US20020001941A1 - Semiconductor device manufacturing method - Google Patents
Semiconductor device manufacturing method Download PDFInfo
- Publication number
- US20020001941A1 US20020001941A1 US09/386,148 US38614899A US2002001941A1 US 20020001941 A1 US20020001941 A1 US 20020001941A1 US 38614899 A US38614899 A US 38614899A US 2002001941 A1 US2002001941 A1 US 2002001941A1
- Authority
- US
- United States
- Prior art keywords
- insulating film
- opening
- film
- forming
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
- H01L21/76811—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving multiple stacked pre-patterned masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
- H01L21/76808—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures involving intermediate temporary filling with material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/10—Applying interconnections to be used for carrying current between separate components within a device
- H01L2221/1005—Formation and after-treatment of dielectrics
- H01L2221/101—Forming openings in dielectrics
- H01L2221/1015—Forming openings in dielectrics for dual damascene structures
- H01L2221/1036—Dual damascene with different via-level and trench-level dielectrics
Definitions
- the present invention relates to a semiconductor device manufacturing method and, more particularly, a semiconductor device manufacturing method including the step of forming wiring layers of a multilevel wiring structure and a via by using a dual damascene method.
- the width of the wiring is narrowed with the miniaturization of the semiconductor device and also the distance between the wirings becomes narrower. Therefore, wiring resistance is increased and also a parasitic capacitance due to the wirings is increased. This delays a signal speed and prevents a higher speed operation of the semiconductor device according to the scaling law.
- the insulating material with the small dielectric constant is effective to reduce the wiring capacitance. Also, selection of the metal wiring material is shifted from aluminum (Al) to copper (Cu) having the small resistivity to reduce the wiring resistance.
- the damascene method is employed to work the copper film.
- the damascene method can be roughly classified into the single damascene method and the dual damascene method.
- the multilayer structure of the wiring layers of the semiconductor device is advanced with the miniaturization.
- the number of wirings comes up to six layers in the semiconductor device of 0.18 ⁇ m wiring width generation.
- the wiring structure can be formed by repeating similar steps twelve times (six wiring formation steps and six plug formation steps), for example, according to the single damascene method, whereas the wiring structure can be formed only by repeating similar steps six times according to the dual damascene method.
- the reason why the number of steps employed in the dual damascene method is merely half of the single damascene method is that, as described above, the wirings and the plug can be formed simultaneously.
- the dual damascene method is advantageous to suppress a production cost and to increase a production efficiency.
- the dual damascene method is set forth in, for example, Patent Application Publication (KOKAI) Hei 9-55429 and Patent Application Publication (KOKAI) Hei 10-112503 in which the dual damascene method is applied to the interlayer insulating film including the low dielectric constant insulating film.
- FIGS. 1A to 1 D steps of forming the copper plug and the copper wiring structure by the dual damascene method which is set forth in Patent Application Publication (KOKAI) Hei 9-55429 are shown in FIGS. 1A to 1 D.
- KKAI Patent Application Publication
- a first silicon oxide film 2 , an organic low dielectric constant film 3 , and a second silicon oxide film 4 are formed in sequence on a silicon substrate 1 .
- fluorocarbon polymer such as polytetrafluoroethylene is employed as material of the organic low dielectric constant film.
- an opening 4 a having a wiring profile is formed in the second silicon oxide film 4 by patterning the second silicon oxide film 4 .
- resist is formed on the second silicon oxide film 4 and the opening 4 a .
- a plug window 5 a is formed on a part of the opening 4 a by exposing/developing the resist.
- the resultant resist is employed as a resist pattern 5 .
- a via-hole 6 is formed by etching the organic low dielectric constant film 3 and the first silicon oxide film 2 in sequence through the plug window 5 a of the resist pattern 5 .
- a wiring recess 7 is formed by selectively etching the organic low dielectric constant film 3 by the oxygen plasma through the opening 4 a of the second silicon oxide film 4 .
- copper is buried in the via-hole 6 and the wiring recess 7 , whereby the plug and the wiring are formed at the same time.
- wiring recesses are formed in a silicon oxide film 12 formed on a semiconductor substrate 11 , and then underlying wirings 13 are buried in the recesses. Then, a low dielectric constant resin film 14 and a first photoresist film 15 with low sensitivity are formed in sequence on the silicon oxide film 12 and the underlying wirings 13 . Then, a hole latent image 15 a in the first photoresist film 15 is formed by exposing. Then, a second photoresist film 16 with high sensitivity is coated on the first resist film 15 . A latent image 16 a of a wiring is then formed by exposing the second photoresist film 16 .
- a part of the wiring latent image 16 a is formed to overlap with the hole latent image 15 a .
- the first photoresist film 15 and the second photoresist film 16 are developed successively, so that the wiring latent image 16 a is removed to form a wiring window 16 b and also the hole latent image 15 a is removed to form a hole window 15 b .
- the first photoresist film 15 , the second photoresist film 16 , and the low dielectric constant resin film 14 are etched sequentially from the upper side, as shown in FIG. 2C.
- a vertical contact hole 17 and a wiring recess 18 are formed in the low dielectric constant resin film 14 .
- the copper (not shown) is buried in the vertical contact hole 17 and the wiring recess 18 simultaneously. Such copper is used as the plug in the vertical contact hole 17 and also used as the wiring in the wiring recess 18 .
- the reason why the hydrocarbon resin is employed as the organic low dielectric constant film is that the hydrocarbon resin is superior to the fluorocarbon polymer in adhesiveness for the silicon oxide film.
- an opening having a wiring pattern is formed in the metal film by the photolithography, then an opening having a via pattern profile is formed in the second insulating film by the photolithography, then the organic insulating film is etched using the second insulating film as a mask, then the first insulating film and the second insulating film are etched simultaneously while using the metal film and the organic insulating film as a mask, and then the organic insulating film is etched while using the second insulating film as a mask.
- a wiring recess is formed in the organic insulating film and the second insulating film, and a via-hole is formed in the first insulating film.
- the organic insulating film can be protected by the second insulating film in removing the resist which is employed to form the opening in the metal film, the organic insulating film is never etched by the resist removing etchant.
- the resist on the second insulating film can be removed simultaneously with the etching of the organic insulating film.
- the resist should be removed solely, and the underlying organic insulating film which is exposed is not badly affected at all in removing the resist.
- the wiring recess and the via can be formed with high precision by applying not only fluorocarbon polymer but also hydrocarbon resin as constituent material of the organic insulating film.
- the via-hole or the wiring recess can be formed in these films with high precision.
- an opening having a via pattern profile is formed in the second insulating film by the photolithography, then an opening having the via pattern profile is formed in the organic insulating film through the opening of the second insulating film, then an opening having a wiring pattern profile is formed in the second insulating film by the photolithography and at the same time an opening having the via pattern profile is formed by etching the first insulating film using the organic insulating film as a mask, and then an opening having the wiring pattern profile is formed by etching the organic insulating film while using the second insulating film as a mask.
- both the step of removing the resist used to form the opening and the step of forming the opening having the via pattern profile in the organic insulating film while using the second insulating film as a mask can be executed simultaneously by forming the opening having the via pattern profile in the second insulating film. Therefore, the patterning of the underlying organic insulating film into the unnecessary profile in removing the resist can be avoided. In addition, the organic insulating film is never etched into the unnecessary size in removing the resist formed on the second insulating film, so that the precision of the opening in the organic insulating film is never degraded.
- the opening having the wiring pattern profile is formed in the second insulating film and then the opening having the via-hole profile is formed in the underlying organic insulating film
- these opening profiles are transferred sequentially onto the insulating films positioned below them. Therefore, the wiring recess and the via-hole can be formed in the first insulating film, the second insulating film and the organic insulating film.
- the first insulating film, the second insulating film, and the organic insulating film can be etched individually under their optimum conditions, so that the wiring recess and the via-hole can be formed with high precision.
- the underlying organic insulating film may be interposed between the first insulating film and the second insulating film.
- the etching of the underlying organic insulating film may be carried out simultaneously when the overlying organic insulating film is etched.
- the opening having the via-hole pattern profile is formed in the first insulating film and the second insulating film by using the first photoresist, and then the opening having the wiring pattern profile is formed by etching the second insulating film and the upper portion of the first insulating film by using the second photoresist.
- both the step of removing the resist used to form the opening and the step of forming the opening having the via pattern profile in the organic insulating film while using the second insulating film as a mask can be executed simultaneously by forming the opening having the via pattern profile in the second insulating film. Therefore, the first insulating film formed of the underlying organic insulating material is never etched into the unnecessary size in removing the first resist, so that the precision of the opening in the organic insulating film is never degraded.
- the via and the wirings are formed in the first insulating film formed of organic material, the wiring capacitance can be reduced effectively rather than the multilevel wiring structure in which the silicon oxide and the silicon nitride are employed.
- the exchange number of the etching gas which is employed to form the via-hole and the wiring recess in the insulating film can be reduced, and thus it is possible to form the multilevel wirings at low cost.
- FIGS. 1A to 1 D are sectional views showing steps of forming a multilevel wiring structure by the dual damascene method in the first prior art respectively;
- FIGS. 2A to 2 C are sectional views showing steps of forming a multilevel wiring structure by the dual damascene method in the second prior art respectively;
- FIGS. 3A to 3 P are sectional views showing steps of forming a multilevel wiring structure by a dual damascene method according to a first embodiment of the present invention respectively;
- FIGS. 4A to 4 G are sectional views showing steps of forming a multilevel wiring structure by a dual damascene method according to a second embodiment of the present invention respectively;
- FIG. 5 is a view relationships between a diameter of a contact via formed by the first embodiment and the second embodiment and yield;
- FIG. 6 is a view showing relationships between a distance between wirings formed by the first embodiment and the second embodiment and a capacitance ratio of the wirings, while comparing with the conventional relationship;
- FIG. 7 is a sectional view showing a step of forming an opening on an organic insulating film by a dual damascene method according to a third embodiment of the present invention.
- FIGS. 8A to 8 P are sectional views showing steps of forming a multilevel wiring structure by a dual damascene method according to a fourth embodiment of the present invention respectively.
- FIGS. 3A to 3 P show steps of forming wirings of a semiconductor device by a dual damascene method according to a first embodiment of the present invention.
- FIG. 3A shows the structure in which a first silicon oxide film (SiO 2 film) 22 , a first organic insulating film 23 , a second silicon oxide film 24 , and a photoresist film 25 are formed on a silicon substrate 21 .
- the first silicon oxide film 22 and the second silicon oxide film 24 are formed by the plasma CVD method to have a thickness of 200 nm and a thickness of 100 nm respectively.
- the first organic insulating film 23 is formed by coating the low dielectric constant material, for example, FLARE2.0 (product name) manufactured by AlliedSignal, by the spin coating to have a thickness of 400 nm.
- the FLARE2.0 (product name) is aromatic polymer whose dielectric constant is 2.8 which is lower than the dielectric constant of the SiO 2 film and whose heat resistance is more than 400° C.
- the FLARE2.0 (product name) is employed as the first organic insulating film 23 herein, hydrocarbon polymer such as SiLK (product name) manufactured by The Dow Chemical Co., etc. may be employed. Also, other hydrocarbon containing resin, fluorocarbon polymer, and the like may be employed as the first organic insulating film 23 .
- the photoresist film 25 is photosensitive polymer. Windows 25 a for wiring pattern are formed by exposing/developing the photoresist film 25 .
- openings 24 a each having a wiring pattern profile are formed by etching the second silicon oxide film 24 through the windows 25 a of the photoresist film 25 .
- the etching of the second silicon oxide film 24 is carried out by the plasma etching method using a CF 4 gas, a CH 2 F 2 gas, and an Ar gas. Since such etching gas belongs to a fluorocarbon group, the second silicon oxide film 24 is etched selectively to thus form the wiring openings 24 a , nevertheless the first organic insulating film 23 under the second silicon oxide film 24 is seldom etched.
- openings 23 a for wiring pattern profiles are formed by removing the part of the first organic insulating film 23 , which is exposed from the wiring openings 24 a of the second silicon oxide film 24 .
- the etching of the first organic insulating film 23 is conducted in the atmosphere into which an 02 gas and the Ar gas are introduced.
- the etchant is composed of the oxygen
- the first organic insulating film 23 and the photoresist film 25 can be etched selectively with respect to the SiO 2 films 22 , 24 , but the SiO 2 film 24 cannot be etched.
- the photoresist film 25 is etched by the oxygen, the photoresist film 25 can be removed simultaneously with the etching of the first organic insulating film 23 .
- a first wiring recess 26 consists of the opening 24 a of the second silicon oxide film 24 and the opening 23 a of the first organic insulating film 23 , which are formed by the above patterning processes.
- the etching gases similar to the above are employed in respective etchings of the organic insulating film and the SiO 2 film.
- the opening 23 a of the first organic insulating film 23 and the opening 24 a of the second silicon oxide film 24 are overlapped vertically with each other, and are used as the first wiring recess 26 .
- a first barrier metal film 27 made of TiN or TaN as a refractory metal is formed in the first wiring recess 26 and on the second silicon oxide film 24 by the sputtering to have a thickness of 50 nm.
- a first copper (Cu) film 28 is similarly formed on the first barrier metal film 27 by the sputtering to have a thickness of 800 nm.
- the annealing process is applied to the first Cu film 28 for five minutes in the hydrogen gas atmosphere of 400° C. and 0.1 Torr in order to planarize the upper surface. After this annealing process, the first Cu film 28 can be buried completely in the first wiring recess 26 .
- the first Cu film 28 and the first barrier metal film 27 are polished by using the chemical mechanical polishing (CMP) method.
- CMP chemical mechanical polishing
- a 50 nm thick silicon nitride film 30 and a 600 nm thick third silicon oxide film 31 are formed by the plasma CVD method on the first wirings 29 and the second silicon oxide film 24 .
- a second organic insulating film 32 of 400 nm thickness is formed by the spin coating on the third silicon oxide film 31 .
- any one of above materials employed for the first organic insulating film 23 may be selected as the second organic insulating film 32 .
- a fourth silicon oxide film 33 of 100 nm thickness is formed on the second organic insulating film 32 by the plasma CVD method.
- an intermediate metal film 34 made of TiN is formed on the fourth silicon oxide film 33 by the sputtering to have a thickness of 100 nm.
- the intermediate metal film 34 it is possible to use other refractory metal or refractory metal compound, e.g., tantalum (Ta) or tantalum nitride (TaN), in addition to TiN.
- a photoresist film 35 is coated on the intermediate metal film 34 .
- a window 35 a which corresponds to a second wiring profile is formed by exposing/ developing the photoresist 35 .
- a wiring opening 34 a which has a profile corresponding to the second wiring is formed in the intermediate metal film 34 by the photolithography method using the photoresist film 35 as a mask.
- Such wiring pattern profile is not limited particularly.
- a photoresist film 36 is coated on the intermediate metal film 34 and in the wiring opening 34 a .
- a window 36 a which is positioned in the wiring opening 34 a so as to oppose to a part of the first wirings 29 is formed in the photoresist film 36 by exposing/developing the photoresist film 36 .
- the window 36 a has a profile corresponding to a contact via.
- an opening 33 a which corresponds to the contact via is formed by etching the fourth silicon oxide film 33 through the window 36 a of the photoresist film 36 .
- an opening 32 a is formed by etching the second organic insulating film 32 through the opening 33 a with the use of the plasma anisotropic etching using oxygen and argon.
- an overall photoresist film 36 can be etched simultaneously and thus removed. Accordingly, a step of removing the photoresist film 36 independently can be omitted and in addition the second organic insulating film 32 is never etched unnecessarily.
- an opening 33 b is formed by etching the fourth silicon oxide film 33 through the opening 34 a with the use of the plasma etching using a fluorine gas.
- the second organic insulating film 32 is used as a mask in the course of this etching.
- the third silicon oxide film 31 formed under the second organic insulating film 32 is etched through the opening 32 a of the second organic insulating film 32 , whereby an opening 31 a is formed in the third silicon oxide film 31 .
- the second organic insulating film 32 when the second organic insulating film 32 is etched by the oxygen plasma through the opening 34 a of the intermediate metal film 34 , such second organic insulating film 32 can be patterned into a wiring profile and thus a wiring opening 32 b shown in FIG. 3L can be formed.
- the wiring opening 32 b of the second organic insulating film 32 as well as the wiring opening 33 b of the fourth silicon oxide film 33 is used as a second wiring recess 37 .
- an opening 30 a is formed by etching the silicon nitride film 30 under the opening 31 a by the plasma etching using a C 4 F 8 gas and the O 2 gas.
- the opening 30 a of the silicon nitride film 30 and the opening 31 a of the third silicon oxide film 31 are employed as a contact via-hole 38 , and thus a part of the first wiring 29 is exposed thereunder.
- a second barrier metal film 39 made of TiN or TaN and having a thickness of 50 nm is formed by the sputtering along inner surfaces of the second wiring recess 37 and the contact via-hole 38 and an upper surface of the intermediate metal film 34 .
- a second copper film 40 is formed by the sputtering to have a thickness of 100 nm.
- a third copper film 41 of 1500 nm thickness is formed on the second copper film 40 by the electrolytic plating method. Then, the third copper film 41 is annealed at 400° C. for thirty minutes in the hydrogen atmosphere. The annealing process is carried out to grow particles in the third copper film 41 and to enhance the reliability of the wirings.
- respective films from the third copper film 41 to the intermediate metal film 34 are polished in sequence by the CMP method, whereby these conductive films remain only in the second wiring recess 37 and the contact via-hole 38 .
- the conductive film in the second wiring recess 37 is used as a second wiring 42
- the conductive film remained in the contact via-hole 38 is used as a plug 43 .
- the dual damascene method according to the present invention has been finished, and then the process is shifted to a step of forming another wiring on the structure obtained above.
- the second organic insulating film 32 formed thereunder is in no way exposed from the opening 34 a because such second organic insulating film 32 is covered with the fourth silicon oxide film 33 .
- the second organic insulating film 32 is never etched at the time when the photoresist film 35 used in patterning the intermediate metal film 34 is etched by the oxygen plasma.
- the fluorocarbon polymer but also the hydrocarbon containing resin can be employed as material constituting the second organic insulating film 32 .
- the opening 32 a is formed in the second organic insulating film 32 while using as a mask the fourth silicon oxide film 33 in which the opening 33 a having a profile corresponding to the contact via-hole is formed, there is no situation that the second organic insulating film 32 is etched unnecessarily.
- the underlying inorganic film 31 , the organic insulating film 32 , the overlying inorganic film 33 , and the intermediate metal film 34 are formed in sequence on the first wiring 29 , then the opening 34 a corresponding to the wiring profile is formed in the intermediate metal film 34 , and then the opening 33 a corresponding to the via-hole profile is formed in the overlying inorganic film 33 .
- the profile of the opening 33 a corresponding to the via-hole is transferred onto the organic insulating film 32 and the underlying inorganic film 31 sequentially to form the openings 32 a and 31 a respectively.
- the openings 33 b , 32 b are formed by transferring the opening 34 a corresponding to the wiring profile onto the overlying inorganic film 33 and the organic insulating film 32 sequentially.
- the opening profiles can be formed in respective films with good precision.
- the silicon containing insulating film such as an Si 3 N 4 film, an SiON film, an SiC film, etc. may be employed in place of the above SiO 2 films. This is similarly true of the embodiments to be described hereinafter.
- the intermediate metal film 34 is formed on the fourth silicon oxide film 33 , and then the opening 34 a for the second wiring is formed in the intermediate metal film 34 .
- a method of forming the second wiring recess 37 and the contact via-hole without the intermediate metal film 34 will be explained hereunder.
- FIG. 4A shows the situation that the intermediate metal film 34 is not formed in the multilevel structure shown in FIG. 3F. Then, photoresist 44 is coated on the fourth silicon oxide film 33 in such situation. Then, a window 44 a which is employed to form a contact via-hole is formed by exposing/developing the photoresist 44 . The window 44 a is positioned over a part of the first wirings 29 .
- an opening 33 c is formed by etching the fourth silicon oxide film 33 through the window 44 a of the photoresist 44 .
- an opening 32 c is formed in the second organic insulating film 32 by etching the second organic insulating film 32 through the window 44 a of the photoresist 44 and the opening 33 c of the fourth silicon oxide film 33 .
- the plasma anisotropic etching method using the oxygen is employed in etching the second organic insulating film 32 , whereby the photoresist 44 can be etched simultaneously and thus removed.
- photoresist 45 is formed on the fourth silicon oxide film 33 .
- a window 45 a having a second wiring pattern is formed by exposing/developing the photoresist 45 .
- the opening 32 c of the second organic insulating film 32 is hardly expanded by the developer for developing the photoresist 45 .
- a wiring opening 32 d is formed in the position to contain the opening 32 c .
- the plasma anisotropic etching method using the oxygen containing gas is employed to etch the second organic insulating film 32 , so that the photoresist 45 can be etched simultaneously and thus removed.
- the second wiring recess 37 is composed of the wiring opening 33 d of the fourth silicon oxide film 33 and the wiring opening 32 d of the second organic insulating film 32 .
- an opening 30 c serving as the contact via-hole 38 is formed by etching the silicon nitride film 30 through the opening 31 c of the third silicon oxide film 31 . Accordingly, a part of the first wiring 29 is exposed from the contact via-hole 38 .
- a via 43 made of copper is buried in the contact via-hole 38 and also a second wiring 42 is buried in the second wiring recess 37 .
- the photoresist is employed instead of the metal film, as a mask to form the opening corresponding to the contact via in the fourth silicon oxide film 33 .
- the step of forming the intermediate metal film 34 and the step of patterning the intermediate metal film 34 in the first embodiment can be omitted. Accordingly, the number of steps can be reduced rather than the first embodiment and thus the forming process can be made easy.
- the positional discrepancy caused in exposing the photoresist 45 in FIG. 4D has an influence upon diameters of the openings 30 c , 31 c , so that the diameters of the openings 30 c , 31 c are reduced by a displaced distance respectively. Therefore, the steps in the second embodiment are effective to form the wiring openings in the upper layer portion which does not so depend on the positional discrepancy precision in the photolithography.
- the opening 33 d for forming the second wiring is formed after the opening 33 c for forming the contact via-hole has been formed in the fourth silicon oxide film 33 , and also the opening portions 32 c , 32 d are formed in the second organic insulating film 32 when two photoresist 44 , 45 being coated on the fourth silicon oxide film 33 are removed respectively. Therefore, the second organic insulating film 32 is not badly affected at all when the photoresist formed on the fourth silicon oxide film 33 is removed by the oxygen plasma.
- FIG. 5 shows the yield of the via plug which is obtained by measuring the contact resistance of the via plug and then deciding the via plug whose contact resistance exceeds a theoretical value by more than 10% as the defective.
- Such via plug connects the first layer wiring and the second layer wiring in the double-layered wirings which are formed according to the first embodiment and the second embodiment.
- the abscissa in FIG. 5 denotes the diameter of the via contact. As indicated by this result, the high yield in excess of 97 t can be achieved at any via diameter.
- FIG. 6 shows the wiring capacitance ratio which is obtained by measuring the wiring capacitance in the same layer of the double-layered wirings, which are formed according to the first embodiment and the second embodiment, and then comparing it with the wiring capacitance generated when only the SiO 2 film is employed in the prior art.
- the abscissa in FIG. 13 denotes the distance between the wirings.
- the wiring capacitance ratio can be reduced in the range from 60% to 65%. This ratio is substantially equal to the ratio of the dielectric constant 4.3 of SiO 2 and the dielectric constant 2.8 of the organic insulating film, which shows the fact that the wirings have been formed satisfactorily.
- another organic insulating film may be formed between the silicon nitride film 30 and the third silicon oxide film 31 .
- the openings 32 b , 32 d serving as the wiring recess are formed in the second organic insulating film 32 and simultaneously an opening 50 a serving as the contact via-hole is formed in another organic insulating film 50 through the openings 31 a , 31 c of the third silicon oxide film 31 .
- the opening 50 a After the opening 50 a is formed, a part of the first wiring is exposed by etching the silicon nitride film 30 through the opening 50 a and then the conductive film is buried in the via-hole and the wiring recess to thus form the via and the second wiring, like the first embodiment and the second embodiment.
- the insulating layer into which the second copper wiring and the via (plug) are buried includes not only the organic insulating film but also the silicon oxide film.
- steps of forming a multilevel wiring structure in which the second copper wiring and the via (plug) are buried in the organic insulating film will be explained hereunder.
- a first silicon oxide (SiO 2 ) film 52 and a first silicon nitride (Si 3 N 4 ) film 53 are formed in order on a silicon substrate 51 by the plasma CVD method to have a thickness of 500 nm and a thickness of 50 nm respectively.
- silane (SiH 4 ) and nitrogen monoxide (N 2 O) are employed as a source gas to grow the silicon oxide film
- silane (SiH 4 ) and ammonia (NH 3 ) are employed as a source gas to grow the silicon nitride film.
- the etching of the silicon oxide is carried out by the plasma etching method using a CF 4 gas or a mixed gas of CH 2 F 2 and Ar.
- the etching of the silicon nitride is carried out by the plasma etching method using a mixed gas of CHF 3 and Ar.
- a first organic insulating film 54 of low dielectric constant is formed on the first silicon nitride film 53 .
- the first organic insulating film 54 may be formed by coating the low dielectric constant organic insulating material formed of the hydrocarbon group containing the aromatic material on the first silicon nitride film 53 via the spin coating to have a thickness of 300 nm, and then curing the organic insulating material for 30 minutes via the thermal annealing at the temperature of 400° C. in the nitrogen (N 2 ) atmosphere.
- the low dielectric constant organic insulating material formed of the hydrocarbon group containing the aromatic material for example, there is “SiLK” (product name) manufactured by The Dow Chemical Co.
- the dielectric constant of “SiLK” is about 2.7.
- a second silicon oxide film 55 is formed on the first organic insulating film 54 by the plasma CVD method to have a thickness of 100 nm.
- photoresist 56 is coated on the second silicon oxide film 55 .
- Windows 56 a each having a wiring pattern are formed by exposing/developing the photoresist 56 .
- a polyvinylphenol resin is employed as the photoresist 56 .
- openings 55 a are formed by removing a part of the second silicon oxide film 55 , which is exposed from the windows 56 a , by the plasma etching method using the photoresist 56 as a mask.
- openings 54 a are formed by removing a part of the first organic insulating film 54 through the openings 55 a by the plasma anisotropic etching method.
- nitrogen (N 2 ) and hydrogen (H 2 ) are employed as the etching gas of the first organic insulating film 54 . According to this etching gas, the photoresist 56 is etched and thus removed at the same time when the first organic insulating film 54 is etched.
- a first wiring recess 57 is composed of the opening 55 a of the second silicon oxide film 55 and the opening 54 a of the first organic insulating film 54 .
- a first barrier metal film 58 is formed by the sputtering in the inside of the first wiring recess 57 and on the upper surface of the second silicon oxide film 55 .
- the first barrier metal film 58 is formed of tantalum nitride (TaN) as a refractory metal and has a thickness of 20 nm.
- a first copper (Cu) film 59 is formed on the first barrier metal film 58 by the sputtering to have a thickness of 800 nm.
- the upper surface of the first copper film 59 is planarized by annealing the first copper film 59 at 400° C. for 15 minutes in the atmosphere of the mixed gas of the nitrogen and the oxygen. After this annealing process, the first copper film 59 can be buried completely in the first wiring recess 57 .
- the first copper film 59 and the first barrier metal film 58 are polished by using the chemical mechanical polishing (CMP) method.
- CMP chemical mechanical polishing
- a second silicon nitride (Si 3 N 4 ) film 61 of 50 nm thickness is formed on the first wiring 60 and the second silicon oxide film 55 by the plasma CVD method.
- a second organic insulating film 62 of about 100 nm thickness is formed on the second silicon nitride film 61 .
- the second organic insulating film 62 is formed by the same method as the first organic insulating film 54 using the insulating material such as “SiLK”.
- a third silicon oxide film 63 of 100 nm thickness is formed on the second organic insulating film 62 by the plasma CVD method.
- photoresist 64 is coated on the third silicon oxide film 63 .
- a window 64 a having a via-hole profile is formed by exposing/developing the photoresist 64 .
- an opening 63 a is formed in the third silicon oxide film 63 by removing a part of the third silicon oxide film 63 through the window 64 a of the photoresist 64 by the plasma etching method.
- an opening 62 a is formed in the second organic insulating film 62 by etching the second organic insulating film 62 through the opening 63 a .
- the opening 63 a of the third silicon oxide film 63 and the opening 62 a of the second organic insulating film 62 are used as a contact hole (via-hole) 65 .
- the photoresist 64 can also be etched simultaneously and therefore there is no necessity that the photoresist 64 should be removed by another step.
- the third silicon oxide film 63 acts as a mask when the second organic insulating film 62 is etched.
- the inorganic material film such as the SiO 2 film and the Si 3 N 4 film have the extremely small etching rate if such etching gas is used, and the second organic insulating film 62 is etched at the high selective ratio.
- the photoresist 64 remains after the etching of the second organic insulating film 62 , it may be removed by using the hydroxylamine solvent.
- the second organic insulating film 62 made of “SiLK” is not etched by the hydroxylamine solvent.
- photoresist 66 is coated on the third silicon oxide film 63 .
- a window 66 a having a wiring pattern is formed by exposing/developing the photoresist 66 .
- the photoresist 66 is accumulated on the bottom of the contact hole 65 after the development, and thus is often difficult to remove. If it is tried to remove the photoresist 66 in the contact hole 65 by the solvent for the photoresist, the photoresist 66 on the third silicon oxide film 63 is simultaneously etched to cause the deformation of the window 66 a . Therefore, the photoresist 66 should be removed by using the following steps.
- the third silicon oxide film 63 is etched while using the photoresist 66 as a mask and further the second organic insulating film 62 is etched in the plasma atmosphere until a depth which corresponds to the thickness of the wiring. Accordingly, a second wiring recess 67 is formed on the upper portion of the second organic insulating film 62 through the third silicon oxide film 63 . If the hydrogen and the nitrogen are employed as the etching gas of the second organic insulating film 62 , as described above, the photoresist 66 is etched simultaneously.
- the photoresist 66 remains on the bottom portion of the contact hole 65 after the second wiring recess 67 has been formed, or if the photoresist 66 remains on the third silicon oxide film 63 , such photoresist 66 can be removed by the hydroxylamine good solvent, as shown in FIG. 8L.
- the photoresist 66 which remains on the bottom of the contact hole 65 has been exposed to the plasma upon etching the second organic insulating film 62 , so that the quality of the surface of the photoresist 66 has been improved. Therefore, it is difficult to remove the photoresist 66 by the good solvent for the photoresist, and thus the hydroxylamine good solvent is effective.
- the second Si 3 N 4 film formed directly below the contact hole 65 is removed by the plasma etching method using C 4 F 8 and O 2 , whereby a part of the first wiring 60 can be exposed.
- a TaN film 68 of 20 nm thickness is formed as a barrier metal by the sputtering along the inner surfaces of the second wiring recess 67 and the contact hole 65 , and the upper surface of the third silicon oxide film 63 .
- a copper seed film 69 of 150 nm thickness is formed on the TaN film 68 by the sputtering.
- a copper film 70 of 800 nm thickness is formed on the copper seed film 69 by the electrolytic plating method. Then, the copper film 70 , the copper seed film 69 , and the TaN film 68 which exist on the third silicon oxide film 63 are polished and removed by the CMP method, as shown in FIG. 8P. These metal films which remain in the contact hole 65 after this polishing are used as a plug (via) 71 . These metal films which remain in the second wiring recess 67 over the contact hole 65 are applied as a second wiring 72 .
- the “SiLK” is employed as the low dielectric constant organic insulating films 54 , 62 .
- other organic insulating film e.g., “BCB” (product name) manufactured by The Dow Chemical Co., “FLARE” (product name) manufactured by AlliedSignal, or “VELOX” (product name) manufactured by SCHUMACHER may be employed.
- the inorganic material and the low dielectric constant organic material are employed as the interlayer insulating film. Also, in the multilevel wiring forming steps by the dual damascene method using the copper as the wiring, the opening having the via-hole profile is formed in the underlying organic insulating film while using the uppermost inorganic insulating film as a mask after the opening having the via-hole profile has been formed in the uppermost inorganic insulating film, and then the opening having the wiring profile is formed in the underlying organic insulating film while using the uppermost inorganic insulating film as a mask after the opening having the wiring profile has been formed in the uppermost inorganic insulating film.
- the photoresist which is employed to form the opening in the uppermost inorganic insulating film can be removed at the same time when the opening is formed in the next organic insulating film, and the bad influence upon the opening of the organic insulating film in removing the photoresist can be prevented.
- the inorganic insulating film and the organic insulating film which constitute the interlayer insulating film can be etched under their optimum conditions respectively.
- the via and the wirings are formed in the organic insulating film by the dual damascene method, the wiring capacitance can be reduced effectively rather than the multilevel wiring structure in which the silicon oxide and the silicon nitride are employed.
- the exchange number of the etching gas which is employed to form the via-hole and the wiring recess in the insulating film can be reduced, and thus it is possible to form the multilevel wirings at low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a semiconductor device manufacturing method and, more particularly, a semiconductor device manufacturing method including the step of forming wiring layers of a multilevel wiring structure and a via by using a dual damascene method.
- 2. Description of the Prior Art
- In recent years, the width of the wiring is narrowed with the miniaturization of the semiconductor device and also the distance between the wirings becomes narrower. Therefore, wiring resistance is increased and also a parasitic capacitance due to the wirings is increased. This delays a signal speed and prevents a higher speed operation of the semiconductor device according to the scaling law.
- Under such circumstances, in order to reduce the parasitic capacitance between the wirings and the wiring resistance, it is needed to check again the multilevel wiring forming method and the insulating material and the metal wiring material.
- The insulating material with the small dielectric constant is effective to reduce the wiring capacitance. Also, selection of the metal wiring material is shifted from aluminum (Al) to copper (Cu) having the small resistivity to reduce the wiring resistance.
- Because it is difficult to apply the conventional dry etching in working a copper film, the damascene method is employed to work the copper film. The damascene method can be roughly classified into the single damascene method and the dual damascene method.
- According to the single damascene method, formation of the plug (via) used to connect the underlying wiring and the overlying wiring and formation of the wirings must be conducted by individual steps. According to the dual damascene method, the wirings and the plug can be formed simultaneously.
- The multilayer structure of the wiring layers of the semiconductor device is advanced with the miniaturization. For example, the number of wirings comes up to six layers in the semiconductor device of 0.18 μm wiring width generation. In this case, the wiring structure can be formed by repeating similar steps twelve times (six wiring formation steps and six plug formation steps), for example, according to the single damascene method, whereas the wiring structure can be formed only by repeating similar steps six times according to the dual damascene method.
- The reason why the number of steps employed in the dual damascene method is merely half of the single damascene method is that, as described above, the wirings and the plug can be formed simultaneously. Hence, the dual damascene method is advantageous to suppress a production cost and to increase a production efficiency.
- In addition, since the contact resistance between the underlying wiring and the plug connected to this wiring is low if the dual damascene method is employed, a failure in contact between them can be avoided easily and reliability of the wiring can be enhanced.
- The dual damascene method is set forth in, for example, Patent Application Publication (KOKAI) Hei 9-55429 and Patent Application Publication (KOKAI) Hei 10-112503 in which the dual damascene method is applied to the interlayer insulating film including the low dielectric constant insulating film.
- To begin with, steps of forming the copper plug and the copper wiring structure by the dual damascene method which is set forth in Patent Application Publication (KOKAI) Hei 9-55429 are shown in FIGS. 1A to1D.
- First, as shown in FIG. 1A, a first
silicon oxide film 2, an organic low dielectricconstant film 3, and a secondsilicon oxide film 4 are formed in sequence on asilicon substrate 1. In this case, fluorocarbon polymer such as polytetrafluoroethylene is employed as material of the organic low dielectric constant film. Then, anopening 4 a having a wiring profile is formed in the secondsilicon oxide film 4 by patterning the secondsilicon oxide film 4. Then, as shown in FIG. 1B, resist is formed on the secondsilicon oxide film 4 and theopening 4 a. Aplug window 5 a is formed on a part of theopening 4 a by exposing/developing the resist. The resultant resist is employed as aresist pattern 5. Then, as shown in FIG. 1C, a via-hole 6 is formed by etching the organic low dielectricconstant film 3 and the firstsilicon oxide film 2 in sequence through theplug window 5 a of theresist pattern 5. Then, as shown in FIG. 1D, awiring recess 7 is formed by selectively etching the organic low dielectricconstant film 3 by the oxygen plasma through theopening 4 a of the secondsilicon oxide film 4. Then, although not particularly shown, copper is buried in the via-hole 6 and the wiring recess 7, whereby the plug and the wiring are formed at the same time. - Next, steps of forming the copper plug and the copper wiring structure by the dual damascene method which is set forth in Patent Application Publication (KOKAI) Hei 10-112503 are shown in FIGS. 2A to2C.
- First, as shown in FIG. 2A, wiring recesses are formed in a
silicon oxide film 12 formed on asemiconductor substrate 11, and thenunderlying wirings 13 are buried in the recesses. Then, a low dielectricconstant resin film 14 and a firstphotoresist film 15 with low sensitivity are formed in sequence on thesilicon oxide film 12 and theunderlying wirings 13. Then, a holelatent image 15 a in the firstphotoresist film 15 is formed by exposing. Then, a secondphotoresist film 16 with high sensitivity is coated on thefirst resist film 15. Alatent image 16 a of a wiring is then formed by exposing the secondphotoresist film 16. A part of the wiringlatent image 16 a is formed to overlap with the holelatent image 15 a. Then, as shown in FIG. 2B, the firstphotoresist film 15 and the secondphotoresist film 16 are developed successively, so that the wiringlatent image 16 a is removed to form awiring window 16 b and also the holelatent image 15 a is removed to form ahole window 15 b. After this, the firstphotoresist film 15, the secondphotoresist film 16, and the low dielectricconstant resin film 14 are etched sequentially from the upper side, as shown in FIG. 2C. As a result, avertical contact hole 17 and awiring recess 18 are formed in the low dielectricconstant resin film 14. The copper (not shown) is buried in thevertical contact hole 17 and the wiring recess 18 simultaneously. Such copper is used as the plug in thevertical contact hole 17 and also used as the wiring in the wiring recess 18. - The above prior arts have a few problems as follows.
- In the steps as shown in FIG. 1A, when the
photoresist 8 used for a patterning mask is removed by the oxygen plasma, the organic low dielectricconstant film 3 made of hydrocarbon resin under the secondsilicon oxide film 4 is etched into a wiring profile by the oxygen plasma. Therefore, pattern precision of the via-hole formed in the secondsilicon oxide film 4 is degraded. This is because chemical properties of the low dielectric constant organic material containing the hydrocarbon approximate thephotoresist 8 and thus only thephotoresist 8 cannot be removed selectively. - In this case, the reason why the hydrocarbon resin is employed as the organic low dielectric constant film is that the hydrocarbon resin is superior to the fluorocarbon polymer in adhesiveness for the silicon oxide film.
- In addition, in the steps shown in FIGS. 2A to2C, three different resin materials of the low dielectric
constant resin film 14, the firstphotoresist film 15, and the secondphotoresist film 16 must be etched at the same etching rate. However, respective etching rates of these resin materials are different depending upon the width of thewiring recess 18 and the diameter of thevertical contact hole 17. Therefore, if the wiring recesses each having a different profile or width, or thevertical contact holes 17 each having a different diameter are to be formed in the same layer, it is difficult to etch these resin materials while controlling respective layers to coincide with their designed dimensions. - It is an object of the present invention to provide a semiconductor device manufacturing method including an interlayer insulating film patterning step which is able to form a wiring recess and a hole with good precision even when hydrocarbon resin is employed as a low dielectric constant film.
- According to an aspect of the present invention, after a first insulating film, an organic insulating film, a second insulating film, and a metal film are formed in sequence over a substrate, an opening having a wiring pattern is formed in the metal film by the photolithography, then an opening having a via pattern profile is formed in the second insulating film by the photolithography, then the organic insulating film is etched using the second insulating film as a mask, then the first insulating film and the second insulating film are etched simultaneously while using the metal film and the organic insulating film as a mask, and then the organic insulating film is etched while using the second insulating film as a mask. At this stage, a wiring recess is formed in the organic insulating film and the second insulating film, and a via-hole is formed in the first insulating film.
- Accordingly, since the organic insulating film can be protected by the second insulating film in removing the resist which is employed to form the opening in the metal film, the organic insulating film is never etched by the resist removing etchant.
- In addition, when the underlying organic insulating film is etched by using the second insulating film as a mask, the resist on the second insulating film can be removed simultaneously with the etching of the organic insulating film. Thereby, there is no need that the resist should be removed solely, and the underlying organic insulating film which is exposed is not badly affected at all in removing the resist. Accordingly, the wiring recess and the via can be formed with high precision by applying not only fluorocarbon polymer but also hydrocarbon resin as constituent material of the organic insulating film.
- Furthermore, since the first insulating film, the organic insulating film, and the second insulating film are sequentially etched under the optimum condition, the via-hole or the wiring recess can be formed in these films with high precision.
- According to another aspect of the present invention, after the first insulating film, the organic insulating film, and the second insulating film are formed in sequence, an opening having a via pattern profile is formed in the second insulating film by the photolithography, then an opening having the via pattern profile is formed in the organic insulating film through the opening of the second insulating film, then an opening having a wiring pattern profile is formed in the second insulating film by the photolithography and at the same time an opening having the via pattern profile is formed by etching the first insulating film using the organic insulating film as a mask, and then an opening having the wiring pattern profile is formed by etching the organic insulating film while using the second insulating film as a mask.
- In this manner, both the step of removing the resist used to form the opening and the step of forming the opening having the via pattern profile in the organic insulating film while using the second insulating film as a mask can be executed simultaneously by forming the opening having the via pattern profile in the second insulating film. Therefore, the patterning of the underlying organic insulating film into the unnecessary profile in removing the resist can be avoided. In addition, the organic insulating film is never etched into the unnecessary size in removing the resist formed on the second insulating film, so that the precision of the opening in the organic insulating film is never degraded.
- Moreover, after the opening having the wiring pattern profile is formed in the second insulating film and then the opening having the via-hole profile is formed in the underlying organic insulating film, these opening profiles are transferred sequentially onto the insulating films positioned below them. Therefore, the wiring recess and the via-hole can be formed in the first insulating film, the second insulating film and the organic insulating film. As a result, the first insulating film, the second insulating film, and the organic insulating film can be etched individually under their optimum conditions, so that the wiring recess and the via-hole can be formed with high precision.
- As described above, since it is possible to apply the dual damascene method to the multilevel wiring formation which employs the copper wiring and the low dielectric constant organic insulating film without selection of material for the organic insulating film, performance, reliability, and production efficiency of the semiconductor device can be improved.
- The underlying organic insulating film may be interposed between the first insulating film and the second insulating film. The etching of the underlying organic insulating film may be carried out simultaneously when the overlying organic insulating film is etched.
- According to still another aspect of the present invention, after the first insulating film and the second insulating film have been formed in sequence over the substrate, the opening having the via-hole pattern profile is formed in the first insulating film and the second insulating film by using the first photoresist, and then the opening having the wiring pattern profile is formed by etching the second insulating film and the upper portion of the first insulating film by using the second photoresist.
- In this way, if the organic insulating material is adopted as the first insulating film, both the step of removing the resist used to form the opening and the step of forming the opening having the via pattern profile in the organic insulating film while using the second insulating film as a mask can be executed simultaneously by forming the opening having the via pattern profile in the second insulating film. Therefore, the first insulating film formed of the underlying organic insulating material is never etched into the unnecessary size in removing the first resist, so that the precision of the opening in the organic insulating film is never degraded.
- Accordingly, when the dual damascene method is applied to the multilevel wiring formation which employs the copper wiring and the low dielectric constant organic insulating film without selection of organic insulating material constituting the first insulating film, performance, reliability, and production efficiency of the semiconductor device can be improved.
- Furthermore, according to the present invention, since the via and the wirings are formed in the first insulating film formed of organic material, the wiring capacitance can be reduced effectively rather than the multilevel wiring structure in which the silicon oxide and the silicon nitride are employed. In addition, the exchange number of the etching gas which is employed to form the via-hole and the wiring recess in the insulating film can be reduced, and thus it is possible to form the multilevel wirings at low cost.
- FIGS. 1A to1D are sectional views showing steps of forming a multilevel wiring structure by the dual damascene method in the first prior art respectively;
- FIGS. 2A to2C are sectional views showing steps of forming a multilevel wiring structure by the dual damascene method in the second prior art respectively;
- FIGS. 3A to3P are sectional views showing steps of forming a multilevel wiring structure by a dual damascene method according to a first embodiment of the present invention respectively;
- FIGS. 4A to4G are sectional views showing steps of forming a multilevel wiring structure by a dual damascene method according to a second embodiment of the present invention respectively;
- FIG. 5 is a view relationships between a diameter of a contact via formed by the first embodiment and the second embodiment and yield;
- FIG. 6 is a view showing relationships between a distance between wirings formed by the first embodiment and the second embodiment and a capacitance ratio of the wirings, while comparing with the conventional relationship;
- FIG. 7 is a sectional view showing a step of forming an opening on an organic insulating film by a dual damascene method according to a third embodiment of the present invention; and
- FIGS. 8A to8P are sectional views showing steps of forming a multilevel wiring structure by a dual damascene method according to a fourth embodiment of the present invention respectively.
- Therefore, embodiments of the present invention will be explained with reference to the accompanying drawings hereinafter.
- (First Embodiment)
- FIGS. 3A to3P show steps of forming wirings of a semiconductor device by a dual damascene method according to a first embodiment of the present invention.
- First, a step of forming an underlying wiring layer will be explained with reference to FIGS. 3A to3D.
- FIG. 3A shows the structure in which a first silicon oxide film (SiO2 film) 22, a first organic insulating
film 23, a secondsilicon oxide film 24, and aphotoresist film 25 are formed on asilicon substrate 21. - The first
silicon oxide film 22 and the secondsilicon oxide film 24 are formed by the plasma CVD method to have a thickness of 200 nm and a thickness of 100 nm respectively. - Then, the first organic insulating
film 23 is formed by coating the low dielectric constant material, for example, FLARE2.0 (product name) manufactured by AlliedSignal, by the spin coating to have a thickness of 400 nm. The FLARE2.0 (product name) is aromatic polymer whose dielectric constant is 2.8 which is lower than the dielectric constant of the SiO2 film and whose heat resistance is more than 400° C. The FLARE2.0 (product name) is employed as the first organic insulatingfilm 23 herein, hydrocarbon polymer such as SiLK (product name) manufactured by The Dow Chemical Co., etc. may be employed. Also, other hydrocarbon containing resin, fluorocarbon polymer, and the like may be employed as the first organic insulatingfilm 23. - The
photoresist film 25 is photosensitive polymer.Windows 25 a for wiring pattern are formed by exposing/developing thephotoresist film 25. - Then, as shown in FIG. 3B,
openings 24 a each having a wiring pattern profile are formed by etching the secondsilicon oxide film 24 through thewindows 25 a of thephotoresist film 25. The etching of the secondsilicon oxide film 24 is carried out by the plasma etching method using a CF4 gas, a CH2F2 gas, and an Ar gas. Since such etching gas belongs to a fluorocarbon group, the secondsilicon oxide film 24 is etched selectively to thus form thewiring openings 24 a, nevertheless the first organic insulatingfilm 23 under the secondsilicon oxide film 24 is seldom etched. - Then, as shown in FIG. 3C, with the use of the plasma etching method,
openings 23 a for wiring pattern profiles are formed by removing the part of the first organic insulatingfilm 23, which is exposed from thewiring openings 24 a of the secondsilicon oxide film 24. - The etching of the first organic insulating
film 23 is conducted in the atmosphere into which an 02 gas and the Ar gas are introduced. In this case, since the etchant is composed of the oxygen, the first organic insulatingfilm 23 and thephotoresist film 25 can be etched selectively with respect to the SiO2 films 22, 24, but the SiO2 film 24 cannot be etched. However, since thephotoresist film 25 is etched by the oxygen, thephotoresist film 25 can be removed simultaneously with the etching of the first organic insulatingfilm 23. - A
first wiring recess 26 consists of the opening 24 a of the secondsilicon oxide film 24 and theopening 23 a of the first organic insulatingfilm 23, which are formed by the above patterning processes. - In the following steps, the etching gases similar to the above are employed in respective etchings of the organic insulating film and the SiO2 film.
- The
opening 23 a of the first organic insulatingfilm 23 and theopening 24 a of the secondsilicon oxide film 24 are overlapped vertically with each other, and are used as thefirst wiring recess 26. - Then, as shown in FIG. 3D, a first
barrier metal film 27 made of TiN or TaN as a refractory metal is formed in thefirst wiring recess 26 and on the secondsilicon oxide film 24 by the sputtering to have a thickness of 50 nm. Then, a first copper (Cu)film 28 is similarly formed on the firstbarrier metal film 27 by the sputtering to have a thickness of 800 nm. - Because unevenness is caused on an upper surface of the
first Cu film 28, the annealing process is applied to thefirst Cu film 28 for five minutes in the hydrogen gas atmosphere of 400° C. and 0.1 Torr in order to planarize the upper surface. After this annealing process, thefirst Cu film 28 can be buried completely in thefirst wiring recess 26. - Subsequently, as shown in FIG. 3E, the
first Cu film 28 and the firstbarrier metal film 27 are polished by using the chemical mechanical polishing (CMP) method. Thus, thefirst Cu film 28 and the firstbarrier metal film 27 remain only in thefirst wiring recess 26, and they are employed as afirst wiring 29. - Then, as shown in FIG. 3F, a plurality of insulating film, metal film, etc., to be described in the following, are formed on the
first wirings 29 and the secondsilicon oxide film 24. - More particularly, a 50 nm thick
silicon nitride film 30 and a 600 nm thick thirdsilicon oxide film 31 are formed by the plasma CVD method on thefirst wirings 29 and the secondsilicon oxide film 24. Then, a second organic insulatingfilm 32 of 400 nm thickness is formed by the spin coating on the thirdsilicon oxide film 31. In this case, any one of above materials employed for the first organic insulatingfilm 23 may be selected as the second organic insulatingfilm 32. In turn, a fourthsilicon oxide film 33 of 100 nm thickness is formed on the second organic insulatingfilm 32 by the plasma CVD method. Then, anintermediate metal film 34 made of TiN is formed on the fourthsilicon oxide film 33 by the sputtering to have a thickness of 100 nm. As theintermediate metal film 34, it is possible to use other refractory metal or refractory metal compound, e.g., tantalum (Ta) or tantalum nitride (TaN), in addition to TiN. - After above film formations have been finished, a
photoresist film 35 is coated on theintermediate metal film 34. Then, awindow 35 a which corresponds to a second wiring profile is formed by exposing/ developing thephotoresist 35. Then, awiring opening 34 a which has a profile corresponding to the second wiring is formed in theintermediate metal film 34 by the photolithography method using thephotoresist film 35 as a mask. Such wiring pattern profile is not limited particularly. - Then, as shown in FIG. 3G, ashing of the
photoresist film 35 is conducted by the oxygen plasma. At that time, since the second organic insulatingfilm 32 is not exposed from thewiring opening 34 a of theintermediate metal film 34, such second organic insulatingfilm 32 is never badly influenced by the ashing. - Then, as shown in FIG. 3H, a
photoresist film 36 is coated on theintermediate metal film 34 and in thewiring opening 34 a. A window 36 a which is positioned in thewiring opening 34 a so as to oppose to a part of thefirst wirings 29 is formed in thephotoresist film 36 by exposing/developing thephotoresist film 36. The window 36 a has a profile corresponding to a contact via. - Then, as shown in FIG. 3I, an opening33 a which corresponds to the contact via is formed by etching the fourth
silicon oxide film 33 through the window 36 a of thephotoresist film 36. - After the etching has been completed, as shown in FIG. 3J, an opening32 a is formed by etching the second organic insulating
film 32 through the opening 33 a with the use of the plasma anisotropic etching using oxygen and argon. Upon this etching, anoverall photoresist film 36 can be etched simultaneously and thus removed. Accordingly, a step of removing thephotoresist film 36 independently can be omitted and in addition the second organic insulatingfilm 32 is never etched unnecessarily. - Then, as shown in FIG. 3K, while using the
intermediate metal film 34 as a mask, anopening 33 b is formed by etching the fourthsilicon oxide film 33 through the opening 34 a with the use of the plasma etching using a fluorine gas. The second organic insulatingfilm 32 is used as a mask in the course of this etching. The thirdsilicon oxide film 31 formed under the second organic insulatingfilm 32 is etched through the opening 32 a of the second organic insulatingfilm 32, whereby anopening 31 a is formed in the thirdsilicon oxide film 31. - Next, when the second organic insulating
film 32 is etched by the oxygen plasma through the opening 34 a of theintermediate metal film 34, such second organic insulatingfilm 32 can be patterned into a wiring profile and thus awiring opening 32 b shown in FIG. 3L can be formed. Thewiring opening 32 b of the second organic insulatingfilm 32 as well as thewiring opening 33 b of the fourthsilicon oxide film 33 is used as asecond wiring recess 37. - Then, as shown in FIG. 3M, with using the third
silicon oxide film 31 as a mask, an opening 30 a is formed by etching thesilicon nitride film 30 under the opening 31 a by the plasma etching using a C4F8 gas and the O2 gas. - The
opening 30 a of thesilicon nitride film 30 and theopening 31 a of the thirdsilicon oxide film 31 are employed as a contact via-hole 38, and thus a part of thefirst wiring 29 is exposed thereunder. - Then, as shown in FIG. 3N, a second
barrier metal film 39 made of TiN or TaN and having a thickness of 50 nm is formed by the sputtering along inner surfaces of thesecond wiring recess 37 and the contact via-hole 38 and an upper surface of theintermediate metal film 34. Then, asecond copper film 40 is formed by the sputtering to have a thickness of 100 nm. - In turn, as shown in FIG. 30, while employing the
second copper film 40 as a seed layer, athird copper film 41 of 1500 nm thickness is formed on thesecond copper film 40 by the electrolytic plating method. Then, thethird copper film 41 is annealed at 400° C. for thirty minutes in the hydrogen atmosphere. The annealing process is carried out to grow particles in thethird copper film 41 and to enhance the reliability of the wirings. - Then, as shown in FIG. 3P, respective films from the
third copper film 41 to theintermediate metal film 34 are polished in sequence by the CMP method, whereby these conductive films remain only in thesecond wiring recess 37 and the contact via-hole 38. Then, the conductive film in thesecond wiring recess 37 is used as asecond wiring 42, and the conductive film remained in the contact via-hole 38 is used as aplug 43. - Accordingly, the dual damascene method according to the present invention has been finished, and then the process is shifted to a step of forming another wiring on the structure obtained above.
- By the way, as described above, after the
opening 34 a having a profile corresponding to the second wiring is formed in theintermediate metal film 34, the second organic insulatingfilm 32 formed thereunder is in no way exposed from the opening 34 a because such second organic insulatingfilm 32 is covered with the fourthsilicon oxide film 33. As a result, the second organic insulatingfilm 32 is never etched at the time when thephotoresist film 35 used in patterning theintermediate metal film 34 is etched by the oxygen plasma. Hence, not only the fluorocarbon polymer but also the hydrocarbon containing resin can be employed as material constituting the second organic insulatingfilm 32. - In addition, since the opening32 a is formed in the second organic insulating
film 32 while using as a mask the fourthsilicon oxide film 33 in which theopening 33 a having a profile corresponding to the contact via-hole is formed, there is no situation that the second organic insulatingfilm 32 is etched unnecessarily. - Also, as shown in FIG. 3J, the underlying
inorganic film 31, the organic insulatingfilm 32, the overlyinginorganic film 33, and theintermediate metal film 34 are formed in sequence on thefirst wiring 29, then the opening 34 a corresponding to the wiring profile is formed in theintermediate metal film 34, and then the opening 33 a corresponding to the via-hole profile is formed in the overlyinginorganic film 33. In this situation, the profile of the opening 33 a corresponding to the via-hole is transferred onto the organic insulatingfilm 32 and the underlyinginorganic film 31 sequentially to form theopenings openings inorganic film 33 and the organic insulatingfilm 32 sequentially. - For this reason, since the optimal etching for the type of the film can be performed, the opening profiles can be formed in respective films with good precision.
- In addition, if an increase in positional discrepancy of the patterns is caused when the
photoresist film 36 is exposed/developed in the initial photolithography to form the via pattern in the steps shown in FIG. 3I,such photoresist film 36 can be removed by the oxygen plasma and then such steps are conducted newly again. This is because the fourthsilicon oxide film 33 exists below thephotoresist film 36 and therefore the second organic insulatingfilm 32 formed under the fourthsilicon oxide film 33 is not damaged at all. Accordingly, it is possible to work the via diameter according to the designed dimension without depending on the precision in the positional discrepancy. - In this case, the silicon containing insulating film such as an Si3N4 film, an SiON film, an SiC film, etc. may be employed in place of the above SiO2 films. This is similarly true of the embodiments to be described hereinafter.
- (Second Embodiment)
- In the first embodiment, the
intermediate metal film 34 is formed on the fourthsilicon oxide film 33, and then the opening 34 a for the second wiring is formed in theintermediate metal film 34. In a second embodiment of the present invention, a method of forming thesecond wiring recess 37 and the contact via-hole without theintermediate metal film 34 will be explained hereunder. - First, FIG. 4A shows the situation that the
intermediate metal film 34 is not formed in the multilevel structure shown in FIG. 3F. Then, photoresist 44 is coated on the fourthsilicon oxide film 33 in such situation. Then, awindow 44 a which is employed to form a contact via-hole is formed by exposing/developing thephotoresist 44. Thewindow 44 a is positioned over a part of thefirst wirings 29. - Then, as shown in FIG. 4B, an
opening 33 c is formed by etching the fourthsilicon oxide film 33 through thewindow 44 a of thephotoresist 44. - In turn, as shown in FIG. 4C, an
opening 32 c is formed in the second organic insulatingfilm 32 by etching the second organic insulatingfilm 32 through thewindow 44 a of thephotoresist 44 and theopening 33 c of the fourthsilicon oxide film 33. In this case, the plasma anisotropic etching method using the oxygen is employed in etching the second organic insulatingfilm 32, whereby thephotoresist 44 can be etched simultaneously and thus removed. - After this, as shown in FIG. 4D,
photoresist 45 is formed on the fourthsilicon oxide film 33. Then, awindow 45 a having a second wiring pattern is formed by exposing/developing thephotoresist 45. In this event, theopening 32 c of the second organic insulatingfilm 32 is hardly expanded by the developer for developing thephotoresist 45. - Next, as shown in FIG. 4E, when the fourth
silicon oxide film 33 is etched through thewindow 45 a of thephotoresist 45, awiring opening 33 d is formed in the fourthsilicon oxide film 33. In etching the fourthsilicon oxide film 33, the thirdsilicon oxide film 31 is also etched through theopening 32 c of the second organic insulatingfilm 32. As a result, an opening 31 c serving as a contact via-hole 38 is formed in the thirdsilicon oxide film 31. - Then, the processes are advanced to various steps shown in FIG. 4F.
- First, when the second organic insulating
film 32 is etched through awiring opening 33 d of the fourthsilicon oxide film 33, awiring opening 32 d is formed in the position to contain theopening 32 c. In this case, the plasma anisotropic etching method using the oxygen containing gas is employed to etch the second organic insulatingfilm 32, so that thephotoresist 45 can be etched simultaneously and thus removed. Thesecond wiring recess 37 is composed of thewiring opening 33 d of the fourthsilicon oxide film 33 and thewiring opening 32 d of the second organic insulatingfilm 32. - Then, an
opening 30 c serving as the contact via-hole 38 is formed by etching thesilicon nitride film 30 through the opening 31 c of the thirdsilicon oxide film 31. Accordingly, a part of thefirst wiring 29 is exposed from the contact via-hole 38. - After this, as shown in FIG. 4G, via the steps similar to those in the first embodiment, a via43 made of copper is buried in the contact via-
hole 38 and also asecond wiring 42 is buried in thesecond wiring recess 37. - In the second embodiment, unlike the first embodiment, the photoresist is employed instead of the metal film, as a mask to form the opening corresponding to the contact via in the fourth
silicon oxide film 33. - For this reason, the step of forming the
intermediate metal film 34 and the step of patterning theintermediate metal film 34 in the first embodiment can be omitted. Accordingly, the number of steps can be reduced rather than the first embodiment and thus the forming process can be made easy. However, the positional discrepancy caused in exposing thephotoresist 45 in FIG. 4D has an influence upon diameters of theopenings 30 c, 31 c, so that the diameters of theopenings 30 c, 31 c are reduced by a displaced distance respectively. Therefore, the steps in the second embodiment are effective to form the wiring openings in the upper layer portion which does not so depend on the positional discrepancy precision in the photolithography. - In this second embodiment, unlike the prior art shown in FIG. 1, the
opening 33 d for forming the second wiring is formed after theopening 33 c for forming the contact via-hole has been formed in the fourthsilicon oxide film 33, and also the openingportions film 32 when twophotoresist silicon oxide film 33 are removed respectively. Therefore, the second organic insulatingfilm 32 is not badly affected at all when the photoresist formed on the fourthsilicon oxide film 33 is removed by the oxygen plasma. - By the way, when relationships between the diameter of contact via formed by the above first and second embodiments and yield are examined experimentally, the results shown in FIG. 5 are obtained.
- FIG. 5 shows the yield of the via plug which is obtained by measuring the contact resistance of the via plug and then deciding the via plug whose contact resistance exceeds a theoretical value by more than 10% as the defective. Such via plug connects the first layer wiring and the second layer wiring in the double-layered wirings which are formed according to the first embodiment and the second embodiment. The abscissa in FIG. 5 denotes the diameter of the via contact. As indicated by this result, the high yield in excess of97 t can be achieved at any via diameter.
- Next, when the lateral wiring distance and the capacitance ratio in the lateral direction are examined experimentally in the wirings which are formed according to the first embodiment and the second embodiment respectively, the results shown in FIG. 6 are obtained.
- FIG. 6 shows the wiring capacitance ratio which is obtained by measuring the wiring capacitance in the same layer of the double-layered wirings, which are formed according to the first embodiment and the second embodiment, and then comparing it with the wiring capacitance generated when only the SiO2 film is employed in the prior art. The abscissa in FIG. 13 denotes the distance between the wirings. As indicated by this result, the wiring capacitance ratio can be reduced in the range from 60% to 65%. This ratio is substantially equal to the ratio of the dielectric constant 4.3 of SiO2 and the dielectric constant 2.8 of the organic insulating film, which shows the fact that the wirings have been formed satisfactorily.
- (Third Embodiment)
- In the first embodiment or the second embodiment, another organic insulating film may be formed between the
silicon nitride film 30 and the thirdsilicon oxide film 31. - According to this, as shown in FIG. 7, before the opening is formed in the
silicon nitride film 30, theopenings film 32 and simultaneously anopening 50 a serving as the contact via-hole is formed in another organic insulatingfilm 50 through theopenings 31 a, 31 c of the thirdsilicon oxide film 31. - After the
opening 50 a is formed, a part of the first wiring is exposed by etching thesilicon nitride film 30 through the opening 50 a and then the conductive film is buried in the via-hole and the wiring recess to thus form the via and the second wiring, like the first embodiment and the second embodiment. - In FIG. 7, the same reference symbols as those in FIG. 3L and FIG. 4E denote the like elements.
- (Fourth Embodiment)
- In the first embodiment and the second embodiment, the insulating layer into which the second copper wiring and the via (plug) are buried includes not only the organic insulating film but also the silicon oxide film. In a fourth embodiment, steps of forming a multilevel wiring structure in which the second copper wiring and the via (plug) are buried in the organic insulating film will be explained hereunder.
- First, as shown in FIG. 8A, a first silicon oxide (SiO2)
film 52 and a first silicon nitride (Si3N4)film 53 are formed in order on asilicon substrate 51 by the plasma CVD method to have a thickness of 500 nm and a thickness of 50 nm respectively. - In the fourth embodiment, silane (SiH4) and nitrogen monoxide (N2O) are employed as a source gas to grow the silicon oxide film, and silane (SiH4) and ammonia (NH3) are employed as a source gas to grow the silicon nitride film. Also, like the first embodiment, the etching of the silicon oxide is carried out by the plasma etching method using a CF4 gas or a mixed gas of CH2F2 and Ar. Also, the etching of the silicon nitride is carried out by the plasma etching method using a mixed gas of CHF3 and Ar.
- In addition, a first organic insulating
film 54 of low dielectric constant is formed on the firstsilicon nitride film 53. For example, the first organic insulatingfilm 54 may be formed by coating the low dielectric constant organic insulating material formed of the hydrocarbon group containing the aromatic material on the firstsilicon nitride film 53 via the spin coating to have a thickness of 300 nm, and then curing the organic insulating material for 30 minutes via the thermal annealing at the temperature of 400° C. in the nitrogen (N2) atmosphere. As the low dielectric constant organic insulating material formed of the hydrocarbon group containing the aromatic material, for example, there is “SiLK” (product name) manufactured by The Dow Chemical Co. The dielectric constant of “SiLK” is about 2.7. - Then, a second
silicon oxide film 55 is formed on the first organic insulatingfilm 54 by the plasma CVD method to have a thickness of 100 nm. - Then, as shown in FIG. 8B,
photoresist 56 is coated on the secondsilicon oxide film 55.Windows 56 a each having a wiring pattern are formed by exposing/developing thephotoresist 56. In this embodiment, for example, a polyvinylphenol resin is employed as thephotoresist 56. - Then, as shown in FIG. 8C,
openings 55 a are formed by removing a part of the secondsilicon oxide film 55, which is exposed from thewindows 56 a, by the plasma etching method using thephotoresist 56 as a mask. In turn, as shown in FIG. 8D,openings 54 a are formed by removing a part of the first organic insulatingfilm 54 through theopenings 55 a by the plasma anisotropic etching method. In this case, nitrogen (N2) and hydrogen (H2) are employed as the etching gas of the first organic insulatingfilm 54. According to this etching gas, thephotoresist 56 is etched and thus removed at the same time when the first organic insulatingfilm 54 is etched. - A
first wiring recess 57 is composed of the opening 55 a of the secondsilicon oxide film 55 and theopening 54 a of the first organic insulatingfilm 54. - Then, as shown in FIG. 8E, a first
barrier metal film 58 is formed by the sputtering in the inside of thefirst wiring recess 57 and on the upper surface of the secondsilicon oxide film 55. The firstbarrier metal film 58 is formed of tantalum nitride (TaN) as a refractory metal and has a thickness of 20 nm. Then, a first copper (Cu)film 59 is formed on the firstbarrier metal film 58 by the sputtering to have a thickness of 800 nm. - Since unevenness is caused on the upper surface of the
first copper film 59, the upper surface is planarized by annealing thefirst copper film 59 at 400° C. for 15 minutes in the atmosphere of the mixed gas of the nitrogen and the oxygen. After this annealing process, thefirst copper film 59 can be buried completely in thefirst wiring recess 57. - Subsequently, as shown in FIG. 8F, the
first copper film 59 and the firstbarrier metal film 58 are polished by using the chemical mechanical polishing (CMP) method. Thus, thefirst copper film 59 and the firstbarrier metal film 58 remain only in thefirst wiring recess 57, and they are employed as afirst wiring 60. - Then, as shown in FIG. 8G, a plurality of insulating film, metal film, etc., to be described in the following, are formed on the
first wiring 60 and the secondsilicon oxide film 55. - First, a second silicon nitride (Si3N4)
film 61 of 50 nm thickness is formed on thefirst wiring 60 and the secondsilicon oxide film 55 by the plasma CVD method. Then, a second organic insulatingfilm 62 of about 100 nm thickness is formed on the secondsilicon nitride film 61. The second organic insulatingfilm 62 is formed by the same method as the first organic insulatingfilm 54 using the insulating material such as “SiLK”. - Further, a third
silicon oxide film 63 of 100 nm thickness is formed on the second organic insulatingfilm 62 by the plasma CVD method. - Then, as shown in FIG. 8H,
photoresist 64 is coated on the thirdsilicon oxide film 63. Awindow 64 a having a via-hole profile is formed by exposing/developing thephotoresist 64. - Then, as shown in FIG. 8I, an opening63 a is formed in the third
silicon oxide film 63 by removing a part of the thirdsilicon oxide film 63 through thewindow 64 a of thephotoresist 64 by the plasma etching method. Next, an opening 62 a is formed in the second organic insulatingfilm 62 by etching the second organic insulatingfilm 62 through the opening 63 a. The opening 63 a of the thirdsilicon oxide film 63 and theopening 62 a of the second organic insulatingfilm 62 are used as a contact hole (via-hole) 65. - If the plasma anisotropic etching method is employed by using the mixed gas of the nitrogen and the hydrogen as the etching gas upon etching the second organic insulating
film 62, thephotoresist 64 can also be etched simultaneously and therefore there is no necessity that thephotoresist 64 should be removed by another step. Hence, after the photoresist has been removed, the thirdsilicon oxide film 63 acts as a mask when the second organic insulatingfilm 62 is etched. In other words, the inorganic material film such as the SiO2 film and the Si3N4 film have the extremely small etching rate if such etching gas is used, and the second organic insulatingfilm 62 is etched at the high selective ratio. - In this case, if the
photoresist 64 remains after the etching of the second organic insulatingfilm 62, it may be removed by using the hydroxylamine solvent. The second organic insulatingfilm 62 made of “SiLK” is not etched by the hydroxylamine solvent. - Then, as shown in FIG. 8J,
photoresist 66 is coated on the thirdsilicon oxide film 63. Awindow 66 a having a wiring pattern is formed by exposing/developing thephotoresist 66. According to the type of the photoresist, thephotoresist 66 is accumulated on the bottom of thecontact hole 65 after the development, and thus is often difficult to remove. If it is tried to remove thephotoresist 66 in thecontact hole 65 by the solvent for the photoresist, thephotoresist 66 on the thirdsilicon oxide film 63 is simultaneously etched to cause the deformation of thewindow 66 a. Therefore, thephotoresist 66 should be removed by using the following steps. - In turn, as shown in FIG. 8K, the third
silicon oxide film 63 is etched while using thephotoresist 66 as a mask and further the second organic insulatingfilm 62 is etched in the plasma atmosphere until a depth which corresponds to the thickness of the wiring. Accordingly, asecond wiring recess 67 is formed on the upper portion of the second organic insulatingfilm 62 through the thirdsilicon oxide film 63. If the hydrogen and the nitrogen are employed as the etching gas of the second organic insulatingfilm 62, as described above, thephotoresist 66 is etched simultaneously. - If the
photoresist 66 remains on the bottom portion of thecontact hole 65 after thesecond wiring recess 67 has been formed, or if thephotoresist 66 remains on the thirdsilicon oxide film 63,such photoresist 66 can be removed by the hydroxylamine good solvent, as shown in FIG. 8L. Thephotoresist 66 which remains on the bottom of thecontact hole 65 has been exposed to the plasma upon etching the second organic insulatingfilm 62, so that the quality of the surface of thephotoresist 66 has been improved. Therefore, it is difficult to remove thephotoresist 66 by the good solvent for the photoresist, and thus the hydroxylamine good solvent is effective. - Next, as shown in FIG. 8M, the second Si3N4 film formed directly below the
contact hole 65 is removed by the plasma etching method using C4F8 and O2, whereby a part of thefirst wiring 60 can be exposed. - Then, as shown in FIG. 8N, a
TaN film 68 of 20 nm thickness is formed as a barrier metal by the sputtering along the inner surfaces of thesecond wiring recess 67 and thecontact hole 65, and the upper surface of the thirdsilicon oxide film 63. Then, acopper seed film 69 of 150 nm thickness is formed on theTaN film 68 by the sputtering. - Then, as shown in FIG. 80, a
copper film 70 of 800 nm thickness is formed on thecopper seed film 69 by the electrolytic plating method. Then, thecopper film 70, thecopper seed film 69, and theTaN film 68 which exist on the thirdsilicon oxide film 63 are polished and removed by the CMP method, as shown in FIG. 8P. These metal films which remain in thecontact hole 65 after this polishing are used as a plug (via) 71. These metal films which remain in thesecond wiring recess 67 over thecontact hole 65 are applied as asecond wiring 72. - As described above, according to the fourth embodiment, since such process which does not need to place the high dielectric constant material, e.g., SiO2, Si3N4, etc., around the
second wiring 72 and theplug 71 is employed, it is possible to reduce effectively the wiring capacitance rather than other dual damascene methods. In addition, since it is not needed to assure independently the step of removing the resist and the number of the insulating films, in which the plug and the second wiring are buried, is reduced rather than the prior art, the number of steps can be reduced. - In the fourth embodiment, the “SiLK” is employed as the low dielectric constant organic insulating
films - As described above, according to the present invention, the inorganic material and the low dielectric constant organic material are employed as the interlayer insulating film. Also, in the multilevel wiring forming steps by the dual damascene method using the copper as the wiring, the opening having the via-hole profile is formed in the underlying organic insulating film while using the uppermost inorganic insulating film as a mask after the opening having the via-hole profile has been formed in the uppermost inorganic insulating film, and then the opening having the wiring profile is formed in the underlying organic insulating film while using the uppermost inorganic insulating film as a mask after the opening having the wiring profile has been formed in the uppermost inorganic insulating film. Therefore, the photoresist which is employed to form the opening in the uppermost inorganic insulating film can be removed at the same time when the opening is formed in the next organic insulating film, and the bad influence upon the opening of the organic insulating film in removing the photoresist can be prevented.
- Also, according to the present invention, since the wiring opening formed in the uppermost inorganic insulating film and the via-hole profile formed in the organic insulating film are transferred sequentially onto the insulating films positioned below them, the inorganic insulating film and the organic insulating film which constitute the interlayer insulating film can be etched under their optimum conditions respectively.
- Accordingly, if the present invention is employed, effective reduction of the inter-wiring capacitance and the good via contact resistance can be achieved, and also performance and reliability of the semiconductor device can be improved.
- Further, according to the present invention, since the via and the wirings are formed in the organic insulating film by the dual damascene method, the wiring capacitance can be reduced effectively rather than the multilevel wiring structure in which the silicon oxide and the silicon nitride are employed. In addition, the exchange number of the etching gas which is employed to form the via-hole and the wiring recess in the insulating film can be reduced, and thus it is possible to form the multilevel wirings at low cost.
Claims (24)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24574198 | 1998-08-31 | ||
JP10-245741 | 1998-08-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020001941A1 true US20020001941A1 (en) | 2002-01-03 |
US6420261B2 US6420261B2 (en) | 2002-07-16 |
Family
ID=17138119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/386,148 Expired - Lifetime US6420261B2 (en) | 1998-08-31 | 1999-08-31 | Semiconductor device manufacturing method |
Country Status (1)
Country | Link |
---|---|
US (1) | US6420261B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030227086A1 (en) * | 2002-06-10 | 2003-12-11 | Fujitsu Limited | Semiconductor device having multilevel copper wiring layers and its manufacture method |
US20040052930A1 (en) * | 2000-04-27 | 2004-03-18 | Bulent Basol | Conductive structure fabrication process using novel layered structure and conductive structure fabricated thereby for use in multi-level metallization |
US20150255759A1 (en) * | 2014-03-10 | 2015-09-10 | Samsung Sdi Co., Ltd. | Hybrid barrier stacks and methods of making the same |
US20150255749A1 (en) * | 2014-03-10 | 2015-09-10 | Samsung Sdi Co., Ltd. | Gas permeation barriers and methods of making the same |
US9735108B2 (en) | 2012-11-05 | 2017-08-15 | Dai Nippon Printing Co., Ltd. | Line structure and a method for producing the same |
US20180175015A1 (en) * | 2016-12-15 | 2018-06-21 | Semiconductor Manufacturing International (Beijing) Corporation | Method for fabricating damascene structure using fluorocarbon film |
US20190227440A1 (en) * | 2016-09-30 | 2019-07-25 | Fujifilm Corporation | Manufacturing method of semiconductor chip, and kit |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6904675B1 (en) * | 1996-09-27 | 2005-06-14 | Hewlett-Packard Development, L.P. | Method of forming electrical interconnects having electromigration-inhibiting plugs |
US7335965B2 (en) | 1999-08-25 | 2008-02-26 | Micron Technology, Inc. | Packaging of electronic chips with air-bridge structures |
US7276788B1 (en) * | 1999-08-25 | 2007-10-02 | Micron Technology, Inc. | Hydrophobic foamed insulators for high density circuits |
US6383917B1 (en) * | 1999-10-21 | 2002-05-07 | Intel Corporation | Method for making integrated circuits |
US20020076917A1 (en) * | 1999-12-20 | 2002-06-20 | Edward P Barth | Dual damascene interconnect structure using low stress flourosilicate insulator with copper conductors |
US6677209B2 (en) | 2000-02-14 | 2004-01-13 | Micron Technology, Inc. | Low dielectric constant STI with SOI devices |
US6413827B2 (en) | 2000-02-14 | 2002-07-02 | Paul A. Farrar | Low dielectric constant shallow trench isolation |
US20020086547A1 (en) * | 2000-02-17 | 2002-07-04 | Applied Materials, Inc. | Etch pattern definition using a CVD organic layer as an anti-reflection coating and hardmask |
US6890847B1 (en) * | 2000-02-22 | 2005-05-10 | Micron Technology, Inc. | Polynorbornene foam insulation for integrated circuits |
JP4095763B2 (en) * | 2000-09-06 | 2008-06-04 | 株式会社ルネサステクノロジ | Semiconductor device and manufacturing method thereof |
US6713395B2 (en) * | 2001-05-15 | 2004-03-30 | Infineon Technologies Ag | Single RIE process for MIMcap top and bottom plates |
US6798043B2 (en) * | 2001-06-28 | 2004-09-28 | Agere Systems, Inc. | Structure and method for isolating porous low-k dielectric films |
US6879046B2 (en) | 2001-06-28 | 2005-04-12 | Agere Systems Inc. | Split barrier layer including nitrogen-containing portion and oxygen-containing portion |
US6737747B2 (en) * | 2002-01-15 | 2004-05-18 | International Business Machines Corporation | Advanced BEOL interconnect structures with low-k PE CVD cap layer and method thereof |
US6488509B1 (en) * | 2002-01-23 | 2002-12-03 | Taiwan Semiconductor Manufacturing Company | Plug filling for dual-damascene process |
US6979526B2 (en) * | 2002-06-03 | 2005-12-27 | Infineon Technologies Ag | Lithography alignment and overlay measurement marks formed by resist mask blocking for MRAMs |
JP4076131B2 (en) * | 2002-06-07 | 2008-04-16 | 富士通株式会社 | Manufacturing method of semiconductor device |
US20040118697A1 (en) * | 2002-10-01 | 2004-06-24 | Applied Materials, Inc. | Metal deposition process with pre-cleaning before electrochemical deposition |
KR100485388B1 (en) * | 2003-02-28 | 2005-04-27 | 삼성전자주식회사 | Method for forming trench and method for manufacturing semiconductor device using the same |
US7192892B2 (en) | 2003-03-04 | 2007-03-20 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
CN100483632C (en) * | 2003-10-28 | 2009-04-29 | 株式会社半导体能源研究所 | Method of manufacturing semiconductor device |
JP4230334B2 (en) * | 2003-10-31 | 2009-02-25 | 富士通マイクロエレクトロニクス株式会社 | Semiconductor device and manufacturing method thereof |
US20050137882A1 (en) * | 2003-12-17 | 2005-06-23 | Cameron Don T. | Method for authenticating goods |
DE102004014676B4 (en) * | 2004-03-25 | 2009-05-14 | Infineon Technologies Ag | Method for producing an integrated circuit arrangement with auxiliary recess, in particular with alignment marks, and integrated circuit arrangement |
US7223612B2 (en) * | 2004-07-26 | 2007-05-29 | Infineon Technologies Ag | Alignment of MTJ stack to conductive lines in the absence of topography |
US7442624B2 (en) * | 2004-08-02 | 2008-10-28 | Infineon Technologies Ag | Deep alignment marks on edge chips for subsequent alignment of opaque layers |
US7572655B2 (en) | 2005-03-23 | 2009-08-11 | E. I. Du Pont De Nemours And Company | Electronic devices having a layer overlying an edge of a different layer and a process for forming the same |
US7927948B2 (en) | 2005-07-20 | 2011-04-19 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
KR100886257B1 (en) | 2007-05-29 | 2009-03-02 | 재단법인서울대학교산학협력재단 | Copper damascene formation method |
US8304863B2 (en) * | 2010-02-09 | 2012-11-06 | International Business Machines Corporation | Electromigration immune through-substrate vias |
JP2013105753A (en) * | 2011-11-10 | 2013-05-30 | Toshiba Corp | Semiconductor device manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09153545A (en) * | 1995-09-29 | 1997-06-10 | Toshiba Corp | Semiconductor device and is manufacture |
US5824599A (en) * | 1996-01-16 | 1998-10-20 | Cornell Research Foundation, Inc. | Protected encapsulation of catalytic layer for electroless copper interconnect |
JP3657788B2 (en) | 1998-10-14 | 2005-06-08 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
-
1999
- 1999-08-31 US US09/386,148 patent/US6420261B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040052930A1 (en) * | 2000-04-27 | 2004-03-18 | Bulent Basol | Conductive structure fabrication process using novel layered structure and conductive structure fabricated thereby for use in multi-level metallization |
US8188602B2 (en) | 2002-06-10 | 2012-05-29 | Fujitsu Semiconductor Limited | Semiconductor device having multilevel copper wiring layers and its manufacture method |
US20030227086A1 (en) * | 2002-06-10 | 2003-12-11 | Fujitsu Limited | Semiconductor device having multilevel copper wiring layers and its manufacture method |
US10586768B2 (en) | 2012-11-05 | 2020-03-10 | Dai Nippon Printing Co., Ltd. | Line structure and a method for producing the same |
US12255145B2 (en) | 2012-11-05 | 2025-03-18 | Dai Nippon Printing Co., Ltd. | Multi-layer line structure |
US9735108B2 (en) | 2012-11-05 | 2017-08-15 | Dai Nippon Printing Co., Ltd. | Line structure and a method for producing the same |
US11862564B2 (en) | 2012-11-05 | 2024-01-02 | Dai Nippon Printing Co., Ltd. | Multi-layer line structure and method for manufacturing thereof |
US10121748B2 (en) | 2012-11-05 | 2018-11-06 | Dai Nippon Printing Co., Ltd. | Line structure and a method for producing the same |
US11217530B2 (en) | 2012-11-05 | 2022-01-04 | Dai Nippon Printing Co., Ltd. | Line structure and a method for producing the same |
US11069618B2 (en) | 2012-11-05 | 2021-07-20 | Dai Nippon Printing Co., Ltd. | Line structure and a method for producing the same |
US20150255749A1 (en) * | 2014-03-10 | 2015-09-10 | Samsung Sdi Co., Ltd. | Gas permeation barriers and methods of making the same |
US20150255759A1 (en) * | 2014-03-10 | 2015-09-10 | Samsung Sdi Co., Ltd. | Hybrid barrier stacks and methods of making the same |
US10942455B2 (en) | 2016-09-30 | 2021-03-09 | Fujifilm Corporation | Manufacturing method of semiconductor chip, and kit |
TWI737823B (en) * | 2016-09-30 | 2021-09-01 | 日商富士軟片股份有限公司 | Method for manufacturing semiconductor chip, kit |
US20190227440A1 (en) * | 2016-09-30 | 2019-07-25 | Fujifilm Corporation | Manufacturing method of semiconductor chip, and kit |
US11914300B2 (en) | 2016-09-30 | 2024-02-27 | Fujifilm Corporation | Manufacturing method of semiconductor chip, and kit |
US10504883B2 (en) * | 2016-12-15 | 2019-12-10 | Semiconductor Manufacturing International (Beijing) Corporation | Method for fabricating damascene structure using fluorocarbon film |
US11081478B2 (en) | 2016-12-15 | 2021-08-03 | Semiconductor Manufacturing International (Beijing) Corporation | Interconnect structure having a fluorocarbon layer |
US20180175015A1 (en) * | 2016-12-15 | 2018-06-21 | Semiconductor Manufacturing International (Beijing) Corporation | Method for fabricating damascene structure using fluorocarbon film |
Also Published As
Publication number | Publication date |
---|---|
US6420261B2 (en) | 2002-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6420261B2 (en) | Semiconductor device manufacturing method | |
US7534721B2 (en) | Semiconductor device manufacturing device | |
JP3501280B2 (en) | Manufacturing method of semiconductor device | |
US6930036B2 (en) | Semiconductor device and method of manufacturing the same | |
KR100265771B1 (en) | Method for metallization by dual damascene process using photosensitive polymer | |
US6951709B2 (en) | Method of fabricating a semiconductor multilevel interconnect structure | |
US6165899A (en) | Method for manufacturing semiconductor devices having dual damascene structure | |
US6225217B1 (en) | Method of manufacturing semiconductor device having multilayer wiring | |
JP2773530B2 (en) | Method for manufacturing semiconductor device | |
US6184142B1 (en) | Process for low k organic dielectric film etch | |
US6376366B1 (en) | Partial hard mask open process for hard mask dual damascene etch | |
US7304386B2 (en) | Semiconductor device having a multilayer wiring structure | |
US7163887B2 (en) | Method for fabricating a semiconductor device | |
US20070275565A1 (en) | Full removal of dual damascene metal level | |
US6376365B1 (en) | Method for fabricating semiconductor devices | |
US6737222B2 (en) | Dual damascene process utilizing a bi-layer imaging layer | |
US20030186534A1 (en) | Method for manufacturing semiconductor device using dual-damascene techniques | |
JPH0750694B2 (en) | Conductive layer formation method | |
JP3958071B2 (en) | Semiconductor device manufacturing method | |
US6812128B2 (en) | Method of manufacturing multilayer structured semiconductor device | |
US20040124528A1 (en) | Metal line structures in semiconductor devices and methods of forming the same | |
JPH06338500A (en) | Manufacture of semiconductor device | |
JPH05109717A (en) | Manufacture of semiconductor device | |
GB2350931A (en) | Forming vias in low-k dielectric materials using metallic masks | |
KR19980029372A (en) | Method for forming wiring layer of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FUJITSU LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KUDO, HIROSHI;REEL/FRAME:010218/0354 Effective date: 19990827 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: FUJITSU MICROELECTRONICS LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:021976/0876 Effective date: 20081104 Owner name: FUJITSU MICROELECTRONICS LIMITED,JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUJITSU LIMITED;REEL/FRAME:021976/0876 Effective date: 20081104 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: FUJITSU SEMICONDUCTOR LIMITED, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:FUJITSU MICROELECTRONICS LIMITED;REEL/FRAME:024804/0269 Effective date: 20100401 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: FUJITSU SEMICONDUCTOR LIMITED, JAPAN Free format text: CHANGE OF ADDRESS;ASSIGNOR:FUJITSU SEMICONDUCTOR LIMITED;REEL/FRAME:041188/0401 Effective date: 20160909 |