US20010046841A1 - Multi-beam TDMA satellite mobile communications system - Google Patents
Multi-beam TDMA satellite mobile communications system Download PDFInfo
- Publication number
- US20010046841A1 US20010046841A1 US09/778,839 US77883901A US2001046841A1 US 20010046841 A1 US20010046841 A1 US 20010046841A1 US 77883901 A US77883901 A US 77883901A US 2001046841 A1 US2001046841 A1 US 2001046841A1
- Authority
- US
- United States
- Prior art keywords
- satellite
- earth station
- beams
- information
- earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010295 mobile communication Methods 0.000 title description 2
- 238000004891 communication Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 35
- 230000005540 biological transmission Effects 0.000 claims description 30
- 206010041235 Snoring Diseases 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000005562 fading Methods 0.000 description 7
- 239000000872 buffer Substances 0.000 description 5
- 230000001934 delay Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
- H04B7/2041—Spot beam multiple access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18532—Arrangements for managing transmission, i.e. for transporting data or a signalling message
- H04B7/18534—Arrangements for managing transmission, i.e. for transporting data or a signalling message for enhancing link reliablility, e.g. satellites diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18545—Arrangements for managing station mobility, i.e. for station registration or localisation
- H04B7/18547—Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
- H04B7/1855—Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station using a telephonic control signal, e.g. propagation delay variation, Doppler frequency variation, power variation, beam identification
Definitions
- the coverage area of the spot beams 51 of the satellite 4 a progresses in a fashion which may be likened to the progress of a caterpillar or tank track, with the spot beams corresponding to the elements of the track.
- Each spot beam 51 is individually and continually steered to remain fixed on a centre until it reaches the outermost rearward position of the beam pattern, when it is redeployed to the outermost forward position.
- the overall beam pattern projected by the antenna of the satellite 4 a progresses on a continuous track over the earth's surface with the progression of the satellite. This method provides reduced frequency of beam-to-beam handover, although it does not reduce the frequency of satellite-to-satellite handover.
- the satellite beams are not steered but sweep across the earth's surface at a constant rate as the satellite 4 progresses in its orbit.
- the beams overlap so that the mobile terminal 18 is able to communicate via more than one beam at least some of the time.
- beams from different satellites 4 a , 4 b may overlap so that the mobile terminal 18 is able to communicate via more than one satellite 4 a , 4 b .
- Transmission or reception frequencies are allocated according to the spot beam in which the mobile terminal 18 falls and not according to the position of the mobile terminal 18 on the earth's surface.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radio Relay Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
An earth station receives a return signal via more than one satellite link from a mobile terminal using TDMA. The earth station selects one or more of the satellite links for transmitting a forward signal on the basis of the quality of signal received via each link. The earth section allocates frequency channels to the mobile terminals according to their location on the surface of the earth, so that the propagation time to and from those mobile terminals which share the same frequency channel is approximately the same. The satellite includes an antenna which generates an array of beams which are individually pointed to fixed regions of the earth, until the elevation of the satellite relative to a fixed region falls below a minimum value, in which case the corresponding beam is redirected to a new area, while the other beams remain pointed at the corresponding fixed areas. In this way, beam-to-beam handover is reduced, while maintaining the boresight of the antenna pointing at the nadir.
Description
- The present invention relates to a method and apparatus for communication via satellite, and in particular but not exclusively for voice or data communication using non-geostationary satellites and/or mobile terminals.
- In communication systems which use non-geostationary satellites, the number and orientation of satellites in view of a ground-based terminal varies during a call. Thus, the communication link between the terminal and any one satellite may become weaker as the elevation angle of the satellite decreases and ultimately the link may become inoperable as the satellite moves out of sight of the terminal. It is therefore desirable to select another satellite for communication with the terminal, in a procedure known as “handover”. The document U.S. Pat. Ser. No. 3,349,398 describes one such method. However, handover between satellites may result in loss of part of the signal, or sudden variations in signal quality, which are unacceptable in voice or data communications.
- Furthermore, the line of sight between the terminal and a particular satellite may become obstructed by buildings, trees or other obstacles as the terminal or the satellite moves during a call. This effect is known as “blockage”, and leads to fading in the received signal.
- Signal fading may also occur when a signal transmitted by a satellite is reflected off the ground or buildings and the reflected signal is received at the terminal together with the direct signal. The phase difference between the direct and reflected signals may lead to destructive interference at the terminal, so that the received signal strength is reduced. This is known as “multipath” fading.
- The document WO-A-93 09578 discloses a satellite communication system in which the satellites monitor the quality of signal received from a terminal and determine which one is best suited to handle the call to the terminal. One of the satellites re-transmits the signal received from the terminal to other satellites or gateways.
- The conference paper “The Globalstar Mobile Satellite System for Worldwide Personal Communications” by Wiedeman and Viterbi, 3rd International Mobile Satellite Conference, Jun. 16-18 1993, Pasadena, Calif. discloses a communication system in which return link signals are received by two or three satellites; gateway stations measure the signal level of each of these alternate paths and control which signal paths are used. This system is exclusively designed for use with code-divided multiple access (CDMA).
- However, CDMA suffers from a number of drawbacks when used for mobile communications. The mobile terminals are complex, since they require a separate decoder for each satellite path. Moreover, CDMA is inefficient in frequency re-use unless the users are evenly distributed, and power levels cannot be freely varied for each user without causing interference for other users. Furthermore significant interference takes place at peak levels of use.
- According to one aspect of the present invention, there is provided a method of communication between a terrestrial station and a plurality of terminals using TDMA to address each of the terminals from the terrestrial station, in which diversity is provided in the link between the terrestrial station and each terminal, by sending the same information through two or more satellites.
- The information may be sent in the same TDMA time slot through the two or more satellites, or may be sent in different time slots.
- In this way, blockage may be reduced without the inherent disadvantages of CDMA.
- The terrestrial station may either decode the best received signal from each terminal or may combine all of the received signals to reduce error in the received signal. The terrestrial station may then select a forward link to each terminal through one or more of the satellites according to the quality of signal received from the terminal through the satellites.
- Thus, a smooth handover may be achieved and blockage and fading may be reduced.
- In order that the selection of satellite for the forward link may be transparent to the terminal, the terrestrial station may calculate the delay in the transmission via the selected satellite and adjust the timing of its transmission accordingly so that the transmitted signal is received by the terminal in the same time slot throughout the call. The calculation may take into account both the variation in delay as the selected satellite moves relative to the earth, and the difference in delay when handing over from one satellite to another, so that the quality of communication is not impaired by handover and complex circuitry is not required in the terminal.
- In addition, the terrestrial station may compensate for the Doppler shift in the signal received from the terminal and adjust the frequency of the transmitted signal accordingly so that the terminal receives a signal at a constant frequency throughout a call. The Doppler shift may be partially compensated for by the satellites.
- According to another aspect of the present invention, in order to facilitate simultaneous communication with multiple users through one satellite, areas of the earth are divided into a number of fixed regions, with a frequency being assigned to a terminal both for transmission and reception of signals according to the region in which the terminal is located. The locations of the regions are determined according to their positions on the earth, rather than their positions relative to the satellite. Simultaneous communication between different terminals in the same region and at the same frequencies may be achieved by allocating different time slots within a repeating time frame to each of the terminals. Since the different terminals using the same frequencies are contained within a fixed region and the variation in propagation delays is therefore limited, interference between the adjacent time slots is avoided.
- According to another aspect of the present invention, there is provided a method of controlling a non-geostationary satellite which generates a plurality of individually steerable beams to provide communications links, in which each beam is directed towards a fixed region of the earth's surface until the beam is no longer suitable for communication with that fixed region as a result of the progress of the satellite relative to the earth's surface. The beam is then redirected to a new fixed region with which satisfactory communication is possible. Calls to the previous fixed region may be routed through another satellite.
- In this way, the frequency of beam-to-beam handover may be reduced, without affecting the frequency of satellite-to-satellite handover.
- The present invention extends to a terrestrial station having means for performing the functions of one or more of the earth stations or terminals described above.
- Specific embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
- FIG. 1 is a schematic block diagram of the forward and return links between an earth station and a mobile terminal;
- FIG. 2 is a schematic elevation showing alternative paths between the earth station and the mobile terminal;
- FIG. 3 is a schematic diagram of the earth station;
- FIG. 4 is a schematic diagram of the mobile terminal;
- FIG. 5 is a schematic diagram of one of the satellites;
- FIG. 6 is a diagram of the format of forward and return packets within a frame according to a first embodiment;
- FIG. 7 shows the arrangement of spot beam footprints on the earth's surface;
- FIG. 8 shows the arrangement of cells on the earth's surface in the first embodiment;
- FIG. 9 shows how the beams of a satellite are directed in the first embodiment as the satellite progresses in its orbit;
- FIG. 10 is a diagram of the format of forward and return packets within a frame according to a second embodiment; and
- FIG. 11 is a diagram of an alternative format to that shown in FIG. 10.
- A first embodiment of the present invention will now be described with reference to FIGS.1 to 8.
- In FIG. 1, a
transmitter 2 of a mobile terminal transmits a signal 3. The mobile terminal has a substantially omni-directional antenna, so that the transmitted signal 3 is received by afirst satellite 4 a and asecond satellite 4 b in view of the mobile terminal. The signal 3 is retransmitted from eachsatellite separate signals signals earth station 8 having first andsecond receivers second satellites earth station 8 has first and second directional antennas directed towards the first andsecond satellites earth station 8 in theseparate signals earth station 8 may therefore select the better of the twosignals PSTN 9. - The
earth station 8 also analyses the received signals 3 a and 3 b to determine which is of better quality. Since there is a strong correlation between the strength of a return link from one of thesatellites portable transmitter 2 through thesame satellite 6 a, 6 b, theearth station 8 selects one of thesatellites 6 a, 6 b for the forward link to theportable transmitter 2 and generates aselection signal 10. - When a signal is received from the
PSTN 9 for transmission to theportable terminal 2, the signal is passed to atransmitter 12 in the earth station. Thetransmitter 12 selects one of thesatellites selection signal 10. In this case, thefirst satellite 4 a is selected as the most suitable for the forward link. Thetransmitter 12 then transmits asignal 15 to thefirst satellite 4 a, which retransmits the signal as asignal 15 a to areceiver 16 of the mobile terminal. Thetransmitter 2 and thereceiver 16 may be connected to the same antenna on the mobile terminal, or to separate antennas. In both cases, the receiving antenna is omni-directional and therefore may receive signals from either of thesatellites receiver 16 receives asignal 15 through the stronger link. - A situation in which blockage occurs will now be described with reference to FIG. 2. This figure shows a section of the earth's surface on which the
earth station 8 and amobile terminal 18 are located. The first andsecond satellites earth station 8 and themobile terminal 18. The angle of elevation εb of thesecond satellite 4 b relative to themobile terminal 18 is greater than the angle of elevation εa of thefirst satellite 4 a and the path distances between theearth station 8 and thesecond satellite 4 b, and between thesecond satellite 4 b and themobile terminal 18 are shorter than those between thefirst satellite 4 a and themobile terminal 18 andearth station 8. - However, in this case the
mobile terminal 18 is positioned close to atall obstacle 20 such as a tree, which obscures the line ofsight 1 b between themobile terminal 18 and thesecond satellite 4 b. Thus, when themobile terminal 18 transmits a signal 3, this signal 3 is only weakly received by thesecond satellite 4 b and thus the retransmittedsignal 6 b is more likely to contain errors. The earth station selects thefirst satellite 4 a as providing a better forward link and transmits theresponse signal 15 only to thefirst satellite 4 a. This response signal is retransmitted assignal 15 a to themobile terminal 18. Since the line of sight 1 a between thefirst satellite 4 a and themobile terminal 18 is not obscured, the response signal is received strongly by themobile terminal 18. Themobile terminal 18 does not need to select from whichsatellite response signal 15 a, since this is decided at theearth station 8. Selection of thesatellites - If, on the other hand, the
mobile terminal 18 were to move such that theobstacle 20 no longer obstructs the line ofsight 1 b, then theearth station 8 may receive a better signal from thesecond satellite 4 b and will therefore select thesecond satellite 4 b for the forward link. - When different frequencies are used for the forward and return links, and the fading is due to multipath interference, there may not be a strong correlation between the quality of forward and return links. In this case, the
mobile terminal 18 transmits information to theearth station 8 relating to the strength of the signal received by the terminal 18 from theearth station 8. If theearth station 8 receives a good return link signal from thefirst satellite 4 a but information transmitted by themobile terminal 18 indicates that fading is occurring on the forward link, theearth station 8 may then select the satellite from which the next best signal is received for the forward link. In a case where each satellite generates several overlapping beams for communication with mobile terminals at different frequencies, theearth station 8 selects instead a different beam generated by the first satellite. - The operation of the
mobile terminal 18 and theearth station 8 will now be explained with reference to FIGS. 3, 4, and 5. - In this example, analog speech signals are received at the
earth station 8 from thePSTN 9 for transmission to themobile terminals 18. As shown in FIG. 3, the analogue speech signals are digitized and encoded by acodec 81 and the encoded speech is converted into a series of discrete packets at a multiplexer/demultiplexer 82. - The transmission of the packets is controlled by a
controller 88 which selects whichsatellite 4 is to be used for the forward link on the basis of the quality of signal received from eachsatellite 4. Thecontroller 88 controls aselector 83 to send each packet to one of a plurality ofbuffers controller 88. The packets output from thebuffer demodulators controller 88. The RF signals are modulated in different frequency bands selected by thecontroller 88 according to a selected beam of thesatellite 4 in which the signals are to be retransmitted to themobile terminal 18. The RF signals are transmitted bydirectional antennas corresponding satellite - Each directional antenna87 also receives signals transmitted from mobile terminals on the return link from the
corresponding satellite 4, which are radio frequency demodulated by the RF modulators/demodulators 86 to form received packets. The received packets are buffered by the buffers 85 and selected by theselector 83. The series of packets is separated in channels by the multiplexer/demultiplexer 82 and decoded by thecodec 81 which may also perform error checking by comparing packets received from the samemobile terminal 18 viadifferent satellites 4. The resultant analog signals are sent to thePSTN 9 on different lines. - The
earth station 8 need not be connected directly to thePSTN 9. Instead, earth stations are preferably connected to PSTNs and other fixed and mobile networks through a ground network, as described in British Patent application no. 94 23950.6 and the corresponding International (PCT) application filed on May 12th 1995, both incorporated herein by reference. - As shown in FIG. 4, each
mobile terminal 18 includes amicrophone 60 in which speech is converted into analog signals. The analog signals are converted to digital signals by an A/D converter 62 and the digital signals are encoded to form the packets by acoder 64. The coded packets are RF modulated by anRF modulator 66 for transmission from an omnidirectional aerial 68. - Signals received through the aerial68 are RF demodulated by a
demodulator 70 as received packets. The received packets are then decoded by apacket decoder 72 to form digital speech signals which are converted to analog speech signals by a D/A converter 74. The analog signals are output to aloudspeaker 76 to produce audible speech. The operation of themobile terminal 18 is controlled by acontrol unit 59, such as a microprocessor and/or DSP device, which is connected to additional conventional handset components such as a key pad (not shown). - Referring to FIG. 5, each
satellite 4 includes anantenna 90 and a beam-formingdevice 92, which may be a radiating array antenna and a large Butler matrix as described in British Patent application No. 9407669.2 (incorporated herein by reference). The beam-formingdevice 92 converts signals from each element of the array into signals from a plurality of beams and vice versa. Signals received by theantenna 90 from themobile terminals 18 are fed via acontrol unit 94 to anantenna 96 which retransmits the signals towards the base station in a frequency band corresponding to the beam in which the signals were received. Theantenna 96 may be steered towards theearth station 8. Likewise, signals received from theantenna 96 from theearth station 8 are redirected to one of the beams of theantenna 90 according to the frequency band in which the signals are transmitted from theearth station 8. - For the sake of clarity, a
single antenna 90 and beam-formingdevice 92 are shown. However, since different carrier frequencies are used for the forward and return links, separate receiving and transmittingantennas 90 and beam-formingdevices 92 will preferably be used. - As shown in FIG. 6, the
earth station 8 can communicate with a number ofmobile terminals 18 at the same time by sending packets R1 to Rn sequentially in a repeating time frame F, the beginning of which is marked by a frame header signal. Each frame F is divided into a number of time slots t1 to tn corresponding to different channels, each channel being assigned to one of themobile terminals 18 by theearth station 8 when a call is set up. - For example, if the
mobile terminal 18 has been assigned to the first channel, it will decode only the packet R1 in the first slot t1 in each frame F to generate a voice signal. The method of multiplexed communication is known as Time Divided Multiple Access, or TDMA. - A channel is assigned to each
mobile terminal 18 during call setup by transmitting an instruction signal to the mobile terminal 18 from theearth station 8. - Each
mobile terminal 18 is assigned a return channel having a predetermined time slot t, different from that of the forward channel, in the frame F, for transmission of a return packet T1 to Tn. For example, themobile terminal 18 to which the first slot t1 is assigned for reception of the packet R1 may be assigned the third slot t3 for the transmission of a return packet T1. Different frequencies ff and fr are used for the forward and return channels so that themobile terminals 18 communicate in full duplex mode. - Alternatively, a half duplex mode could be used, in which the return packets T would be transmitted at the same frequency as the forward packets R, with the forward packets R alternating with the return packets T in the frame F.
- Each forward and return packet consists of a
header portion 24 containing control information,speech data 26 and acheck portion 28 such as a CRC for correcting errors in thespeech data 26. - In order to ensure that the correct signal is received by each
mobile terminal 18, in the same time slot t in every frame F, theearth station 8 delays the timing of transmission from the buffers 85 to a particular satellite to compensate for the variations in propagation delay via another satellite, and for the change in delay in handing over from one satellite to another. In order to determine the correct timing, thecontroller 88 of theearth station 8 may include a store unit storing ephemerides of the positions of the different satellites so that their position and range may be calculated at any instant. In addition, the position of eachmobile terminal 18 is determined. This may be achieved by comparing the delays in thesignals mobile terminal 18 bydifferent satellites - As each
satellite mobile terminal 18 relative to a satellite is determined by identifying the beam in which the return signal 3 is detected. In addition, the Doppler shift of the signal 3 is measured to determine the angle of themobile terminal 18 relative to the direction of motion of the satellite. The position of eachmobile terminal 18 is calculated by some or all of the above techniques. - The
earth station 8 may store the last known position of eachmobile terminal 18, so that position calculation need only be carried out if themobile terminal 18 is not found in its previous area. - Alternatively, each
mobile terminal 18 may include Global Positioning System (GPS) hardware for determining the position of themobile terminal 18, which information may be incorporated in signals transmitted to theearth station 8. - The timing of transmission of the return packets T is synchronized by the
mobile terminal 18 with the timing of the reception of the forward packets R. Since theearth station 8 controls the timing at which theforward packets 12 are received, the timing of themobile terminal 18 is controlled by theearth station 8. To allow some margin for timing error, the time slots are separated by short intervals, called “guard bands”. - Furthermore, the
controller 88 of theearth station 8 measures the Doppler shift of the signal 3 received from each mobile terminal and controls the modulation frequency of the RF modulators 86 to compensate for the Doppler shift, so that thesignal 15 a is always received by themobile terminal 18 at the assigned frequency. By the above compensatory techniques, which are carried out at theearth station 8, the processing burden on themobile terminals 18 is reduced so that their reliability may be increased, their construction may be substantially simplified and they may be manufactured at low cost. - More than one satellite may be selected for the forward link, the
signal 15 from theearth station 8 being transmitted to each selected satellite with a timing calculated so that thesignals 15 a,15 b from thesatellites mobile terminal 18. - Each
satellite array antenna 90, for communication with themobile terminal 18, which synthesizes a number of overlapping spot beams each having a projectedarea 50 on the earth's surface of between 1000 km and 3000 km in diameter, as shown in FIG. 7. In FIG. 7, the nadir of thesatellite 4 a on the earth's surface is shown at point A and the nadir of thesatellite 4 b is shown at point B, with the great circle distance between these points being represented by the horizontal axis. The vertical axis represents distance along a great circle orthogonal to the great circle connecting the nadirs of the twosatellites mobile terminal 18 is located within thefootprint 50 of one spot beam of thesatellite 4 a and within thefootprint 51 of a spot beam of thesatellite 4 b, so that communication is possible via either satellite. - Each
array antenna 90 may project 121 beams collectively covering substantially the entire field of view of thesatellite - As shown in FIG. 8, the area of the earth's surface is divided by the
controller 88 intoregions 52 and a sub-carrier transmission and reception frequency pair is assigned to eachregion 52. Thus, the transmit and receive frequency for eachmobile terminal 18 are determined according to theregion 52 in which it is located, theregions 52 being fixed relative to the earth's surface. A samplespot beam footprint 50 is shown overlapping a group ofregions 52, which are hexagonal in this example. - When a call is set up, the position of the
mobile terminal 18 is determined by thecontroller 88 of theearth station 8 according to the techniques described above and a control signal is transmitted to themobile terminal 18 to assign a particular pair of frequencies. These frequencies remain unchanged throughout the call unless themobile terminal 18 itself moves into anothercell 52. Eachcell 52 has a radius of approximately 200-300 km, so themobile terminal 18 is unlikely to move frequently betweencells 52 during a call. It should be noted that the size and position of each cell is defined with reference to the earth's surface and not to a satellite beam. - In another alternative, the assignment of frequencies to regions may change in a predetermined sequence (so-called “frequency hopping”).
- All of the
mobile terminals 18 within thesame cell 52 transmit and receive at the same pairs of frequencies ff and fr, and the signals from the differentmobile terminals 18 are separated using TDMA, as shown in FIG. 6. Since the differentmobile terminals 18 are contained within the relatively small, fixed area of the cell and are all at approximately the same distance from any one satellite, the variation in the uplink propagation delay between different mobile terminals and any one satellite is limited. In this way, the problem of interference between signals in adjacent time slots is greatly reduced. - The assignment of
regions 52 to spot beams is determined at thesatellite 4 or at theearth station 8 so that handover ofregions 52 betweenspot beam areas 50 is transparent to themobile terminal 18. - FIG. 9 shows the allocation of a row of
spot beams 51 in the beam pattern of asatellite 4 a to groups ofregions 52 at time To and at a later time T1. At time To, overlapping spot beams 51 a to 51 l are directed at centres Ca to C1 of groups ofregions 52 on the surface of the earth. As the satellite progresses in its orbit, the spot beams 51 are individually steered so as to remain pointing at their respective centres C. - After To, the elevation angle of the
satellite 4 a with respect to the centre Ca becomes undesirably low for reliable communication. Theearth station 8 detects the position of the centre Ca with respect to thesatellite 4 a and controls thesatellite 4 a by sending control signals to redeploy thebeam 51 a to a new centre Cn. By this time, anothersatellite 4 b (not shown in FIG. 9) is already covering theregions 52 around the centre Ca with one of its spot beams, so that satellite-to-satellite handover is achieved without any interruption of the communication service. At time T1, all of the spot beams 51 have been redeployed except for thebeam 51 m. - Thus, the coverage area of the antenna as a whole moves progressively forward, and the antenna boresight or focal direction remains pointing downwards directly below the satellite.
- The coverage area of the spot beams51 of the
satellite 4 a progresses in a fashion which may be likened to the progress of a caterpillar or tank track, with the spot beams corresponding to the elements of the track. Eachspot beam 51 is individually and continually steered to remain fixed on a centre until it reaches the outermost rearward position of the beam pattern, when it is redeployed to the outermost forward position. However, the overall beam pattern projected by the antenna of thesatellite 4 a progresses on a continuous track over the earth's surface with the progression of the satellite. This method provides reduced frequency of beam-to-beam handover, although it does not reduce the frequency of satellite-to-satellite handover. - Preferably, the
earth station 8 continuously determines the correct direction for each of thebeams 51 and sends control signals to thesatellite 4 a to control the direction of thebeams 51. However, the means for determining the beam directions may alternatively be incorporated in the satellite, or in a separate ground-based satellite control station. - A second embodiment will now be described with reference to FIGS.1 to 5, 10 and 11. The second embodiment differs from the first embodiment in the operation of the
earth station 8,mobile terminal 18 andsatellites 4, and in that themobile terminal 18 receives signals fromdifferent satellites 4 in different time slots. - As shown in FIG. 10, the
mobile terminal 18 communicates with theearth station 8 during allocated time slots t within a repeating time frame T, via the first andsecond satellites - In the example shown, the
earth station 8 transmits a packet Rx1 in time slot t1 via thefirst satellite 4 a, which packet is received at frequency f1 by themobile terminal 18. Themobile terminal 18 then transmits a packet Tx1 in time slot t3 at the frequency f1′ via a beam generated by thesatellite 4 a. Theearth station 8 transmits a packet Rx2, containing the same information as the packet Rx1, via thesecond satellite 4 b, or via a further beam generated by thesatellite 4 a, which retransmits the packet Rx2 to themobile terminal 18 at frequency f2 in time slot t5. Themobile terminal 18 then transmits a packet Tx2, containing the same information as the packet Tx1, in time slot t7 at the frequency f2′. The packet Tx2 is retransmitted to theearth station 8 by thesecond satellite 4 b. In this way, thecontroller 59 has sufficient time to retune theRF modulator 66 ordemodulator 70 during the intervening time slots. - Alternatively, two RF demodulators and two RF modulators may be provided in the mobile terminal, tuned to the frequencies f1 and f2 and f1′ and f2′ respectively.
- When the mobile terminal has received both the packets Rx1 and Rx2, the
packet decoder 72 combines the two, or selects the better packet, for conversion to speech, as in the first embodiment. Similarly, theearth station 8 combines the two transmitted packets Tx1 and Tx2 or selects the better packet, to improve the quality of the signal transmitted to thePSTN 9. - In this example, each time frame T comprises eight time slots t, so that eight
mobile terminals 18 can communicate with theearth station 8 at the frequencies f1, f1′, f2 and f2′ using TDMA. However, the allocation of time slots is flexible, to optimize the number of users and quality of communication, as described below. - During call set-up, the
mobile terminal 18 monitors pilot signals transmitted by thesatellites 4 to determine which satellites are in view and whether any satellite links are blocked. This information is transmitted to theearth station 8. If only one satellite is in view, theearth station 8 allocates only one time slot for transmission and one for reception at the pair of frequencies corresponding to that satellite. Themobile terminal 18 monitors the pilot signals during the calls so that, if another satellite comes into view, themobile terminal 18 communicates this information to the earth station and further transmit and receive time slots are allocated at the pair of frequencies corresponding to the other satellite. Although in the above example two time slots are allocated for transmission by themobile terminal 18, only one of the time slots may be used if the return link is satisfactory in order to conserve power and reduce electromagnetic emissions, which is particularly important for hand-held mobile terminals. - The
controller 59 of themobile terminal 18 monitors the quality of signal received from bothsatellites earth station 8 communicates this information to themobile terminal 18 and the alternative return link is selected. - Furthermore, if a greater number of users is to be accommodated at any time, only one time slot for each of transmission and reception may be allocated to each
mobile terminal 18. - If none of the satellites provides a link of satisfactory quality, a lower baud rate is selected by the
earth station 8 and the voice data is divided into two different packets in each time frame. As shown in FIG. 11, the frequencies f1, f1′ are used for communication via only thefirst satellite 4 a. The voice data encoded in a single packet Rx1 or Rx2 in the embodiment shown in FIG. 10 is divided between two packets Rxa and Rxb which are transmitted at the frequency f1′ by theearth station 8 at half the normal baud rate in time slots t3 and t5 respectively. Likewise, the voice data transmitted by themobile terminal 18 is divided between two packets Txa and Txb in each time frame T and transmitted in time slots t2 and t6 at half the normal baud rate. The reduction of baud rate reduces the probability of bit errors. Alternatively, two satellite beams may be used for transmission and reception, and the packets Rxa, Rxb and Txa, Txb may be divided between the two beams. - The above technique of selecting a lower baud rate and dividing the transmitted signal into two or more packets may also be employed in the first embodiment.
- In the second embodiment, the satellite beams are not steered but sweep across the earth's surface at a constant rate as the
satellite 4 progresses in its orbit. As in FIG. 7, the beams overlap so that themobile terminal 18 is able to communicate via more than one beam at least some of the time. Furthermore, beams fromdifferent satellites mobile terminal 18 is able to communicate via more than onesatellite mobile terminal 18 falls and not according to the position of themobile terminal 18 on the earth's surface. As the beams of eachsatellite 4 sweep over the earth's surface, themobile terminal 18 will pass from one beam to the next and a call will therefore need to be handed over from beam to beam to reach themobile terminal 18. This is achieved by determining at theearth station 8 which beam themobile terminal 18 falls within and allocating a call with themobile terminal 18 in the appropriate beam. When themobile terminal 18 is handed over to a new beam, a command signal is sent to themobile terminal 18 including information on the time slots t and the transmit and receive frequencies to be used by the mobile terminal in the new beam, and the mobile terminal thereafter uses the new frequencies and time slots indicated in the command signal for communication via thatsatellite 4. - The
earth station 8 may use any of a number of well-known techniques to determine to which new beam the mobile terminal is to be handed over and when handover is to take place. For example, since the positions of thesatellites 4 and of themobile terminal 18 are known, the passage of the mobile terminal through the beams projected by any of thesatellites 4 is entirely predictable and this information may obviously therefore be used to determine when handover is to take place, and to which beam. - Alternatively, the strength or quality of signals received from the
mobile terminal 18 through the current beam may be monitored and handover performed when the signal through the current beam is unacceptable. Diversity may be provided through two beams of the same satellite, providing a soft beam-to-beam handover. - The timing of forward link transmissions is controlled by the
earth station 8 and the return link transmissions are synchronized with the reception of forward link signals, as in the first embodiment. However, in the second embodiment themobile terminals 18 adjust the frequency of transmission on the return link to compensate for Doppler shift detected in the received signals, as well as theearth station 8 compensating for Doppler shift on the forward link. - Since the
mobile terminals 18 using the same transmission frequency are no longer confined to a fixed region, the guardbands between time slots at the mobile terminal transmission frequencies are larger in the second embodiment than in the first embodiment, to avoid interference between adjacent time slots on the return link. - Although the above embodiments have been described with reference to a mobile or portable (e.g. hand-held) terminal, transportable or even fixed terminals may be used in the same communications system.
- The system is not restricted to any particular constellation of satellites, but may advantageously be applied to satellites in low earth orbits of less than 2000 km altitude or medium earth orbits of between 10,000 and 20,000 km altitude.
- Preferably, a subsynchronous orbit of approximately 6 hours' period may be used, corresponding to an altitude of 10355 km.
- In both embodiments, the number of time-slots in each time frame may be chosen according to the likely density of users. Although different frequencies are used by the mobile terminals for transmission and reception in the preferred embodiments, a single frequency may be used, with alternate time slots assigned for transmission and reception.
- The embodiments are described above for illustrative purposes only and the present invention is not limited in scope thereto.
Claims (41)
1. A method of satellite communication between a first earth station (18) and a second earth station (8) comprising:
receiving at the second earth station (8) information transmitted from the first earth station (18) within one or more time-division multiplexed time slots (t) and relayed via a plurality of beams (51) generated by one or more satellites (4);
said method being characterised by the steps of:
selected one or more of said satellite beams (51) according to a property of the information received via said satellite beams (51); and
transmitting further information (15) from said second earth station (8) to the first earth station (18) such that the further information (15) is relayed via said selected one or more satellite beams (51).
2. A method as claimed in , further comprising:
claim 1
calculating variations in the delay in the transmission link between the first earth station (18) and the second earth station (8) via said selected one or more satellite beams (51), and transmitting the further information from the second earth station (8) to the one or snore satellites (4) which generate the or each selected satellite beam (51) with a timing determined so as to compensate for said variations.
3. A method as claimed in , wherein the further information is transmitted from the second earth station (8) to the first earth station (18) via two or more said selected beams (51), and the timings of the transmissions are determined so that the information is received substantially simultaneously at the first earth station (18) via the selected beams (51).
claim 2
4. A method as claimed in any preceding claim, further comprising measuring the Doppler shift from a predetermined frequency of the frequency of a signal (3 a; 3 b) containing the information received at the second earth station (8) and selecting the frequency of a signal (15) containing the further information so as to compensate for the measured Doppler shift.
5. A method as claimed in any preceding claim, further comprising determining the position of the first earth station (18); wherein the further information is transmitted from the second earth station (8) with a frequency (ff) determined according to the derived position of the first earth station (18).
6. A method as claimed in , further comprising transmitting to the first earth station (18) a control signal for controlling the transmission and reception frequencies (fr, ff) of the first earth station (18), the control signal being generated according to the derived position of the first earth station (18).
claim 5
7. A method as claimed in or , wherein the second earth station (8) receives the information more than once in different time slots (t3, t7) via a corresponding number of said satellite beams (51).
claim 1
2
8. A method as claimed in , wherein the second earth station (8) receives the information transmitted by the first earth station (18) within a first time slot (t3) in a first frequency channel (f1′) of a first satellite beam (51), and
claim 7
receives the information which is transmitted again by the first earth station (18) during a second time slot (t7) in a second frequency channel (f2′) of a second satellite beam (51).
9. A method as claimed in , further comprising:
claim 8
comparing respective properties of the received information transmitted by the first earth station (18) during the first and second time slots (t3, t7) and
transmitting the further information at a selected frequency corresponding to one of the first and second satellite beams (51) according to the result of the comparison.
10. A method as claimed in any preceding claim, wherein if a property of the received information fails to satisfy a predetermined criterion, the second earth station (8) transmits the further information at a lower rate, and if the property of the received information satisfies said predetermined criterion, the second earth station (8) transmits the further information at a higher rate.
11. A method as claimed in , wherein the information is transmitted by the steps of:
claim 10
dividing the further information into first and second portions (Rxa, Rxb);
transmitting the first portion (Rxa) to the first earth station (18) within a third time slot (t3); and
transmitting the second portion (Rxb) to the first earth station (18) within a fourth time slot (t7).
12. A method as claimed in any preceding claim, wherein said property relates to the quality of previous information previously received by the first earth station (18) from the second earth station (8).
13. A method as claimed in any one of to , wherein the property relates to the quality of said information received by the second earth station (8).
claims 1
11
14. A method of satellite communication using TDMA channels, comprising;
transmitting the same information from a first earth station (18) within each of a plurality of time slots (t) to a second earth station (8), at respective, different frequencies (f1′, f2′) so that the information is received in respective, different beams generated by one or more satellites (4).
15. Apparatus for use in a satellite communications earth station (18) using TDMA channels, comprising:
a receiver (8 a, 8 b) arranged to receive information relayed by one or more satellites (6) from a remote earth station (18) within one or more time slots (t), the information being relayed via a plurality of beams (51) generated by said one or more satellites (6);
beam selecting means (14) for selecting one or more of said satellite beams (51) according to a property of the information received therein, and a transmitter (12) arranged to transmit further information to the remote earth station (18) such that the information is relayed to the remote earth station (18) via the selected one or more satellite beams (51).
16. Apparatus as claimed in , further comprising:
claim 15
means (88) for calculating variations in the transmission delay to the remote earth station (18) via the selected one or more satellite beams (51), and control means (85,88) for controlling the timing of the transmitter (12) to compensate for the variations.
17. Apparatus as claimed in , wherein the beam selecting means (14) is arranged to select two or more of said satellite beams (51), and the control means (85,88) is arranged to control the timing of the transmitter (12) so that the transmitted information is received substantially simultaneously at the remote earth station (18) via each of the selected beams (51).
claim 16
18. Apparatus as claimed in any one of to , further comprising means (88) for measuring the Doppler shift in a received signal containing the information, and means (86,88) for adjusting the frequency of the transmitter (12) to compensate for the measured Doppler shift.
claims 15
17
19. Apparatus as claimed in any one of to , further comprising means (88) for deriving the position of the remote earth station (18); and frequency selecting means (86,88) for selecting the frequency of the transmitter (12) according to the derived position of the remote earth station (18).
claims 15
18
20. Apparatus as claimed in , including means (88) for generating a control signal for controlling the transmission and reception frequency of the remote earth station (18) according to the derived position thereof, the transmitter (12) being arranged to transmit the control signal to the remote earth station (18).
claim 19
21. Apparatus as claimed in or , wherein the receiver (8 a, 8 b) is arranged to receive the information more than once sequentially via a corresponding number of said beam (51).
claim 15
16
22. Apparatus as claimed in , wherein the receiver (8 a, 8 b) is arranged to receive the information transmitted by the remote earth station (18) within a first time slot (t3) in a first frequency channel (f1′) of a first satellite beam (51), and to receive the information which is repeated by the remote earth station (18) during a second time slot (t7) in a second frequency channel (t2′) of a second satellite beam (51).
claim 21
23. Apparatus as claimed in or , further comprising:
claim 21
22
comparing means (88) for comparing a property of the information transmitted by the remote earth station (18) curing the first and second time slots (t3,t7); wherein
the transmitter (12) is arranged to transmit a signal (15) in a frequency channel corresponding to one of the first and second beams (51) selected by the comparing means (88).
24. Apparatus as claimed in any one of claims 15 to 23, wherein the transmitter (12) is arranged to transmit at a lower rate if the received information fails to satisfy a predetermined criterion and to transmit at a higher rate if the predetermined criterion is satisfied.
25. Apparatus as claimed in , wherein the transmitter (12) is arranged to divide the information to be transmitted into first and second portions (Rxa, Rxb), to transmit the first portion (Rxa) to the remote earth station (18) within a third time slot (t3) and to transmit the second portion (Rxb) to the remote earth station (18) within a fourth time slot (t7).
claim 24
26. Apparatus as claimed in any one of to , wherein said property relates to the quality of previous information previously received by the remote earth station (18) from the satellite communications earth station (8).
claims 15
25
27. Apparatus as claimed in any one of to , wherein the property relates to the quality of the received information.
claims 15
25
28. A user station (18) for satellite communications, comprising a transmitter (2) arranged to transmit the same information within each of a plurality of time slots (t) to a base station (8) at respective different frequencies (f1′,f2′) so as to be receivable in respective different beams (51) generated by one or more satellites (4).
29. A method of communication between a base station (8) and a plurality of user stations (18) each of which are located within the coverage area (50) of a beam (51) generated by a satellite (4), said beam (51) carrying a plurality of frequency channels,
characterised by allocating each of said frequency channels to a group of said user stations (18) which fall within one of a plurality of predetermined regions (52) within the beam (51) such that the variation in propagation delay to said satellite (4) among said group of said user stations (18) is limited, and communicating between the base station (8) and said user stations (18) within said beam (51) in said allocated frequency channels.
30. A method as claimed in , wherein said group comprises ones of said user stations (18) which are approximately equidistant from said satellite (4).
claim 29
31. A method as claimed in , further comprising determining the positions of the user stations (18) relative to the earth's surface and allocating each of said frequency channels according to the determined positions of the user stations (18).
claim 30
32. Apparatus for communication with a plurality of user stations (18) which are located within the coverage area (50) of a beam (51) generated by a satellite (4), said beam (51) carrying a plurality of frequency channels,
characterised by frequency channel allocating means (88) for allocating each of said frequency channels to a group of said user stations (18) which fall within one of a plurality of predetermined regions (52) within the beam (51) such that the variation in propagation delay to said satellite (4) among said group of said user stations (18) is limited, and means (85, 86, 87) arranged to communicate with said user stations (18) within said beam in said allocated frequency channels.
33. Apparatus as claimed in , including grouping means (88) for determining said groups of said user stations (18) such that each group comprises ones of said user stations (18) which are approximately equidistant from said satellite (4).
claim 32
34. Apparatus as claimed in , including position determining means (88) arranged to determine the positions of the user stations (18) relative to the earth's surface, the grouping means (88) being arranged to determine said predetermined regions (52) relative to the earth's surface.
claim 33
35. A method of satellite communication, comprising:
directing a plurality of beams (51 a-51 m) from a non-geostationary satellite (4 a) to a corresponding plurality of regions (52) which are fixed relative to the surface of the earth; and
determining where one of said beams (51 a-51 m) fails to satisfy a predetermined criterion, and redirecting said one of said beams (51 a-51 m) from the corresponding one of the fixed regions (52) to another fixed region (52) such that said one of said beams (51 a-51 m) satisfies said predetermined criterion; characterised in that the directions of other ones of said plurality of beams (51 a-51 m) which satisfy said predetermined criterion are maintained at the corresponding ones of the fixed regions (52) while said one of said plurality of beams (51 a-51 m) is redirected.
36. A method as claimed in , wherein said directing and redirecting steps comprise sending a command signal to said satellite (4 a) from an earth-based station (8), so as to control the direction of the beams (51 a-51 m) of said satellite (4 a).
claim 35
37. A method as claimed in or , wherein said predetermined criterion comprises a range of desirable beam directions whereat the satellite (4 a) has an elevation angle greater than a predetermined minimum elevation angle with respect to the fixed region (52).
claim 35
36
38. Apparatus for satellite communication, comprising means operable to determine a plurality of beam directions, for a plurality of beams (51 a-51 m) projected by a non-geostationary satellite (4 a), to corresponding fixed regions (52) of the earth's surface;
means operable to detect whether one or more of said beams (51 a-51 m) fail to satisfy a predetermined criterion; and
means operable to determine a new beam direction to a new fixed region (52) for each of said one or more of said beams (51 a-51 m), such that the predetermined criterion is satisfied by the beam in the new beam direction; characterised by control means operable to control said non-geostationary satellite (4 a) so as to direct the beams (51 a-51 m) in the corresponding beam directions such that the directions of other ones of said beams (51 a-51 m) for which a new beam direction is not determined are maintained at the corresponding fixed regions (52).
39. Apparatus as claimed in , wherein said control means includes means for sending a control signal to said satellite (4 a).
claim 38
40. Apparatus as claimed in or , wherein said predetermined criterion comprises a range of desirable beam directions to points (Ca-Cm) on the earth's surface whereat the satellite (4 a) has an elevation angle greater than a predetermined minimum elevation angle.
claim 38
39
41. A terrestrial station including apparatus as claimed in any one of to , to 34 and 38 to 40.
claims 15
27
32
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/778,839 US20010046841A1 (en) | 1994-07-22 | 2001-02-08 | Multi-beam TDMA satellite mobile communications system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9414829A GB2293725B (en) | 1994-07-22 | 1994-07-22 | Satellite communication method and apparatus |
GBPCT/GB95/01103 | 1995-05-16 | ||
US08/750,915 US6314269B1 (en) | 1994-07-22 | 1995-05-16 | Multi-beam TDMA satellite mobile communications system |
PCT/GB1995/001103 WO1996003814A1 (en) | 1994-07-22 | 1995-05-16 | Multi-beam tdma satellite mobile communications system |
US09/778,839 US20010046841A1 (en) | 1994-07-22 | 2001-02-08 | Multi-beam TDMA satellite mobile communications system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/750,915 Division US6314269B1 (en) | 1994-07-22 | 1995-05-16 | Multi-beam TDMA satellite mobile communications system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20010046841A1 true US20010046841A1 (en) | 2001-11-29 |
Family
ID=10758746
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/750,915 Expired - Fee Related US6314269B1 (en) | 1994-07-22 | 1995-05-16 | Multi-beam TDMA satellite mobile communications system |
US09/778,839 Abandoned US20010046841A1 (en) | 1994-07-22 | 2001-02-08 | Multi-beam TDMA satellite mobile communications system |
US09/985,597 Abandoned US20020061730A1 (en) | 1994-07-22 | 2001-11-05 | Multi-beam TDMA satellite mobile communications system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/750,915 Expired - Fee Related US6314269B1 (en) | 1994-07-22 | 1995-05-16 | Multi-beam TDMA satellite mobile communications system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/985,597 Abandoned US20020061730A1 (en) | 1994-07-22 | 2001-11-05 | Multi-beam TDMA satellite mobile communications system |
Country Status (11)
Country | Link |
---|---|
US (3) | US6314269B1 (en) |
EP (2) | EP0772922B1 (en) |
JP (1) | JPH10506246A (en) |
CN (1) | CN1080958C (en) |
AU (1) | AU2451895A (en) |
CA (1) | CA2195662C (en) |
DE (1) | DE69513836T2 (en) |
GB (3) | GB2321831B (en) |
IN (1) | IN192234B (en) |
WO (1) | WO1996003814A1 (en) |
ZA (1) | ZA956067B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6771608B2 (en) | 2001-11-05 | 2004-08-03 | The Boeing Company | Link tracking with a phased array antenna in a TDMA network |
US20060135153A1 (en) * | 2004-12-18 | 2006-06-22 | Chao-Chun Chen | Satellite communication system architecture |
US20070264929A1 (en) * | 2004-12-18 | 2007-11-15 | Chao-Chun Chen | Satellite communication system architecture |
US7437123B2 (en) * | 2001-09-14 | 2008-10-14 | Atc Technologies, Llc | Space-based network architectures for satellite radiotelephone systems |
US20100085909A1 (en) * | 2008-10-06 | 2010-04-08 | Viasat, Inc. | Terminal self-synchronization for mesh satellite communications |
US20100159922A1 (en) * | 2005-10-12 | 2010-06-24 | Atc Technologies, Llc. | Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19618142B4 (en) * | 1996-05-06 | 2005-03-17 | Süddeutscher Rundfunk -Anstalt des öffentlichen Rechts- | Method for transmitting COFDM-modulated broadcast signals via a satellite system and satellite transponder for carrying out the method |
EP0851628A1 (en) | 1996-12-23 | 1998-07-01 | ICO Services Ltd. | Key distribution for mobile network |
GB2315644A (en) * | 1996-07-18 | 1998-02-04 | Motorola Inc | Geosynchronous communications satellite system with reconfigurable service area |
GB2316832B (en) * | 1996-08-24 | 2001-05-16 | Ico Services Ltd | Signal assessed user terminal system access in satellite communication systems |
GB2318482B (en) * | 1996-10-16 | 2001-06-13 | Ico Services Ltd | Communication system |
GB2319696B (en) | 1996-11-20 | 2001-08-01 | Internat Mobile Satellite Orga | Communication method and apparatus |
JPH10190543A (en) * | 1996-12-28 | 1998-07-21 | Casio Comput Co Ltd | Communication terminal device |
EP0869628A1 (en) | 1997-04-01 | 1998-10-07 | ICO Services Ltd. | Interworking between telecommunications networks |
JP3153496B2 (en) * | 1997-05-21 | 2001-04-09 | 株式会社日立製作所 | Communication service providing method using artificial satellite with long stay time in zenith direction |
DE69702308T2 (en) | 1997-07-11 | 2000-12-28 | Ico Services Ltd., London | Web access for users in a vehicle |
EP0954117A1 (en) | 1998-04-30 | 1999-11-03 | ICO Services Ltd. | Transmission quality reporting |
EP0967739A1 (en) | 1998-06-24 | 1999-12-29 | ICO Services Ltd. | Measurement of cellular environment in idle mode and transmission to central at beginning of call |
JP3974712B2 (en) * | 1998-08-31 | 2007-09-12 | 富士通株式会社 | Digital broadcast transmission / reception reproduction method, digital broadcast transmission / reception reproduction system, digital broadcast transmission apparatus, and digital broadcast reception / reproduction apparatus |
US6865166B1 (en) | 1998-11-06 | 2005-03-08 | Northrop Grumman Corporation | Interference management of a processing communications satellite |
US6785553B2 (en) | 1998-12-10 | 2004-08-31 | The Directv Group, Inc. | Position location of multiple transponding platforms and users using two-way ranging as a calibration reference for GPS |
US6337980B1 (en) | 1999-03-18 | 2002-01-08 | Hughes Electronics Corporation | Multiple satellite mobile communications method and apparatus for hand-held terminals |
EP1011210A1 (en) * | 1998-12-15 | 2000-06-21 | ICO Services Ltd. | Allocation of radio frequency spectrum |
US7215954B1 (en) * | 1999-03-18 | 2007-05-08 | The Directv Group, Inc. | Resource allocation method for multi-platform communication system |
US6990314B1 (en) | 1999-03-18 | 2006-01-24 | The Directv Group, Inc. | Multi-node point-to-point satellite communication system employing multiple geo satellites |
US6920309B1 (en) | 1999-03-18 | 2005-07-19 | The Directv Group, Inc. | User positioning technique for multi-platform communication system |
US6501941B1 (en) | 1999-03-23 | 2002-12-31 | Hughes Electronics Corporation | Method for identifying growth limits of handheld services for mobile satellite communications |
US6606307B1 (en) * | 1999-03-23 | 2003-08-12 | Hughes Electronics Corporation | Techniques for utilization of bandwidth space assets |
FR2793631B1 (en) * | 1999-05-10 | 2001-07-27 | Centre Nat Etd Spatiales | MULTMEDIA BIDIRECTIONAL COMMUNICATION TERMINAL |
EP1056222A1 (en) | 1999-05-24 | 2000-11-29 | ICO Services Ltd. | Data multiplexing for diversity operation |
US6662011B1 (en) * | 1999-09-20 | 2003-12-09 | Motorola, Inc. | Method for performing rapid handoffs in a wireless communication system using virtual connections |
KR100743450B1 (en) * | 1999-10-26 | 2007-07-30 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | A first radio station for use in a communication system, a method for controlling a multi-directional controllable antenna structure within such a radio station, and a computer program storage medium for use in the first radio station |
US6788917B1 (en) * | 2000-01-19 | 2004-09-07 | Ericsson Inc. | Timing systems and methods for forward link diversity in satellite radiotelephone systems |
US7339520B2 (en) * | 2000-02-04 | 2008-03-04 | The Directv Group, Inc. | Phased array terminal for equatorial satellite constellations |
US6388615B1 (en) | 2000-06-06 | 2002-05-14 | Hughes Electronics Corporation | Micro cell architecture for mobile user tracking communication system |
WO2001097409A1 (en) * | 2000-06-15 | 2001-12-20 | Ico Services Ltd. | Allocation of radio frequency spectrum |
US7257418B1 (en) | 2000-08-31 | 2007-08-14 | The Directv Group, Inc. | Rapid user acquisition by a ground-based beamformer |
US6941138B1 (en) | 2000-09-05 | 2005-09-06 | The Directv Group, Inc. | Concurrent communications between a user terminal and multiple stratospheric transponder platforms |
US6763242B1 (en) | 2000-09-14 | 2004-07-13 | The Directv Group, Inc. | Resource assignment system and method for determining the same |
US6810249B1 (en) * | 2000-09-19 | 2004-10-26 | The Directv Group, Inc. | Method and system of efficient spectrum utilization by communications satellites |
US7103317B2 (en) | 2000-12-12 | 2006-09-05 | The Directv Group, Inc. | Communication system using multiple link terminals for aircraft |
US7400857B2 (en) | 2000-12-12 | 2008-07-15 | The Directv Group, Inc. | Communication system using multiple link terminals |
US7181162B2 (en) | 2000-12-12 | 2007-02-20 | The Directv Group, Inc. | Communication system using multiple link terminals |
US6891813B2 (en) | 2000-12-12 | 2005-05-10 | The Directv Group, Inc. | Dynamic cell CDMA code assignment system and method |
US6952580B2 (en) | 2000-12-12 | 2005-10-04 | The Directv Group, Inc. | Multiple link internet protocol mobile communications system and method therefor |
US7809403B2 (en) | 2001-01-19 | 2010-10-05 | The Directv Group, Inc. | Stratospheric platforms communication system using adaptive antennas |
US7187949B2 (en) | 2001-01-19 | 2007-03-06 | The Directv Group, Inc. | Multiple basestation communication system having adaptive antennas |
US8396513B2 (en) | 2001-01-19 | 2013-03-12 | The Directv Group, Inc. | Communication system for mobile users using adaptive antenna |
FR2821516B1 (en) * | 2001-02-26 | 2005-09-09 | Cit Alcatel | SATELLITE TELECOMMUNICATION METHOD AND SYSTEM AND BASE STATION FOR SUCH A SYSTEM |
US7142809B1 (en) * | 2001-02-27 | 2006-11-28 | The Directv Group, Inc. | Device and method to locally fill gaps in spotbeam satellite systems with frequency re-use |
US6947740B2 (en) * | 2002-06-13 | 2005-09-20 | Spacecode Llc | Communication satellite in a satellite communication system with high aspect ratio cell arrangement and shared and allocable bandwidth |
US7697477B2 (en) * | 2002-11-07 | 2010-04-13 | Northrop Grumman Corporation | Communications protocol to facilitate handover in a wireless communications network |
US6940452B2 (en) * | 2003-09-29 | 2005-09-06 | Northrop Grumman Corporation | Reducing co-channel interference in satellite communications systems by antenna re-pointing |
JP2005167460A (en) * | 2003-12-01 | 2005-06-23 | Matsushita Electric Ind Co Ltd | Electronic apparatus connectable to radio network, and radio network system |
US7639646B2 (en) * | 2004-03-17 | 2009-12-29 | Qualcomm Incorporated | Satellite diversity system, apparatus and method |
US7933552B2 (en) * | 2004-03-22 | 2011-04-26 | Atc Technologies, Llc | Multi-band satellite and/or ancillary terrestrial component radioterminal communications systems and methods with combining operation |
BRPI0518932A2 (en) * | 2004-11-16 | 2008-12-16 | Atc Tech Llc | satellite communications system, and method for providing satellite |
WO2006107988A1 (en) * | 2005-04-05 | 2006-10-12 | Skybitz, Inc. | Multiple return link |
US7697886B2 (en) * | 2005-05-19 | 2010-04-13 | Delphi Technologies, Inc. | Method and system to increase available bandwidth in a time division multiplexing system |
WO2007084682A1 (en) * | 2006-01-20 | 2007-07-26 | Atc Technologies, Llc | Systems and methods for forward link closed loop beamforming |
FR2903828B1 (en) * | 2006-07-13 | 2009-03-27 | Thales Sa | METHOD FOR TEMPORALLY SYNCHRONIZING AN ORTHOGONAL FREQUENCY EVACUATION WAVY FORM AND DECENTRALIZED TRANSIT TIME MANAGEMENT SATELLITE RADIOCOMMUNICATION SYSTEM. |
JP5253398B2 (en) * | 2006-08-22 | 2013-07-31 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method for transmitting data in a mobile communication system and radio station for the method |
US7904020B2 (en) * | 2006-08-22 | 2011-03-08 | Viasat, Inc. | Downstream broad beam diversity with interference cancellation |
US8538323B2 (en) | 2006-09-26 | 2013-09-17 | Viasat, Inc. | Satellite architecture |
EP2111697B1 (en) | 2006-09-26 | 2016-09-21 | ViaSat, Inc. | Improved spot beam satellite systems |
US7742738B2 (en) * | 2006-12-27 | 2010-06-22 | Nortel Networks Limited | Method and system for diversity using orthogonal frequency/division multiplexing |
US20080311844A1 (en) * | 2007-03-19 | 2008-12-18 | Viasat, Inc. | Multiple Input Receiver In Satellite Communication System |
US7792070B1 (en) * | 2007-04-13 | 2010-09-07 | Douglas Burr | Multi-beam satellite network to maximize bandwidth utilization |
US7876865B2 (en) * | 2007-06-08 | 2011-01-25 | COM DEV International Ltd | System and method for decoding automatic identification system signals |
US20090161797A1 (en) * | 2007-06-08 | 2009-06-25 | Cowles Philip R | Satellite detection of automatic identification system signals |
US7969923B2 (en) | 2008-11-14 | 2011-06-28 | Dbsd Satellite Services G.P. | Asymmetric TDD in flexible use spectrum |
US8780788B2 (en) | 2009-09-25 | 2014-07-15 | Com Dev International Ltd. | Systems and methods for decoding automatic identification system signals |
US8625565B2 (en) * | 2009-10-06 | 2014-01-07 | Intel Corporation | Millimeter-wave communication station and method for multiple-access beamforming in a millimeter-wave communication network |
US9236934B1 (en) | 2009-10-16 | 2016-01-12 | Viasat, Inc. | Satellite system architecture for coverage areas of disparate demand |
US9331774B2 (en) | 2010-06-09 | 2016-05-03 | Exactearth Ltd. | Systems and methods for segmenting a satellite field of view for detecting radio frequency signals |
US8800932B2 (en) | 2010-07-26 | 2014-08-12 | Lockheed Martin Corporation | Medium earth orbit constellation with simple satellite network topology |
US9015567B2 (en) | 2012-04-12 | 2015-04-21 | Com Dev International Ltd. | Methods and systems for consistency checking and anomaly detection in automatic identification system signal data |
CN104584457B (en) * | 2012-08-14 | 2017-11-10 | 南澳大利亚大学 | Channel distribution in communication system |
US9847828B2 (en) * | 2013-12-18 | 2017-12-19 | X Development Llc | Adjusting beam width of air-to-ground communications based on distance to neighbor balloon(s) in order to maintain contiguous service |
CN103796319B (en) * | 2014-01-16 | 2017-04-19 | 北京大学 | Frequency reuse method for multi-beam satellite mobile communication down link |
US9853715B2 (en) | 2014-02-17 | 2017-12-26 | Ubiqomm Llc | Broadband access system via drone/UAV platforms |
US9859972B2 (en) | 2014-02-17 | 2018-01-02 | Ubiqomm Llc | Broadband access to mobile platforms using drone/UAV background |
US9853712B2 (en) | 2014-02-17 | 2017-12-26 | Ubiqomm Llc | Broadband access system via drone/UAV platforms |
US9479964B2 (en) | 2014-04-17 | 2016-10-25 | Ubiqomm Llc | Methods and apparatus for mitigating fading in a broadband access system using drone/UAV platforms |
US20150341109A1 (en) * | 2014-05-20 | 2015-11-26 | Delphi Technologies, Inc. | Satellite communication system with time-multiplexed communication from spot beam defined sub-regions |
US9614608B2 (en) | 2014-07-14 | 2017-04-04 | Ubiqomm Llc | Antenna beam management and gateway design for broadband access using unmanned aerial vehicle (UAV) platforms |
US9571180B2 (en) | 2014-10-16 | 2017-02-14 | Ubiqomm Llc | Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access |
US9712228B2 (en) | 2014-11-06 | 2017-07-18 | Ubiqomm Llc | Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access |
US9590720B2 (en) | 2015-05-13 | 2017-03-07 | Ubiqomm Llc | Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access |
US9660718B2 (en) | 2015-05-13 | 2017-05-23 | Ubiqomm, LLC | Ground terminal and UAV beam pointing in an unmanned aerial vehicle (UAV) for network access |
US9853713B2 (en) | 2016-05-06 | 2017-12-26 | Ubiqomm Llc | Unmanned aerial vehicle (UAV) beam pointing and data rate optimization for high throughput broadband access |
DE102016215640A1 (en) * | 2016-08-19 | 2018-02-22 | Robert Bosch Gmbh | Method, sensor and control device for transmitting a data packet from a sensor to a control device |
US10313686B2 (en) | 2016-09-20 | 2019-06-04 | Gopro, Inc. | Apparatus and methods for compressing video content using adaptive projection selection |
US11088757B2 (en) | 2017-03-16 | 2021-08-10 | Viasat, Inc. | High-throughput satellite with sparse fixed user beam coverage |
US10979133B2 (en) | 2017-06-12 | 2021-04-13 | Ast & Science, Llc | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
US9973266B1 (en) | 2017-06-12 | 2018-05-15 | Ast & Science, Llc | System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites |
CN111869134B (en) * | 2018-03-08 | 2022-10-04 | 史密斯英特康公司 | Network agnostic dynamic SATCOM system and associated network features |
CN111989872B (en) * | 2018-04-16 | 2023-10-03 | 索尼公司 | Wireless communication device and method |
US12089175B2 (en) | 2018-09-27 | 2024-09-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Detection of neighboring satellites in wireless communication systems |
WO2020190517A1 (en) * | 2019-03-20 | 2020-09-24 | Ast & Science, Llc | High throughput fractionated satellites |
JP7606984B2 (en) | 2019-05-15 | 2024-12-26 | エーエスティー アンド サイエンス エルエルシー | Mechanically deployable structures in low Earth orbit |
US20230179289A1 (en) * | 2020-05-20 | 2023-06-08 | Nippon Telegraph And Telephone Corporation | Wireless communication system, relay apparatus and wireless communication method |
CN114144978B (en) * | 2020-07-03 | 2023-05-23 | 北京小米移动软件有限公司 | Satellite-based communication method, device and storage medium |
US11316656B1 (en) * | 2020-07-08 | 2022-04-26 | The Johns Hopkins University | Time transfer modem |
CN114208059B (en) * | 2020-07-13 | 2024-06-25 | 北京小米移动软件有限公司 | Communication method, communication device and storage medium |
US12108293B2 (en) * | 2020-08-06 | 2024-10-01 | Qualcomm Incorporated | Switching satellites in fixed radio cell |
CN115065396B (en) * | 2022-05-17 | 2024-01-26 | 中国电子科技集团公司第二十九研究所 | Inter-satellite link design method with millimeter-level measurement accuracy based on phased array system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841766A (en) * | 1994-12-12 | 1998-11-24 | Ericsson Inc. | Diversity-oriented channel allocation in a mobile communications system |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3262116A (en) | 1964-01-16 | 1966-07-19 | Satellite And Space Comm Syste | Satellite and space communications systems |
US3495175A (en) * | 1967-07-19 | 1970-02-10 | Moore Associates Inc | Automatic channel selection system for a multichannel communication system |
US3651406A (en) | 1969-10-03 | 1972-03-21 | Magnavox Co | System for plural channel signal reception and readout and method of operation |
DE2203575C3 (en) * | 1972-01-26 | 1975-11-27 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Circuit arrangement for synchronizing the bursts of pulses when transmitting messages using the time division multiplex method via telecommunications satellites with several narrow bundling directional antennas |
US3896382A (en) * | 1972-11-17 | 1975-07-22 | Communications Satellite Corp | Precipitation attenuation detection system |
US3906166A (en) * | 1973-10-17 | 1975-09-16 | Motorola Inc | Radio telephone system |
JPS5287904A (en) * | 1976-01-19 | 1977-07-22 | Nippon Telegr & Teleph Corp <Ntt> | Moving communication circuit assignment system |
US4041397A (en) * | 1976-04-28 | 1977-08-09 | The United States Of America As Represented By The Secretary Of The Navy | Satellite up link diversity switch |
US4105973A (en) | 1976-10-15 | 1978-08-08 | Bell Telephone Laboratories, Incorporated | Multibeam, digitally modulated, time division, switched satellite communications system |
JPS54143009A (en) * | 1978-04-28 | 1979-11-07 | Kokusai Denshin Denwa Co Ltd | Space diversity system for tdma communication system |
US4189675A (en) * | 1978-05-30 | 1980-02-19 | Nasa | Satellite personal communications system |
IT1209566B (en) | 1984-07-06 | 1989-08-30 | Face Standard Ind | SYSTEM AND PROCEDURE TO IDENTIFY THE POSITION OF A RADIO USER WITHIN A WIDE GEOGRAPHICAL SURFACE. |
US4744083A (en) * | 1984-09-14 | 1988-05-10 | Geostar Corporation | Satellite-based position determining and message transfer system with monitoring of link quality |
US4972151A (en) * | 1985-10-01 | 1990-11-20 | Hughes Aircraft Company | Steered-beam satellite communication system |
US4813036A (en) * | 1985-11-27 | 1989-03-14 | National Exchange, Inc. | Fully interconnected spot beam satellite communication system |
US4715048A (en) * | 1986-05-02 | 1987-12-22 | Canadian Patents And Development Limited | Frequency offset diversity receiving system |
GB2191054A (en) * | 1986-05-22 | 1987-12-02 | Signal Processors Ltd | Combined communication and location system |
US4819227A (en) | 1986-08-14 | 1989-04-04 | Hughes Aircraft Company | Satellite communications system employing frequency reuse |
US4872015A (en) * | 1986-12-01 | 1989-10-03 | Hughes Aircraft Company | Satellite communications system for mobile users |
DE58906513D1 (en) * | 1988-04-14 | 1994-02-10 | Ant Nachrichtentech | Methods and arrangements for reducing frequency deposits in mobile communications via satellite. |
SE8802229D0 (en) * | 1988-06-14 | 1988-06-14 | Ericsson Telefon Ab L M | MOBILE RADIO STATION PROCEDURE |
IL91529A0 (en) | 1988-10-28 | 1990-04-29 | Motorola Inc | Satellite cellular telephone and data communication system |
US4975707A (en) * | 1989-07-13 | 1990-12-04 | Energetics Satellite Corporation | Multiple satellite locating system |
US5187805A (en) * | 1989-10-02 | 1993-02-16 | Motorola, Inc. | Telemetry, tracking and control for satellite cellular communication systems |
US5287541A (en) * | 1989-11-03 | 1994-02-15 | Motorola, Inc. | Global satellite communication system with geographic protocol conversion |
US5008679A (en) * | 1990-01-31 | 1991-04-16 | Interferometrics Incorporated | Method and system for locating an unknown transmitter |
KR930000695B1 (en) * | 1990-05-11 | 1993-01-29 | 재단법인 한국전자통신연구소 | Plase detector for synchronizing bit |
FR2664449B1 (en) | 1990-07-03 | 1994-03-25 | Alcatel Espace | SPATIAL TELECOMMUNICATIONS SYSTEM. |
US5230082A (en) * | 1990-08-16 | 1993-07-20 | Telefonaktiebolaget L M Ericsson | Method and apparatus for enhancing signalling reliability in a cellular mobile radio telephone system |
CA2052466C (en) * | 1990-10-02 | 2001-05-08 | Masayuki Sakamoto | Method of handover and route diversity in mobile radio communication |
FR2682238B1 (en) | 1991-10-02 | 1994-10-07 | Alcatel Espace | LOW ORBIT SATELLITE COMMUNICATION SYSTEM FOR TERMINALS. |
US5261118A (en) * | 1991-10-04 | 1993-11-09 | Motorola, Inc. | Simulcast synchronization and equalization system and method therefor |
EP0935349A3 (en) * | 1991-10-28 | 1999-09-08 | Teledesic LLC | Satellite communication system |
ATE146637T1 (en) | 1991-11-08 | 1997-01-15 | Calling Communications Corp | BEAM COMPENSATION METHOD FOR SATELLITE COMMUNICATION SYSTEM |
JPH05221302A (en) * | 1992-02-17 | 1993-08-31 | Mazda Motor Corp | Slip control device for vehicle |
US5233626A (en) * | 1992-05-11 | 1993-08-03 | Space Systems/Loral Inc. | Repeater diversity spread spectrum communication system |
JP2706600B2 (en) * | 1992-05-28 | 1998-01-28 | ティアールダブリュー インコーポレイテッド | Cellular telecommunications systems based on mid-earth altitude satellites. |
US5268694A (en) | 1992-07-06 | 1993-12-07 | Motorola, Inc. | Communication system employing spectrum reuse on a spherical surface |
CA2105710A1 (en) * | 1992-11-12 | 1994-05-13 | Raymond Joseph Leopold | Network of hierarchical communication systems and method therefor |
-
1994
- 1994-07-22 GB GB9808386A patent/GB2321831B/en not_active Expired - Fee Related
- 1994-07-22 GB GB9808384A patent/GB2321372B/en not_active Expired - Fee Related
- 1994-07-22 GB GB9414829A patent/GB2293725B/en not_active Expired - Fee Related
-
1995
- 1995-05-16 EP EP95918688A patent/EP0772922B1/en not_active Expired - Lifetime
- 1995-05-16 CA CA002195662A patent/CA2195662C/en not_active Expired - Fee Related
- 1995-05-16 DE DE69513836T patent/DE69513836T2/en not_active Expired - Fee Related
- 1995-05-16 WO PCT/GB1995/001103 patent/WO1996003814A1/en active IP Right Grant
- 1995-05-16 JP JP8505543A patent/JPH10506246A/en not_active Ceased
- 1995-05-16 EP EP99201622A patent/EP0946000A3/en not_active Withdrawn
- 1995-05-16 US US08/750,915 patent/US6314269B1/en not_active Expired - Fee Related
- 1995-05-16 CN CN95194747A patent/CN1080958C/en not_active Expired - Fee Related
- 1995-05-16 AU AU24518/95A patent/AU2451895A/en not_active Abandoned
- 1995-07-14 IN IN894MA1995 patent/IN192234B/en unknown
- 1995-07-20 ZA ZA956067A patent/ZA956067B/en unknown
-
2001
- 2001-02-08 US US09/778,839 patent/US20010046841A1/en not_active Abandoned
- 2001-11-05 US US09/985,597 patent/US20020061730A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5841766A (en) * | 1994-12-12 | 1998-11-24 | Ericsson Inc. | Diversity-oriented channel allocation in a mobile communications system |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7437123B2 (en) * | 2001-09-14 | 2008-10-14 | Atc Technologies, Llc | Space-based network architectures for satellite radiotelephone systems |
US6771608B2 (en) | 2001-11-05 | 2004-08-03 | The Boeing Company | Link tracking with a phased array antenna in a TDMA network |
US20060135153A1 (en) * | 2004-12-18 | 2006-06-22 | Chao-Chun Chen | Satellite communication system architecture |
US20070264929A1 (en) * | 2004-12-18 | 2007-11-15 | Chao-Chun Chen | Satellite communication system architecture |
US20100159922A1 (en) * | 2005-10-12 | 2010-06-24 | Atc Technologies, Llc. | Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems |
US8249585B2 (en) | 2005-10-12 | 2012-08-21 | Atc Technologies, Llc | Systems, methods and computer program products for mobility management in hybrid satellite/terrestrial wireless communications systems |
US20100085909A1 (en) * | 2008-10-06 | 2010-04-08 | Viasat, Inc. | Terminal self-synchronization for mesh satellite communications |
US20100085908A1 (en) * | 2008-10-06 | 2010-04-08 | Viasat, Inc. | Terminal measurement based synchronization for mesh satellite communications |
US8675634B2 (en) * | 2008-10-06 | 2014-03-18 | Viasat, Inc. | Terminal measurement based synchronization for mesh satellite communications |
US8675635B2 (en) | 2008-10-06 | 2014-03-18 | Viasat, Inc. | Master terminal synchronization for mesh satellite communications |
Also Published As
Publication number | Publication date |
---|---|
AU2451895A (en) | 1996-02-22 |
CA2195662C (en) | 2005-03-29 |
GB9808384D0 (en) | 1998-06-17 |
GB2321372A (en) | 1998-07-22 |
GB9414829D0 (en) | 1994-09-14 |
US20020061730A1 (en) | 2002-05-23 |
GB9808386D0 (en) | 1998-06-17 |
EP0946000A3 (en) | 2000-02-16 |
CA2195662A1 (en) | 1996-02-08 |
GB2293725B (en) | 1999-02-10 |
DE69513836D1 (en) | 2000-01-13 |
GB2321831B (en) | 1999-02-17 |
CN1156525A (en) | 1997-08-06 |
EP0946000A2 (en) | 1999-09-29 |
EP0772922A1 (en) | 1997-05-14 |
JPH10506246A (en) | 1998-06-16 |
GB2293725A (en) | 1996-04-03 |
GB2321372B (en) | 1998-11-25 |
EP0772922B1 (en) | 1999-12-08 |
ZA956067B (en) | 1996-03-11 |
IN192234B (en) | 2004-03-20 |
GB2321831A (en) | 1998-08-05 |
US6314269B1 (en) | 2001-11-06 |
WO1996003814A1 (en) | 1996-02-08 |
CN1080958C (en) | 2002-03-13 |
DE69513836T2 (en) | 2000-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6314269B1 (en) | Multi-beam TDMA satellite mobile communications system | |
US20020132579A1 (en) | Multi-beam TDMA satellite mobile communications system | |
US5592481A (en) | Multiple satellite repeater capacity loading with multiple spread spectrum gateway antennas | |
US5619525A (en) | Closed loop power control for low earth orbit satellite communications system | |
US5552798A (en) | Antenna for multipath satellite communication links | |
US6240124B1 (en) | Closed loop power control for low earth orbit satellite communications system | |
US5867109A (en) | Satellite repeater diversity resource management system | |
US6272325B1 (en) | Method and apparatus for considering user terminal transmitted power during operation in a plurality of different communication systems | |
US5758261A (en) | Low earth orbit communication satellite gateway-to-gateway relay system | |
US6201961B1 (en) | Use of reference phone in point-to-point satellite communication system | |
MXPA97009985A (en) | Gate relay system for porsatelite communication gate in terrestrial orbit b | |
MXPA97009493A (en) | System of management of satellite energy diversity resources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |