US20010047938A1 - Exhaust constituent sensor and method of packaging the same - Google Patents
Exhaust constituent sensor and method of packaging the same Download PDFInfo
- Publication number
- US20010047938A1 US20010047938A1 US09/276,334 US27633499A US2001047938A1 US 20010047938 A1 US20010047938 A1 US 20010047938A1 US 27633499 A US27633499 A US 27633499A US 2001047938 A1 US2001047938 A1 US 2001047938A1
- Authority
- US
- United States
- Prior art keywords
- sensing element
- high temperature
- planar sensing
- planar
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000470 constituent Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims description 19
- 238000004806 packaging method and process Methods 0.000 title abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 23
- 239000000919 ceramic Substances 0.000 claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052902 vermiculite Inorganic materials 0.000 claims abstract description 7
- 239000010455 vermiculite Substances 0.000 claims abstract description 7
- 235000019354 vermiculite Nutrition 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 3
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims 6
- 229910010293 ceramic material Inorganic materials 0.000 claims 2
- 239000002657 fibrous material Substances 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- -1 e.g. Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 6
- 238000002788 crimping Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical class [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4071—Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
Definitions
- the present invention relates generally to planar sensors. More particularly, the present invention relates to a method of supporting and holding a planar sensing element of an exhaust constituent sensor in a robust simple package.
- Exhaust constituent sensors have been used for many years in automotive vehicles to sense the presence of constituents in exhaust gasses (e.g., oxygen, hydrocarbons, nitrous oxides) and to sense, for example, when an exhaust gas content switches from rich to lean or lean to rich.
- One known type of exhaust constituent sensor includes a flat plate exhaust sensor formed of various layers of ceramic and electrolyte materials laminated and sintered together with electrical connections placed between the layers in a known manner.
- the sensors must be durable, able to withstand vibration and jarring such as would occur during installation and normal vehicle operation and able to withstand shock from the occasional stone or other small road debris that may happen to be thrown at the sensor, for example, by the vehicle's tires.
- the flat plate sensing element can be both difficult and expensive to package within the body of the exhaust constituent sensor since it generally has one dimension that is very thin and is usually made of a brittle material.
- one method of protecting the planar sensing element is to encase and hold the planar sensing element in proper position within a glass tube which is itself bonded to a metal shield of the exhaust constituent sensor. This process is time consuming and is therefore expensive in terms of manufacturing costs. Consequently, great care and time consuming effort must be taken to prevent the planar sensing element from being damaged by exhaust, heat, impact, vibration, the environment, etc.
- the present invention comprises exhaust constituent sensors and a method of manufacturing same, and more particularly relates to a method of supporting and holding a planar sensing element in a robust simple package.
- One embodiment comprises an exhaust constituent sensor, comprising a planar sensing element securely held in place within a tubular shield by disposing a high temperature mat support between the tubular shield and the planar sensing element.
- the high temperature mat support of the present invention comprises mat materials which are designed to withstand the heat generated in a spark ignition environment.
- the high temperature mat support positions and secures the planar sensing element within the tubular shield and also advantageously provides an exhaust gas barrier in the sensor so that exhaust gas is blocked from a central portion and an upper portion of the planar sensing element.
- the high temperature mat support further provides an instrument to dissipate heat from the inside of the sensor. The dissipation of heat from the planar sensing element reduces the possibility that excessive heat contacts the electrical connection of the planar sensing element during operation.
- this invention provides an exhaust constituent sensor having improved holding of the planar sensing element within a sensor housing which provides improved resistance to failures caused by exposures to exhaust, heat, impact, vibration, and other environmental hazards which adversely effect the performance of the exhaust constituent sensor. Furthermore, the sensor of the present invention greatly simplifies the overall process of packaging a planar sensing element within an exhaust constituent sensor and as a result reduces the associated costs of the process.
- FIG. 1 is a cross-sectional side view of one embodiment of an exhaust constituent sensor embodying the present invention.
- FIG. 2 is a cross-sectional side view of a second embodiment of the exhaust constituent sensor of the present invention.
- the example exhaust constituent sensor 10 shown includes a housing structure generally formed of an upper shield 20 , a lower shield 30 , an inner shield 40 and a shell 50 .
- a terminal connector 60 and a portion of a planar sensing element 80 are disposed within upper shield 20 .
- Planar sensing element 80 is an exhaust constituent sensing element of a known type with any conventional geometry, such as a generally flat elongated rectangular shape.
- planar sensing element 80 includes an exhaust constituent-responsive structure fabricated into planar sensing element 80 in a known manner, preferably along with a heater (not shown) of a known type.
- terminals 100 and 102 At an opposite end 84 of planar sensing element 80 , lower ends 104 and 106 of terminals 100 and 102 , respectively, contact external pads (not shown) on end 84 to provide electrical connection between terminals 100 and 102 and planar sensing element 80 . Ends 104 and 106 of terminals 100 and 102 , respectively, are maintained against end 84 of planar sensing element 80 by a compressive force applied by disposing end 84 of planar sensing element 80 between lower ends 104 and 106 .
- terminals 100 and 102 comprise spring terminals, the use of which is know in the art and the compressive force generated by disposing end 84 between spring terminals 100 and 102 securely maintains end 84 in electrical contact therewith.
- the inner shield 40 has a partially closed first end 42 and an open second end 44 opposite first end 42 .
- a centrally located annular opening 46 is provided at first end 42 and is sized to receive end 84 of planar sensing element 80 .
- Disposed within inner shield 40 are a central portion 83 of planar sensing element 80 , a pair of inner thermal insulating members 120 , and a high temperature mat support 90 .
- the pair of inner thermal insulating members 120 are provided for securely positioning and protecting planar sensing element 80 within exhaust constituent sensor 10 , wherein first end 82 and second end 84 of planar sensing element 80 extend beyond the pair of inner thermal insulating members 120 when the pair of inner thermal insulating members 120 are disposed onto a first surface 86 and an opposing second surface 88 of the planar sensing element 80 .
- the pair of inner thermal insulating members 120 are semi-circular in shape and provide structural rigidity and protection to exhaust constituent sensor 10 , and more specifically to planar sensing element 80 which is disposed therebetween.
- Example material for the pair of inner thermal insulating members 120 is steatite, rigid alumina, ceramic, or other suitable high temperature material providing the desired support, strength and thermal and electrical insulating properties described hereinbelow.
- high temperature material refers to materials which are designed for use in a spark ignition engine environment, where temperatures range from about 300° C. to about 1000° C.
- high temperature mat support 90 Disposed between the pair of inner thermal insulating members 120 and inner shield 40 is high temperature mat support 90 for further insulation and packaging of planar sensing element 80 , wherein high temperature mat support 90 comprises a mat material designed for use in a spark ignition engine environment. More specifically, high temperature mat support 90 is formed of a mat material designed to withstand continuous exposure to temperatures on the order of about 300° C. to about 1000° C. (temperature range observed in spark ignition engine environment). High temperature mat support 90 extends from first end 42 to second end 44 of inner shield 40 so that high temperature mat support 90 is in contact with and abuts against an inner surface 41 of inner shield 40 .
- High temperature mat support 90 provides the desired structural support to exhaust constituent sensor 10 by concentrically surrounding planar sensing element 80 and the pair of inner thermal insulating members 120 to thereby securely hold planar sensing element 80 in place. Furthermore, high temperature mat support 90 also acts as a thermal and gas barrier to inhibit access of excessive heat and exhaust gasses, respectively.
- High temperature mat support 90 comprises mat materials designed to withstand the high temperatures observed in a spark ignition engine environment and in an exemplary embodiment, high temperature mat support 90 comprises a ceramic fibrous material or a metal mesh material. When a ceramic fibrous material is used, the orientation and size of the ceramic fibers are not critical to the practice of the present invention; however, the fibers are preferably orientated in a random fashion instead of a more ordered orientation of the fibers.
- high temperature mat support 90 comprises a mat material formed of ceramic fibers, including but not limited to silica fibers, alumina fibers, or mixtures thereof. Furthermore, vermiculite may be incorporated into the ceramic fibrous material as a component.
- high temperature mat support 90 comprises a fibrous material formed of random alumina fibers and vermiculite. By incorporating vermiculite into the alumina fibrous material, high temperature mat support 90 will slightly expand when subjected to the high temperature environment of the exhaust system, resulting in high temperature mat support 90 expanding against inner surface 41 to provide a more effective support and gas barrier.
- Exhaust gas is blocked from central portion 83 of planar sensing element 80 by the pair of inner thermal insulating members 120 and high temperature mat support 90 which prevent exhaust gasses from migrating within sensor 10 toward the electrical connection.
- Heat is dissipated from the pair of inner thermal insulating members 120 and planar sensing element 80 when the exhaust constituent sensor 10 is subjected to high temperatures due to the heat being drawn away therefrom by high temperature protective mat support 90 which conducts the heat therefrom to prevent excessive heat from contacting the electrical connection of planar sensing element 80 .
- high temperature mat support 90 comprises a flexible mat material, similar to a flexible fibrous blanket material which is easily disposed around the pair of inner thermal insulating members 120 and planar sensing element 80 by concentrically wrapping high temperature mat support 90 around at least a portion of the same so that the overall diameter of the inner components (planar sensing element 80 , pair of inner thermal insulating members 120 and high temperature mat support 90 ) closely approximates the inner diameter of inner shield 40 . Accordingly, when planar sensing element 80 , the pair of inner thermal insulating members 120 and high temperature mat support 90 are disposed within inner shield 40 , the components of sensor 10 are effectively and easily packaged within inner shield 40 resulting in planar sensing element 80 being securely held in place.
- a lower end 22 of the upper shield 20 extends to an upper portion 43 of high temperature mat support 90 and engages closed first end 42 of the inner shield 40 by a secure friction fit or other securing means known in the art, e.g., compressive forces exerted during assembly.
- a first subassembly 150 comprises upper shield 20 , a cable seal 140 , and terminal connector 60 , whereby upper shield 20 holds cable seal 140 and terminal connector 60 securely in place between upper shield 20 .
- First subassembly 150 is securely coupled to a second subassembly 160 by inserting end 84 of planar sensing element 80 into an opening 61 located between terminals 100 and 102 until a first end 62 of terminal connector 60 seats against first closed end 42 of inner shield 40 .
- Second subassembly 160 comprises inner shield 40 which is concentrically disposed around high temperature mat support 90 , the pair of inner thermal insulating members 120 and planar sensing element 80 .
- sensor 10 may be assembled without the use of subassemblies, whereby all individual components are properly positioned and secured during the assembly process.
- Shell 50 includes a body portion 52 and a threaded portion 54 at a second end 55 .
- Body portion 52 is shaped to accommodate a wrench or other tool for tightening threaded portion 54 into a mount welded to an exhaust pipe or other component of an exhaust flow system enabling a sensor chamber 31 located within lower shield 30 to be located within a flow of exhaust gasses to be measured.
- a first end 53 of shell 50 is disposed proximate lower end 22 of the upper shield 20 when shell 50 is securely disposed around inner shield 40 by means known in the art; and preferably, shell 50 is coupled to inner shield 40 by being crimped thereto during the assembly process, as described in more detail hereinafter. Accordingly, shell 50 holds inner shield 40 in compressive force engagement.
- a shoulder 56 for contacting open second end 44 of inner shield 40 , whereby inner shield 40 and an end 121 of pair of inner thermal insulating members 120 rests against shoulder 56 when shell 50 is secured to inner shield 40 during assembly.
- annular recess 57 for receiving a flared open end 32 of the lower shield 30 .
- Flared open end 32 of lower shield 30 receives end 82 of planar sensing element 80 , whereby end 82 is disposed within sensing chamber 31 to permit contact with and sensing of exhaust gas.
- Lower shield 30 has a closed end 34 opposite flared open end 32 of inner shield 30 , wherein flared open end 32 is secured to second end 55 of shell 50 by disposing flared open end 32 into annular recess 57 and securing flared open end 32 therein by welding it in place or holding it in place by a secure friction fit.
- Lower shield 30 defines sensing chamber 31 and disposed within lower shield 30 is an internal shield 35 which has an open end 36 for receiving planar sensing element 80 and a closed end 37 adjacent and parallel to closed end 34 of lower shield 30 .
- Lower shield 30 and internal shield 35 form a plurality of vents 38 for allowing passage of exhaust gas in and out of sensing chamber 31 so that the gasses may be sensed by receptive first end 82 of planar sensing element 80 .
- a plurality of openings 47 permits exhaust gas to flow into exhaust constituent sensor 10 , and more specifically, exhaust gas flows through openings 47 and vents 38 into sensing chamber 31 .
- terminal connector 60 is known in the art and a suitable terminal connector 60 is also known in the art as an edge card connector or a clam shell connector.
- Terminal connector 60 typically includes a plurality of electrical terminals with each having a corresponding electrical wire connected thereto.
- sensors 10 and 10 ′ of FIGS. 1 and 2 are shown having a pair of electrical terminals 100 and 102 , which are adapted to be connected to electrical wires 130 and 132 in a known manner.
- Electrical wires 130 and 132 pass through cable seal 140 which generally comprises a thermoplastic or a thermoset material suitable for use in a high temperature environment, e.g., spark ignition engine.
- Cable seal 140 is maintained in place by upper shield 20 which has an upper end 23 forming a seat around a shoulder 142 of cable seal 140 , wherein upper shield 20 is crimped in place around cable seal 140 to further secure the same.
- a central portion 24 of upper shield 20 is disposed around terminal connector 60 and a lower end 22 of upper shield 20 forms a cylindrical opening tightly fit around closed first end 42 of inner shield 40 when sensor 10 is assembled.
- Lower end 22 preferably is held in place by either a tight friction fit or a weld.
- lower end 22 of upper shield 20 has an increased diameter than upper end 23 of upper shield 20 so that it may receive closed first end 42 of inner shield 40 , whereby upper shield 20 is preferably secured in a leak-proof manner to closed first end 42 of inner shield 40 .
- Lower end 22 may be secured to closed first end 42 by crimping lower end 22 thereto, as is known in the art, and a crimped portion 28 of lower end 22 will result from such crimping action, as is shown in FIG. 1. It being understood, that when upper shield 20 is crimped to inner shield 40 , crimped portion 28 will annularly extend around an outer surface 45 of upper shield 20 and for purposes of illustration only the cross-sectional views of FIGS. 1 and 2 show an uncrimped portion opposite crimped portion 28 .
- example material for the shields 20 , 30 , 40 , and 35 and for the shell 50 is high chrome or high nickel stainless steel, all steels chosen for high temperature endurance, high-strength and corrosion resistance.
- Terminal connector 60 may be formed of a thermoplastic or thermoset material (e.g., plastic) or ceramic durable in the high temperature environments to which exhaust constituent sensor 10 is exposed.
- high temperature mat support 90 may be made into a more rigid preform with the pair of inner thermal insulating members 120 either being already molded into high temperature mat support 90 or as separate articles.
- the use of a single or two piece, more rigid preform advantageously eliminates the process of concentrically disposing high temperature mat support 90 around at least a portion of the pair of inner thermal insulating members 120 .
- a preform of the mat material provides a more rigid article and in the case of high temperature mat support 90 , the preform provides a structural member which is easily disposed within inner shield 40 to securely hold planar sensing element 80 in place.
- the manufacture of the preform formed of the mat material may be according to known methods in the relevant arts.
- High temperature mat support 90 extends from closed first end 42 to open second end 44 and extends between planar sensing element 80 and inner surface 41 of inner shield 40 .
- High temperature mat support 90 may be strengthened by known methods, including but not limited to increasing the binder content of high temperature mat support 90 , adding additional binders, or by further compressing high temperature mat support 90 .
- the preform of high temperature mat support 90 includes a central opening for receiving planar sensing element 80 when high temperature mat support 90 is concentrically disposed around at least a portion of planar sensing element 80 . It is also within the scope of the invention that high temperature mat support 90 may be used in sensor 10 ′ of FIG. 2 in the non preform state, wherein high temperature mat support 90 is concentrically wrapped around at least a portion of planar sensing element 80 prior to disposing both within inner shield 40 .
- Sensors 10 and 10 ′ may be constructed according to methods known in the art, including but not limited to using crimping means to securely couple the outer components thereof.
- upper shield 20 is securely coupled to first end 42 of inner shield 40 so that end 84 of planar sensing element 80 is received within upper shield 20 and more particularly between terminals 100 and 102 to provide electrical connection between terminals 100 and 102 and planar sensing element 80 .
- Lower shield 30 is securely coupled to shell 50 by engaging flared open end 32 of lower shield 30 with annular recess 57 .
- Shell 50 is itself securely coupled to inner shield 40 by crimping shell 50 thereto, whereby first end 82 of planar sensing element 80 is disposed within sensing chamber 31 to permit contact with and sensing of exhaust gas.
- planar sensing element 80 is securely held in place within the exhaust constituent sensor of the present invention by disposing a protective high temperature mat support 90 in either a preform or fibrous blanket type state around at least a portion of planar sensing element 80 .
- High temperature protective mat support 90 is intended to concentrically surround at least a portion of planar sensing element 80 to protect planar sensing element 80 and hold the same in place within sensor 10 or 10 ′.
- the packaging methods of the present invention offer several advantages over conventional methods of packaging planar sensing element 80 within an exhaust constituent sensor. First, sensors 10 and 10 ′ of the present invention are of a much more simpler design which reduces the manufacturing process by eliminating time consuming steps.
- the present invention offers a more cost effective packaging process, while maintaining the desired and necessary structural, thermal, and electrical characteristics described hereinbefore. Furthermore, because the pair of inner thermal insulating members 120 and high temperature mat support 90 act as a thermal and gas barrier, the overall length of sensors 10 and 10 ′ may be reduced.
- the length of conventional exhaust constituent sensors fall within a limited range because the length had to be such that excessive heat radiating outward from the exhaust system was prevented from contacting the electrical connection at one end of the sensor. Because the sensor of the present invention offers improved thermal dissipation of excessive heat, the length of the sensor may be reduced. This of importance for a number of reasons, including that it represents a reduction in costs and it permits the sensor to be mounted in locations which were otherwise not accessible because of the length of the sensor.
- the length of sensor 10 or 10 ′ may be maintained at a conventional length; however, because of the improvements of the present invention noted herein, sensor 10 or 10 ′ may be used in an environment having higher temperatures. This provides greater versatility in positioning and mounting sensor 10 or 10 ′ within the exhaust system.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Exhaust Silencers (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
In an exemplary embodiment, the present invention provides an exhaust constituent sensor comprising a planar sensing element securely held in place within a tubular shield by disposing a high temperature mat support between the tubular inner shield and the planar sensing element. The high temperature mat support comprises suitable mat material, e.g., ceramic fibers or metal mesh, and preferably, comprises silica fibers, alumina fibers, alumina fibers with vermiculite, or any other suitable mat material providing the desired support, strength, and thermal and electrical insulating properties described herein. It is within the scope of the invention that the high temperature mat support may be in the form of a fibrous material or a more rigid preform structure, wherein in both instances, the high temperature mat support is adapted to be disposed concentrically around the planar sensing element for secure packaging thereof.
Description
- The present invention relates generally to planar sensors. More particularly, the present invention relates to a method of supporting and holding a planar sensing element of an exhaust constituent sensor in a robust simple package.
- Exhaust constituent sensors have been used for many years in automotive vehicles to sense the presence of constituents in exhaust gasses (e.g., oxygen, hydrocarbons, nitrous oxides) and to sense, for example, when an exhaust gas content switches from rich to lean or lean to rich. One known type of exhaust constituent sensor includes a flat plate exhaust sensor formed of various layers of ceramic and electrolyte materials laminated and sintered together with electrical connections placed between the layers in a known manner.
- Because automotive exhaust constituent sensors are mounted to members of the vehicle exhaust flow system, the sensors must be durable, able to withstand vibration and jarring such as would occur during installation and normal vehicle operation and able to withstand shock from the occasional stone or other small road debris that may happen to be thrown at the sensor, for example, by the vehicle's tires.
- Typically, great care is required when packaging and holding the flat plate sensing element within the outer housing (body) of the exhaust constituent sensor. The flat plate sensing element can be both difficult and expensive to package within the body of the exhaust constituent sensor since it generally has one dimension that is very thin and is usually made of a brittle material. For example, one method of protecting the planar sensing element is to encase and hold the planar sensing element in proper position within a glass tube which is itself bonded to a metal shield of the exhaust constituent sensor. This process is time consuming and is therefore expensive in terms of manufacturing costs. Consequently, great care and time consuming effort must be taken to prevent the planar sensing element from being damaged by exhaust, heat, impact, vibration, the environment, etc.
- The present invention comprises exhaust constituent sensors and a method of manufacturing same, and more particularly relates to a method of supporting and holding a planar sensing element in a robust simple package. One embodiment comprises an exhaust constituent sensor, comprising a planar sensing element securely held in place within a tubular shield by disposing a high temperature mat support between the tubular shield and the planar sensing element. It being understood that the high temperature mat support of the present invention comprises mat materials which are designed to withstand the heat generated in a spark ignition environment.
- The high temperature mat support positions and secures the planar sensing element within the tubular shield and also advantageously provides an exhaust gas barrier in the sensor so that exhaust gas is blocked from a central portion and an upper portion of the planar sensing element. The high temperature mat support further provides an instrument to dissipate heat from the inside of the sensor. The dissipation of heat from the planar sensing element reduces the possibility that excessive heat contacts the electrical connection of the planar sensing element during operation.
- Advantageously, this invention provides an exhaust constituent sensor having improved holding of the planar sensing element within a sensor housing which provides improved resistance to failures caused by exposures to exhaust, heat, impact, vibration, and other environmental hazards which adversely effect the performance of the exhaust constituent sensor. Furthermore, the sensor of the present invention greatly simplifies the overall process of packaging a planar sensing element within an exhaust constituent sensor and as a result reduces the associated costs of the process.
- The present invention will now be described by way of example with reference to the following Figures, which are meant to be exemplary, not limiting, and in which:
- FIG. 1 is a cross-sectional side view of one embodiment of an exhaust constituent sensor embodying the present invention; and
- FIG. 2 is a cross-sectional side view of a second embodiment of the exhaust constituent sensor of the present invention.
- Referring now to FIG. 1, the example
exhaust constituent sensor 10 shown includes a housing structure generally formed of anupper shield 20, alower shield 30, aninner shield 40 and ashell 50. Aterminal connector 60 and a portion of aplanar sensing element 80 are disposed withinupper shield 20.Planar sensing element 80 is an exhaust constituent sensing element of a known type with any conventional geometry, such as a generally flat elongated rectangular shape. At afirst end 82 thereof,planar sensing element 80 includes an exhaust constituent-responsive structure fabricated intoplanar sensing element 80 in a known manner, preferably along with a heater (not shown) of a known type. At anopposite end 84 ofplanar sensing element 80,lower ends terminals end 84 to provide electrical connection betweenterminals planar sensing element 80. Ends 104 and 106 ofterminals end 84 ofplanar sensing element 80 by a compressive force applied by disposingend 84 ofplanar sensing element 80 betweenlower ends terminals end 84 betweenspring terminals end 84 in electrical contact therewith. - The
inner shield 40 has a partially closedfirst end 42 and an opensecond end 44 oppositefirst end 42. A centrally locatedannular opening 46 is provided atfirst end 42 and is sized to receiveend 84 ofplanar sensing element 80. Disposed withininner shield 40 are acentral portion 83 ofplanar sensing element 80, a pair of innerthermal insulating members 120, and a hightemperature mat support 90. In accordance with the present invention, the pair of innerthermal insulating members 120 are provided for securely positioning and protectingplanar sensing element 80 withinexhaust constituent sensor 10, whereinfirst end 82 andsecond end 84 ofplanar sensing element 80 extend beyond the pair of innerthermal insulating members 120 when the pair of innerthermal insulating members 120 are disposed onto afirst surface 86 and an opposingsecond surface 88 of theplanar sensing element 80. In an exemplary embodiment, the pair of innerthermal insulating members 120 are semi-circular in shape and provide structural rigidity and protection toexhaust constituent sensor 10, and more specifically toplanar sensing element 80 which is disposed therebetween. Example material for the pair of innerthermal insulating members 120 is steatite, rigid alumina, ceramic, or other suitable high temperature material providing the desired support, strength and thermal and electrical insulating properties described hereinbelow. As used herein, the term “high temperature material” refers to materials which are designed for use in a spark ignition engine environment, where temperatures range from about 300° C. to about 1000° C. - Disposed between the pair of inner
thermal insulating members 120 andinner shield 40 is hightemperature mat support 90 for further insulation and packaging ofplanar sensing element 80, wherein hightemperature mat support 90 comprises a mat material designed for use in a spark ignition engine environment. More specifically, hightemperature mat support 90 is formed of a mat material designed to withstand continuous exposure to temperatures on the order of about 300° C. to about 1000° C. (temperature range observed in spark ignition engine environment). Hightemperature mat support 90 extends fromfirst end 42 tosecond end 44 ofinner shield 40 so that hightemperature mat support 90 is in contact with and abuts against aninner surface 41 ofinner shield 40. Hightemperature mat support 90 provides the desired structural support toexhaust constituent sensor 10 by concentrically surroundingplanar sensing element 80 and the pair of innerthermal insulating members 120 to thereby securely holdplanar sensing element 80 in place. Furthermore, hightemperature mat support 90 also acts as a thermal and gas barrier to inhibit access of excessive heat and exhaust gasses, respectively. - High
temperature mat support 90 comprises mat materials designed to withstand the high temperatures observed in a spark ignition engine environment and in an exemplary embodiment, hightemperature mat support 90 comprises a ceramic fibrous material or a metal mesh material. When a ceramic fibrous material is used, the orientation and size of the ceramic fibers are not critical to the practice of the present invention; however, the fibers are preferably orientated in a random fashion instead of a more ordered orientation of the fibers. In one preferred embodiment, hightemperature mat support 90 comprises a mat material formed of ceramic fibers, including but not limited to silica fibers, alumina fibers, or mixtures thereof. Furthermore, vermiculite may be incorporated into the ceramic fibrous material as a component. As is known, vermiculite is a form of the mineral mica, and materials having vermiculite incorporated therein will slightly expand in volume when the materials are subjected to increases in temperature. More preferably, hightemperature mat support 90 comprises a fibrous material formed of random alumina fibers and vermiculite. By incorporating vermiculite into the alumina fibrous material, hightemperature mat support 90 will slightly expand when subjected to the high temperature environment of the exhaust system, resulting in hightemperature mat support 90 expanding againstinner surface 41 to provide a more effective support and gas barrier. - Exhaust gas is blocked from
central portion 83 ofplanar sensing element 80 by the pair of innerthermal insulating members 120 and hightemperature mat support 90 which prevent exhaust gasses from migrating withinsensor 10 toward the electrical connection. Heat is dissipated from the pair of innerthermal insulating members 120 andplanar sensing element 80 when the exhaustconstituent sensor 10 is subjected to high temperatures due to the heat being drawn away therefrom by high temperatureprotective mat support 90 which conducts the heat therefrom to prevent excessive heat from contacting the electrical connection ofplanar sensing element 80. - In one form, high
temperature mat support 90 comprises a flexible mat material, similar to a flexible fibrous blanket material which is easily disposed around the pair of innerthermal insulating members 120 andplanar sensing element 80 by concentrically wrapping hightemperature mat support 90 around at least a portion of the same so that the overall diameter of the inner components (planar sensing element 80, pair of innerthermal insulating members 120 and high temperature mat support 90) closely approximates the inner diameter ofinner shield 40. Accordingly, whenplanar sensing element 80, the pair of innerthermal insulating members 120 and hightemperature mat support 90 are disposed withininner shield 40, the components ofsensor 10 are effectively and easily packaged withininner shield 40 resulting inplanar sensing element 80 being securely held in place. - In the example shown in FIG. 1, a
lower end 22 of theupper shield 20 extends to anupper portion 43 of hightemperature mat support 90 and engages closedfirst end 42 of theinner shield 40 by a secure friction fit or other securing means known in the art, e.g., compressive forces exerted during assembly. In an exemplary embodiment, afirst subassembly 150 comprisesupper shield 20, acable seal 140, andterminal connector 60, wherebyupper shield 20 holdscable seal 140 andterminal connector 60 securely in place betweenupper shield 20.First subassembly 150 is securely coupled to asecond subassembly 160 by insertingend 84 ofplanar sensing element 80 into an opening 61 located betweenterminals first end 62 ofterminal connector 60 seats against first closedend 42 ofinner shield 40.Second subassembly 160 comprisesinner shield 40 which is concentrically disposed around hightemperature mat support 90, the pair of innerthermal insulating members 120 andplanar sensing element 80. Alternatively,sensor 10 may be assembled without the use of subassemblies, whereby all individual components are properly positioned and secured during the assembly process. - Shell50 includes a
body portion 52 and a threadedportion 54 at asecond end 55.Body portion 52 is shaped to accommodate a wrench or other tool for tightening threadedportion 54 into a mount welded to an exhaust pipe or other component of an exhaust flow system enabling asensor chamber 31 located withinlower shield 30 to be located within a flow of exhaust gasses to be measured. Afirst end 53 ofshell 50 is disposed proximatelower end 22 of theupper shield 20 whenshell 50 is securely disposed aroundinner shield 40 by means known in the art; and preferably,shell 50 is coupled toinner shield 40 by being crimped thereto during the assembly process, as described in more detail hereinafter. Accordingly,shell 50 holdsinner shield 40 in compressive force engagement. Formed atsecond end 55 ofshell 50 is ashoulder 56 for contacting opensecond end 44 ofinner shield 40, wherebyinner shield 40 and anend 121 of pair of inner thermal insulatingmembers 120 rests againstshoulder 56 whenshell 50 is secured toinner shield 40 during assembly. - Formed at
second end 55 ofshell 50 is anannular recess 57 for receiving a flaredopen end 32 of thelower shield 30. Flaredopen end 32 oflower shield 30 receivesend 82 ofplanar sensing element 80, wherebyend 82 is disposed within sensingchamber 31 to permit contact with and sensing of exhaust gas.Lower shield 30 has aclosed end 34 opposite flaredopen end 32 ofinner shield 30, wherein flaredopen end 32 is secured tosecond end 55 ofshell 50 by disposing flaredopen end 32 intoannular recess 57 and securing flaredopen end 32 therein by welding it in place or holding it in place by a secure friction fit. -
Lower shield 30 defines sensingchamber 31 and disposed withinlower shield 30 is aninternal shield 35 which has anopen end 36 for receivingplanar sensing element 80 and aclosed end 37 adjacent and parallel toclosed end 34 oflower shield 30.Lower shield 30 andinternal shield 35 form a plurality ofvents 38 for allowing passage of exhaust gas in and out of sensingchamber 31 so that the gasses may be sensed by receptivefirst end 82 ofplanar sensing element 80. A plurality ofopenings 47 permits exhaust gas to flow intoexhaust constituent sensor 10, and more specifically, exhaust gas flows throughopenings 47 and vents 38 intosensing chamber 31. - The use of
terminal connector 60 is known in the art and asuitable terminal connector 60 is also known in the art as an edge card connector or a clam shell connector.Terminal connector 60 typically includes a plurality of electrical terminals with each having a corresponding electrical wire connected thereto. For the purpose of illustration only,sensors electrical terminals electrical wires Electrical wires cable seal 140 which generally comprises a thermoplastic or a thermoset material suitable for use in a high temperature environment, e.g., spark ignition engine.Cable seal 140 is maintained in place byupper shield 20 which has anupper end 23 forming a seat around ashoulder 142 ofcable seal 140, whereinupper shield 20 is crimped in place aroundcable seal 140 to further secure the same. Acentral portion 24 ofupper shield 20 is disposed aroundterminal connector 60 and alower end 22 ofupper shield 20 forms a cylindrical opening tightly fit around closedfirst end 42 ofinner shield 40 whensensor 10 is assembled.Lower end 22 preferably is held in place by either a tight friction fit or a weld. Preferably,lower end 22 ofupper shield 20 has an increased diameter thanupper end 23 ofupper shield 20 so that it may receive closedfirst end 42 ofinner shield 40, wherebyupper shield 20 is preferably secured in a leak-proof manner to closedfirst end 42 ofinner shield 40.Lower end 22 may be secured to closedfirst end 42 by crimpinglower end 22 thereto, as is known in the art, and a crimpedportion 28 oflower end 22 will result from such crimping action, as is shown in FIG. 1. It being understood, that whenupper shield 20 is crimped toinner shield 40, crimpedportion 28 will annularly extend around anouter surface 45 ofupper shield 20 and for purposes of illustration only the cross-sectional views of FIGS. 1 and 2 show an uncrimped portion opposite crimpedportion 28. - For the structures shown in FIGS. 1 and 2, example material for the
shields shell 50 is high chrome or high nickel stainless steel, all steels chosen for high temperature endurance, high-strength and corrosion resistance.Terminal connector 60 may be formed of a thermoplastic or thermoset material (e.g., plastic) or ceramic durable in the high temperature environments to whichexhaust constituent sensor 10 is exposed. - It is within the scope of this invention that high
temperature mat support 90 may be made into a more rigid preform with the pair of inner thermal insulatingmembers 120 either being already molded into hightemperature mat support 90 or as separate articles. The use of a single or two piece, more rigid preform advantageously eliminates the process of concentrically disposing hightemperature mat support 90 around at least a portion of the pair of inner thermal insulatingmembers 120. A preform of the mat material provides a more rigid article and in the case of hightemperature mat support 90, the preform provides a structural member which is easily disposed withininner shield 40 to securely holdplanar sensing element 80 in place. The manufacture of the preform formed of the mat material may be according to known methods in the relevant arts. - Now turning to FIG. 2, a second exemplary embodiment of the present invention is generally designated as10′. High
temperature mat support 90 extends from closedfirst end 42 to opensecond end 44 and extends betweenplanar sensing element 80 andinner surface 41 ofinner shield 40. Thus, the use of the pair of inner thermal insulatingmembers 120 is eliminated in this embodiment by strengthening hightemperature mat support 90 so that it provides the desired support, strength, and thermal and electrical insulating properties required forsensor 10′ to effectively operate in the exhaust system. Hightemperature mat support 90 may be strengthened by known methods, including but not limited to increasing the binder content of hightemperature mat support 90, adding additional binders, or by further compressing hightemperature mat support 90. - As shown in FIG. 2, the preform of high
temperature mat support 90 includes a central opening for receivingplanar sensing element 80 when hightemperature mat support 90 is concentrically disposed around at least a portion ofplanar sensing element 80. It is also within the scope of the invention that hightemperature mat support 90 may be used insensor 10′ of FIG. 2 in the non preform state, wherein hightemperature mat support 90 is concentrically wrapped around at least a portion ofplanar sensing element 80 prior to disposing both withininner shield 40. -
Sensors upper shield 20 is securely coupled tofirst end 42 ofinner shield 40 so thatend 84 ofplanar sensing element 80 is received withinupper shield 20 and more particularly betweenterminals terminals planar sensing element 80.Lower shield 30 is securely coupled to shell 50 by engaging flaredopen end 32 oflower shield 30 withannular recess 57.Shell 50 is itself securely coupled toinner shield 40 by crimpingshell 50 thereto, wherebyfirst end 82 ofplanar sensing element 80 is disposed within sensingchamber 31 to permit contact with and sensing of exhaust gas. - Thus in accordance with the present invention,
planar sensing element 80 is securely held in place within the exhaust constituent sensor of the present invention by disposing a protective hightemperature mat support 90 in either a preform or fibrous blanket type state around at least a portion ofplanar sensing element 80. High temperatureprotective mat support 90 is intended to concentrically surround at least a portion ofplanar sensing element 80 to protectplanar sensing element 80 and hold the same in place withinsensor planar sensing element 80 within an exhaust constituent sensor. First,sensors members 120 and hightemperature mat support 90 act as a thermal and gas barrier, the overall length ofsensors - Typically, the length of conventional exhaust constituent sensors fall within a limited range because the length had to be such that excessive heat radiating outward from the exhaust system was prevented from contacting the electrical connection at one end of the sensor. Because the sensor of the present invention offers improved thermal dissipation of excessive heat, the length of the sensor may be reduced. This of importance for a number of reasons, including that it represents a reduction in costs and it permits the sensor to be mounted in locations which were otherwise not accessible because of the length of the sensor. Alternatively, the length of
sensor sensor sensor - While preferred embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.
Claims (20)
1. An exhaust constituent sensor, comprising:
an elongated planar sensing element having a first end for connecting with at least one electrical terminal, a second and opposite end for contacting exhaust gas, and a central portion extending therebetween;
a tubular shield within which at least a portion of said planar sensing element extends;
a high temperature mat support disposed between said tubular shield and said planar sensing element and about said central portion of said elongated planar sensing element; and
a shell for mounting said tubular shield to a conduit through which said exhaust gas flows.
2. The exhaust constituent sensor as set forth in wherein said high temperature mat support is concentrically disposed around at least said central portion of said planar sensing element.
claim 1
3. The exhaust constituent sensor as set forth in wherein said high temperature mat support extends between and contacts both said planar sensing element and an inner surface of said tubular shield.
claim 1
4. The exhaust constituent sensor as set forth in wherein said high temperature mat support comprises:
claim 1
a ceramic fibrous mat.
5. The exhaust constituent sensor as set forth in wherein said ceramic fibrous mat comprises:
claim 4
alumina fibers, silica fibers, or a mixture thereof.
6. The exhaust constituent sensor as set forth in wherein said ceramic fibrous mat includes vermiculite.
claim 5
7. The exhaust constituent sensor as set forth in wherein said high temperature mat support is in the form of a rigid preform, said preform structure having an outer surface for contacting and seating against an inner surface of said tubular shield, and wherein said preform structure includes a central opening through which said planar sensing element passes.
claim 1
8. The exhaust constituent sensor as set forth in wherein an inner thermal insulating support member is disposed between said preform structure and said planar sensing element, said inner support member being formed of steatite, alumina, or a ceramic material.
claim 7
9. The exhaust constituent sensor as set forth in wherein said inner thermal support member comprises:
claim 8
a pair of semi-circular ceramic support members, each member having a planar inner surface and an arcuate outer surface, said planar inner surface contacting a planar surface of said planar sensing element and said arcuate outer surface for contacting said preform structure.
10. The exhaust constituent sensor as set forth in further including:
claim 1
an inner thermal insulating material disposed between said high temperature mat support and said planar sensing element, wherein said inner thermal insulating material contacts at least a portion of said planar sensing element.
11. The exhaust constituent sensor as set forth in wherein said inner thermal insulating material comprises a pair of a semicircular support members disposed on first and second planar surfaces of said planar sensing element.
claim 10
12. The exhaust constituent sensor as set forth in wherein said inner thermal insulating material is formed of steatite, alumina, or a ceramic material.
claim 10
13. The exhaust sensor as set forth in wherein said high temperature mat support is strengthened by adding a binder or by further compressing said high temperature mat support.
claim 1
14. The exhaust constituent sensor as set forth in wherein said high temperature mat support comprises a flexible fibrous blanket material.
claim 1
15. A method for producing an exhaust constituent sensor, comprising:
providing an elongated planar sensing element having a first end for connection with at least one electrical terminal, an opposite second end for contacting exhaust gas, and a central portion extending therebetween;
disposing a high temperature mat support about at least said central portion of said planar sensing element, said high temperature mat support securely holding said planar sensing element within said sensor; and
disposing said high temperature mat support and said planar sensing element within a tubular shield within which at least said central portion of said planar sensing element extends.
16. The method as set forth in further including:
claim 15
wrapping said high temperature mat support around at least said central portion of said planar sensing element, wherein said high temperature mat support comprises a fibrous which contacts at least said central portion of said planar sensing element.
17. The method as set forth in wherein said high temperature mat support is in the form of a rigid preform structure, wherein said preform structure includes an opening through which said planar sensing element passes, said preform structure having an outer surface for contacting and seating against an inner surface of said tubular shield when said preform structure is disposed within said tubular shield.
claim 15
18. The method as set forth in further including:
claim 17
disposing first and second semi-circular thermal insulating members between said preform structure and said planar sensing element, said first and second semi-circular thermal insulating members each including a planar inner surface for seating against said planar sensing element and an outer arcuate surface for seating against an inner arcuate surface of said preform structure.
19. The method as set forth in further including:
claim 16
disposing an inner thermal insulating material between said planar sensing element and said high temperature mat support.
20. The method as set forth in wherein said inner thermal insulating material comprises first and second semi-circular thermal insulating members, said first semi-circular thermal insulating member contacting a first planar surface of said planar sensing element and said second semi-circular thermal insulating member contacting an opposing second planar surface of said planar sensing element.
claim 19
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/276,334 US6358383B2 (en) | 1999-03-25 | 1999-03-25 | Exhaust constituent sensor and method of packaging the same |
US09/990,957 US20020029966A1 (en) | 1999-03-25 | 2001-11-16 | Exhaust constituent sensor and method of packaging the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/276,334 US6358383B2 (en) | 1999-03-25 | 1999-03-25 | Exhaust constituent sensor and method of packaging the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/990,957 Continuation US20020029966A1 (en) | 1999-03-25 | 2001-11-16 | Exhaust constituent sensor and method of packaging the same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010047938A1 true US20010047938A1 (en) | 2001-12-06 |
US6358383B2 US6358383B2 (en) | 2002-03-19 |
Family
ID=23056228
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/276,334 Expired - Fee Related US6358383B2 (en) | 1999-03-25 | 1999-03-25 | Exhaust constituent sensor and method of packaging the same |
US09/990,957 Abandoned US20020029966A1 (en) | 1999-03-25 | 2001-11-16 | Exhaust constituent sensor and method of packaging the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/990,957 Abandoned US20020029966A1 (en) | 1999-03-25 | 2001-11-16 | Exhaust constituent sensor and method of packaging the same |
Country Status (1)
Country | Link |
---|---|
US (2) | US6358383B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120018305A1 (en) * | 2010-07-22 | 2012-01-26 | Ngk Spark Plug Co., Ltd. | Gas sensor |
US20130011300A1 (en) * | 2010-03-17 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying device for internal combustion engine |
WO2014023459A1 (en) * | 2012-08-10 | 2014-02-13 | Robert Bosch Gmbh | Measuring sensor for determining at least one property of a measured gas in a measured gas space |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6984298B2 (en) | 2002-01-09 | 2006-01-10 | Delphi Technologies, Inc. | Gas sensor having an insulating layer |
US6957564B2 (en) * | 2003-02-25 | 2005-10-25 | Delphi Technologies, Inc. | Impact protection of an exhaust sensor |
EP1611436A1 (en) * | 2003-03-27 | 2006-01-04 | Robert Bosch Gmbh | Sensor |
DE10337840B4 (en) * | 2003-08-18 | 2013-12-05 | Robert Bosch Gmbh | probe |
DE10361749A1 (en) * | 2003-12-29 | 2005-07-28 | Robert Bosch Gmbh | Gas sensor for determining physical properties (e.g. lambda probe) has an insulation seal with a ceramic mantle lining the housing and an insulation packing enclosing the sensor element and sealing the mantle |
US8147667B2 (en) | 2006-12-20 | 2012-04-03 | Robert Bosch Gmbh | Exhaust gas sensor and method of manufacture |
US20080282769A1 (en) * | 2007-05-18 | 2008-11-20 | Charles Scott Nelson | Apparatus and method for shielding a soot sensor |
US7802472B1 (en) * | 2007-08-21 | 2010-09-28 | Fluke Corporation | Ruggedized sensor probe |
US8162536B2 (en) * | 2008-12-15 | 2012-04-24 | Delphi Technologies, Inc. | Combined sensor |
US20120055790A1 (en) * | 2010-09-03 | 2012-03-08 | Newman Robert L | Gas Sensor Assembly with Interior Heat Dissipation, Sealing, and Support Plug |
US9297791B2 (en) | 2012-12-20 | 2016-03-29 | Robert Bosch Gmbh | Gas sensor with thermal shock protection |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3844920A (en) * | 1973-11-21 | 1974-10-29 | Gen Motors Corp | Air fuel ratio sensor |
US4198279A (en) * | 1977-11-10 | 1980-04-15 | Corning Glass Works | Oxygen sensor mounting structure |
JPH063429B2 (en) * | 1984-10-18 | 1994-01-12 | 日本碍子株式会社 | Oxygen sensor |
EP0704697A1 (en) * | 1994-09-27 | 1996-04-03 | General Motors Corporation | Exhaust sensor including a ceramic tube in metal tube package |
DE19603379A1 (en) * | 1996-01-31 | 1997-08-07 | Bosch Gmbh Robert | Gas sensor |
DE19605290C2 (en) * | 1996-02-14 | 1998-02-26 | Bosch Gmbh Robert | Sensor |
-
1999
- 1999-03-25 US US09/276,334 patent/US6358383B2/en not_active Expired - Fee Related
-
2001
- 2001-11-16 US US09/990,957 patent/US20020029966A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130011300A1 (en) * | 2010-03-17 | 2013-01-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying device for internal combustion engine |
US8997470B2 (en) * | 2010-03-17 | 2015-04-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying device for internal combustion engine |
US20120018305A1 (en) * | 2010-07-22 | 2012-01-26 | Ngk Spark Plug Co., Ltd. | Gas sensor |
US8764955B2 (en) * | 2010-07-22 | 2014-07-01 | Ngk Spark Plug Co., Ltd. | Gas sensor |
WO2014023459A1 (en) * | 2012-08-10 | 2014-02-13 | Robert Bosch Gmbh | Measuring sensor for determining at least one property of a measured gas in a measured gas space |
Also Published As
Publication number | Publication date |
---|---|
US6358383B2 (en) | 2002-03-19 |
US20020029966A1 (en) | 2002-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6358383B2 (en) | Exhaust constituent sensor and method of packaging the same | |
EP0975957B1 (en) | Oxygen sensor | |
US6899457B2 (en) | Thermistor temperature sensor | |
EP1939615B1 (en) | Exhaust gas sensor and method of manufacture | |
US7553078B2 (en) | Temperature sensor and method for producing the same | |
JP4016627B2 (en) | Temperature sensor | |
US6297723B1 (en) | Temperature sensor and method of manufacturing the same | |
JP2010520443A5 (en) | ||
JPH052101B2 (en) | ||
JP2010520611A (en) | 14MM extension spark plug | |
US6063249A (en) | Oxygen sensor | |
US9765681B2 (en) | Method for producing an exhaust-gas aftertreatment device | |
KR20000068861A (en) | gas sensor | |
US10371680B2 (en) | Sensor | |
US6322681B1 (en) | Gas sensor | |
US6401521B1 (en) | Method of preventing movement of a planar sensor element packaged in a mat support | |
US20140355653A1 (en) | Exhaust gas temperature sensor | |
JP3800798B2 (en) | Temperature sensor element | |
JP2004521361A (en) | Gas sensor | |
JPH10507337A (en) | Primary catalytic converter capable of electric heating | |
US20090050480A1 (en) | Exhaust gas sensor | |
JP4392875B2 (en) | Contact connection device | |
US7036352B2 (en) | Gas sensor | |
US20060243027A1 (en) | Package for a sensing element, retaining device for retaining the sensing element in the package, sensor, and methods of making the same | |
JP2004226325A (en) | Temperature detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL MOTORS CORPORATION;REEL/FRAME:012604/0147 Effective date: 20020108 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060319 |