US20020001086A1 - Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer - Google Patents
Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer Download PDFInfo
- Publication number
- US20020001086A1 US20020001086A1 US09/301,301 US30130199A US2002001086A1 US 20020001086 A1 US20020001086 A1 US 20020001086A1 US 30130199 A US30130199 A US 30130199A US 2002001086 A1 US2002001086 A1 US 2002001086A1
- Authority
- US
- United States
- Prior art keywords
- interferometric
- refractive index
- measurement path
- wafer
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000005259 measurement Methods 0.000 claims abstract description 97
- 239000006185 dispersion Substances 0.000 claims abstract description 42
- 238000005305 interferometry Methods 0.000 claims abstract description 42
- 230000005855 radiation Effects 0.000 claims description 48
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 21
- 238000001459 lithography Methods 0.000 claims description 20
- 230000007774 longterm Effects 0.000 claims description 19
- 230000003287 optical effect Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 12
- 238000005286 illumination Methods 0.000 claims description 7
- 238000012935 Averaging Methods 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 claims 15
- 229920002120 photoresistant polymer Polymers 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000001393 microlithography Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005707 optogalvanic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/0207—Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/60—Reference interferometer, i.e. additional interferometer not interacting with object
Definitions
- This invention in general, relates to interferometric methods and apparatus for measuring linear and/or angular displacements and, in particular, to apparatus and methods by which fluctuations in the index of refraction in the measurement path of a displacement measuring interferometer (DMI) can be accurately compensated for in determinations of displacement.
- DMI displacement measuring interferometer
- High-precision displacement measuring interferometry depends on an accurate determination of the index of refraction, n, in the measurement path.
- One way to determine n is to place sensors in close proximity to the measurement path to monitor thermodynamic properties such as pressure, temperature, and humidity, and then use the values of those parameters together in well-known expressions relating index of refraction to monitored properties as, for example, Edlén's equation with modern corrections for the index of refraction of air (See “Recent advances in displacement measuring interferometry”, Bobroff, Norman, Measurement Science and Technology, Vol. 4, Number 9, September 1993).
- sensors for detecting the composition of the gas in the measurement path may also be employed to further refine the calculation of the index of refraction. For example, CO 2 sensors may be usefully employed.
- a microlithography DMI In addition to providing continuous data free of high-frequency noise, a microlithography DMI must be stable over the entire time needed for a single wafer exposure, including whatever time is needed for wafer alignment. For some measurements, such as establishing the “baseline” metrology between through-the-lens and off-axis alignment sensors, the interferometer system must be stable for several hours. In both of these situations, undetected changes in the index n can have serious consequences.
- a typical target stability for DMI in the next generation of steppers is 1 nm. The corresponding minimum allowable fluctuation in index in the measurement path is therefore 10 ⁇ 9 over a 1-m distance within a bandwidth of 10 ⁇ 4 to 10 2 Hz. Detection of these fluctuations is presently beyond the capability of environmental sensors.
- a refractometer also called a wavelength tracker or compensator.
- Such devices which are commercially available, are actually relative refractometers. If properly positioned in the path of the forced air flow in a photolithography tool, the information from a refractometer can be used to accurately compensate for low frequency (e.g. 10 ⁇ 2 Hz) changes in index.
- ATC air turbulence compensation systems
- a primary object of this invention to provide apparatus and methods by which dispersion interferometry may be combined with refractometry to compensate for both short and long term index of refraction fluctuations that may occur in the measurement path of an interferometer.
- the invention combines dispersion interferometry with refractometry to compensate for refractive index fluctuations over both short and long time periods. It, accordingly, includes a method and means for weighting the dispersion and refractometry data, as well as a method and means of initializing ⁇ so that the dispersion and refractometry data are self consistent and can be used to accurately calculate physical displacements.
- the inventive apparatus comprises:
- interferometer means employing at least two wavelengths at least a first one of which is used for measuring the displacement of an object along a measurement path and for detecting short-term fluctuations in the refractive index of air directly within the measurement path by means of the inverse dispersive power ⁇ or its equivalent;
- initialization means for establishing an initial value of the inverse dispersive power ⁇ using refractometer and dispersion data acquired during a change in the length of the measurement path;
- computational means for analyzing data from the refractometer and said dispersion interferometer and for providing a calculated refractive index along said measurement path, said calculated refractive index incorporating both long- and short-term fluctuations and employing said initial value of said inverse disperse power ⁇ .
- the interferometer means may be in the form of a separate displacement interferometer operating at the first wavelength and a second dispersion interferometer operating at two wavelengths, one of which may be the first wavelength.
- Another aspect of the invention is a method comprising the steps of:
- Another aspect of the invention relates to a method for calibrating the inverse dispersive power comprising the steps of:
- the index is determined by using a known physical distance between two reference points instead of a refractometer.
- FIG. 1 is a diagrammatic view of an interferometric system of the invention
- FIG. 2 is a diagrammatic view of a refractometer that may be employed in the apparatus of FIG. 1;
- FIGS. 3 a and 3 b are flowcharts of steps of methods for practicing the invention.
- FIG. 3 a representing the steps for making measurements
- FIG. 3 b the steps for initializing for the inverse dispersive power, ⁇ , to update values of ⁇ used in the measurement steps;
- FIG. 4 is a diagrammatic view of an alternative apparatus of the invention employing a second harmonic generator (SHG) dispersion interferometer;
- SHG second harmonic generator
- FIG. 5 is a diagrammatic view of an embodiment of the invention employing a dual-wavelength refractometer
- FIG. 6 is a diagrammatic view of an embodiment of the invention employing alignment marks to initialize both refractive index and inverse dispersive power.
- FIGS. 7 - 9 relate to lithography and its application to manufacturing integrated circuits wherein
- FIG. 7 is a schematic drawing of a lithography exposure system employing the interferometry system
- FIGS. 8 and 9 are flowcharts describing steps in manufacturing integrated circuits.
- FIG. 10 is a schematic of a beam writing system employing the interferometry system of the invention.
- This invention relates to interferometric apparatus and methods by which short and long term index of refraction fluctuations in the measurement path of a displacement measurement interferometer may be compensated for in determining displacement.
- the invention combines dispersion interferometry with refractometry to compensate for refractive index fluctuations over both short and long time periods.
- [0051] Included are a method and means for weighting dispersion and refractometry data, as well as a method and means of initializing ⁇ , the inverse dispersive power, so that the dispersion and refractometry data are self consistent.
- System 10 comprises interferometric apparatus 12 and a computer 14 that interfaces with the interferometric apparatus 12 in a well-known manner via link 16 to exchange housekeeping and control signals.
- computer 14 Resident in computer 14 is application software for implementing various algorithms that are subsequently described and system software by which a user can operate system 10 through the use of a graphical user interface (GUI) and/or other input devices such as a keyboard or mouse.
- GUI graphical user interface
- Example wavelengths are 633 and 316 nm for ⁇ 1,2 , respectively, as measured in a vacuum.
- Source 18 generates a first beam 20 at ⁇ 1 and a second beam 22 at ⁇ 2 .
- beams 20 and 22 may be provided alternatively by a single laser source emitting more than one wavelength, two laser sources of differing wavelengths combined with sum-frequency generation or difference-frequency generation, or any equivalent source configuration capable of generating light beams of two or more wavelengths.
- a laser source for example, can be a gas laser, e.g. a HeNe, stabilized in any of a variety of conventional techniques known to those skilled in the art, see for example, T. Baer et al., “Frequency Stabilization of a 0.633 ⁇ m He—Ne-longitudinal Zeeman Laser,” Applied Optics, 19, 3173-3177 (1980); Burgwald et al., U.S. Pat. No. 3,889,207, issued Jun. 10, 1975; and Sandstrom et al., U.S. Pat. No. 3,662,279, issued May 9, 1972.
- a gas laser e.g. a HeNe
- the laser can be a diode laser frequency stabilized by one of a variety of conventional techniques known to those skilled in the art, see, for example, T. Okoshi and K. Kikuchi, “Frequency Stabilization of Semiconductor Lasers for Heterodyne-type Optical Communication Systems,” Electronic Letters, 16, 179-181 (1980) and S. Yamaqguchi and M. Suzuki, “Simultaneous Stabilization of the Frequency and Power of an AlGaAs Semiconductor Laser by Use of the Optogalvanic Effect of Krypton,” IEEE J. Quantum Electronics, QE-19, 1514-1519 (1983).
- Beam 20 is intercepted by a beamsplitter 24 that directs part of it by reflection to a refractometer 26 while transmitting the remainder of it to a mirror 28 .
- Refractometer 26 may be any of the common types known variously as wavelength trackers or wavelength compensators. It may be combined with environmental sensors (not shown), particularly for initializing system 10 to an absolute index of refraction.
- FIG. 2 shows an example of refractometer 26 , based on a type known as a differential plane-mirror interferometer. As shown, refractometer 26 comprises an interferometer section 30 that directs portions of beam 20 into a concentrically configured measurement cell 32 of fixed length L. Cell 32 comprises an evacuated inner chamber 34 that is surrounded by an outer annular region 36 occupied by gas, preferably air. End reflectors 40 and 42 , respectively, are provided to control the propagation of beam 20 as it travels through cell 32 .
- inner chamber 34 is assigned the role of a reference leg and outer chamber 36 that of a surrogate for the gas or air occupying measurement leg over which physical distance is to be measured.
- the output of refractometer 26 is a refractive index N 1 for the wavelength ⁇ 1 .
- Interferometer 44 is adapted to both measure the distance between it and an X-Y translation stage 46 , which may form part of a photolithographic apparatus for the fabrication of integrated circuits or the like, and to provide information about the local index of refraction, N 1 2 ⁇ , in the measurement path.
- the measurement path is located in the intervening space between interferometer 44 and X-Y translation stage 46 . As can be seen in FIG.
- air is controllably flowed over the refractometer 26 , i.e., its outer chamber 36 and over the measurement path of interferometer 44 .
- Refractometer 26 is preferably positioned close enough to the measurement path of interferometer 44 so that it can be assumed that the index of refraction of the air in both is substantially the same, at least over measurement time intervals of interest.
- Interferometer 44 here is a dispersion type for which one of the wavelengths, e.g., ⁇ 1 , is also used for standard DMI.
- the output of the 2 ⁇ interferometer 44 is the interference phases ⁇ 1,2 corresponding to ⁇ 1,2 , respectively.
- Interferometer 44 may be any of a variety of well-known types including a common-wavelength differential plane mirror interferometer (DPMI) with each wavelength combined with a dichroic beamsplitter or a two-wavelength dynamic interferometer of the type described in commonly owned co-pending U.S. patent application Ser. No. 09/157,131 filed on Sep. 18, 1998, the contents of which are incorporated herein by reference.
- System 10 is operated in the manner set forth in the flowcharts of FIGS. 3 a and 3 b which will be described in more detail later.
- FIG. 3 a represents the measurement mode of operation of system 10
- FIG. 3 b the method for initializing ⁇ .
- X-Y stage 46 shown in FIG. 1 is moved so as to change the physical length of the DMI measurement path over as large a range as possible.
- the exact value of the displacement need not be known.
- the move may be part of an alignment procedure on a wafer (more on this later) or it may be an independent motion prior to wafer alignment.
- ⁇ ′ 1,2 are the changes in the values of ⁇ 1,2 resulting from the displacement of the X-Y stage 46 .
- the quantity ⁇ N 1 > is the time average of the refractive index N 1 calculated from data supplied by the refractometer 26 .
- T may be regarded as the minimum time interval for which the time-integrated value ⁇ N 1 > measured at the refractometer 26 correlates within 10 ⁇ 9 to the true time-integrated index of refraction in the measurement path.
- T the longer the time T, the better the correlation.
- a quantitative approach to determining a quantitative value of T is to consider the effect of pockets or cells of air of various sizes moving with a velocity determined by the forced airflow within the system.
- a sinusoidal fluctuation in refractive index of amplitude A and a spatial period ⁇ is a sinusoidal fluctuation in refractive index of amplitude A and a spatial period ⁇ .
- a refractometer placed at a distance D ⁇ from the measurement path and let the air flow in the z direction at a velocity ⁇ . The resulting maximum error will be
- T is approximately 20 s.
- FIGS. 3 a and 3 b there are shown flowcharts depicting the steps for practicing the method of the invention. As seen, these are given in blocks 50 - 59 in FIG. 3 a , which is for measurement and in blocks 61 - 71 in FIG. 3 b , which is for calibrating ⁇ .
- the measurement steps include:
- step ( 50 ) storing a self-consistent value of inverse dispersive power, ⁇ . Initially, this may be assumed and later updated from step ( 59 ) as significant changes in it occur;
- the invention provides superior compensation for short-term fluctuations in refractive index within the measurement beam that cannot be detected with a refractometer alone.
- the invention provides superior long-term compensation with respect to dispersion interferometry by: (1) providing a self-consistent ⁇ that is more accurate than a calculated value; and (2) providing long-term stability in the compensation in the presence of changes in atmospheric composition.
- the invention provides lower cost and potentially more accurate long-term compensation by relying on refractometry for refractive index measurements over long time periods.
- the dispersion interferometers need only be stable over a period of approximately one minute or even less, rather than several hours. This greatly relaxes requirements on the optics, mechanics, electronics and fiber coupling.
- FIG. 4 shown in FIG. 4 is an alternate apparatus of the invention designated generally at 60 .
- Apparatus 60 employs two independent lasers, 62 and 64 , operating at wavelengths ⁇ 1,2 , respectively, to generate beams 66 and 68 , respectively.
- a second-harmonic generation (SHG) interferometer 69 of the type, for example, described in U.S. Pat. No. 4,948,254 by Ishida, is provided to receive beam 68 and generate an additional beam 70 at ⁇ 3 .
- a refractometer 74 receives beam 66 at ⁇ 1 and the displacement of an X-Y stage 72 is to be measured.
- the operating principles of this embodiment are substantially the same as for the prior embodiment.
- the dispersion calculation involves predicting the index of refraction at a first wavelength ⁇ 1 using a second and third wavelength ⁇ 2, 3 that may be very different from the first.
- n 1 ⁇ N 1 ⁇ + N 1 2 ⁇ ⁇ - ⁇ N 1 2 ⁇ ⁇ ⁇ ( 11. )
- N 1 2 ⁇ ⁇ 1 + ⁇ ′ ⁇ ( L 3 - L 2 ) ⁇ ⁇ N 1 ⁇ L 1 . ( 12. )
- ⁇ ′ is no longer the inverse dispersive power in the usual sense, but serves an analogous function in the calculations.
- the simple, single-wavelength refractometer 26 shown in FIG. 1 has been replaced by a form of ⁇ -meter, shown symbolically in FIG. 5 as a dual-wavelength refractometer 80 with other parts bearing the same numerical identifiers as their counterparts in FIG. 1.
- This embodiment is capable of tracking slow changes in the value of ⁇ without having to re-initialize the system with a stage motion.
- this embodiment continues to rely on the refractometry data alone, rather than on dispersion interferometry.
- FIG. 6 In yet another embodiment shown in FIG. 6, there is no refractometer at all. Instead, reliance is made on alignment marks 92 carried on X-Y translation stage 46 (again parts in common with FIG. 1 bear the same numerical identification here) and an alignment sensor 90 for locating these marks.
- the basic assumption of this embodiment is that the physical path length ⁇ 0 between the marks 92 is either perfectly known or is a suitable reference length for all subsequent measurements. After a displacement between the marks 92 , the initial index of refraction is determined from
- N 1 0 L 1 / ⁇ 0 , (13.)
- L 1 is the measured optical path for wavelength ⁇ 1 .
- n 1 1 + ⁇ ⁇ ⁇ ( L 2 + L 1 ) ⁇ 0 . ( 16. )
- This embodiment has the advantage of the greatest simplicity in hardware; however, it may not be suitable for applications which require very long term measurement stability independent of the stability in the physical location of the alignment marks.
- the interferometry systems described above can be especially useful in lithography applications associated with their X-Y stages and used for fabricating large scale integrated circuits such as computer chips and the like.
- Lithography is the key technology driver for the semiconductor manufacturing industry. Overlay improvement is one of the five most difficult challenges down to and below 100 nm line widths (design rules), see for example the Semiconductor Industry Roadmap, p82 (1997). Overlay depends directly on the performance, i.e. accuracy and precision, of the distance measuring interferometers used to position the wafer and reticle (or mask) stages. Since a lithography tool may produce $50-100 M/year of product, the economic value from improved performance distance measuring interferometers is substantial. Each 1% increase in yield of the lithography tool results in approximately $1 M/year economic benefit to the integrated circuit manufacturer and substantial competitive advantage to the lithography tool vendor.
- the function of a lithography tool is to direct spatially patterned radiation onto a photoresist-coated wafer.
- the process involves determining which location of the wafer is to receive the radiation (alignment) and applying the radiation to the photoresist at that location (exposure).
- the wafer To properly position the wafer, the wafer includes alignment marks on the wafer that can be measured by dedicated sensors. The measured positions of the alignment marks define the location of the wafer within the tool. This information, along with a specification of the desired patterning of the wafer surface, guides the alignment of the wafer relative to the spatially patterned radiation. Based on such information, a translatable stage supporting the photoresist-coated wafer moves the wafer such that the radiation will expose the correct location of the wafer.
- a radiation source illuminates a patterned reticle, which scatters the radiation to produce the spatially patterned radiation.
- the reticle is also referred to as a mask, and these terms are used interchangeably below.
- a reduction lens collects the scattered radiation and forms a reduced image of the reticle pattern.
- the scattered radiation propagates a small distance (typically on the order of microns) before contacting the wafer to produce a 1:1 image of the reticle pattern.
- the radiation initiates photo-chemical processes in the photoresist that convert the radiation pattern into a latent image within the photoresist.
- the interferometry systems described above are important components of the positioning mechanisms that control the position of the wafer and reticle, and register the reticle image on the wafer.
- the lithography system typically includes an illumination system and a wafer positioning system.
- the illumination system includes a radiation source for providing radiation such as ultraviolet, visible, x-ray, electron, or ion radiation, and a reticle or mask for imparting the pattern to the radiation, thereby generating the spatially patterned radiation.
- the illumination system can include a lens assembly for imaging the spatially patterned radiation onto the wafer. The imaged radiation exposes photoresist coated onto the wafer.
- the illumination system also includes a mask stage for supporting the mask and a positioning system for adjusting the position of the mask stage relative to the radiation directed through the mask.
- the wafer positioning system includes a wafer stage for supporting the wafer and a positioning system for adjusting the position of the wafer stage relative to the imaged radiation.
- Fabrication of integrated circuits can include multiple exposing steps.
- lithography see, for example, J. R. Sheats and B. W. Smith, in Microlithography: Science and Technology (Marcel Dekker, Inc., New York, 1998), the contents of which are incorporated herein by reference.
- the interferometry systems described above can be used to precisely measure the positions of each of the wafer stage and mask stage relative to other components of the exposure system, such as the lens assembly, radiation source, or support structure.
- the interferometry system can be attached to a stationary structure and the measurement object attached to a movable element such as one of the mask and wafer stages.
- the situation can be reversed, with the interferometry system attached to a movable object and the measurement object attached to a stationary object.
- the interferometry systems can be used to measure the position of any one component of the exposure system relative to any other component of the exposure system in which the interferometry system is attached, or supported by one of the components and the measurement object is attached, or is supported by the other of the components.
- FIG. 7 An example of a lithography scanner 100 using an interferometry system 126 is shown in FIG. 7.
- the interferometry system is used to precisely measure the position of a wafer within an exposure system.
- stage 122 is used to position the wafer relative to an exposure station.
- Scanner 100 comprises a frame 102 , which carries other support structures and various components carried on those structures.
- An exposure base 104 has mounted on top of it a lens housing 106 atop of which is mounted a reticle or mask stage 116 used to support a reticle or mask.
- a positioning system for positioning the mask relative to the exposure station is indicated schematically by element 117 .
- Positioning system 117 can include, e.g., piezoelectric transducer elements and corresponding control electronics.
- one or more of the interferometry systems described above can also be used to precisely measure the position of the mask stage as well as other moveable elements whose position must be accurately monitored in processes for fabricating lithographic structures (see supra Sheats and Smith Microlithography: Science and Technology ).
- Stage 122 includes a plane mirror for reflecting a measurement beam 154 directed to the stage by interferometry system 126 .
- a positioning system for positioning stage 122 relative to interferometry system 126 is indicated schematically by element 119 .
- Positioning system 119 can include, e.g., piezoelectric transducer elements and corresponding control electronics.
- the measurement beam reflects back to the interferometry system, which is mounted on exposure base 104 .
- the interferometry system can be any of the embodiments described previously.
- a radiation beam 110 e.g., an ultraviolet (UV) beam from a UV laser (not shown)
- UV ultraviolet
- a mask carried by mask stage 116 .
- the mask (not shown) is imaged onto a wafer (not shown) on wafer stage 122 via a lens assembly 108 carried in a lens housing 106 .
- Base 104 and the various components supported by it are isolated from environmental vibrations by a damping system depicted by spring 120 .
- one or more of the interferometry systems described previously can be used to measure distance along multiple axes and angles associated for example with, but not limited to, the wafer and reticle (or mask) stages.
- other beams can be used to expose the wafer including, e.g., x-ray beams, electron beams, ion beams, and visible optical beams.
- the lithographic scanner can include a column reference in which interferometry system 126 directs the reference beam to lens housing 106 or some other structure that directs the radiation beam rather than a reference path internal to the interferometry system.
- the interference signal produced by interferometry system 126 when combining measurement beam 154 reflected from stage 122 and the reference beam reflected from lens housing 106 indicates changes in the position of the stage relative to the radiation beam.
- the interferometry system 126 can be positioned to measure changes in the position of reticle (or mask) stage 116 or other movable components of the scanner system.
- the interferometry systems can be used in a similar fashion with lithography systems involving steppers, in addition to, or rather than, scanners.
- FIG. 8 is a flowchart of the sequence of manufacturing a semiconductor device such as a semiconductor chip (e.g. IC or LSI), a liquid crystal panel or a CCD.
- Step 251 is a design process for designing the circuit of a semiconductor device.
- Step 252 is a process for manufacturing a mask on the basis of the circuit pattern design.
- Step 253 is a process for manufacturing a wafer by using a material such as silicon.
- Step 254 is a wafer process which is called a pre-process wherein, by using the so prepared mask and wafer, circuits are formed on the wafer through lithography.
- Step 255 is an assembling step, which is called a post-process wherein the wafer processed by step 254 is formed into semiconductor chips. This step includes assembling (dicing and bonding) and packaging (chip sealing).
- Step 256 is an inspection step wherein operability check, durability check, and so on of the semiconductor devices produced by step 255 are carried out. With these processes, semiconductor devices are finished and they are shipped (step 257 ).
- FIG. 9 is a flowchart showing details of the wafer process.
- Step 261 is an oxidation process for oxidizing the surface of a wafer.
- Step 262 is a CVD process for forming an insulating film on the wafer surface.
- Step 263 is an electrode forming process for forming electrodes on the wafer by vapor deposition.
- Step 264 is an ion implanting process for implanting ions to the wafer.
- Step 265 is a photoresist process for applying a photoresist (photosensitive material) to the wafer.
- Step 266 is an exposure process for printing, by exposure, the circuit pattern of the mask on the wafer through the exposure apparatus described above.
- Step 267 is a developing process for developing the exposed wafer.
- Step 268 is an etching process for removing portions other than the developed photoresist image.
- Step 269 is a photoresist separation process for separating the photoresist material remaining on the wafer after being subjected to the etching process. By repeating these processes, circuit patterns are formed and superimposed on the wafer.
- the interferometry systems described above can also be used in other applications in which the relative position of an object needs to be measured precisely.
- a write beam such as a laser, x-ray, ion, or electron beam
- the interferometry systems can be used to measure the relative movement between the substrate and write beam.
- FIG. 10 a schematic of a beam writing system 300 is shown in FIG. 10
- a source 310 generates a write beam 312
- a beam focusing assembly 314 directs the radiation beam to a substrate 316 supported by a movable stage 318 .
- an interferometry system 320 directs a reference beam 322 to a mirror 324 mounted on beam focusing assembly 314 and a measurement beam 326 to a mirror 328 mounted on stage 318 .
- Interferometry system 320 can be any of the interferometry systems described previously. Changes in the position measured by the interferometry system correspond to changes in the relative position of write beam 312 on substrate 316 .
- Interferometry system 320 sends a measurement signal 332 to controller 330 that is indicative of the relative position of write beam 312 on substrate 316 .
- Controller 330 sends an output signal 334 to a base 336 that supports and positions stage 318 .
- controller 330 sends a signal 338 to source 310 to vary the intensity of, or block, write beam 312 so that the write beam contacts the substrate with an intensity sufficient to cause photophysical or photochemical change only at selected positions of the substrate.
- controller 330 can cause beam focusing assembly 314 to scan the write beam over a region of the substrate, e.g., using signal 344 .
- controller 330 directs the other components of the system to pattern the substrate.
- the patterning is typically based on an electronic design pattern stored in the controller.
- the write beam patterns a photoresist coated on the substrate and in other applications the write beam directly patterns, e.g., etches, the substrate.
- an electron beam can be used to pattern a chromium-coated glass substrate.
- the beam writing system encloses the electron beam path in a vacuum.
- the beam focusing assembly includes electric field generators such as quadrapole lenses for focusing and directing the charged particles onto the substrate under vacuum.
- the beam focusing assembly includes corresponding optics for focusing and directing the radiation to the substrate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
- This invention, in general, relates to interferometric methods and apparatus for measuring linear and/or angular displacements and, in particular, to apparatus and methods by which fluctuations in the index of refraction in the measurement path of a displacement measuring interferometer (DMI) can be accurately compensated for in determinations of displacement.
- High-precision displacement measuring interferometry (DMI) depends on an accurate determination of the index of refraction, n, in the measurement path. One way to determine n is to place sensors in close proximity to the measurement path to monitor thermodynamic properties such as pressure, temperature, and humidity, and then use the values of those parameters together in well-known expressions relating index of refraction to monitored properties as, for example, Edlén's equation with modern corrections for the index of refraction of air (See “Recent advances in displacement measuring interferometry”, Bobroff, Norman, Measurement Science and Technology, Vol. 4, Number 9, September 1993). If required, sensors for detecting the composition of the gas in the measurement path may also be employed to further refine the calculation of the index of refraction. For example, CO2 sensors may be usefully employed.
- While few applications require greater absolute accuracy in the calculated value of n than can be obtained using Edlén's equation in combination with environmental monitoring, all DMI systems are extremely sensitive to index fluctuations after initialization. This is particularly true for the case of a microlithography tool where DMI metrology is an integral part of the wafer and reticule positioning systems. Here, the most severe requirements are placed on the repeatability and stability of the DMI measurements for the purposes of accurate overlay.
- In addition to providing continuous data free of high-frequency noise, a microlithography DMI must be stable over the entire time needed for a single wafer exposure, including whatever time is needed for wafer alignment. For some measurements, such as establishing the “baseline” metrology between through-the-lens and off-axis alignment sensors, the interferometer system must be stable for several hours. In both of these situations, undetected changes in the index n can have serious consequences. A typical target stability for DMI in the next generation of steppers is 1 nm. The corresponding minimum allowable fluctuation in index in the measurement path is therefore 10−9 over a 1-m distance within a bandwidth of 10−4 to 102 Hz. Detection of these fluctuations is presently beyond the capability of environmental sensors.
- Accordingly, there has been a great deal of interest in compensation systems that deal with the problem of fluctuations in the refractive index n for microlithography tools. One approach has been the use of a refractometer, also called a wavelength tracker or compensator. Such devices, which are commercially available, are actually relative refractometers. If properly positioned in the path of the forced air flow in a photolithography tool, the information from a refractometer can be used to accurately compensate for low frequency (e.g. 10−2 Hz) changes in index.
- Another approach to this problem has been the use of air turbulence compensation systems (ATC), which are based on dispersion interferometry. ATC systems use two widely-separated wavelengths and rely on the wavelength dependence of index of refraction. This wavelength dependence is characterized by the inverse dispersive power Γ, which is the ratio of the refractivity at one wavelength to the difference in refractivity between two wavelengths. Typical values of Γ for air are between 15 and 75.
- It is accordingly, a primary object of this invention to provide apparatus and methods by which dispersion interferometry may be combined with refractometry to compensate for both short and long term index of refraction fluctuations that may occur in the measurement path of an interferometer.
- It is another object of this invention to provide apparatus and methods by which the inverse dispersion power may be initialized and monitored prior to displacement calculations.
- It is yet another object of the invention to provide apparatus and methods by which index of refraction may be determined by using known physical lengths.
- Other objects will in part be obvious and will in part appear hereinafter when the following detailed description is read in connection with the drawings.
- The invention combines dispersion interferometry with refractometry to compensate for refractive index fluctuations over both short and long time periods. It, accordingly, includes a method and means for weighting the dispersion and refractometry data, as well as a method and means of initializing Γ so that the dispersion and refractometry data are self consistent and can be used to accurately calculate physical displacements.
- The inventive apparatus comprises:
- interferometer means employing at least two wavelengths at least a first one of which is used for measuring the displacement of an object along a measurement path and for detecting short-term fluctuations in the refractive index of air directly within the measurement path by means of the inverse dispersive power Γ or its equivalent;
- at least one refractometer means for measuring the long-term variations in refractive index of air directly for at least the first wavelength, placed as close as practicable to the measurement path, and preferably within the path of any forced airflow directed at the measurement path;
- initialization means for establishing an initial value of the inverse dispersive power Γ using refractometer and dispersion data acquired during a change in the length of the measurement path; and
- computational means for analyzing data from the refractometer and said dispersion interferometer and for providing a calculated refractive index along said measurement path, said calculated refractive index incorporating both long- and short-term fluctuations and employing said initial value of said inverse disperse power Γ.
- In another aspect the interferometer means may be in the form of a separate displacement interferometer operating at the first wavelength and a second dispersion interferometer operating at two wavelengths, one of which may be the first wavelength.
- Another aspect of the invention is a method comprising the steps of:
- storing a self-consistent value of inverse dispersive power, Γ. Initially, this may be assumed and later updated as significant changes in it occur;
- measuring the refractive index for λ1 using a refractometer located near the measurement path;
- determining a time average for the refractive index generated in step over a characteristic time period (Eq. 3)
- measuring the optical path length of the measurement path for wavelengths, λ1,2 (Eq. 2);
- calculating the local index, N1 2λ using dispersion interferometry (Eq. 6);
- time averaging the local dispersion (Similar to Eq. 3);
- calculating the fluctuation the local index as the difference between the instantaneous value and time averaged value (Eq. 4);
- calculating the physical distance corrected for atmospheric effects (Eq. 6; and
- testing for the difference between the time averaged value of the local index and the time averaged value of the index at the refractometer;
- calibrating Γ and updating its value should Γ change significantly.
- Another aspect of the invention relates to a method for calibrating the inverse dispersive power comprising the steps of:
- measuring the refractive index for λ1 using a refractometer near the measurement path;
- determining the time average of the refractive index near the measurement path over a characteristic time T;
- moving the stage between two positions;
- measuring the change in optical path length of the measurement path for two wavelengths, λ1,2;
- calculating the inverse dispersive power, Γ, using Eq. 1; and
- returning to the measurement path with the value for Γ.
- In yet another aspect of the invention, the index is determined by using a known physical distance between two reference points instead of a refractometer.
- The structure and operation of the invention, together with other objects and advantages thereof, may best be understood by reading the detailed description in conjunction with the drawings wherein the invention's parts have an assigned reference numeral that is used to identify them in all of the drawings in which they appear and wherein:
- FIG. 1 is a diagrammatic view of an interferometric system of the invention;
- FIG. 2 is a diagrammatic view of a refractometer that may be employed in the apparatus of FIG. 1;
- FIGS. 3a and 3 b are flowcharts of steps of methods for practicing the invention;
- FIG. 3a representing the steps for making measurements and
- FIG. 3b the steps for initializing for the inverse dispersive power, Γ, to update values of Γ used in the measurement steps;
- FIG. 4 is a diagrammatic view of an alternative apparatus of the invention employing a second harmonic generator (SHG) dispersion interferometer;
- FIG. 5 is a diagrammatic view of an embodiment of the invention employing a dual-wavelength refractometer;
- FIG. 6 is a diagrammatic view of an embodiment of the invention employing alignment marks to initialize both refractive index and inverse dispersive power.
- FIGS.7-9 relate to lithography and its application to manufacturing integrated circuits wherein
- FIG. 7 is a schematic drawing of a lithography exposure system employing the interferometry system;
- FIGS. 8 and 9 are flowcharts describing steps in manufacturing integrated circuits; and
- FIG. 10 is a schematic of a beam writing system employing the interferometry system of the invention.
- This invention relates to interferometric apparatus and methods by which short and long term index of refraction fluctuations in the measurement path of a displacement measurement interferometer may be compensated for in determining displacement. The invention combines dispersion interferometry with refractometry to compensate for refractive index fluctuations over both short and long time periods.
- Included are a method and means for weighting dispersion and refractometry data, as well as a method and means of initializing Γ, the inverse dispersive power, so that the dispersion and refractometry data are self consistent.
- Referring now to FIG. 1, there is diagrammatically shown at10 an interferometric system of the invention.
System 10 comprisesinterferometric apparatus 12 and acomputer 14 that interfaces with theinterferometric apparatus 12 in a well-known manner vialink 16 to exchange housekeeping and control signals. Resident incomputer 14 is application software for implementing various algorithms that are subsequently described and system software by which a user can operatesystem 10 through the use of a graphical user interface (GUI) and/or other input devices such as a keyboard or mouse. -
Interferometric apparatus 12 preferably comprises a two-wavelength source 18, with a first wavelength λ1 and a second wavelength λ2 that is phase locked to the first wavelength λ1 by, e.g., means of frequency doubling (SHG=second harmonic generation). Example wavelengths are 633 and 316 nm for λ1,2, respectively, as measured in a vacuum.Source 18 generates afirst beam 20 at λ1 and asecond beam 22 at λ2. - It will be appreciated by those skilled in the art that beams20 and 22 may be provided alternatively by a single laser source emitting more than one wavelength, two laser sources of differing wavelengths combined with sum-frequency generation or difference-frequency generation, or any equivalent source configuration capable of generating light beams of two or more wavelengths.
- A laser source, for example, can be a gas laser, e.g. a HeNe, stabilized in any of a variety of conventional techniques known to those skilled in the art, see for example, T. Baer et al., “Frequency Stabilization of a 0.633 μm He—Ne-longitudinal Zeeman Laser,”Applied Optics, 19, 3173-3177 (1980); Burgwald et al., U.S. Pat. No. 3,889,207, issued Jun. 10, 1975; and Sandstrom et al., U.S. Pat. No. 3,662,279, issued May 9, 1972. Alternatively, the laser can be a diode laser frequency stabilized by one of a variety of conventional techniques known to those skilled in the art, see, for example, T. Okoshi and K. Kikuchi, “Frequency Stabilization of Semiconductor Lasers for Heterodyne-type Optical Communication Systems,” Electronic Letters, 16, 179-181 (1980) and S. Yamaqguchi and M. Suzuki, “Simultaneous Stabilization of the Frequency and Power of an AlGaAs Semiconductor Laser by Use of the Optogalvanic Effect of Krypton,” IEEE J. Quantum Electronics, QE-19, 1514-1519 (1983).
-
Beam 20 is intercepted by abeamsplitter 24 that directs part of it by reflection to arefractometer 26 while transmitting the remainder of it to amirror 28. -
Refractometer 26 may be any of the common types known variously as wavelength trackers or wavelength compensators. It may be combined with environmental sensors (not shown), particularly for initializingsystem 10 to an absolute index of refraction. FIG. 2 shows an example ofrefractometer 26, based on a type known as a differential plane-mirror interferometer. As shown,refractometer 26 comprises aninterferometer section 30 that directs portions ofbeam 20 into a concentrically configuredmeasurement cell 32 of fixedlength L. Cell 32 comprises an evacuatedinner chamber 34 that is surrounded by an outerannular region 36 occupied by gas, preferably air.End reflectors beam 20 as it travels throughcell 32. In operation,inner chamber 34 is assigned the role of a reference leg andouter chamber 36 that of a surrogate for the gas or air occupying measurement leg over which physical distance is to be measured. The output ofrefractometer 26 is a refractive index N1 for the wavelength λ1. -
Mirror 28, as well as intercepting the portion ofbeam 20 transmitted bybeamsplitter 24,intercepts beam 22 and directs it and the remainder ofbeam 20 to a two-wavelength interferometer 44.Interferometer 44 is adapted to both measure the distance between it and anX-Y translation stage 46, which may form part of a photolithographic apparatus for the fabrication of integrated circuits or the like, and to provide information about the local index of refraction, N1 2λ, in the measurement path. The measurement path is located in the intervening space betweeninterferometer 44 andX-Y translation stage 46. As can be seen in FIG. 1, air is controllably flowed over therefractometer 26, i.e., itsouter chamber 36 and over the measurement path ofinterferometer 44.Refractometer 26 is preferably positioned close enough to the measurement path ofinterferometer 44 so that it can be assumed that the index of refraction of the air in both is substantially the same, at least over measurement time intervals of interest. -
Interferometer 44 here is a dispersion type for which one of the wavelengths, e.g., ζ1, is also used for standard DMI. Thus, the output of the 2−λ interferometer 44 is the interference phases φ1,2 corresponding to λ1,2, respectively.Interferometer 44 may be any of a variety of well-known types including a common-wavelength differential plane mirror interferometer (DPMI) with each wavelength combined with a dichroic beamsplitter or a two-wavelength dynamic interferometer of the type described in commonly owned co-pending U.S. patent application Ser. No. 09/157,131 filed on Sep. 18, 1998, the contents of which are incorporated herein by reference.System 10 is operated in the manner set forth in the flowcharts of FIGS. 3a and 3 b which will be described in more detail later. FIG. 3a represents the measurement mode of operation ofsystem 10 and FIG. 3b the method for initializing Γ. - To initialize Γ,
X-Y stage 46 shown in FIG. 1 is moved so as to change the physical length of the DMI measurement path over as large a range as possible. The exact value of the displacement need not be known. The move may be part of an alignment procedure on a wafer (more on this later) or it may be an independent motion prior to wafer alignment. The initialized, self-consistent value of Γ is then - and φ′1,2 are the changes in the values of φ1,2 resulting from the displacement of the
X-Y stage 46. The quantity <N1>is the time average of the refractive index N1 calculated from data supplied by therefractometer 26. -
- Other appropriate means for calculating the time average include recursive formulas that impart an exponential or other functional dampening having a characteristic time T.
-
-
- This calculation is compensated for both long term and short term fluctuations in the index of refraction in the measurement path.
- The foregoing calculations involve a characteristic time constant T, which separates short term (T<t) and long term measurements (T>t). Short-term measurements of the index of refraction rely principally on dispersion interferometry, whereas long-term measurements rely principally on the refractometer or equivalent means shown in FIG. 1. Conceptually, T may be regarded as the minimum time interval for which the time-integrated value <N1> measured at the
refractometer 26 correlates within 10−9 to the true time-integrated index of refraction in the measurement path. Generally, the longer the time T, the better the correlation. A quantitative approach to determining a quantitative value of T is to consider the effect of pockets or cells of air of various sizes moving with a velocity determined by the forced airflow within the system. Suppose a sinusoidal fluctuation in refractive index of amplitude A and a spatial period Λ. Now imagine a refractometer placed at a distance D<<Λ from the measurement path and let the air flow in the z direction at a velocity ν. The resulting maximum error will be - E≈2πAD/Λ. (7.)
- Now, suppose that the objective of the compensation system is to reduce refractive index errors by at least a factor of three. This requirement translates to:
- Λ>6πD. (8.)
- For air moving at a velocity ν, this corresponds to a characteristic time
- T=6πD/ν. (9.)
- For example, if the airflow is ν=0.5 m/s and the refractometer is 0.5 m from the measurement path, then T is approximately 20 s.
- Referring now to FIGS. 3a and 3 b, there are shown flowcharts depicting the steps for practicing the method of the invention. As seen, these are given in blocks 50-59 in FIG. 3a, which is for measurement and in blocks 61-71 in FIG. 3b, which is for calibrating Γ. In FIG. 3a, the measurement steps include:
- (50) storing a self-consistent value of inverse dispersive power, Γ. Initially, this may be assumed and later updated from step (59) as significant changes in it occur;
- (51) measuring the refractive index for λ1 using a refractometer located near the measurement path;
- (52) determining a time average for the refractive index generated in step (50) over a characteristic time period (Eq. 3)
- (53) measuring the optical path length of the measurement path for wavelengths, λ1,2 (Eq. 2);
- (54) calculating the local index, N1 2λ using dispersion interferometry (Eq. 5);
- (55) time averaging the local dispersion (Similar to Eq. 3);
- (56) calculating the fluctuation the local index as the difference between the instantaneous value and time averaged value (Eq. 4);
- (57) calculating the physical distance corrected for atmospheric effects (Eq. 6); and
- (58) testing for the difference between the time averaged value of the local index and the time averaged value of the index at the refractometer; and
- (59) calibrating Γ and updating its value to block (50) should Γ change significantly.
- Referring now to FIG. 3b, the steps for calibrating Γ are seen to comprise:
- (61) measuring the refractive index for λ1 using a refractometer near the measurement path;
- (63) determining the time average of the refractive index near the measurement path over a characteristic time T;
- (65) moving the stage between two positions;
- (67) measuring the change in optical path length of the measurement path for two wavelengths, λ1,2;
- (69) calculating the inverse dispersive power, Γ, using Eq. 1; and
- (71) returning to the measurement path with the value for Γ.
- Various benefits flow from the invention compared with the prior art. With respect to a simple refractometer, the invention provides superior compensation for short-term fluctuations in refractive index within the measurement beam that cannot be detected with a refractometer alone.
- With respect to an ACT system, the invention provides superior long-term compensation with respect to dispersion interferometry by: (1) providing a self-consistent Γ that is more accurate than a calculated value; and (2) providing long-term stability in the compensation in the presence of changes in atmospheric composition.
- With respect to compensation systems that rely on dispersion for the computation of Γ, the invention provides lower cost and potentially more accurate long-term compensation by relying on refractometry for refractive index measurements over long time periods. With the inventive apparatus, the dispersion interferometers need only be stable over a period of approximately one minute or even less, rather than several hours. This greatly relaxes requirements on the optics, mechanics, electronics and fiber coupling.
- As those skilled in the art will appreciate, there are many possible variants of the invention without departing from its essential teachings.
- For example, shown in FIG. 4 is an alternate apparatus of the invention designated generally at60.
Apparatus 60 employs two independent lasers, 62 and 64, operating at wavelengths λ1,2, respectively, to generatebeams interferometer 69 of the type, for example, described in U.S. Pat. No. 4,948,254 by Ishida, is provided to receivebeam 68 and generate anadditional beam 70 at λ3. As before, arefractometer 74 receivesbeam 66 at λ1 and the displacement of anX-Y stage 72 is to be measured. The operating principles of this embodiment are substantially the same as for the prior embodiment. However, in this case, the dispersion calculation involves predicting the index of refraction at a first wavelength λ1 using a second and third wavelength λ2, 3 that may be very different from the first. The initialization equation changes to -
- Note that Γ′ is no longer the inverse dispersive power in the usual sense, but serves an analogous function in the calculations.
- In another embodiment shown in FIG. 5, the simple, single-
wavelength refractometer 26 shown in FIG. 1 has been replaced by a form of Γ-meter, shown symbolically in FIG. 5 as a dual-wavelength refractometer 80 with other parts bearing the same numerical identifiers as their counterparts in FIG. 1. This embodiment is capable of tracking slow changes in the value of Γ without having to re-initialize the system with a stage motion. However, for long-term changes in refractive index, this embodiment continues to rely on the refractometry data alone, rather than on dispersion interferometry. - In yet another embodiment shown in FIG. 6, there is no refractometer at all. Instead, reliance is made on alignment marks92 carried on X-Y translation stage 46 (again parts in common with FIG. 1 bear the same numerical identification here) and an
alignment sensor 90 for locating these marks. The basic assumption of this embodiment is that the physical path length χ0 between themarks 92 is either perfectly known or is a suitable reference length for all subsequent measurements. After a displacement between themarks 92, the initial index of refraction is determined from - N 1 0 =L 1/χ0, (13.)
-
- All subsequent measurements of a physical displacement χ use
- χ=L 1 /n 1, (15.)
- This embodiment has the advantage of the greatest simplicity in hardware; however, it may not be suitable for applications which require very long term measurement stability independent of the stability in the physical location of the alignment marks.
- The interferometry systems described above can be especially useful in lithography applications associated with their X-Y stages and used for fabricating large scale integrated circuits such as computer chips and the like. Lithography is the key technology driver for the semiconductor manufacturing industry. Overlay improvement is one of the five most difficult challenges down to and below 100 nm line widths (design rules), see for example theSemiconductor Industry Roadmap, p82 (1997). Overlay depends directly on the performance, i.e. accuracy and precision, of the distance measuring interferometers used to position the wafer and reticle (or mask) stages. Since a lithography tool may produce $50-100 M/year of product, the economic value from improved performance distance measuring interferometers is substantial. Each 1% increase in yield of the lithography tool results in approximately $1 M/year economic benefit to the integrated circuit manufacturer and substantial competitive advantage to the lithography tool vendor.
- The function of a lithography tool is to direct spatially patterned radiation onto a photoresist-coated wafer. The process involves determining which location of the wafer is to receive the radiation (alignment) and applying the radiation to the photoresist at that location (exposure).
- To properly position the wafer, the wafer includes alignment marks on the wafer that can be measured by dedicated sensors. The measured positions of the alignment marks define the location of the wafer within the tool. This information, along with a specification of the desired patterning of the wafer surface, guides the alignment of the wafer relative to the spatially patterned radiation. Based on such information, a translatable stage supporting the photoresist-coated wafer moves the wafer such that the radiation will expose the correct location of the wafer.
- During exposure, a radiation source illuminates a patterned reticle, which scatters the radiation to produce the spatially patterned radiation. The reticle is also referred to as a mask, and these terms are used interchangeably below. In the case of reduction lithography, a reduction lens collects the scattered radiation and forms a reduced image of the reticle pattern. Alternatively, in the case of proximity printing, the scattered radiation propagates a small distance (typically on the order of microns) before contacting the wafer to produce a 1:1 image of the reticle pattern. The radiation initiates photo-chemical processes in the photoresist that convert the radiation pattern into a latent image within the photoresist.
- The interferometry systems described above are important components of the positioning mechanisms that control the position of the wafer and reticle, and register the reticle image on the wafer.
- In general, the lithography system, also referred to as an exposure system, typically includes an illumination system and a wafer positioning system. The illumination system includes a radiation source for providing radiation such as ultraviolet, visible, x-ray, electron, or ion radiation, and a reticle or mask for imparting the pattern to the radiation, thereby generating the spatially patterned radiation. In addition, for the case of reduction lithography, the illumination system can include a lens assembly for imaging the spatially patterned radiation onto the wafer. The imaged radiation exposes photoresist coated onto the wafer. The illumination system also includes a mask stage for supporting the mask and a positioning system for adjusting the position of the mask stage relative to the radiation directed through the mask. The wafer positioning system includes a wafer stage for supporting the wafer and a positioning system for adjusting the position of the wafer stage relative to the imaged radiation. Fabrication of integrated circuits can include multiple exposing steps. For a general reference on lithography, see, for example, J. R. Sheats and B. W. Smith, inMicrolithography: Science and Technology (Marcel Dekker, Inc., New York, 1998), the contents of which are incorporated herein by reference.
- The interferometry systems described above can be used to precisely measure the positions of each of the wafer stage and mask stage relative to other components of the exposure system, such as the lens assembly, radiation source, or support structure. In such cases, the interferometry system can be attached to a stationary structure and the measurement object attached to a movable element such as one of the mask and wafer stages. Alternatively, the situation can be reversed, with the interferometry system attached to a movable object and the measurement object attached to a stationary object.
- More generally, the interferometry systems can be used to measure the position of any one component of the exposure system relative to any other component of the exposure system in which the interferometry system is attached, or supported by one of the components and the measurement object is attached, or is supported by the other of the components.
- An example of a
lithography scanner 100 using aninterferometry system 126 is shown in FIG. 7. The interferometry system is used to precisely measure the position of a wafer within an exposure system. Here,stage 122 is used to position the wafer relative to an exposure station.Scanner 100 comprises aframe 102, which carries other support structures and various components carried on those structures. Anexposure base 104 has mounted on top of it alens housing 106 atop of which is mounted a reticle ormask stage 116 used to support a reticle or mask. A positioning system for positioning the mask relative to the exposure station is indicated schematically byelement 117.Positioning system 117 can include, e.g., piezoelectric transducer elements and corresponding control electronics. Although, it is not included in this described embodiment, one or more of the interferometry systems described above can also be used to precisely measure the position of the mask stage as well as other moveable elements whose position must be accurately monitored in processes for fabricating lithographic structures (see supra Sheats and Smith Microlithography: Science and Technology). - Suspended below
exposure base 104 is asupport base 113 that carrieswafer stage 122.Stage 122 includes a plane mirror for reflecting ameasurement beam 154 directed to the stage byinterferometry system 126. A positioning system forpositioning stage 122 relative tointerferometry system 126 is indicated schematically byelement 119.Positioning system 119 can include, e.g., piezoelectric transducer elements and corresponding control electronics. The measurement beam reflects back to the interferometry system, which is mounted onexposure base 104. The interferometry system can be any of the embodiments described previously. - During operation, a
radiation beam 110, e.g., an ultraviolet (UV) beam from a UV laser (not shown), passes through a beam shapingoptics assembly 112 and travels downward after reflecting frommirror 14. Thereafter, the radiation beam passes through a mask (not shown) carried bymask stage 116. The mask (not shown) is imaged onto a wafer (not shown) onwafer stage 122 via alens assembly 108 carried in alens housing 106.Base 104 and the various components supported by it are isolated from environmental vibrations by a damping system depicted by spring 120. - In other embodiments of the lithographic scanner, one or more of the interferometry systems described previously can be used to measure distance along multiple axes and angles associated for example with, but not limited to, the wafer and reticle (or mask) stages. Also, rather than a UV laser beam, other beams can be used to expose the wafer including, e.g., x-ray beams, electron beams, ion beams, and visible optical beams.
- In addition, the lithographic scanner can include a column reference in which
interferometry system 126 directs the reference beam tolens housing 106 or some other structure that directs the radiation beam rather than a reference path internal to the interferometry system. The interference signal produced byinterferometry system 126 when combiningmeasurement beam 154 reflected fromstage 122 and the reference beam reflected fromlens housing 106 indicates changes in the position of the stage relative to the radiation beam. Furthermore, in other embodiments theinterferometry system 126 can be positioned to measure changes in the position of reticle (or mask)stage 116 or other movable components of the scanner system. Finally, the interferometry systems can be used in a similar fashion with lithography systems involving steppers, in addition to, or rather than, scanners. - As is well known in the art, lithography is a critical part of manufacturing methods for making semiconducting devices. For example, U.S. Pat. No. 5,483,343 outlines steps for such manufacturing methods. These steps are described below with reference to FIGS. 8 and 9. FIG. 8 is a flowchart of the sequence of manufacturing a semiconductor device such as a semiconductor chip (e.g. IC or LSI), a liquid crystal panel or a CCD. Step251 is a design process for designing the circuit of a semiconductor device. Step 252 is a process for manufacturing a mask on the basis of the circuit pattern design. Step 253 is a process for manufacturing a wafer by using a material such as silicon.
-
Step 254 is a wafer process which is called a pre-process wherein, by using the so prepared mask and wafer, circuits are formed on the wafer through lithography. Step 255 is an assembling step, which is called a post-process wherein the wafer processed bystep 254 is formed into semiconductor chips. This step includes assembling (dicing and bonding) and packaging (chip sealing). Step 256 is an inspection step wherein operability check, durability check, and so on of the semiconductor devices produced bystep 255 are carried out. With these processes, semiconductor devices are finished and they are shipped (step 257). - FIG. 9 is a flowchart showing details of the wafer process. Step261 is an oxidation process for oxidizing the surface of a wafer. Step 262 is a CVD process for forming an insulating film on the wafer surface. Step 263 is an electrode forming process for forming electrodes on the wafer by vapor deposition. Step 264 is an ion implanting process for implanting ions to the wafer. Step 265 is a photoresist process for applying a photoresist (photosensitive material) to the wafer. Step 266 is an exposure process for printing, by exposure, the circuit pattern of the mask on the wafer through the exposure apparatus described above. Step 267 is a developing process for developing the exposed wafer. Step 268 is an etching process for removing portions other than the developed photoresist image. Step 269 is a photoresist separation process for separating the photoresist material remaining on the wafer after being subjected to the etching process. By repeating these processes, circuit patterns are formed and superimposed on the wafer.
- The interferometry systems described above can also be used in other applications in which the relative position of an object needs to be measured precisely. For example, in applications in which a write beam such as a laser, x-ray, ion, or electron beam, marks a pattern onto a substrate as either the substrate or beam moves, the interferometry systems can be used to measure the relative movement between the substrate and write beam.
- As an example, a schematic of a
beam writing system 300 is shown in FIG. 10 Asource 310 generates awrite beam 312, and abeam focusing assembly 314 directs the radiation beam to asubstrate 316 supported by amovable stage 318. To determine the relative position of the stage, aninterferometry system 320 directs a reference beam 322 to amirror 324 mounted onbeam focusing assembly 314 and ameasurement beam 326 to amirror 328 mounted onstage 318.Interferometry system 320 can be any of the interferometry systems described previously. Changes in the position measured by the interferometry system correspond to changes in the relative position ofwrite beam 312 onsubstrate 316.Interferometry system 320 sends ameasurement signal 332 tocontroller 330 that is indicative of the relative position ofwrite beam 312 onsubstrate 316.Controller 330 sends anoutput signal 334 to a base 336 that supports and positions stage 318. In addition,controller 330 sends asignal 338 to source 310 to vary the intensity of, or block,write beam 312 so that the write beam contacts the substrate with an intensity sufficient to cause photophysical or photochemical change only at selected positions of the substrate. Furthermore, in some embodiments,controller 330 can causebeam focusing assembly 314 to scan the write beam over a region of the substrate, e.g., usingsignal 344. As a result,controller 330 directs the other components of the system to pattern the substrate. The patterning is typically based on an electronic design pattern stored in the controller. In some applications the write beam patterns a photoresist coated on the substrate and in other applications the write beam directly patterns, e.g., etches, the substrate. - An important application of such a system is the fabrication of masks and reticles used in the lithography methods described previously. For example, to fabricate a lithography mask an electron beam can be used to pattern a chromium-coated glass substrate. In such cases where the write beam is an electron beam, the beam writing system encloses the electron beam path in a vacuum. Also, in cases where the write beam is, e.g., an electron or ion beam, the beam focusing assembly includes electric field generators such as quadrapole lenses for focusing and directing the charged particles onto the substrate under vacuum. In other cases where the write beam is a radiation beam, e.g., x-ray, UV, or visible radiation, the beam focusing assembly includes corresponding optics for focusing and directing the radiation to the substrate.
- Yet other changes may be made to the invention. For example, it may be desirable in certain applications to monitor the refractive index of the gas contained on both the reference and in the measurement legs of the interferometer. Examples include the well-known column reference style of interferometer, in which the reference leg comprises a target optic placed at one position within a mechanical system, and the measurement leg comprises a target optic placed at a different position within the same mechanical system. Another example relates to application of the measurement of small angles, for which both the measurement and reference beams impinge upon the same target optic but at a small physical offset, thereby providing a sensitive measure of the angular orientation of the target optic. In addition, it will be appreciated that a separate displacement interferometer may be employed with a separate dispersion interferometer. These applications and configurations are well known to those skilled in the art and the necessary modifications are intended to be within the scope of the invention.
Claims (28)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/301,301 US6417927B2 (en) | 1999-04-28 | 1999-04-28 | Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer |
TW089103985A TW424135B (en) | 1999-04-28 | 2000-03-06 | Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer |
PCT/US2000/005859 WO2000065302A1 (en) | 1999-04-28 | 2000-03-07 | Interferometric apparatus and method that compensate refractive index fluctuations |
EP00913773A EP1194731A4 (en) | 1999-04-28 | 2000-03-07 | Interferometric apparatus and method that compensate refractive index fluctuations |
JP2000613997A JP4510937B2 (en) | 1999-04-28 | 2000-03-07 | Interferometer and method for compensating for refractive index variation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/301,301 US6417927B2 (en) | 1999-04-28 | 1999-04-28 | Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020001086A1 true US20020001086A1 (en) | 2002-01-03 |
US6417927B2 US6417927B2 (en) | 2002-07-09 |
Family
ID=23162792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/301,301 Expired - Lifetime US6417927B2 (en) | 1999-04-28 | 1999-04-28 | Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer |
Country Status (5)
Country | Link |
---|---|
US (1) | US6417927B2 (en) |
EP (1) | EP1194731A4 (en) |
JP (1) | JP4510937B2 (en) |
TW (1) | TW424135B (en) |
WO (1) | WO2000065302A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004042319A2 (en) * | 2002-11-04 | 2004-05-21 | Zygo Corporation | Compensation of refractivity perturbations in an intererometer path |
EP1424597A2 (en) * | 2002-11-27 | 2004-06-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20050018206A1 (en) * | 2003-06-19 | 2005-01-27 | Hill Henry A. | Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems |
DE10334350B3 (en) * | 2003-07-25 | 2005-02-03 | Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt | Method for determining the refractive index in interferometric length measurements and interferometer arrangement therefor |
US20050237536A1 (en) * | 2004-04-22 | 2005-10-27 | Hill Henry A | Interferometry systems and methods of using interferometry systems |
US20060061771A1 (en) * | 2003-06-19 | 2006-03-23 | Hill Henry A | Compensation for effects of beam misalignments in interferometer metrology systems |
US20060072119A1 (en) * | 2004-10-06 | 2006-04-06 | Hill Henry A | Error correction in interferometry systems |
US7042574B2 (en) | 2001-12-03 | 2006-05-09 | Zygo Corporation | Compensating for effects of non-isotropic gas mixtures in interferometers |
US7075619B2 (en) | 2002-12-12 | 2006-07-11 | Zygo Corporation | In-process correction of stage mirror deformations during a photolithography exposure cycle |
US20060215173A1 (en) * | 2005-03-18 | 2006-09-28 | Hill Henry A | Multi-axis interferometer with procedure and data processing for mirror mapping |
US20060242669A1 (en) * | 2005-04-20 | 2006-10-26 | Jupiter Systems | Display node for use in an audiovisual signal routing and distribution system |
US7283248B2 (en) | 2004-01-06 | 2007-10-16 | Zygo Corporation | Multi-axis interferometers and methods and systems using multi-axis interferometers |
US7375823B2 (en) | 2004-04-22 | 2008-05-20 | Zygo Corporation | Interferometry systems and methods of using interferometry systems |
US20100128280A1 (en) * | 2008-11-26 | 2010-05-27 | Zygo Corporation | Scan error correction in low coherence scanning interferometry |
US20100195112A1 (en) * | 2009-01-30 | 2010-08-05 | Zygo Corporation | Interferometer with scan motion detection |
US20110216326A1 (en) * | 2010-03-03 | 2011-09-08 | Canon Kabushiki Kaisha | Lightwave interference measurement apparatus used to measure optical path length or distance |
US20120044500A1 (en) * | 2010-08-19 | 2012-02-23 | Canon Kabushiki Kaisha | Optical interferometer |
US20160359834A1 (en) * | 2015-06-04 | 2016-12-08 | Ricoh Company, Ltd. | Data process system, data process apparatus, and data protection method |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6842256B2 (en) * | 2001-11-15 | 2005-01-11 | Zygo Corporation | Compensating for effects of variations in gas refractivity in interferometers |
TWI259898B (en) * | 2002-01-24 | 2006-08-11 | Zygo Corp | Method and apparatus for compensation of time-varying optical properties of gas in interferometry |
US7180603B2 (en) * | 2003-06-26 | 2007-02-20 | Zygo Corporation | Reduction of thermal non-cyclic error effects in interferometers |
US7310152B2 (en) * | 2004-03-03 | 2007-12-18 | Zygo Corporation | Interferometer assemblies having reduced cyclic errors and system using the interferometer assemblies |
US7298493B2 (en) | 2004-06-30 | 2007-11-20 | Zygo Corporation | Interferometric optical assemblies and systems including interferometric optical assemblies |
US7826063B2 (en) | 2005-04-29 | 2010-11-02 | Zygo Corporation | Compensation of effects of atmospheric perturbations in optical metrology |
US7271917B2 (en) * | 2005-05-03 | 2007-09-18 | Asml Netherlands B.V. | Lithographic apparatus, position quantity detection system and method |
WO2008051232A2 (en) * | 2006-10-25 | 2008-05-02 | Zygo Corporation | Compensation of effects of atmospheric perturbations in optical metrology |
US7812964B2 (en) | 2006-11-15 | 2010-10-12 | Zygo Corporation | Distance measuring interferometer and encoder metrology systems for use in lithography tools |
WO2008073454A2 (en) | 2006-12-11 | 2008-06-19 | Zygo Corporation | Multiple-degree of freedom interferometer with compensation for gas effects |
US7894075B2 (en) | 2006-12-11 | 2011-02-22 | Zygo Corporation | Multiple-degree of freedom interferometer with compensation for gas effects |
DE102007055665A1 (en) * | 2007-11-21 | 2009-05-28 | Dr. Johannes Heidenhain Gmbh | Interferometer arrangement and method for their operation |
JP5361230B2 (en) * | 2008-03-26 | 2013-12-04 | 株式会社ミツトヨ | Two-wavelength laser interferometer evaluation calibration method, evaluation calibration apparatus, and evaluation calibration system |
JP5245740B2 (en) * | 2008-11-13 | 2013-07-24 | 株式会社ニコン | Exposure apparatus and exposure method |
JP5489658B2 (en) * | 2009-11-05 | 2014-05-14 | キヤノン株式会社 | Measuring device |
JP5704897B2 (en) * | 2010-11-11 | 2015-04-22 | キヤノン株式会社 | Interference measurement method and interference measurement apparatus |
CN102033053B (en) * | 2010-11-12 | 2012-06-20 | 浙江理工大学 | Method and device for measuring refractive index of air based on laser synthetic wavelength interferometry |
JP6686201B2 (en) * | 2019-03-22 | 2020-04-22 | 株式会社東京精密 | Distance measuring device and distance measuring method |
JP7494066B2 (en) | 2020-09-14 | 2024-06-03 | キヤノン株式会社 | Exposure apparatus and method for manufacturing article |
CN115077424B (en) * | 2022-07-15 | 2022-11-04 | 南昌昂坤半导体设备有限公司 | Real-time wafer surface curvature detection device and method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2569269A1 (en) * | 1984-08-16 | 1986-02-21 | Bouveau Jean Luc | Laser with incorporated interferometer for continuous metrology or reading of lengths, speeds, angles and refractive indices |
US4733967A (en) | 1987-03-19 | 1988-03-29 | Zygo Corporation | Apparatus for the measurement of the refractive index of a gas |
JPH0198902A (en) | 1987-10-12 | 1989-04-17 | Res Dev Corp Of Japan | Optical interference length measurement device |
US4813783A (en) | 1987-11-03 | 1989-03-21 | Carl-Zeiss-Stiftung | Interferometer system for making length or angle measurements |
JPH03252507A (en) * | 1990-03-02 | 1991-11-11 | Hitachi Ltd | Laser interferometric length measuring device and positioning method using it |
EP0508583B1 (en) * | 1991-03-08 | 1997-09-17 | Renishaw Transducer Systems Limited | Absolute gas refractometer |
JPH0634318A (en) * | 1992-07-14 | 1994-02-08 | Nikon Corp | Interference measuring apparatus |
US5404222A (en) | 1994-01-14 | 1995-04-04 | Sparta, Inc. | Interferametric measuring system with air turbulence compensation |
US5764362A (en) | 1996-08-20 | 1998-06-09 | Zygo Corporation | Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry |
US5838485A (en) * | 1996-08-20 | 1998-11-17 | Zygo Corporation | Superheterodyne interferometer and method for compensating the refractive index of air using electronic frequency multiplication |
US5991033A (en) * | 1996-09-20 | 1999-11-23 | Sparta, Inc. | Interferometer with air turbulence compensation |
US5748313A (en) * | 1996-11-14 | 1998-05-05 | Hewlett-Packard Company | Signal-to-noise ratio of second harmonic interferometers |
JP3626907B2 (en) * | 1997-10-02 | 2005-03-09 | ザイゴ コーポレイション | Interferometry method and apparatus |
US6014216A (en) * | 1999-01-08 | 2000-01-11 | Hewlett-Packard Company | Architecture for air-turbulence-compensated dual-wavelength heterodyne interferometer |
-
1999
- 1999-04-28 US US09/301,301 patent/US6417927B2/en not_active Expired - Lifetime
-
2000
- 2000-03-06 TW TW089103985A patent/TW424135B/en not_active IP Right Cessation
- 2000-03-07 JP JP2000613997A patent/JP4510937B2/en not_active Expired - Fee Related
- 2000-03-07 WO PCT/US2000/005859 patent/WO2000065302A1/en active Search and Examination
- 2000-03-07 EP EP00913773A patent/EP1194731A4/en not_active Withdrawn
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7042574B2 (en) | 2001-12-03 | 2006-05-09 | Zygo Corporation | Compensating for effects of non-isotropic gas mixtures in interferometers |
US20040141185A1 (en) * | 2002-11-04 | 2004-07-22 | Hill Henry A. | Compensation of refractivity perturbations in an interferometer path |
WO2004042319A3 (en) * | 2002-11-04 | 2004-11-04 | Zygo Corp | Compensation of refractivity perturbations in an intererometer path |
WO2004042319A2 (en) * | 2002-11-04 | 2004-05-21 | Zygo Corporation | Compensation of refractivity perturbations in an intererometer path |
US7268888B2 (en) | 2002-11-04 | 2007-09-11 | Zygo Corporation | Compensation of refractivity perturbations in an interferometer path |
EP1424597A3 (en) * | 2002-11-27 | 2006-05-17 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1424597A2 (en) * | 2002-11-27 | 2004-06-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
CN1503059B (en) * | 2002-11-27 | 2011-09-07 | Asml荷兰有限公司 | Lithographic apparatus and device manufacturing method |
JP4668953B2 (en) * | 2002-11-27 | 2011-04-13 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and device manufacturing method |
JP2007258749A (en) * | 2002-11-27 | 2007-10-04 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7075619B2 (en) | 2002-12-12 | 2006-07-11 | Zygo Corporation | In-process correction of stage mirror deformations during a photolithography exposure cycle |
US7327465B2 (en) | 2003-06-19 | 2008-02-05 | Zygo Corporation | Compensation for effects of beam misalignments in interferometer metrology systems |
US7286240B2 (en) | 2003-06-19 | 2007-10-23 | Zygo Corporation | Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems |
US20050018206A1 (en) * | 2003-06-19 | 2005-01-27 | Hill Henry A. | Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems |
US20060061771A1 (en) * | 2003-06-19 | 2006-03-23 | Hill Henry A | Compensation for effects of beam misalignments in interferometer metrology systems |
DE10334350B3 (en) * | 2003-07-25 | 2005-02-03 | Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Arbeit, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt | Method for determining the refractive index in interferometric length measurements and interferometer arrangement therefor |
US20070024859A1 (en) * | 2003-07-25 | 2007-02-01 | Bernd Bodermann | Method for determining the refractive index during interferometric length measurement and interferometric arrangement therefor |
US7420689B2 (en) * | 2003-07-25 | 2008-09-02 | Bundesrepublik Deutschland, Vertr. Durch Das Bundesministerium Fur Wirtschaft Und Technologie, Dieses Vertreten Durch Den Prasidenten Der Physikalisch-Technischen Bundesanstalt | Method for determining the refractive index during interferometric length measurement and interferometric arrangement therefor |
US7548322B2 (en) | 2004-01-06 | 2009-06-16 | Zygo Corporation | Multi-axis interferometers and methods and systems using multi-axis interferometers |
US7283248B2 (en) | 2004-01-06 | 2007-10-16 | Zygo Corporation | Multi-axis interferometers and methods and systems using multi-axis interferometers |
US20080117428A1 (en) * | 2004-01-06 | 2008-05-22 | Zygo Corporation | Multi-Axis Interferometers and Methods and Systems Using Multi-Axis Interferometers |
US7280223B2 (en) | 2004-04-22 | 2007-10-09 | Zygo Corporation | Interferometry systems and methods of using interferometry systems |
US20050237536A1 (en) * | 2004-04-22 | 2005-10-27 | Hill Henry A | Interferometry systems and methods of using interferometry systems |
US7375823B2 (en) | 2004-04-22 | 2008-05-20 | Zygo Corporation | Interferometry systems and methods of using interferometry systems |
US20050248772A1 (en) * | 2004-04-22 | 2005-11-10 | Hill Henry A | Interferometry systems and methods of using interferometry systems |
US7280224B2 (en) | 2004-04-22 | 2007-10-09 | Zygo Corporation | Interferometry systems and methods of using interferometry systems |
US7489407B2 (en) | 2004-10-06 | 2009-02-10 | Zygo Corporation | Error correction in interferometry systems |
US20060072119A1 (en) * | 2004-10-06 | 2006-04-06 | Hill Henry A | Error correction in interferometry systems |
US7433049B2 (en) | 2005-03-18 | 2008-10-07 | Zygo Corporation | Multi-axis interferometer with procedure and data processing for mirror mapping |
US20060215173A1 (en) * | 2005-03-18 | 2006-09-28 | Hill Henry A | Multi-axis interferometer with procedure and data processing for mirror mapping |
US20060242669A1 (en) * | 2005-04-20 | 2006-10-26 | Jupiter Systems | Display node for use in an audiovisual signal routing and distribution system |
US8120781B2 (en) | 2008-11-26 | 2012-02-21 | Zygo Corporation | Interferometric systems and methods featuring spectral analysis of unevenly sampled data |
US8379218B2 (en) | 2008-11-26 | 2013-02-19 | Zygo Corporation | Fiber-based interferometer system for monitoring an imaging interferometer |
US20100128276A1 (en) * | 2008-11-26 | 2010-05-27 | Zygo Corporation | Compound reference interferometer |
US7978338B2 (en) | 2008-11-26 | 2011-07-12 | Zygo Corporation | Compound reference interferometer |
US8004688B2 (en) | 2008-11-26 | 2011-08-23 | Zygo Corporation | Scan error correction in low coherence scanning interferometry |
US20100128278A1 (en) * | 2008-11-26 | 2010-05-27 | Zygo Corporation | Fiber-based interferometer system for monitoring an imaging interferometer |
US20100128283A1 (en) * | 2008-11-26 | 2010-05-27 | Zygo Corporation | Interferometric systems and methods featuring spectral analysis of unevenly sampled data |
US20100128280A1 (en) * | 2008-11-26 | 2010-05-27 | Zygo Corporation | Scan error correction in low coherence scanning interferometry |
US8902431B2 (en) | 2008-11-26 | 2014-12-02 | Zygo Corporation | Low coherence interferometry with scan error correction |
US20100195112A1 (en) * | 2009-01-30 | 2010-08-05 | Zygo Corporation | Interferometer with scan motion detection |
US8107084B2 (en) | 2009-01-30 | 2012-01-31 | Zygo Corporation | Interference microscope with scan motion detection using fringe motion in monitor patterns |
US20110216326A1 (en) * | 2010-03-03 | 2011-09-08 | Canon Kabushiki Kaisha | Lightwave interference measurement apparatus used to measure optical path length or distance |
US8416422B2 (en) * | 2010-03-03 | 2013-04-09 | Canon Kabushiki Kaisha | Lightwave interference measurement apparatus used to measure optical path length or distance |
US8576404B2 (en) * | 2010-08-19 | 2013-11-05 | Canon Kabushiki Kaisha | Optical interferometer |
US20120044500A1 (en) * | 2010-08-19 | 2012-02-23 | Canon Kabushiki Kaisha | Optical interferometer |
US20160359834A1 (en) * | 2015-06-04 | 2016-12-08 | Ricoh Company, Ltd. | Data process system, data process apparatus, and data protection method |
Also Published As
Publication number | Publication date |
---|---|
TW424135B (en) | 2001-03-01 |
WO2000065302A1 (en) | 2000-11-02 |
JP2002543372A (en) | 2002-12-17 |
US6417927B2 (en) | 2002-07-09 |
EP1194731A1 (en) | 2002-04-10 |
JP4510937B2 (en) | 2010-07-28 |
EP1194731A4 (en) | 2006-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6417927B2 (en) | Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer | |
US7548322B2 (en) | Multi-axis interferometers and methods and systems using multi-axis interferometers | |
US7057736B2 (en) | Cyclic error reduction in average interferometric position measurements | |
US7289226B2 (en) | Characterization and compensation of errors in multi-axis interferometry systems | |
US7268888B2 (en) | Compensation of refractivity perturbations in an interferometer path | |
US6839141B2 (en) | Method and apparatus for compensation of time-varying optical properties of gas in interferometry | |
WO2003064968A1 (en) | Multiple-pass interferometry | |
US7030994B2 (en) | Method and apparatus to measure fiber optic pickup errors in interferometry systems | |
US7330274B2 (en) | Compensation for geometric effects of beam misalignments in plane mirror interferometers | |
US6791693B2 (en) | Multiple-pass interferometry | |
US7180603B2 (en) | Reduction of thermal non-cyclic error effects in interferometers | |
US7321432B2 (en) | Measurement and compensation of errors in interferometers | |
US7262860B2 (en) | Compensation for errors in off-axis interferometric measurements | |
US7286240B2 (en) | Compensation for geometric effects of beam misalignments in plane mirror interferometer metrology systems | |
US20040061869A1 (en) | Compensation for errors in off-axis interferometric measurements | |
US7274462B2 (en) | In SITU measurement and compensation of errors due to imperfections in interferometer optics in displacement measuring interferometry systems | |
JP2005516206A (en) | Multipath interferometer | |
WO2005047974A2 (en) | Measurement and compensation of errors in interferometers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ZYGO CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GROOT, PETER J. DE;REEL/FRAME:009934/0304 Effective date: 19990421 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |