+

US20020000865A1 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device Download PDF

Info

Publication number
US20020000865A1
US20020000865A1 US09/404,220 US40422099A US2002000865A1 US 20020000865 A1 US20020000865 A1 US 20020000865A1 US 40422099 A US40422099 A US 40422099A US 2002000865 A1 US2002000865 A1 US 2002000865A1
Authority
US
United States
Prior art keywords
potential
transistor
level
signal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/404,220
Other versions
US6344764B2 (en
Inventor
Toru Tanzawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TANZAWA, TORU
Publication of US20020000865A1 publication Critical patent/US20020000865A1/en
Application granted granted Critical
Publication of US6344764B2 publication Critical patent/US6344764B2/en
Assigned to TOSHIBA MEMORY CORPORATION reassignment TOSHIBA MEMORY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABUSHIKI KAISHA TOSHIBA
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00384Modifications for compensating variations of temperature, supply voltage or other physical parameters in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • H03K19/01707Modifications for accelerating switching in field-effect transistor circuits in asynchronous circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits

Definitions

  • the present invention relates to a semiconductor integrated circuit device having a level-shifting circuit for shifting the signal amplitude.
  • a circuit using different voltages to input/output signals of different voltage levels is integrated in one chip.
  • Such device incorporates a level-shifting circuit to shift, e.g., a power supply voltage level to another voltage level.
  • memory peripheral circuits use a power supply voltage to output a signal of the power supply voltage level.
  • a circuit for driving word lines uses a boosted voltage higher than the power supply voltage to output a signal of the boosted voltage level in order to accurately read out data of a memory cell.
  • the level-shifting circuit shifts a signal of the power supply voltage level to a signal of the boosted voltage level.
  • the power supply voltage is being reduced to reduce power consumption.
  • the word line driving circuit must accurately read out data of a memory cell.
  • the boosted voltage is more difficult to reduce than the power supply voltage, and the ratio of the power supply voltage to the boosted voltage is increasing. Owing to this trend, it is becoming difficult for the level-shifting circuit to output an input signal of the power supply voltage level as an output signal of the boosted voltage level.
  • FIG. 1A is a circuit diagram showing a conventional level-shifting circuit
  • FIG. 1B is a waveform chart showing operation of this circuit.
  • a power supply potential VCC is input to the gate of an n-channel transistor QN 102 to turn on the transistor QN 102 . Since the transistor QN 102 is turned on, the potential of a node N 102 drops to turn on a p-channel transistor QP 101 . At this time, a ground potential VSS is input to the gate of an n-channel transistor QN 101 , so the transistor QN 101 is OFF. The potential of a node N 101 changes to a boosted potential VPP to change an output signal OUT 101 to “H” level.
  • VTH is the threshold voltage of the transistor QN 102 .
  • the power supply potential VCC is input to the gate of the transistor QN 101 to turn on the transistor QN 101 . Since the transistor QN 101 is turned on, the potential of the node N 101 drops to turn on the transistor QP 102 . At this time, the ground potential VSS is input to the gate of the transistor QN 102 , so the transistor QN 102 is OFF. The potential of the node N 102 changes to the boosted potential VPP. Since the potential of the node N 102 changes to the boosted potential VPP, the transistor QP 101 is turned off.
  • VSS ground potential
  • VTH the threshold voltage of the transistor QN 101
  • the transistors QP 101 , QP 102 , QN 101 , and QN 102 are of enhancement type in order to prevent a leakage current from flowing through each transistor when the input signal IN 101 is at either “H” level or “L” level.
  • the drivability of the transistor QN 102 must be set higher than that of the transistor QP 102 . If the drivability ratio of these transistors is small, both the transistors QN 102 and QP 102 stay ON, so a punch-through current flows from the boosted potential VPP to the ground potential VSS. That is, the level-shifting circuit malfunctions.
  • the drivabilities of the transistors QN 101 and QN 102 are conventionally set much higher than those of the transistors QP 101 and QP 102 .
  • a low power supply potential VCC decreases the current drivabilities of the transistors QN 101 and QN 102 .
  • the channel widths of the transistors QN 101 and QN 102 must be large.
  • an inverter I 102 for driving the transistor QN 102 and an inverter I 101 for driving the inverter I 102 and transistor QN 101 are large in size. However, this cannot avoid a long switching time Tr 2 from “L” level to “H” level and a long switching time Tf 2 from “H” level to “L” level shown in FIG. 1B, i.e., a low switching speed.
  • the switching speed varies more remarkably along with a decrease in power supply potential VCC.
  • the threshold voltage of a transistor varies due to manufacturing variations and the like.
  • a low power supply potential VCC greatly influences the current amount flowing through the transistors QN 101 and QN 102 even with slight variations in threshold voltage. For this reason, the switching speed varies more remarkably along with a decrease in power supply potential VCC.
  • the switching speed decreases with a decrease in power supply voltage.
  • the present invention has been made in consideration of the above situation, and has as its object to provide a semiconductor integrated circuit device having a level-shifting circuit capable of suppressing a decrease in switching speed even if the power supply potential drops, and capable of operating even if the power supply voltage drops to about the threshold voltage.
  • a semiconductor integrated circuit device comprising a first transistor of a first conductivity type having a source for receiving a first potential, a second transistor of the first conductivity type having a source for receiving the first potential, a gate connected to a drain of the first transistor, and a drain connected to a gate of the first transistor, and a third transistor of a second conductivity type having a drain connected to the drain of the first transistor, a gate for receiving a first signal, and a source for receiving a second signal.
  • the second signal is input to the source of the third transistor without fixing the source potential.
  • the third transistor can be turned off by the logic level of the second signal input to the source, unlike the prior art in which the third transistor is turned off by the logic level of the first signal input to the gate.
  • This arrangement allows operation of the semiconductor integrated circuit device even if the threshold voltage of the third transistor is set lower than in the prior art.
  • the threshold voltage of the third transistor can be decreased to increase the current amount flowing through the third transistor. Since the current amount flowing through the third transistor can be increased, deterioration of the drivability can be suppressed even if the power supply potential drops. Therefore, even if the power supply potential drops, a decrease in switching speed can be suppressed.
  • FIG. 1A is a circuit diagram showing a conventional level-shifting circuit
  • FIG. 1B is a waveform chart showing the operation of the conventional level-shifting circuit
  • FIG. 2A is a circuit diagram showing a level-shifting circuit according to the first embodiment of the present invention.
  • FIG. 2B is a waveform chart showing the operation of the level-shifting circuit according to the first embodiment of the present invention.
  • FIG. 3A is a graph showing the characteristics of a transistor QNI
  • FIG. 3B is a graph for explaining the effects of the level-shifting circuit according to the present invention.
  • FIG. 4A is a circuit diagram showing a level-shifting circuit according to the second embodiment of the present invention.
  • FIG. 4B is a waveform chart showing the operation of the level-shifting circuit according to the second embodiment of the present invention.
  • FIG. 5A is a circuit diagram showing a level-shifting circuit according to the third embodiment of the present invention.
  • FIG. 5B is a waveform chart showing the operation of the level-shifting circuit according to the third embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a level-shifting circuit according to the fourth embodiment of the present invention.
  • FIGS. 7A, 7B, 7 C, 7 D, and 7 E are circuit diagrams each showing a circuit example of a transfer gate
  • FIG. 8 is a circuit diagram showing a level-shifting circuit according to the fifth embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing a level-shifting circuit according to the sixth embodiment of the present invention.
  • FIG. 10A is a circuit diagram showing a level-shifting circuit according to the seventh embodiment of the present invention.
  • FIG. 10B is a waveform chart showing the operation of the level-shifting circuit according to the seventh embodiment of the present invention.
  • FIG. 11 is a block diagram showing the basic arrangement of a semiconductor storage device according to the eighth embodiment of the present invention.
  • FIG. 12 is a block diagram showing an arrangement example of a row decoder
  • FIG. 13 is a circuit diagram showing a circuit example of a main row decoder
  • FIG. 14 is a circuit diagram showing a circuit example of a sub-row decoder
  • FIGS. 15A, 15B, 15 C, and 15 D are circuit diagrams each showing an equivalent circuit of a memory cell.
  • FIG. 16 is a circuit diagram showing a level-shifting circuit according to a modification of the first embodiment of the present invention.
  • FIG. 2A is a circuit diagram showing a level-shifting circuit according to the first embodiment of the present invention.
  • a boosted potential VPP is applied to the sources of p-channel transistors QP 1 and QP 2 .
  • the boosted potential VPP is obtained by boosting, e.g., a power supply potential VCC.
  • the transistors QP 1 and QP 2 are of enhancement type.
  • the gate of the transistor QP 1 is connected to the drain of the transistor QP 2
  • the gate of the transistor QP 2 is connected to the drain of the transistor QP 1 .
  • the drain of the transistor QP 1 is connected to that of an n-channel transistor QNI 1
  • the drain of the transistor QP 2 is connected to that of an n-channel transistor QNI 2 .
  • the gate and source of the transistor QNI 1 receive a signal ⁇ 1 output from an inverter I 1 , and a signal ⁇ 2 output from an inverter I 2 , respectively.
  • the gate and source of the transistor QNI 2 receive the signals ⁇ 2 and ⁇ 1 , respectively.
  • the inverter I 1 receives an input signal IN 1 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • the inverter II inverts the logic level of the input signal IN 1 to output a signal having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • the inverter I 2 inverts the logic level of the signal ⁇ 1 to output a signal ⁇ 2 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • an output signal from the level-shifting circuit is obtained from a node N 1 between the drains of the transistors QP 1 and QNI 1 .
  • An output signal from the level-shifting circuit can be obtained from not only the node N 1 but also a node N 2 between the drains of the transistors QP 2 and QNI 2 , and further from both the nodes N 1 and N 2 . Note that the potential of the node N 2 is inverted with respect to that of the node N 1 .
  • the threshold voltages of the transistors QNI 1 and QNI 2 are set much lower than those of the conventional transistors QN 101 and QN 102 . Especially in the first embodiment, the threshold voltages of the transistors QNI 1 and QNI 2 are set to about 0V.
  • the transistors QNI 1 and QNI 2 are formed on a p-type substrate or in a p-type well to which the ground potential VSS is applied.
  • FIG. 3A shows the characteristics of the transistor QNI whose threshold voltage is set to about 0V.
  • the transistor QNI flows a current Ids defining the threshold voltage in the drain-source path, as indicated by the characteristic curve (a) in FIG. 3A. That is, the transistor QNI is turned “on”.
  • FIG. 2B is a waveform chart showing operation of the level-shifting circuit according to the first embodiment. Note that any signal delays in the inverters I 1 and I 2 are ignored in the waveform chart of FIG. 2B.
  • the input signal IN 1 is at “L” level.
  • the signals ⁇ 1 and ⁇ 2 are at “H” and “L” levels, respectively.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI 1 , and the transistor QNI 1 is ON.
  • the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI 2 , and the transistor QNI 2 is OFF.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI 2 to turn on the transistor QNI 2 . Since the transistor QNI 2 is turned on, the potential of the node N 2 drops to turn on the transistor QP 1 . At this time, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI 1 to turn off the transistor QNI 1 .
  • the potential of the node N 1 changes to the boosted potential VPP to change an output signal OUT 1 to “H” level. Since the potential of the node N 1 changes to the boosted potential VPP, the transistor QP 2 is turned off. Then, the potential of the node N 2 changes to the ground potential VSS.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI 1 to turn on the transistor QNI 1 . Since the transistor QNI 1 is turned on, the potential of the node N 1 drops. Since the potential of the node N 1 drops, the transistor QP 2 is turned on. At this time, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI 2 , so the transistor QNI 2 is OFF. The potential of the node N 2 changes to the boosted potential VPP. Since the potential of the node N 2 changes to the boosted potential VPP, the transistor QP 1 is turned off. Then, the potential of the node N 1 changes to the ground potential VSS to change the output signal OUT 1 to “L” level.
  • FIG. 3B is a graph for explaining the effects of the level-shifting circuit according to the present invention.
  • the characteristic curve (c) in FIG. 3B represents the relationship between the gate voltage Vg and the current Ids flowing in the drain-source path of the transistor QNI (corresponding to the transistors QNI 1 and QNI 2 of the level-shifting circuit according to the first embodiment) having a threshold of about 0V.
  • the characteristic curve (d) represents the relationship between the gate voltage Vg and the current Ids flowing in the drain-source path of an enhancement type transistor QN (corresponding to the transistors QN 101 and QN 102 of the conventional level-shifting circuit).
  • the threshold voltages of the transistors QNI 1 and QNI 2 are set much lower than those of the transistors QN 101 and QN 102 .
  • the transistors QNI 1 and QNI 2 can flow a larger current Ids than the transistors QN 101 and QN 102 , as indicated by the characteristic curve (c).
  • This state is equivalent to a high current drivability.
  • the current drivability is maintained high even upon a decrease in power supply potential VCC. Since the current drivabilities of the transistors QNI 1 and QNI 2 can be enhanced, the level-shifting circuit of the first embodiment can suppress a decrease in switching speed even upon a decrease in power supply potential VCC, compared to the conventional level-shifting circuit.
  • the current drivabilities of the transistors QNI 1 and QNI 2 are much higher than those of the transistors QN 101 and QN 102 .
  • the switching time Tr 1 from “L” level to “H” level shown in FIG. 2B becomes shorter than the conventional switching time Tr 2 shown in FIG. 1B.
  • the switching time Tf 1 from “H” level to “L” level becomes shorter than the conventional switching time Tf 2 .
  • the threshold voltages of the transistors QNI 1 and QNI 2 are decreased to, e.g., about 0V. Even if the power supply potential VCC drops to values in the neighborhoods of the threshold voltages of the transistors QN 101 and QN 102 , the level-shifting circuit can operate.
  • the transistors QN 101 and QN 102 may be replaced by the transistors QNI 1 and QNI 2 .
  • the level-shifting circuit when the ground potential VSS is applied to the gates of the transistors QNI 1 and QNI 2 , the power supply potential VCC is applied to their sources.
  • the second embodiment generalizes the level-shifting circuit of the present invention.
  • FIG. 4A is a circuit diagram showing a level-shifting circuit according to the second embodiment of the present invention.
  • FIG. 4A the same reference numerals as in FIG. 2A denote the same parts.
  • input signals ⁇ 1 and ⁇ 3 are inverted with respect to each other, and so are input signals ⁇ 2 ′, and ⁇ 4 .
  • FIG. 4B is a waveform chart showing the operation of the level-shifting circuit according to the second embodiment.
  • the signals ⁇ 1 , ⁇ 2 ′, ⁇ 3 , and ⁇ 4 are at “L”, “H”, “H”, and “L” levels, respectively.
  • a ground potential VSS and power supply potential VCC are respectively input to the gate and source of a transistor QNI 1 , so the transistor QNI 1 is OFF.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of a transistor QNI 2 , so the transistor QNI 2 is ON.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI 1 to turn on the transistor QNI 1 .
  • the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI 1 to turn off the transistor QNI 1 .
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI 2 to turn on the transistor QNI 2 .
  • the second embodiment is different from the first embodiment in that the times T 1 and T 3 at which the n-channel transistor is turned off are set earlier than the times T 2 and T 4 at which the n-channel transistor is turned on.
  • the time at which the n-channel transistor is turned off is the same as the time at which the n-channel transistor is turned on.
  • the second embodiment can also attain the same effects as in the first embodiment.
  • the times T 1 and T 3 at which the n-channel transistor is turned off are set earlier than the times T 2 and T 4 at which the n-channel transistor is turned on. Accordingly, the second embodiment can reduce any punch-through current that flows from the boosted potential VPP to the ground potential VSS.
  • the second embodiment can suppress power consumption, and can suppress particularly the consumption amount of boosted potential VPP.
  • FIG. 5A is a circuit diagram showing a level-shifting circuit according to the third embodiment of the present invention.
  • the same reference numerals as in FIG. 2A denote the same parts.
  • input signals ⁇ 1 ′ and ⁇ 2 are inverted with respect to each other except for the rise of the signal ⁇ 2 .
  • the third embodiment adopts an n-channel transistor QN 2 in place of the transistor QNI 2 .
  • the source of the transistor QN 2 receives a ground potential VSS.
  • the gate and drain of the transistor QN 2 are connected to the drains of transistors QP 1 and QP 2 , respectively.
  • the transistor QN 2 is of enhancement type.
  • FIG. 5B is a waveform chart showing operation of the level-shifting circuit according to the third embodiment.
  • the signals ⁇ 1 ′ and ⁇ 2 are at L” and “H” levels, respectively.
  • the ground potential VSS and power supply potential VCC are respectively input to the gate and source of a transistor QNI 1 , so the transistor QNI 1 is OFF.
  • a boosted potential VPP is input to the gate of the transistor QN 2 via a node N 1 , so the transistor QN 2 is ON.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI 1 to turn on the transistor QNI 1 . Since the transistor QNI 1 is turned on, the potential of the node N 1 drops to turn on and off the transistors QP 2 and QN 2 , respectively. The potential of a node N 2 changes to the boosted potential VPP to change an output signal OUT 2 to “H” level. Since the potential of the node N 2 changes to the boosted potential VPP, the transistor QP 2 is turned off. The potential of the node N 1 changes to the ground potential VSS.
  • the power supply potential VCC is input to the gate and source of the transistor QNI 1 .
  • the transistor QNI 1 having a threshold voltage of about 0V is ON.
  • the transistor QP 1 is OFF, the node N 1 is charged from the source of the transistor QNI 1 .
  • the potential of the node N 1 starts rising.
  • the transistors QN 2 and QP 1 are turned on.
  • the signal ⁇ 1 ′ changes from “H” level to “L” level at time T 3
  • the ground potential VSS is input to the gate of the transistor QNI 1 to completely turn off the transistor QNI 1 (cut off).
  • the potential of the node N 1 changes to the boosted potential VPP.
  • the potential of the node N 2 changes to the ground potential VSS-VTH to change the output signal OUT 2 to “L” level.
  • the third embodiment can also attain the same effects as in the first embodiment.
  • the transistor QNI 1 Since the transistor QNI 1 is turned off, when the potential of the node N 1 exceeds the threshold voltage of the transistor QN 2 , any punch-through current that flows from the boosted potential VPP to the ground potential VSS can be reduced. Consequently, the third embodiment can suppress power consumption, and can suppress particularly the consumption amount of boosted potential VPP.
  • FIG. 6 is a circuit diagram showing a level-shifting circuit according to the fourth embodiment of the present invention.
  • the same reference numerals as in FIG. 2A denote the same parts.
  • the fourth embodiment is different from the first embodiment in that the drain of a transistor QP 1 is connected to that of a transistor QNI 1 via a transfer gate 100 - 1 , and the drain of a transistor QP 2 is connected to that of a transistor QNI 2 via a transfer gate 100 - 2 .
  • the transfer gates 100 - 1 and 100 - 2 function to increase the snapback breakdown voltages of the transistors QNI 1 and QNI 2 .
  • FIGS. 7A to 7 E show several circuit examples of the transfer gate 100 .
  • FIGS. 7A to 7 E are circuit diagrams, respectively, showing the first to fifth circuit examples of the transfer gate 100 .
  • the transfer gate 100 is made from an n-channel transistor QNI 5 having a drain connected to the drain of the transistor QP 1 (or QP 2 ), and a source connected to the drain of the transistor QNI 1 (or QNI 2 ).
  • the gate of the transistor QNI 5 receives a power supply potential VCC.
  • the threshold voltage of the transistor QNI 5 is equal to the threshold voltages of the transistors QNI 1 and QNI 2 , and set to approximately 0V in the first circuit example.
  • a boosted potential VPP is input to the gate of the transistor QNI 5 in the first circuit example instead of the power supply potential VCC.
  • a boosted potential VPP 2 is input to the gate of the transistor QNI 5 in the first circuit example instead of the boosted potential VPP.
  • the boosted potential VPP 2 is lower than the boosted potential VPP serving as “H” level of an output signal OUT 1 , and is higher than the power supply potential VCC.
  • the transistor QNI 5 in the second circuit example is replaced by an enhancement type n-channel transistor QN 5 .
  • the threshold voltage of the transistor QN 5 is higher than the threshold voltages of the transistors QNI 1 and QNI 2 .
  • the transistor QNI 5 in the third circuit example is replaced by the transistor QN 5 having a high threshold voltage.
  • the fourth embodiment can attain the same effects as in the first embodiment. At the same time, the fourth embodiment can increase the snapback breakdown voltages of the transistors QNI 1 and QNI 2 , which is advantageous when the boosted potential VPP is high or the ratio of the boosted potential VPP to the power supply potential VCC is high.
  • the transfer gates 100 - 1 and 100 - 2 can be assembled in the second embodiment.
  • FIG. 8 is a circuit diagram showing a level-shifting circuit according to the fifth embodiment of the present invention.
  • the same reference numerals as in FIG. 5A denote the same parts.
  • the fifth embodiment is different from the third embodiment in that the drain of a transistor QP 1 is connected to that of a transistor QNI 1 via a transfer gate 100 - 1 , and the drain of a transistor QP 2 is connected to that of a transistor QN 2 via a transfer gate 100 - 2 .
  • the transfer gates 100 - 1 and 100 - 2 the circuits shown in FIGS. 7A to 7 E can be used.
  • the fifth embodiment can attain the same effects as in the third embodiment. At the same time, the fifth embodiment can increase the snapback breakdown voltages of the transistors QNI 1 and QN 2 , which is advantageous when the boosted potential VPP is high or the ratio of the boosted potential VPP to the power supply potential VCC is high.
  • FIG. 9 is a circuit diagram showing a level-shifting circuit according to the sixth embodiment of the present invention.
  • the same reference numerals as in FIG. 2A denote the same parts.
  • the sixth embodiment is different from the first embodiment in that the sixth embodiments adopts an n-channel transistor QNI 7 having a drain connected to the drain of a transistor QP 1 and a source connected to the drain of a transistor QNI 1 , and an n-channel transistor QNI 8 having a drain connected to the drain of a transistor QP 2 and a source connected to the drain of a transistor QNI 2 .
  • the gate of the transistor QNI 7 receives a signal ⁇ 1 similarly to the transistor QNI 1
  • the gate of the transistor QNI 8 receives a signal ⁇ 2 similarly to the transistor QNI 2 .
  • the transistors QNI 7 and QNI 8 function to increase the snapback breakdown voltages of the transistors QNI 1 and QNI 2 , similar to the above-described transistor QNI 5 .
  • the sixth embodiment can attain the same effects as in the first embodiment. Further, similar to the fourth embodiment, the sixth embodiment can increase the snapback breakdown voltages of the transistors QNI 1 and QNI 2 , which is advantageous when a boosted potential VPP is high or the ratio of the boosted potential VPP to a power supply potential VCC is high.
  • the transistors QNI 7 and QNI 8 can be assembled in the second embodiment.
  • the transistor QNI 7 can be assembled in the third embodiment.
  • the first to sixth embodiments have exemplified the level-shifting circuit of shifting the logic level of a signal from the power supply potential VCC to the boosted potential VPP.
  • the present invention can also applied to a level-shifting circuit of shifting the logic level of a signal from the ground potential VSS to a negative potential VBB.
  • the seventh embodiment concerns an example of the level-shifting circuit of shifting the logic level of a signal from the ground potential VSS to the negative potential VBB.
  • FIG. 10A is a circuit diagram showing a level-shifting circuit according to the seventh embodiment of the present invention.
  • the negative potential VBB is applied to the sources of n-channel transistors QN 3 and QN 4 .
  • the transistors QN 3 and QN 4 are of enhancement type.
  • the gate of the transistor QN 3 is connected to the drain of the transistor QN 4
  • the gate of the transistor QN 4 is connected to the drain of the transistor QN 3 .
  • the drain of the transistor QN 3 is connected to that of a p-channel transistor QPI 3
  • the drain of the transistor QN 4 is connected to that of a p-channel transistor QPI 4 .
  • the gate and source of the transistor QPI 3 receive a signal 05 output from an inverter I 3 , and a signal ⁇ 6 output from an inverter I 4 , respectively.
  • the gate and source of the transistor QPI 4 receive the signals ⁇ 6 and ⁇ 5 , respectively.
  • the inverter I 3 receives an input signal IN 2 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • the inverter I 3 inverts the logic level of the input signal IN 2 to output a signal ⁇ 5 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • the inverter I 4 inverts the logic level of the signal ⁇ 5 to output a signal ⁇ 6 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • the transistors QPI 3 and QPI 4 have low threshold voltages.
  • the transistors QPI 3 and QPI 4 are formed on an n-type substrate or in an n-type well to which the power supply potential VCC is applied.
  • an output signal from the level-shifting circuit is obtained from a node N 3 between the drains of the transistors QN 3 and QPI 3 .
  • An output signal from the level-shifting circuit can be obtained from not only the node N 3 but also a node N 4 between the drains of the transistors QN 4 and QPI 4 , and further from both the nodes N 3 and N 4 . Note that the potential of the node N 4 is inverted with respect to that of the node N 3 .
  • FIG. 10B is a waveform chart showing the operation of the level-shifting circuit according to the seventh embodiment. Note that any signal delays in the inverters I 3 and I 4 are ignored in the waveform chart of FIG. 10B.
  • the input signal IN 2 is at “L” level.
  • the signals ⁇ 5 and ⁇ 6 are at “H” and “L” levels, respectively.
  • the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QPI 3 , so the transistor QPI 3 is OFF.
  • the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QPI 4 , so the transistor QPI 4 is ON.
  • the node N 3 is at the negative potential VBB, and thus an output signal OUT 3 is at “L” level.
  • the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QPI 4 to turn on the transistor QPI 4 . Since the transistor QPI 4 is turned on, the potential of the node N 4 rises. Since the potential of the node N 4 rises, the transistor QN 3 is turned on. At this time, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QPI 3 to turn off the transistor QPI 3 . The potential of the node N 3 changes to the negative potential VBB to change the output signal OUT 3 to “L” level. Since the potential of the node N 3 changes to the negative potential VBB, the transistor QN 4 is turned off. Then, the potential of the node N 4 changes to the power supply potential VCC.
  • the seventh embodiment can shift “L” level out of signal logic levels from the ground potential VSS to the negative potential VBB, while maintaining the same effects as in the first embodiment.
  • the second to sixth embodiments can shift “L” signal level from the ground potential VSS to the negative potential VBB without impairing their effects by inverting the conductivity type of the transistor and replacing the boosted potential VPP with the negative potential VBB.
  • FIG. 11 is a block diagram showing the basic arrangement of a semiconductor storage device according to the eighth embodiment of the present invention.
  • a semiconductor storage device 10 comprises a memory cell array 11 .
  • the memory cell array 11 has a matrix of memory cells M.
  • the semiconductor storage device 10 basically comprises, as circuit blocks for reading out and writing data from and in the memory cells M, a row decoder 12 , column decoder 13 , address buffer 14 , sense amplifier 15 , voltage-boosting circuit 16 , and I/O buffer 18 .
  • a control signal generating circuit 17 generates a control signal for controlling the operation timing of each circuit block.
  • the address buffer 14 buffers an input address to output a row address RA and column address CA.
  • the row address RA is input to the row decoder 12
  • the column address CA is input to the column decoder 13 .
  • the row decoder 12 decodes the row address RA to select a word line WL based on the decoding result.
  • the column decoder 13 decodes the column address CA to select a bit line BL based on the decoding result.
  • the voltage-boosting circuit 16 outputs a word line boosted potential VPP higher than a power supply potential VCC.
  • the sense amplifier 15 amplifies the readout data of a memory cell M via the selected bit line BL.
  • the I/O buffer 18 outputs the data amplified by the sense amplifier 15 outside the semiconductor storage device 10 .
  • the I/O buffer 18 outputs to the sense amplifier 15 data input externally from the semiconductor storage device 10 .
  • the sense amplifier 15 writes the data input via the I/O buffer 18 in a memory cell M via the selected bit line BL.
  • FIG. 12 is a block diagram showing an arrangement example of the row decoder.
  • this arrangement example of the row decoder 12 selects one of 512 word lines WL 0 to WL 511 .
  • the row decoder 12 is made up of 64 main row decoders (ROW-MAIN) 21 - 0 to 21 - 63 , and 512 sub-row decoders (ROW-SUB) 22 - 0 to 22 - 511 .
  • FIG. 13 shows a circuit example of the main row decoder 21 .
  • FIG. 13 is a circuit diagram showing a circuit example of the main row decoder.
  • the circuit example shown in FIG. 13 is common to the main row decoders 21 - 0 to 21 - 63 shown in FIG. 12.
  • the main row decoder 21 comprises a NAND circuit 31 for receiving row addresses RAa and RAb, an inverter I 31 for receiving an output from the NAND circuit 31 , an inverter I 32 for receiving an output from the inverter I 31 , a level-shifting circuit 30 for shifting the logic level of the output from the inverter I 31 , and inverters I 33 and I 34 for receiving an output from the level-shifting circuit 30 and outputting complementary main decoded signals M and MB.
  • the complementary main decoded signals M and MB are input to the sub-row decoder 22 .
  • FIG. 14 shows a circuit example of the sub-row decoder 22 .
  • FIG. 14 is a circuit diagram showing a circuit example of the sub-row decoder.
  • the circuit example shown in FIG. 14 is common to the sub-row decoders 22 - 0 to 22 - 511 shown in FIG. 12.
  • the transfer gate circuit 32 is made up of an n-channel transistor QN 33 having a gate for receiving the main decoded signal M and a current path series-connected between the supply terminal of the word line driving signal CG and the word line WL, and a p-channel transistor QP 33 having a gate for receiving the main decoded signal MB and a current path series-connected between the supply terminal of the word line driving signal CG and the word line WL.
  • word lines WL 0 to WL 511 Of the word lines WL 0 to WL 511 , only the word line WL 7 changes to the boosted potential VPP via the transfer gate circuit 32 . All the remaining word lines WL 0 to WL 6 and WL 8 to WL 511 change to the ground potential VSS via the transistor QN 30 . In this manner, one of the 512 word lines WL 0 to WL 511 can be selected.
  • any level-shifting circuit according to the present invention can be used for the level-shifting circuit 30 of the main row decoder 21 .
  • the eighth embodiment exemplifies an example of using the level-shifting circuit according to the first embodiment for the level-shifting circuit 30 .
  • the level-shifting circuit 30 of the eighth embodiment obtains an output signal OUT 2 from a node N 2 between transistors QP 2 and QNI 2 .
  • the signal waveform of the output signal OUT 2 corresponds to that of the signal ⁇ 1 out of the signals ⁇ 1 and ⁇ 2 .
  • the level-shifting circuit 30 shifts “H” level out of the logic levels of the signal ⁇ 1 from the power supply potential VCC to the boosted potential VPP.
  • the level-shifting circuit according to the present invention can be used for, e.g., the row decoder 12 of the semiconductor storage device 10 , like the eighth embodiment.
  • the eighth embodiment has exemplified an example of using the level-shifting circuit according to the first embodiment for the level-shifting circuit 30 of the row decoder 12 .
  • the level-shifting circuit 30 can use the level-shifting circuit according to any one of the second to sixth embodiments.
  • the semiconductor storage device 10 can be either a nonvolatile or volatile memory, and the present invention can be applied to both nonvolatile and volatile memories. That is, the memory cell M of the memory cell array 11 can be either the one used for a nonvolatile memory or the one used for a volatile memory.
  • FIGS. 15A to 15 D show several examples of the memory cell M of the memory cell array 11 .
  • FIGS. 15A to 15 D are circuit diagrams each showing an equivalent circuit of the memory cell.
  • FIG. 15A shows a flash-cell used in a nonvolatile memory
  • FIG. 15B shows an FRAM-cell used in a nonvolatile memory
  • FIG. 15C shows a DRAM-cell used in a volatile memory
  • FIG. 15D shows an SRAM-cell used in a volatile memory.
  • FIGS. 15A to 15 D can be used for the memory cell M.
  • the level-shifting circuit according to the present invention has been exemplified by the first to eighth embodiments.
  • the level-shifting circuit according to the present invention is not limited to the first to eighth embodiments, and can be variously modified within the spirit and scope of the present invention.
  • the boosted potential VPP is higher than “H” level of the signal ⁇ 1 or the like, i.e., the power supply potential VCC, but need not always be kept high so long as the boosted potential VPP at times becomes higher than the power supply potential VCC during operation of the integrated circuit.
  • the negative potential VBB is lower than “L” level of the signal ⁇ 5 or the like, i.e., the ground potential VSS, but need not always be kept low so long as the negative potential VBB at times becomes lower than the ground potential VSS during operation of the integrated circuit.
  • Vg VSS
  • Vs VSS
  • the transistors QNI 1 and QNI 2 are turned on in combinations (1) to (3), and the transistors QNI 1 and QNI 2 are turned off in only combination (4).
  • the transistors QNI 1 and QNI 2 may either be weakly or strongly inverted. In the weakly inverted state, the current Ids is not saturated, as indicated by the point (e) shown in FIG. 3A. In the strongly inverted state, the current Ids is saturated, as indicated by the point (f) shown in FIG. 3A.
  • the transistors QNI 1 and QNI 2 are preferably cut off in their OFF states. In the cut-off state, almost no current Ids flows as indicated by the point (g) shown in FIG. 3A.
  • the gate potential Vg and source potential Vs take four combinations (1) to (4) in terms of circuit operation:
  • Vg VCC
  • Vs VCC
  • Vg VSS
  • Vs VSS
  • the transistors QPI 3 and QPI 4 are turned on in combinations (1) to (3), and the transistors QPI 3 and QPI 4 are turned off in only combination (4).
  • the transistors QPI 3 and QPI 4 may either be weakly or strongly inverted, similar to the transistors QNI 1 and QNI 2 .
  • the transistors QPI 3 and QPI 4 are preferably cut off in their OFF states, similar to the transistors QNI 1 and QNI 2 , in order to reduce the leakage current.
  • the present invention can provide a semiconductor integrated circuit device having a level-shifting circuit capable of suppressing a decrease in switching speed even if the power supply voltage drops, and capable of operating even if the power supply voltage drops to a level near the threshold voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Logic Circuits (AREA)
  • Read Only Memory (AREA)
  • Dram (AREA)

Abstract

This invention discloses a level-shifting circuit for shifting the signal amplitude. This level-shifting circuit includes a p-channel transistor having a source for receiving a boosted potential, a p-channel transistor having a source for receiving the boosted potential, a gate connected to the drain of the transistor, and a drain connected to the gate of the transistor, and an n-channel transistor with a threshold voltage of about 0V having a drain connected to the drain of the transistor, a gate for receiving an output from an inverter, and a source for receiving an output from an inverter for inverting an output from the former inverter.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a semiconductor integrated circuit device having a level-shifting circuit for shifting the signal amplitude. [0001]
  • In some semiconductor integrated circuit devices, a circuit using different voltages to input/output signals of different voltage levels is integrated in one chip. Such device incorporates a level-shifting circuit to shift, e.g., a power supply voltage level to another voltage level. [0002]
  • In semiconductor storage devices such as a DRAM, SRAM, and flash memory, many memory peripheral circuits use a power supply voltage to output a signal of the power supply voltage level. Of the memory peripheral circuits, e.g., a circuit for driving word lines uses a boosted voltage higher than the power supply voltage to output a signal of the boosted voltage level in order to accurately read out data of a memory cell. The level-shifting circuit shifts a signal of the power supply voltage level to a signal of the boosted voltage level. [0003]
  • Recently in the semiconductor storage device field, the power supply voltage is being reduced to reduce power consumption. However, the word line driving circuit must accurately read out data of a memory cell. Thus, the boosted voltage is more difficult to reduce than the power supply voltage, and the ratio of the power supply voltage to the boosted voltage is increasing. Owing to this trend, it is becoming difficult for the level-shifting circuit to output an input signal of the power supply voltage level as an output signal of the boosted voltage level. [0004]
  • FIG. 1A is a circuit diagram showing a conventional level-shifting circuit, and FIG. 1B is a waveform chart showing operation of this circuit. [0005]
  • The arrangement and operation of the level-shifting circuit will be described. [0006]
  • When an input signal IN[0007] 101 changes from “L” level to “H” level at time T1 shown in FIG. 1B, a power supply potential VCC is input to the gate of an n-channel transistor QN102 to turn on the transistor QN102. Since the transistor QN102 is turned on, the potential of a node N102 drops to turn on a p-channel transistor QP101. At this time, a ground potential VSS is input to the gate of an n-channel transistor QN101, so the transistor QN101 is OFF. The potential of a node N101 changes to a boosted potential VPP to change an output signal OUT101 to “H” level. Since the potential of the node N101 changes to the boosted potential VPP, a p-channel transistor QP102 is turned off. Then, the potential of the node N102 changes to the ground potential VSS (note that the potential of the node N102 in the circuit shown in FIG. 1A is “VSS-VTH”: VTH is the threshold voltage of the transistor QN102).
  • When the input signal IN[0008] 101 changes from “H” level to “L” level at time T2, the power supply potential VCC is input to the gate of the transistor QN101 to turn on the transistor QN101. Since the transistor QN101 is turned on, the potential of the node N101 drops to turn on the transistor QP102. At this time, the ground potential VSS is input to the gate of the transistor QN102, so the transistor QN102 is OFF. The potential of the node N102 changes to the boosted potential VPP. Since the potential of the node N102 changes to the boosted potential VPP, the transistor QP101 is turned off. Then, the potential of the node N101 changes to the ground potential VSS (note that the potential of the node N101 in the circuit shown in FIG. 1A is “VSS-VTH”: VTH is the threshold voltage of the transistor QN101). As a result, the output signal OUT101 changes to “L” level.
  • Note that the transistors QP[0009] 101, QP102, QN101, and QN102 are of enhancement type in order to prevent a leakage current from flowing through each transistor when the input signal IN101 is at either “H” level or “L” level.
  • In the level-shifting circuit shown in FIG. 1A, to change the output signal OUT[0010] 101 from “L” level to “H” level as the input signal IN101 changes from “L” level to “H” level, the drivability of the transistor QN102 must be set higher than that of the transistor QP102. If the drivability ratio of these transistors is small, both the transistors QN102 and QP102 stay ON, so a punch-through current flows from the boosted potential VPP to the ground potential VSS. That is, the level-shifting circuit malfunctions.
  • Under these circumstances, the drivabilities of the transistors QN[0011] 101 and QN102 are conventionally set much higher than those of the transistors QP101 and QP102. However, a low power supply potential VCC decreases the current drivabilities of the transistors QN101 and QN102. To suppress the decrease in current drivability, the channel widths of the transistors QN101 and QN102 must be large.
  • To raise the switching speed, an inverter I[0012] 102 for driving the transistor QN102 and an inverter I101 for driving the inverter I102 and transistor QN101 are large in size. However, this cannot avoid a long switching time Tr2 from “L” level to “H” level and a long switching time Tf2 from “H” level to “L” level shown in FIG. 1B, i.e., a low switching speed.
  • The switching speed varies more remarkably along with a decrease in power supply potential VCC. For example, the threshold voltage of a transistor varies due to manufacturing variations and the like. A low power supply potential VCC greatly influences the current amount flowing through the transistors QN[0013] 101 and QN102 even with slight variations in threshold voltage. For this reason, the switching speed varies more remarkably along with a decrease in power supply potential VCC.
  • If the power supply potential VCC drops to values in the neighborhoods of the threshold voltages of the transistors QN[0014] 101 and QN102, the level-shifting circuit shown in FIG. 1A cannot operate.
  • In the conventional level-shifting circuit, the switching speed decreases with a decrease in power supply voltage. [0015]
  • Further, if the power supply voltage drops to about the threshold voltage, the conventional level-shifting circuit cannot operate. [0016]
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention has been made in consideration of the above situation, and has as its object to provide a semiconductor integrated circuit device having a level-shifting circuit capable of suppressing a decrease in switching speed even if the power supply potential drops, and capable of operating even if the power supply voltage drops to about the threshold voltage. [0017]
  • To achieve the above object, according to the present invention, there is provided a semiconductor integrated circuit device comprising a first transistor of a first conductivity type having a source for receiving a first potential, a second transistor of the first conductivity type having a source for receiving the first potential, a gate connected to a drain of the first transistor, and a drain connected to a gate of the first transistor, and a third transistor of a second conductivity type having a drain connected to the drain of the first transistor, a gate for receiving a first signal, and a source for receiving a second signal. [0018]
  • In the semiconductor integrated circuit device having the above arrangement, the second signal is input to the source of the third transistor without fixing the source potential. Thus, the third transistor can be turned off by the logic level of the second signal input to the source, unlike the prior art in which the third transistor is turned off by the logic level of the first signal input to the gate. This arrangement allows operation of the semiconductor integrated circuit device even if the threshold voltage of the third transistor is set lower than in the prior art. [0019]
  • Assuming that a level for turning on the third transistor among the logic levels of the first signal is equal to that in the prior art, the threshold voltage of the third transistor can be decreased to increase the current amount flowing through the third transistor. Since the current amount flowing through the third transistor can be increased, deterioration of the drivability can be suppressed even if the power supply potential drops. Therefore, even if the power supply potential drops, a decrease in switching speed can be suppressed. [0020]
  • Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.[0021]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention. [0022]
  • FIG. 1A is a circuit diagram showing a conventional level-shifting circuit; [0023]
  • FIG. 1B is a waveform chart showing the operation of the conventional level-shifting circuit; [0024]
  • FIG. 2A is a circuit diagram showing a level-shifting circuit according to the first embodiment of the present invention; [0025]
  • FIG. 2B is a waveform chart showing the operation of the level-shifting circuit according to the first embodiment of the present invention; [0026]
  • FIG. 3A is a graph showing the characteristics of a transistor QNI; [0027]
  • FIG. 3B is a graph for explaining the effects of the level-shifting circuit according to the present invention; [0028]
  • FIG. 4A is a circuit diagram showing a level-shifting circuit according to the second embodiment of the present invention; [0029]
  • FIG. 4B is a waveform chart showing the operation of the level-shifting circuit according to the second embodiment of the present invention; [0030]
  • FIG. 5A is a circuit diagram showing a level-shifting circuit according to the third embodiment of the present invention; [0031]
  • FIG. 5B is a waveform chart showing the operation of the level-shifting circuit according to the third embodiment of the present invention; [0032]
  • FIG. 6 is a circuit diagram showing a level-shifting circuit according to the fourth embodiment of the present invention; [0033]
  • FIGS. 7A, 7B, [0034] 7C, 7D, and 7E are circuit diagrams each showing a circuit example of a transfer gate;
  • FIG. 8 is a circuit diagram showing a level-shifting circuit according to the fifth embodiment of the present invention; [0035]
  • FIG. 9 is a circuit diagram showing a level-shifting circuit according to the sixth embodiment of the present invention; [0036]
  • FIG. 10A is a circuit diagram showing a level-shifting circuit according to the seventh embodiment of the present invention; [0037]
  • FIG. 10B is a waveform chart showing the operation of the level-shifting circuit according to the seventh embodiment of the present invention; [0038]
  • FIG. 11 is a block diagram showing the basic arrangement of a semiconductor storage device according to the eighth embodiment of the present invention; [0039]
  • FIG. 12 is a block diagram showing an arrangement example of a row decoder; [0040]
  • FIG. 13 is a circuit diagram showing a circuit example of a main row decoder; [0041]
  • FIG. 14 is a circuit diagram showing a circuit example of a sub-row decoder; [0042]
  • FIGS. 15A, 15B, [0043] 15C, and 15D are circuit diagrams each showing an equivalent circuit of a memory cell; and
  • FIG. 16 is a circuit diagram showing a level-shifting circuit according to a modification of the first embodiment of the present invention. [0044]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention will be described. [0045]
  • [First Embodiment][0046]
  • FIG. 2A is a circuit diagram showing a level-shifting circuit according to the first embodiment of the present invention. [0047]
  • As shown in FIG. 2A, a boosted potential VPP is applied to the sources of p-channel transistors QP[0048] 1 and QP2. The boosted potential VPP is obtained by boosting, e.g., a power supply potential VCC. The transistors QP1 and QP2 are of enhancement type. The gate of the transistor QP1 is connected to the drain of the transistor QP2, and the gate of the transistor QP2 is connected to the drain of the transistor QP1. The drain of the transistor QP1 is connected to that of an n-channel transistor QNI1, and the drain of the transistor QP2 is connected to that of an n-channel transistor QNI2.
  • The gate and source of the transistor QNI[0049] 1 receive a signal φ1 output from an inverter I1, and a signal φ2 output from an inverter I2, respectively. The gate and source of the transistor QNI2 receive the signals φ2 and φ1, respectively.
  • The inverters I[0050] 1 and I2 are driven by the potential difference between the power supply potential VCC and ground potential VSS (=0V). The inverter I1 receives an input signal IN1 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels. The inverter II inverts the logic level of the input signal IN1 to output a signal having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels. The inverter I2 inverts the logic level of the signal φ1 to output a signal φ2 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • In the first embodiment, an output signal from the level-shifting circuit is obtained from a node N[0051] 1 between the drains of the transistors QP1 and QNI1. An output signal from the level-shifting circuit can be obtained from not only the node N1 but also a node N2 between the drains of the transistors QP2 and QNI2, and further from both the nodes N1 and N2. Note that the potential of the node N2 is inverted with respect to that of the node N1.
  • In the present invention, the threshold voltages of the transistors QNI[0052] 1 and QNI2 are set much lower than those of the conventional transistors QN101 and QN102. Especially in the first embodiment, the threshold voltages of the transistors QNI1 and QNI2 are set to about 0V. The transistors QNI1 and QNI2 are formed on a p-type substrate or in a p-type well to which the ground potential VSS is applied. FIG. 3A shows the characteristics of the transistor QNI whose threshold voltage is set to about 0V.
  • For a source potential Vs=0V, a drain potential Vd=VPP, a substrate potential Vb=0V, and a gate potential Vg=0V, the transistor QNI flows a current Ids defining the threshold voltage in the drain-source path, as indicated by the characteristic curve (a) in FIG. 3A. That is, the transistor QNI is turned “on”. [0053]
  • For a source potential Vs=VCC, a drain potential Vd=VPP, a substrate potential Vb=0V, and a gate potential Vg=0V, the characteristic curve (a) in FIG. 3A shifts to the characteristic curve (b), and the transistor QNI flows hardly any current Ids. That is, the transistor QNI is turned “off”. [0054]
  • This operation will be explained. [0055]
  • FIG. 2B is a waveform chart showing operation of the level-shifting circuit according to the first embodiment. Note that any signal delays in the inverters I[0056] 1 and I2 are ignored in the waveform chart of FIG. 2B.
  • At time T[0057] 0 shown in FIG. 2B, the input signal IN1 is at “L” level. Thus, the signals φ1 and φ2 are at “H” and “L” levels, respectively. In this state, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI1, and the transistor QNI1 is ON. The ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI2, and the transistor QNI2 is OFF.
  • When the input signal IN[0058] 1 changes from “L” level to “H level at time T1, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI2 to turn on the transistor QNI2. Since the transistor QNI2 is turned on, the potential of the node N2 drops to turn on the transistor QP1. At this time, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI1 to turn off the transistor QNI1. The potential of the node N1 changes to the boosted potential VPP to change an output signal OUT1 to “H” level. Since the potential of the node N1 changes to the boosted potential VPP, the transistor QP2 is turned off. Then, the potential of the node N2 changes to the ground potential VSS.
  • When the input signal IN[0059] 1 changes from “H” level to “L” level at time T2, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI1 to turn on the transistor QNI1. Since the transistor QNI1 is turned on, the potential of the node N1 drops. Since the potential of the node N1 drops, the transistor QP2 is turned on. At this time, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI2, so the transistor QNI2 is OFF. The potential of the node N2 changes to the boosted potential VPP. Since the potential of the node N2 changes to the boosted potential VPP, the transistor QP1 is turned off. Then, the potential of the node N1 changes to the ground potential VSS to change the output signal OUT1 to “L” level.
  • FIG. 3B is a graph for explaining the effects of the level-shifting circuit according to the present invention. [0060]
  • The characteristic curve (c) in FIG. 3B represents the relationship between the gate voltage Vg and the current Ids flowing in the drain-source path of the transistor QNI (corresponding to the transistors QNI[0061] 1 and QNI2 of the level-shifting circuit according to the first embodiment) having a threshold of about 0V. The characteristic curve (d) represents the relationship between the gate voltage Vg and the current Ids flowing in the drain-source path of an enhancement type transistor QN (corresponding to the transistors QN101 and QN102 of the conventional level-shifting circuit). The characteristic curves (c) and (d) are for a source potential Vs=0V, a drain potential Vd=VPP, and a substrate Vb=0V.
  • In the present invention, the threshold voltages of the transistors QNI[0062] 1 and QNI2 are set much lower than those of the transistors QN101 and QN102.
  • With this setting, when the power supply potential VCC is applied to the gate, the transistors QNI[0063] 1 and QNI2 can flow a larger current Ids than the transistors QN101 and QN102, as indicated by the characteristic curve (c). This state is equivalent to a high current drivability. As is apparent from the characteristic curve (c), the current drivability is maintained high even upon a decrease in power supply potential VCC. Since the current drivabilities of the transistors QNI1 and QNI2 can be enhanced, the level-shifting circuit of the first embodiment can suppress a decrease in switching speed even upon a decrease in power supply potential VCC, compared to the conventional level-shifting circuit.
  • In the level-shifting circuit according to the first embodiment, when the potential changes from “L” level to “H” level and from “H” level to “L” level, a transistor to be turned on and a transistor to be turned off are only exchanged, as explained earlier with reference to FIG. 2B. This switching operation is basically the same as switching operation of the conventional level-shifting circuit. [0064]
  • In the first embodiment, when the power supply potential VCC is set equal to that in the conventional level-shifting circuit, the current drivabilities of the transistors QNI[0065] 1 and QNI2 are much higher than those of the transistors QN101 and QN102. The switching time Tr1 from “L” level to “H” level shown in FIG. 2B becomes shorter than the conventional switching time Tr2 shown in FIG. 1B. Also, the switching time Tf1 from “H” level to “L” level becomes shorter than the conventional switching time Tf2.
  • In the first embodiment, the threshold voltages of the transistors QNI[0066] 1 and QNI2 are decreased to, e.g., about 0V. Even if the power supply potential VCC drops to values in the neighborhoods of the threshold voltages of the transistors QN101 and QN102, the level-shifting circuit can operate.
  • In the conventional level-shifting circuit, the transistors QN[0067] 101 and QN102 may be replaced by the transistors QNI1 and QNI2. In this case, the transistors QNI1 and QNI2 flow a larger leakage current. This is because the transistors QNI1 and QNI2 flow a current Ids even upon applying the ground potential VSS (=0V) to their gates, as indicated by the characteristic curve (c).
  • To the contrary, in the level-shifting circuit according to the first embodiment, when the ground potential VSS is applied to the gates of the transistors QNI[0068] 1 and QNI2, the power supply potential VCC is applied to their sources. This makes the transistors QNI1 and QNI2 flow hardly any current Ids, i.e., cut off, as indicated by the characteristic curve (b) in FIG. 3A. Since the transistors QNI1 and QNI2 can be cut off, the transistors QNI1 and QNI2 flow hardly any leakage current.
  • [Second Embodiment][0069]
  • The second embodiment generalizes the level-shifting circuit of the present invention. [0070]
  • FIG. 4A is a circuit diagram showing a level-shifting circuit according to the second embodiment of the present invention. [0071]
  • In FIG. 4A, the same reference numerals as in FIG. 2A denote the same parts. [0072]
  • In FIG. 4A, input signals φ[0073] 1 and φ3 are inverted with respect to each other, and so are input signals φ2′, and φ4.
  • Operation of this level-shifting circuit will be explained. [0074]
  • FIG. 4B is a waveform chart showing the operation of the level-shifting circuit according to the second embodiment. [0075]
  • At time T[0076] 0 shown in FIG. 4B, the signals φ1, φ2′, φ3, and φ4 are at “L”, “H”, “H”, and “L” levels, respectively. In this state, a ground potential VSS and power supply potential VCC are respectively input to the gate and source of a transistor QNI1, so the transistor QNI1 is OFF. The power supply potential VCC and ground potential VSS are respectively input to the gate and source of a transistor QNI2, so the transistor QNI2 is ON.
  • When the signal φ[0077] 2′ changes from “H” level to “L” level and the signal φ4 changes from “L” level to “H” level at time T1, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI2 to turn off the transistor QNI2.
  • When the signal φ[0078] 1 changes from “L” level to “H” level and the signal φ3 changes from “H” level to “L” level at time T2, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI1 to turn on the transistor QNI1.
  • Since the transistors QNI[0079] 2 and QNI1 are respectively turned off and on, the potential of a node N2 changes to a boosted potential VPP to change an output signal OUT2 to “H” level.
  • When the signal φ[0080] 1 changes from “H” level to “L” level and the signal φ3 changes from “L” level to “H” level at time T3, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QNI1 to turn off the transistor QNI1.
  • When the signal φ[0081] 2′ changes from “L” level to “H” level and the signal φ4 changes from “H” level to “L” level at time T4, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI2 to turn on the transistor QNI2.
  • Since the transistors QNI[0082] 1 and QNI2 are respectively turned off and on, the potential of the node N2 changes to the ground potential VSS to change the output signal OUT2 to “L” level.
  • As described above, the second embodiment is different from the first embodiment in that the times T[0083] 1 and T3 at which the n-channel transistor is turned off are set earlier than the times T2 and T4 at which the n-channel transistor is turned on. In the first embodiment, the time at which the n-channel transistor is turned off is the same as the time at which the n-channel transistor is turned on.
  • The second embodiment can also attain the same effects as in the first embodiment. In addition, the times T[0084] 1 and T3 at which the n-channel transistor is turned off are set earlier than the times T2 and T4 at which the n-channel transistor is turned on. Accordingly, the second embodiment can reduce any punch-through current that flows from the boosted potential VPP to the ground potential VSS. The second embodiment can suppress power consumption, and can suppress particularly the consumption amount of boosted potential VPP.
  • [Third Embodiment][0085]
  • FIG. 5A is a circuit diagram showing a level-shifting circuit according to the third embodiment of the present invention. In FIG. 5A, the same reference numerals as in FIG. 2A denote the same parts. [0086]
  • As shown in FIG. 5A, input signals φ[0087] 1′ and φ2 are inverted with respect to each other except for the rise of the signal φ2.
  • The third embodiment adopts an n-channel transistor QN[0088] 2 in place of the transistor QNI2. The source of the transistor QN2 receives a ground potential VSS. The gate and drain of the transistor QN2 are connected to the drains of transistors QP1 and QP2, respectively. The transistor QN2 is of enhancement type.
  • Operation of this level-shifting circuit will be described. [0089]
  • FIG. 5B is a waveform chart showing operation of the level-shifting circuit according to the third embodiment. [0090]
  • At time T[0091] 0 shown in FIG. 5B, the signals φ1′ and φ2 are at L” and “H” levels, respectively. In this state, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of a transistor QNI1, so the transistor QNI1 is OFF. A boosted potential VPP is input to the gate of the transistor QN2 via a node N1, so the transistor QN2 is ON.
  • When the signal φ[0092] 1′, changes from “L” level to “H” level and the signal φ2 changes from “H” level to “L” level at time T1, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QNI1 to turn on the transistor QNI1. Since the transistor QNI1 is turned on, the potential of the node N1 drops to turn on and off the transistors QP2 and QN2, respectively. The potential of a node N2 changes to the boosted potential VPP to change an output signal OUT2 to “H” level. Since the potential of the node N2 changes to the boosted potential VPP, the transistor QP2 is turned off. The potential of the node N1 changes to the ground potential VSS.
  • When the signal φ[0093] 2 changes from “L” level to “H” level at time T2, the power supply potential VCC is input to the gate and source of the transistor QNI1. In this state, the transistor QNI1 having a threshold voltage of about 0V is ON. While the transistor QP1 is OFF, the node N1 is charged from the source of the transistor QNI1. As a result, the potential of the node N1 starts rising.
  • When the potential of the node N[0094] 1 exceeds the threshold voltage of the transistor QN2 at time T3 after a delay time tD, the transistors QN2 and QP1 are turned on. When the signal φ1′ changes from “H” level to “L” level at time T3, the ground potential VSS is input to the gate of the transistor QNI1 to completely turn off the transistor QNI1 (cut off). While leakage of the boosted potential VPP via the transistor QNI1 is suppressed, the potential of the node N1 changes to the boosted potential VPP. The potential of the node N2 changes to the ground potential VSS-VTH to change the output signal OUT2 to “L” level.
  • The third embodiment can also attain the same effects as in the first embodiment. [0095]
  • By charging the node N[0096] 1 by the transistor QNI1 in an initial state, the consumption amount of boosted potential VPP can be reduced.
  • Since the transistor QNI[0097] 1 is turned off, when the potential of the node N1 exceeds the threshold voltage of the transistor QN2, any punch-through current that flows from the boosted potential VPP to the ground potential VSS can be reduced. Consequently, the third embodiment can suppress power consumption, and can suppress particularly the consumption amount of boosted potential VPP.
  • Note that a delay time tD within which the potential of the node N[0098] 1 can be changed to “H” level (e.g., the threshold voltage of the transistor QN2) by the transistor QNI1 suffices.
  • [Fourth Embodiment][0099]
  • FIG. 6 is a circuit diagram showing a level-shifting circuit according to the fourth embodiment of the present invention. In FIG. 6, the same reference numerals as in FIG. 2A denote the same parts. [0100]
  • The fourth embodiment is different from the first embodiment in that the drain of a transistor QP[0101] 1 is connected to that of a transistor QNI1 via a transfer gate 100-1, and the drain of a transistor QP2 is connected to that of a transistor QNI2 via a transfer gate 100-2. The transfer gates 100-1 and 100-2 function to increase the snapback breakdown voltages of the transistors QNI1 and QNI2. FIGS. 7A to 7E show several circuit examples of the transfer gate 100.
  • FIGS. 7A to [0102] 7E are circuit diagrams, respectively, showing the first to fifth circuit examples of the transfer gate 100.
  • In the first circuit example, as shown in FIG. 7A, the [0103] transfer gate 100 is made from an n-channel transistor QNI5 having a drain connected to the drain of the transistor QP1 (or QP2), and a source connected to the drain of the transistor QNI1 (or QNI2). The gate of the transistor QNI5 receives a power supply potential VCC. The threshold voltage of the transistor QNI5 is equal to the threshold voltages of the transistors QNI1 and QNI2, and set to approximately 0V in the first circuit example.
  • In the second circuit example, as shown in FIG. 7B, a boosted potential VPP is input to the gate of the transistor QNI[0104] 5 in the first circuit example instead of the power supply potential VCC.
  • In the third circuit example, as shown in FIG. 7C, a boosted potential VPP[0105] 2 is input to the gate of the transistor QNI5 in the first circuit example instead of the boosted potential VPP. The boosted potential VPP2 is lower than the boosted potential VPP serving as “H” level of an output signal OUT1, and is higher than the power supply potential VCC.
  • In the fourth circuit example, as shown in FIG. 7D, the transistor QNI[0106] 5 in the second circuit example is replaced by an enhancement type n-channel transistor QN5. The threshold voltage of the transistor QN5 is higher than the threshold voltages of the transistors QNI1 and QNI2.
  • In the fifth circuit example, as shown in FIG. 7E, the transistor QNI[0107] 5 in the third circuit example is replaced by the transistor QN5 having a high threshold voltage.
  • The fourth embodiment can attain the same effects as in the first embodiment. At the same time, the fourth embodiment can increase the snapback breakdown voltages of the transistors QNI[0108] 1 and QNI2, which is advantageous when the boosted potential VPP is high or the ratio of the boosted potential VPP to the power supply potential VCC is high.
  • Note that the operation of the level-shifting circuit according to the fourth embodiment is the same as that of the level-shifting circuit according to the first embodiment. [0109]
  • The transfer gates [0110] 100-1 and 100-2 can be assembled in the second embodiment.
  • [Fifth Embodiment][0111]
  • FIG. 8 is a circuit diagram showing a level-shifting circuit according to the fifth embodiment of the present invention. In FIG. 8, the same reference numerals as in FIG. 5A denote the same parts. [0112]
  • The fifth embodiment is different from the third embodiment in that the drain of a transistor QP[0113] 1 is connected to that of a transistor QNI1 via a transfer gate 100-1, and the drain of a transistor QP2 is connected to that of a transistor QN2 via a transfer gate 100-2. As the transfer gates 100-1 and 100-2, the circuits shown in FIGS. 7A to 7E can be used.
  • The fifth embodiment can attain the same effects as in the third embodiment. At the same time, the fifth embodiment can increase the snapback breakdown voltages of the transistors QNI[0114] 1 and QN2, which is advantageous when the boosted potential VPP is high or the ratio of the boosted potential VPP to the power supply potential VCC is high.
  • Note that the operation of the level-shifting circuit according to the fifth embodiment is the same as that of the level-shifting circuit according to the third embodiment. [0115]
  • [Sixth Embodiment][0116]
  • FIG. 9 is a circuit diagram showing a level-shifting circuit according to the sixth embodiment of the present invention. In FIG. 9, the same reference numerals as in FIG. 2A denote the same parts. [0117]
  • The sixth embodiment is different from the first embodiment in that the sixth embodiments adopts an n-channel transistor QNI[0118] 7 having a drain connected to the drain of a transistor QP1 and a source connected to the drain of a transistor QNI1, and an n-channel transistor QNI8 having a drain connected to the drain of a transistor QP2 and a source connected to the drain of a transistor QNI2. The gate of the transistor QNI7 receives a signal φ1 similarly to the transistor QNI1, and the gate of the transistor QNI8 receives a signal φ2 similarly to the transistor QNI2. The transistors QNI7 and QNI8 function to increase the snapback breakdown voltages of the transistors QNI1 and QNI2, similar to the above-described transistor QNI5.
  • The sixth embodiment can attain the same effects as in the first embodiment. Further, similar to the fourth embodiment, the sixth embodiment can increase the snapback breakdown voltages of the transistors QNI[0119] 1 and QNI2, which is advantageous when a boosted potential VPP is high or the ratio of the boosted potential VPP to a power supply potential VCC is high.
  • Note that the operation of the level-shifting circuit according to the sixth embodiment is the same as that of the level-shifting circuit according to the first embodiment. [0120]
  • The transistors QNI[0121] 7 and QNI8 can be assembled in the second embodiment. The transistor QNI7 can be assembled in the third embodiment.
  • [Seventh Embodiment][0122]
  • The first to sixth embodiments have exemplified the level-shifting circuit of shifting the logic level of a signal from the power supply potential VCC to the boosted potential VPP. [0123]
  • The present invention can also applied to a level-shifting circuit of shifting the logic level of a signal from the ground potential VSS to a negative potential VBB. [0124]
  • The seventh embodiment concerns an example of the level-shifting circuit of shifting the logic level of a signal from the ground potential VSS to the negative potential VBB. [0125]
  • FIG. 10A is a circuit diagram showing a level-shifting circuit according to the seventh embodiment of the present invention. [0126]
  • As shown in FIG. 10A, the negative potential VBB is applied to the sources of n-channel transistors QN[0127] 3 and QN4. The transistors QN3 and QN4 are of enhancement type. The gate of the transistor QN3 is connected to the drain of the transistor QN4, and the gate of the transistor QN4 is connected to the drain of the transistor QN3. The drain of the transistor QN3 is connected to that of a p-channel transistor QPI3, and the drain of the transistor QN4 is connected to that of a p-channel transistor QPI4.
  • The gate and source of the transistor QPI[0128] 3 receive a signal 05 output from an inverter I3, and a signal φ6 output from an inverter I4, respectively. The gate and source of the transistor QPI4 receive the signals φ6 and φ5, respectively.
  • The inverters I[0129] 3 and I4 are driven by the potential difference between a power supply potential VCC and ground potential VSS (=0V). The inverter I3 receives an input signal IN2 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels. The inverter I3 inverts the logic level of the input signal IN2 to output a signal φ5 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels. The inverter I4 inverts the logic level of the signal φ5 to output a signal φ6 having logic levels of the power supply potential VCC and ground potential VSS as “H” and “L” levels.
  • The transistors QPI[0130] 3 and QPI4 have low threshold voltages. The transistors QPI3 and QPI4 are formed on an n-type substrate or in an n-type well to which the power supply potential VCC is applied.
  • In the seventh embodiment, an output signal from the level-shifting circuit is obtained from a node N[0131] 3 between the drains of the transistors QN3 and QPI3. An output signal from the level-shifting circuit can be obtained from not only the node N3 but also a node N4 between the drains of the transistors QN4 and QPI4, and further from both the nodes N3 and N4. Note that the potential of the node N4 is inverted with respect to that of the node N3.
  • FIG. 10B is a waveform chart showing the operation of the level-shifting circuit according to the seventh embodiment. Note that any signal delays in the inverters I[0132] 3 and I4 are ignored in the waveform chart of FIG. 10B.
  • At time T[0133] 0 shown in FIG. 10B, the input signal IN2 is at “L” level. Thus, the signals φ5 and φ6 are at “H” and “L” levels, respectively. In this state, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QPI3, so the transistor QPI3 is OFF. The ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QPI4, so the transistor QPI4 is ON. The node N3 is at the negative potential VBB, and thus an output signal OUT3 is at “L” level.
  • When an input signal IN[0134] 3 changes from “L” level to “H” level at time T1, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QPI3 to turn on the transistor QPI3. Since the transistor QPI3 is turned on, the potential of the node N3 rises to turn on the transistor QN4. At this time, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QPI4 to turn off the transistor QPI4. The potential of the node N4 changes to the negative potential VBB to turn off the transistor QN3. The potential of the node N3 changes to the power supply potential VCC to change the output signal OUT3 to “H” level.
  • When the input signal IN[0135] 2 changes from “H” level to “L” level at time T2, the ground potential VSS and power supply potential VCC are respectively input to the gate and source of the transistor QPI4 to turn on the transistor QPI4. Since the transistor QPI4 is turned on, the potential of the node N4 rises. Since the potential of the node N4 rises, the transistor QN3 is turned on. At this time, the power supply potential VCC and ground potential VSS are respectively input to the gate and source of the transistor QPI3 to turn off the transistor QPI3. The potential of the node N3 changes to the negative potential VBB to change the output signal OUT3 to “L” level. Since the potential of the node N3 changes to the negative potential VBB, the transistor QN4 is turned off. Then, the potential of the node N4 changes to the power supply potential VCC.
  • The seventh embodiment can shift “L” level out of signal logic levels from the ground potential VSS to the negative potential VBB, while maintaining the same effects as in the first embodiment. [0136]
  • Similar to the seventh embodiment, the second to sixth embodiments can shift “L” signal level from the ground potential VSS to the negative potential VBB without impairing their effects by inverting the conductivity type of the transistor and replacing the boosted potential VPP with the negative potential VBB. [0137]
  • [Eighth Embodiment][0138]
  • FIG. 11 is a block diagram showing the basic arrangement of a semiconductor storage device according to the eighth embodiment of the present invention. [0139]
  • As shown in FIG. 11, a [0140] semiconductor storage device 10 comprises a memory cell array 11. The memory cell array 11 has a matrix of memory cells M. The semiconductor storage device 10 basically comprises, as circuit blocks for reading out and writing data from and in the memory cells M, a row decoder 12, column decoder 13, address buffer 14, sense amplifier 15, voltage-boosting circuit 16, and I/O buffer 18. A control signal generating circuit 17 generates a control signal for controlling the operation timing of each circuit block. The address buffer 14 buffers an input address to output a row address RA and column address CA. The row address RA is input to the row decoder 12, whereas the column address CA is input to the column decoder 13. The row decoder 12 decodes the row address RA to select a word line WL based on the decoding result. The column decoder 13 decodes the column address CA to select a bit line BL based on the decoding result. The voltage-boosting circuit 16 outputs a word line boosted potential VPP higher than a power supply potential VCC.
  • In a data read, the [0141] sense amplifier 15 amplifies the readout data of a memory cell M via the selected bit line BL. The I/O buffer 18 outputs the data amplified by the sense amplifier 15 outside the semiconductor storage device 10.
  • In a data write, the I/[0142] O buffer 18 outputs to the sense amplifier 15 data input externally from the semiconductor storage device 10. The sense amplifier 15 writes the data input via the I/O buffer 18 in a memory cell M via the selected bit line BL.
  • FIG. 12 is a block diagram showing an arrangement example of the row decoder. [0143]
  • As shown in FIG. 12, this arrangement example of the [0144] row decoder 12 selects one of 512 word lines WL0 to WL511. The row decoder 12 is made up of 64 main row decoders (ROW-MAIN) 21-0 to 21-63, and 512 sub-row decoders (ROW-SUB) 22-0 to 22-511. FIG. 13 shows a circuit example of the main row decoder 21.
  • FIG. 13 is a circuit diagram showing a circuit example of the main row decoder. The circuit example shown in FIG. 13 is common to the main row decoders [0145] 21-0 to 21-63 shown in FIG. 12.
  • As shown in FIG. 13, the [0146] main row decoder 21 according to this circuit example comprises a NAND circuit 31 for receiving row addresses RAa and RAb, an inverter I31 for receiving an output from the NAND circuit 31, an inverter I32 for receiving an output from the inverter I31, a level-shifting circuit 30 for shifting the logic level of the output from the inverter I31, and inverters I33 and I34 for receiving an output from the level-shifting circuit 30 and outputting complementary main decoded signals M and MB. The inverters I33 and I34 are driven by the potential difference between the boosted potential VPP and ground potential VSS (=0V). The complementary main decoded signals M and MB are input to the sub-row decoder 22. FIG. 14 shows a circuit example of the sub-row decoder 22.
  • FIG. 14 is a circuit diagram showing a circuit example of the sub-row decoder. The circuit example shown in FIG. 14 is common to the sub-row decoders [0147] 22-0 to 22-511 shown in FIG. 12.
  • As shown in FIG. 14, the [0148] sub-row decoder 22 according to this circuit example comprises a CMOS transfer gate circuit 32 for transferring a word line driving signal CG to the word line WL in accordance with the complementary main decoded signals M and MB, and an n-channel transistor QN30 for supplying the ground potential VSS (=0V) to the word line WL when the main decoded signal MB is at “H” level. The transfer gate circuit 32 is made up of an n-channel transistor QN33 having a gate for receiving the main decoded signal M and a current path series-connected between the supply terminal of the word line driving signal CG and the word line WL, and a p-channel transistor QP33 having a gate for receiving the main decoded signal MB and a current path series-connected between the supply terminal of the word line driving signal CG and the word line WL.
  • For example, when the word line WL[0149] 7 is to be selected, the row decoder 12 changes RAa0 and RAb0 among row addresses RAa0 to RAa7 and RAb0 to RAb7 to “H” level (=power supply potential VCC), and changes all the remaining row addresses RAa1 to RAa7 and RAb1 to RAb7 to “L” level (=ground potential VSS). The row decoder 12 changes CG7 among word line driving signals CG0 to CG7 to “H” level (=boosted potential VPP), and changes all the remaining word line driving signals CG0 to CG6 to “L” level (=ground potential VSS). Of the word lines WL0 to WL511, only the word line WL7 changes to the boosted potential VPP via the transfer gate circuit 32. All the remaining word lines WL0 to WL6 and WL8 to WL511 change to the ground potential VSS via the transistor QN30. In this manner, one of the 512 word lines WL0 to WL511 can be selected.
  • In the [0150] row decoder 12, any level-shifting circuit according to the present invention can be used for the level-shifting circuit 30 of the main row decoder 21. The eighth embodiment exemplifies an example of using the level-shifting circuit according to the first embodiment for the level-shifting circuit 30.
  • More specifically, as shown in FIG. 13, the inverters I[0151] 31 and I32 are driven by the potential difference between the power supply potential VCC and ground potential VSS (=0V). Therefore, an output from the inverter I31 corresponds to the signal φ1 in the first embodiment, and an output from the inverter I32 corresponds to the signal φ2 in the first embodiment.
  • The level-shifting [0152] circuit 30 of the eighth embodiment obtains an output signal OUT2 from a node N2 between transistors QP2 and QNI2. The signal waveform of the output signal OUT2 corresponds to that of the signal φ1 out of the signals φ1 and φ2. The level-shifting circuit 30 shifts “H” level out of the logic levels of the signal φ1 from the power supply potential VCC to the boosted potential VPP.
  • The level-shifting circuit according to the present invention can be used for, e.g., the [0153] row decoder 12 of the semiconductor storage device 10, like the eighth embodiment.
  • The eighth embodiment has exemplified an example of using the level-shifting circuit according to the first embodiment for the level-shifting [0154] circuit 30 of the row decoder 12. Alternatively, the level-shifting circuit 30 can use the level-shifting circuit according to any one of the second to sixth embodiments.
  • The [0155] semiconductor storage device 10 can be either a nonvolatile or volatile memory, and the present invention can be applied to both nonvolatile and volatile memories. That is, the memory cell M of the memory cell array 11 can be either the one used for a nonvolatile memory or the one used for a volatile memory. FIGS. 15A to 15D show several examples of the memory cell M of the memory cell array 11.
  • FIGS. 15A to [0156] 15D are circuit diagrams each showing an equivalent circuit of the memory cell.
  • FIG. 15A shows a flash-cell used in a nonvolatile memory, FIG. 15B shows an FRAM-cell used in a nonvolatile memory, FIG. 15C shows a DRAM-cell used in a volatile memory, and FIG. 15D shows an SRAM-cell used in a volatile memory. [0157]
  • The memory cells shown in FIGS. 15A to [0158] 15D can be used for the memory cell M.
  • The level-shifting circuit according to the present invention has been exemplified by the first to eighth embodiments. However, the level-shifting circuit according to the present invention is not limited to the first to eighth embodiments, and can be variously modified within the spirit and scope of the present invention. [0159]
  • For example, the boosted potential VPP is higher than “H” level of the signal φ[0160] 1 or the like, i.e., the power supply potential VCC, but need not always be kept high so long as the boosted potential VPP at times becomes higher than the power supply potential VCC during operation of the integrated circuit.
  • Similarly, the negative potential VBB is lower than “L” level of the signal φ[0161] 5 or the like, i.e., the ground potential VSS, but need not always be kept low so long as the negative potential VBB at times becomes lower than the ground potential VSS during operation of the integrated circuit.
  • When the drain potentials Vd of the transistor QNI[0162] 1 and QNI2 are set to the boosted potential VPP, and the substrate potential Vb is set to the ground potential VSS, the gate potential Vg and source potential Vs take four combinations (1) to (4) in terms of circuit operation:
  • (1) Vg=VSS, Vs=VSS [0163]
  • (2) Vg=VCC, Vs=VCC [0164]
  • (3) Vg=VCC, Vs=VSS [0165]
  • (4) Vg=VSS, Vs=VCC [0166]
  • Of combinations (1) to (4), the transistors QNI[0167] 1 and QNI2 are turned on in combinations (1) to (3), and the transistors QNI1 and QNI2 are turned off in only combination (4).
  • In combinations (1) to (3), the transistors QNI[0168] 1 and QNI2 may either be weakly or strongly inverted. In the weakly inverted state, the current Ids is not saturated, as indicated by the point (e) shown in FIG. 3A. In the strongly inverted state, the current Ids is saturated, as indicated by the point (f) shown in FIG. 3A.
  • In combination (4), the transistors QNI[0169] 1 and QNI2 are preferably cut off in their OFF states. In the cut-off state, almost no current Ids flows as indicated by the point (g) shown in FIG. 3A.
  • When the transistors QNI[0170] 1 and QNI2 are OFF, a current Ids smaller than the current Ids defining the threshold voltage may flow, as indicated by the point (h) shown in FIG. 3A. In this state, although a small current Ids flows, the transistors QNI1 and QNI2 are OFF in terms of circuit operation. Hence, the transistors QNI1 and QNI2 may take this OFF state. However, the leakage current increases in this OFF state, so that the transistors QNI1 and QNI2 are preferably cut off in their OFF states.
  • Further, when the drain potentials Vd of the transistors QPI[0171] 3 and QPI2 are set to the negative potential VBB, and the substrate potential Vb is set to the power supply potential VCC, the gate potential Vg and source potential Vs take four combinations (1) to (4) in terms of circuit operation:
  • (1) Vg=VCC, Vs=VCC [0172]
  • (2) Vg=VSS, Vs=VSS [0173]
  • (3) Vg=VSS, Vs=VCC [0174]
  • (4) Vg=VCC, Vs=VSS [0175]
  • Of combinations (1) to (4), the transistors QPI[0176] 3 and QPI4 are turned on in combinations (1) to (3), and the transistors QPI3 and QPI4 are turned off in only combination (4).
  • In combinations (1) to (3), the transistors QPI[0177] 3 and QPI4 may either be weakly or strongly inverted, similar to the transistors QNI1 and QNI2.
  • In combination (4), the transistors QPI[0178] 3 and QPI4 are preferably cut off in their OFF states, similar to the transistors QNI1 and QNI2, in order to reduce the leakage current.
  • As shown in FIG. 16, it is possible to employ only one of transistors QNI[0179] 1 and QNI2. This modification is applicable to each of the embodiments described above.
  • The present invention can provide a semiconductor integrated circuit device having a level-shifting circuit capable of suppressing a decrease in switching speed even if the power supply voltage drops, and capable of operating even if the power supply voltage drops to a level near the threshold voltage. [0180]
  • Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. [0181]

Claims (35)

1. A semiconductor integrated circuit device comprising:
a first transistor of a first conductivity type having a source for receiving a first potential;
a second transistor of the first conductivity type having a source for receiving the first potential, a gate connected to a drain of said first transistor, and a drain connected to a gate of said first transistor; and
a third transistor of a second conductivity type having a drain for receiving a potential from the drain of said first transistor, a gate for receiving a first signal, and a source for receiving a second signal.
2. The device according to claim 1, wherein the second signal is an inverted signal of the first signal.
3. The device according to claim 1, wherein the first potential is positive to a potential of the first signal when the first signal is in a high level, the first conductivity type is p type, and the second conductivity type is n type.
4. The device according to claim 2, wherein the first potential is positive to a potential of the first signal when the first signal is in a high level, the first conductivity type is p type, and the second conductivity type is n type.
5. The device according to claim 1, wherein the first potential is negative to a potential of the first signal when the first signal is in a low level, the first conductivity type is n type, and the second conductivity type is p type.
6. The device according to claim 2, wherein the first potential is negative to a potential of the first signal when the first signal is in a low level, the first conductivity type is n type, and the second conductivity type is p type.
7. The device according to claim 3, wherein said third transistor is weakly or strongly inverted when a low-level potential of the first signal is applied to the gate and source, and to a substrate, and the first potential is input to the drain.
8. The device according to claim 4, wherein said third transistor is weakly or strongly inverted when a low-level potential of the first signal is applied to the gate and source, and to a substrate, and the first potential is input to the drain.
9. The device according to claim 7, wherein said third transistor is weakly or strongly inverted when a high-level potential of the first signal is applied to the gate and source, a low-level potential of the first signal is applied to a substrate, and the first potential is input to the drain.
10. The device according to claim 8, wherein said third transistor is weakly or strongly inverted when a high-level potential of the first signal is applied to the gate and source, a low-level potential of the first signal is applied to a substrate, and the first potential is input to the drain.
11. The device according to claim 3, wherein said third transistor is cut off when a low-level potential of the first signal is applied to the gate and a substrate, a high-level potential of the first signal is applied to the source, and the first potential is input to the drain.
12. The device according to claim 4, wherein said third transistor is cut off when a low-level potential of the first signal is applied to the gate and a substrate, a high-level potential of the first signal is applied to the source, and the first potential is input to the drain.
13. The device according to claim 5, wherein said third transistor is in a weak inverted state or strong inverted state when a high-level potential of the first signal is applied to the gate, the source, and a substrate, and the first potential is input to the drain.
14. The device according to claim 6, wherein said third transistor is in a weak inverted state or strong inverted state when a high-level potential of the first signal is applied to the gate, the source, and a substrate, and the first potential is input to the drain.
15. The device according to claim 13, wherein said third transistor is in a weak inverted state or strong inverted state when a low-level potential of the first signal is applied to the gate and source, a low-level potential of the first signal is applied to a substrate, and the first potential is input to the drain.
16. The device according to claim 14, wherein said third transistor is in a weak inverted state or strong inverted state when a low-level potential of the first signal is applied to the gate and source, a low-level potential of the first signal is applied to a substrate, and the first potential is input to the drain.
17. The device according to claim 3, wherein said third transistor is in a cut-off state when a high-level potential of the first signal is applied to the gate and a substrate, a low-level potential of the first signal is applied to the source, and the first potential is input to the drain.
18. The device according to claim 4, wherein said third transistor is in a cut-off state when a high-level potential of the first signal is applied to the gate and a substrate, a low-level potential of the first signal is applied to the source, and the first potential is input to the drain.
19. The device according to claim 3, wherein said first and second transistors are formed in an n-type well formed in a p-type substrate, and said third transistor is formed on the p-type substrate.
20. The device according to claim 4, wherein said first and second transistors are formed in an n-type well formed in a p-type substrate, and said third transistor is formed on the p-type substrate.
21. The device according to claim 5, wherein said first and second transistors are formed in a p-type well formed in an n-type substrate, and said third transistor is formed on the n-type substrate.
22. The device according to claim 6, wherein said first and second transistors are formed in a p-type well formed in an n-type substrate, and said third transistor is formed on the n-type substrate.
23. The device according to claim 3, wherein the first potential at times becomes higher than high level of the first signal.
24. The device according to claim 4, wherein the first potential at times becomes higher than high level of the first signal.
25. The device according to claim 5, wherein the first potential at times becomes lower than low level of the first signal.
26. The device according to claim 6, wherein the first potential at times becomes lower than low level of the first signal.
27. The device according to claim 1, wherein a transition of the second signal from a first logic level to a second logic level is faster than a transition of the first signal from the second logic level to the first logic level, and a transition of the second signal from the second logic level to the first logic level is faster than a transition of the first signal from the first logic level to the second logic level.
28. The device according to claim 1, wherein a transition of the first signal from a first logic level to a second logic level is slower than a transition of the second signal from the second logic level to the first logic level.
29. The device according to claim 1, further comprising:
a fourth transistor of the second conductivity type having a drain for receiving a potential from the drain of said second transistor, a gate for receiving a third signal having an inverted relationship with respect to the first signal, and a source for receiving a fourth signal having an inverted relationship with respect to the second signal.
30. The device according to claim 1, further comprising:
a fifth transistor of the second conductivity type having a drain for receiving a potential from the drain of said first transistor, and a source connected to the drain of said third transistor.
31. The device according to claim 30, wherein said fifth transistor has a gate for receiving any one of a power supply potential, a potential of the source of said first transistor, and a boosted potential obtained by boosting the power supply potential.
32. The device according to claim 30, wherein said fifth transistor has a gate connected to the gate of said third transistor.
33. The device according to claim 30, further comprising:
a sixth transistor of the second conductivity type having a drain for receiving a potential from the drain of said second transistor, and a source connected to a drain of a fourth transistor.
34. The device according to claim 33, wherein said fifth and sixth transistors have gates for receiving any one of a power supply potential, a potential of the source of said first transistor, and a boosted potential obtained by boosting the power supply potential.
35. The device according to claim 33, wherein said fifth transistor has a gate connected to the gate of said third transistor, and said sixth transistor has a gate connected to the gate of said fourth transistor.
US09/404,220 1998-11-16 1999-09-23 Semiconductor integrated circuit device Expired - Lifetime US6344764B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32546598A JP3695967B2 (en) 1998-11-16 1998-11-16 Semiconductor integrated circuit device
JP10-325465 1998-11-16

Publications (2)

Publication Number Publication Date
US20020000865A1 true US20020000865A1 (en) 2002-01-03
US6344764B2 US6344764B2 (en) 2002-02-05

Family

ID=18177184

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/404,220 Expired - Lifetime US6344764B2 (en) 1998-11-16 1999-09-23 Semiconductor integrated circuit device

Country Status (4)

Country Link
US (1) US6344764B2 (en)
JP (1) JP3695967B2 (en)
KR (1) KR100337139B1 (en)
TW (1) TW558870B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080094052A1 (en) * 2006-10-18 2008-04-24 Koji Shimbayashi Voltage detector circuit
US7450460B2 (en) 2004-06-25 2008-11-11 Spansion Llc Voltage control circuit and semiconductor device
US20110050310A1 (en) * 2007-08-13 2011-03-03 Nxp B.V. Level shifter circuit
CN112201189A (en) * 2020-09-10 2021-01-08 天钰科技股份有限公司 Potential shift circuit and display device with same
CN112436005A (en) * 2019-08-26 2021-03-02 株式会社东芝 Semiconductor device with a plurality of semiconductor chips

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100352767B1 (en) * 2000-07-19 2002-09-16 삼성전자 주식회사 interface circuit for use in high speed semiconductor device and method therefore
JP2002135108A (en) * 2000-07-27 2002-05-10 Semiconductor Energy Lab Co Ltd Level shifter circuit and semiconductor apparatus
TWI237947B (en) * 2001-07-12 2005-08-11 Sanyo Electric Co Level transducing circuit
JP4075617B2 (en) * 2003-01-14 2008-04-16 凸版印刷株式会社 Level shift circuit
FR2856855A1 (en) * 2003-06-27 2004-12-31 St Microelectronics Sa CONTROL DEVICE OF A VOLTAGE-CONTROLLED SWITCH
US7358789B2 (en) * 2004-12-03 2008-04-15 Semiconductor Energy Laboratory Co., Ltd. Level shifter for display device
JP4974512B2 (en) * 2004-12-03 2012-07-11 株式会社半導体エネルギー研究所 Semiconductor device, display device and electronic apparatus
US7696804B2 (en) * 2007-03-31 2010-04-13 Sandisk 3D Llc Method for incorporating transistor snap-back protection in a level shifter circuit
US7696805B2 (en) * 2007-03-31 2010-04-13 Sandisk 3D Llc Level shifter circuit incorporating transistor snap-back protection
JP2010238289A (en) * 2009-03-30 2010-10-21 Elpida Memory Inc Differential amplifier circuit
US20100321083A1 (en) * 2009-06-22 2010-12-23 International Business Machines Corporation Voltage Level Translating Circuit
JP2012209899A (en) * 2011-03-30 2012-10-25 Elpida Memory Inc Semiconductor device
JP6495024B2 (en) * 2015-01-29 2019-04-03 ルネサスエレクトロニクス株式会社 Semiconductor device
JP6588116B2 (en) * 2018-02-26 2019-10-09 ウィンボンド エレクトロニクス コーポレーション Level shifter
KR102465420B1 (en) * 2018-04-27 2022-11-11 에스케이하이닉스 주식회사 Level shifter and memory system including the same
WO2023073904A1 (en) * 2021-10-29 2023-05-04 株式会社ソシオネクスト Level-shifting circuit
US11875854B2 (en) * 2022-03-31 2024-01-16 Macronix International Co., Ltd. Memory device and word line driver thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318015A (en) * 1979-06-29 1982-03-02 Rca Corporation Level shift circuit
KR940010837B1 (en) * 1991-10-21 1994-11-17 현대전자산업 주식회사 Word line driving circuit of dram
US5321324A (en) * 1993-01-28 1994-06-14 United Memories, Inc. Low-to-high voltage translator with latch-up immunity
US5418477A (en) * 1993-04-22 1995-05-23 International Business Machines Corporation Data output buffer pull-down circuit for TTL interface
JP3625851B2 (en) 1993-12-28 2005-03-02 沖電気工業株式会社 Level shifter circuit
US5781026A (en) * 1996-03-28 1998-07-14 Industrial Technology Research Institute CMOS level shifter with steady-state and transient drivers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450460B2 (en) 2004-06-25 2008-11-11 Spansion Llc Voltage control circuit and semiconductor device
US20080094052A1 (en) * 2006-10-18 2008-04-24 Koji Shimbayashi Voltage detector circuit
US20110050310A1 (en) * 2007-08-13 2011-03-03 Nxp B.V. Level shifter circuit
CN112436005A (en) * 2019-08-26 2021-03-02 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
CN112201189A (en) * 2020-09-10 2021-01-08 天钰科技股份有限公司 Potential shift circuit and display device with same

Also Published As

Publication number Publication date
TW558870B (en) 2003-10-21
JP3695967B2 (en) 2005-09-14
US6344764B2 (en) 2002-02-05
JP2000151385A (en) 2000-05-30
KR100337139B1 (en) 2002-05-18
KR20000035488A (en) 2000-06-26

Similar Documents

Publication Publication Date Title
US6344764B2 (en) Semiconductor integrated circuit device
US5608670A (en) Flash memory with improved erasability and its circuitry
US7646653B2 (en) Driver circuits for integrated circuit devices that are operable to reduce gate induced drain leakage (GIDL) current in a transistor and methods of operating the same
US7599232B2 (en) Semiconductor memory device
US5970007A (en) Semiconductor integrated circuit device
US6370063B2 (en) Word line driver having a divided bias line in a non-volatile memory device and method for driving word lines
KR100271840B1 (en) Internal potential generation circuit that can output a plurality of potentials, suppressing increase in circuit area
US6236594B1 (en) Flash memory device including circuitry for selecting a memory block
US4707625A (en) Semiconductor integrated circuit device formed with a CMOS circuit and a boatstrap capacitor
US5751643A (en) Dynamic memory word line driver
US7227769B2 (en) Semiconductor memory
TWI691971B (en) Method and device for configuring array rows and columns for accessing flash memory units
US6897684B2 (en) Input buffer circuit and semiconductor memory device
US6064623A (en) Row decoder having global and local decoders in flash memory devices
JPH0793022B2 (en) Semiconductor memory integrated circuit
US6111802A (en) Semiconductor memory device
US5018108A (en) Nonvolatile semiconductor memory
US4910710A (en) Input circuit incorporated in a semiconductor device
KR0136894B1 (en) Buffer circuit of a semiconductor memory device
US5198998A (en) Erasable programmable read only memory
KR100386620B1 (en) Circuit for Controlling Power Voltage of Static Random Access Memory
KR0170694B1 (en) Sense amplifier pull-down driving circuit of semiconductor memory device
US7372308B2 (en) High-voltage generation circuits and nonvolatile semiconductor memory device with improved high-voltage efficiency and methods of operating
JP2001202778A (en) Semiconductor memory
JPH06338197A (en) Address decoder circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TANZAWA, TORU;REEL/FRAME:010279/0808

Effective date: 19990916

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: TOSHIBA MEMORY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KABUSHIKI KAISHA TOSHIBA;REEL/FRAME:043709/0035

Effective date: 20170706

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载