing power to gas discharge lamps | |
CA2684882A1 (en) | A lamp ballast and an illumination apparatus | |
US6838834B2 (en) | Lighting system and electric power supplier for the same | |
US8928238B2 (en) | Supplemental dimming circuit for electronic LED driver | |
US8487555B2 (en) | Bi-level lamp ballast | |
US4388564A (en) | Energy saving fluorescent lamp circuit | |
JP2002198189A (en) | Electric discharge lamp lighting circuit | |
JPS6319078B2 (en) | ||
JP4048585B2 (en) | Lamp dimming and lighting device, lamp dimming method and lighting fixture | |
JPH05213109A (en) | Lighting control device | |
JPH05234689A (en) | Electric discharge lamp lighting circuit | |
JP3829946B2 (en) | Discharge lamp lighting device and lighting device | |
JPH04206392A (en) | Starting circuit for lighting discharge lamp | |
KR200333483Y1 (en) | Fluorescent lamp using inverter ballast in charge style | |
JP2016162498A (en) | Lighting device and lighting apparatus | |
JPH1012393A (en) | Infrared remote control lighting equipment | |
KR200391748Y1 (en) | A separation-type lighting system | |
JP2000243587A (en) | Discharge lamp lighting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STILL GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARPING, FRANZ-JOSEF;GROTHE, WOLFGANG HEINRICH;HACKER, BERTHOLD;REEL/FRAME:010665/0085;SIGNING DATES FROM 20000131 TO 20000207 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20060521 |