US20010039702A1 - Manufacturing method of solid electrolytic capacitor - Google Patents
Manufacturing method of solid electrolytic capacitor Download PDFInfo
- Publication number
- US20010039702A1 US20010039702A1 US09/849,197 US84919701A US2001039702A1 US 20010039702 A1 US20010039702 A1 US 20010039702A1 US 84919701 A US84919701 A US 84919701A US 2001039702 A1 US2001039702 A1 US 2001039702A1
- Authority
- US
- United States
- Prior art keywords
- oxidative polymerization
- electrolytic capacitor
- solid electrolytic
- electroconductive polymer
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 52
- 239000007787 solid Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000001590 oxidative effect Effects 0.000 claims abstract description 86
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 61
- 229920000642 polymer Polymers 0.000 claims abstract description 59
- 239000000178 monomer Substances 0.000 claims abstract description 50
- 239000003340 retarding agent Substances 0.000 claims abstract description 41
- 239000007800 oxidant agent Substances 0.000 claims abstract description 40
- 239000003792 electrolyte Substances 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 12
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 12
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 9
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- -1 oxime compounds Chemical class 0.000 claims description 5
- 229930192474 thiophene Natural products 0.000 claims description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 150000002832 nitroso derivatives Chemical class 0.000 claims description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 3
- ZWWCURLKEXEFQT-UHFFFAOYSA-N dinitrogen pentaoxide Chemical class [O-][N+](=O)O[N+]([O-])=O ZWWCURLKEXEFQT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 150000002828 nitro derivatives Chemical class 0.000 claims description 2
- 150000003233 pyrroles Chemical class 0.000 claims description 2
- 150000004053 quinones Chemical class 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 150000003577 thiophenes Chemical class 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 239000011148 porous material Substances 0.000 abstract description 40
- 230000001934 delay Effects 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 68
- 239000000126 substance Substances 0.000 description 14
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 13
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical class O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 10
- 239000007784 solid electrolyte Substances 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 239000004332 silver Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002001 electrolyte material Substances 0.000 description 4
- WHRAZOIDGKIQEA-UHFFFAOYSA-L iron(2+);4-methylbenzenesulfonate Chemical compound [Fe+2].CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 WHRAZOIDGKIQEA-UHFFFAOYSA-L 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N hydroquinone methyl ether Natural products COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- CNHDIAIOKMXOLK-UHFFFAOYSA-N toluquinol Chemical compound CC1=CC(O)=CC=C1O CNHDIAIOKMXOLK-UHFFFAOYSA-N 0.000 description 2
- UDOPFAXNNPAWQS-UHFFFAOYSA-N 1,2,4,5-tetramethyl-3-nitrosobenzene Chemical compound CC1=CC(C)=C(C)C(N=O)=C1C UDOPFAXNNPAWQS-UHFFFAOYSA-N 0.000 description 1
- OSICDPWAPKXXHT-UHFFFAOYSA-N 1,3,5-tritert-butyl-2-nitrosobenzene Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=C(N=O)C(C(C)(C)C)=C1 OSICDPWAPKXXHT-UHFFFAOYSA-N 0.000 description 1
- WDCYWAQPCXBPJA-UHFFFAOYSA-N 1,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1 WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 description 1
- TWLBRQVYXPMCFK-UHFFFAOYSA-N 1-methyl-2-nitrosobenzene Chemical compound CC1=CC=CC=C1N=O TWLBRQVYXPMCFK-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- YLVGGPOCVLBPHQ-UHFFFAOYSA-N 2,2,5-trimethyl-3,4-dihydropyrrole Chemical compound CC1=NC(C)(C)CC1 YLVGGPOCVLBPHQ-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical compound O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- QYXHDJJYVDLECA-UHFFFAOYSA-N 2,5-diphenylcyclohexa-2,5-diene-1,4-dione Chemical compound O=C1C=C(C=2C=CC=CC=2)C(=O)C=C1C1=CC=CC=C1 QYXHDJJYVDLECA-UHFFFAOYSA-N 0.000 description 1
- LUQZKEZPFQRRRK-UHFFFAOYSA-N 2-methyl-2-nitrosopropane Chemical compound CC(C)(C)N=O LUQZKEZPFQRRRK-UHFFFAOYSA-N 0.000 description 1
- NCCTVAJNFXYWTM-UHFFFAOYSA-N 2-tert-butylcyclohexa-2,5-diene-1,4-dione Chemical compound CC(C)(C)C1=CC(=O)C=CC1=O NCCTVAJNFXYWTM-UHFFFAOYSA-N 0.000 description 1
- OJFOWGWQOFZNNJ-UHFFFAOYSA-N 3,4-dimethyl-1h-pyrrole Chemical compound CC1=CNC=C1C OJFOWGWQOFZNNJ-UHFFFAOYSA-N 0.000 description 1
- VCUVETGKTILCLC-UHFFFAOYSA-N 5,5-dimethyl-1-pyrroline N-oxide Chemical compound CC1(C)CCC=[N+]1[O-] VCUVETGKTILCLC-UHFFFAOYSA-N 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- GUTZEKPEJZEFEF-UHFFFAOYSA-N C(CCCCCCCCCCC)OS(=O)(=O)C1=CC=CC=C1.[Fe+2] Chemical compound C(CCCCCCCCCCC)OS(=O)(=O)C1=CC=CC=C1.[Fe+2] GUTZEKPEJZEFEF-UHFFFAOYSA-N 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- RPDUDBYMNGAHEM-UHFFFAOYSA-N PROXYL Chemical group CC1(C)CCC(C)(C)N1[O] RPDUDBYMNGAHEM-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- GXCSNALCLRPEAS-CFYXSCKTSA-N azane (Z)-hydroxyimino-oxido-phenylazanium Chemical compound N.O\N=[N+](/[O-])c1ccccc1 GXCSNALCLRPEAS-CFYXSCKTSA-N 0.000 description 1
- WNQKPOBAKJQOKF-UHFFFAOYSA-L benzenesulfonate;iron(2+) Chemical compound [Fe+2].[O-]S(=O)(=O)C1=CC=CC=C1.[O-]S(=O)(=O)C1=CC=CC=C1 WNQKPOBAKJQOKF-UHFFFAOYSA-L 0.000 description 1
- RNRMWTCECDHNQU-WQLSENKSSA-N chembl124087 Chemical compound CC(C)(C)[N+](\[O-])=C\C1=CC=[N+]([O-])C=C1 RNRMWTCECDHNQU-WQLSENKSSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- GGHPFIYIFKEQCM-UHFFFAOYSA-L iron(2+);naphthalene-1-sulfonate Chemical compound [Fe+2].C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1.C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 GGHPFIYIFKEQCM-UHFFFAOYSA-L 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- DZCCLNYLUGNUKQ-UHFFFAOYSA-N n-(4-nitrosophenyl)hydroxylamine Chemical compound ONC1=CC=C(N=O)C=C1 DZCCLNYLUGNUKQ-UHFFFAOYSA-N 0.000 description 1
- IYSYLWYGCWTJSG-XFXZXTDPSA-N n-tert-butyl-1-phenylmethanimine oxide Chemical compound CC(C)(C)[N+](\[O-])=C\C1=CC=CC=C1 IYSYLWYGCWTJSG-XFXZXTDPSA-N 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- VLZLOWPYUQHHCG-UHFFFAOYSA-N nitromethylbenzene Chemical compound [O-][N+](=O)CC1=CC=CC=C1 VLZLOWPYUQHHCG-UHFFFAOYSA-N 0.000 description 1
- NLRKCXQQSUWLCH-UHFFFAOYSA-N nitrosobenzene Chemical compound O=NC1=CC=CC=C1 NLRKCXQQSUWLCH-UHFFFAOYSA-N 0.000 description 1
- DOIRQSBPFJWKBE-UHFFFAOYSA-N phthalic acid di-n-butyl ester Natural products CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- ILVXOBCQQYKLDS-UHFFFAOYSA-N pyridine N-oxide Chemical compound [O-][N+]1=CC=CC=C1 ILVXOBCQQYKLDS-UHFFFAOYSA-N 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 1
- 229960001755 resorcinol Drugs 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
Definitions
- the present invention relates to a manufacturing method of a solid electrolytic capacitor, and more particularly to a manufacturing method of a solid electrolytic capacitor using an electroconductive polymer as a solid electrolyte layer.
- a solid electrolytic capacitor has a solid electrolyte layer such as manganese dioxide or lead dioxide on a dielectric film which is formed by oxidizing the surface of a porous anode body.
- the porous anode body is made by sintering a molded body of valve metal powder, such as tantalum or aluminum.
- this solid electrolyte layer for capacitors in high frequency region because it has a high resistance itself and also has a high equivalent series resistance and high impedance in high-frequency region.
- a capacitor with a solid electrolyte layer of an electroconductive polymer such as a five-membered heterocyclic compound (e.g., polypyrrole and polythiophene) and polyaniline, which has a higher conductivity compared with that for the conventional solid electrolyte layer.
- This electroconductive polymer as a solid electrolyte layer is formed by chemical or electrochemical oxidative polymerization on the dielectric film such as Ta 2 O 5 made by anodizing electrochemically on the surface of the porous anode body.
- FIGS. 1A and 1B are sectional views of a small pore of the porous body element of a solid electrolytic capacitor to explain the formation of the electroconductive polymer layer in its pore by chemical oxidative polymerization after the formation of the dielectric in a conventional manufacturing method of a solid electrolytic capacitor with the electroconductive polymer electrolyte.
- a porous body element 6 with a dielectric film 3 formed on the surface is soaked in an oxidant solution (not shown in FIG. 1A) to make the inside and the outside of a pore 10 of the porous body element 6 adsorb the oxidant. Then, the porous body element is soaked in a monomer solution. When the porous body element is soaked in the monomer solution, chemical oxidative polymerization starts and an electroconductive polymer layer 11 , an electrolyte material, is formed before the monomer permeates enough into the pore 10 of the porous body element 6 . As a result, as shown in FIG.
- the entrance of the pore 10 of the porous body element 6 is clogged with the electroconductive polymer layer 11 , preventing the oxidant and the monomer from permeating into the pore 10 of the porous body element 6 in the following chemical oxidative polymerization process.
- a technique, which promotes a chemical oxidative polymerization reaction of the monomer for forming the electroconductive polymer layer at the pore and improves the capacitance appearance factor of the capacitor, is disclosed in Japanese Patent Applications Laid-Open No. 11-74157, No. 11-219862, and No. 2000-21686.
- an electroconductive polymer layer is formed by a chemical oxidative polymerization as follows.
- a porous body of a electrochemical valve metal with a dielectric film formed on the surface is soaked in a solution (hereinafter referred to as a “reaction solution”) which contains a monomer, an oxidizing agent, and a dopant.
- reaction solution a solution which contains a monomer, an oxidizing agent, and a dopant.
- a porous body of a electrochemical valve metal with a dielectric film formed on the surface is soaked in the reaction solution and pulled out of the reaction solution after some of the reaction solution is adsorbed on the surface of the dielectric film. Then, chemical oxidative polymerization takes place in air and an electroconductive polymer layer is formed on the surface of the dielectric film. While the electroconductive polymer layer is forming on the surface of the dielectric film, the temperature of the porous body itself or of the spaces inside the pores is kept higher than that of the solution. In this technique, by keeping the porous body or inside temperature higher than the solution temperature, the chemical oxidative polymerization reaction rate inside the porous body becomes faster than outside and the production of the electroconductive polymer layer inside a small pore of the porous body is enhanced.
- a porous body with an oxide film (a dielectric film) on the surface is formed.
- the porous body is soaked in a monomer solution and then in an oxidant solution to form an electroconductive polymer layer on the oxide film.
- the soaking time of the porous body in the oxidant solution after soaking in the monomer solution is kept less than the time for 30% of the monomer in the porous body to flow out by diffusion. And also the reaction temperature is decreased. As a result, the monomer outflow from the pores is decreased and the yield of the electroconductive polymer layer inside the pores of the porous body is increased.
- the first electroconductive polymer layer prevents the solution for forming the second electroconductive polymer layer inside small pores from permeating, and as a result, it restricts the formation of the electroconductive polymer layer inside small pores because the outer surface of the porous body is already covered with the first layer.
- the manufacturing method of a solid electrolytic capacitor is characterized by comprising the steps of: contacting a dielectric film of a porous body made of an oxide film of a electrochemical valve metal with an oxidant solution; and contacting the dielectric film with an electroconductive polymer forming monomer solution to form the electrolyte layer made of the electroconductive polymer on the surface of the dielectric film by an oxidative polymerization reaction, wherein an oxidative polymerization retarding agent which delays the oxidative polymerization reaction, is added to at least one of the solutions, an oxidant solution and a monomer solution.
- the oxidative polymerization retarding agent is an additive to prevent the chemically-oxidative polymerization from occurring immediately when the oxidant and the monomer contact each other and to delay starting of the chemical oxidative polymerization reaction.
- Pyrrole, pyrrole derivatives, thiophene, tiophene derivatives, or aniline is used as a monomer.
- Oxime compounds nitro compounds, nitroso compounds, nitroxide compounds, chinone compounds, or phenol compounds is used as an oxidative polymerization retarding agent.
- Iron(II) sulfonate, sulfuric acid, or hydrogen peroxide is used as an oxidizing agent.
- the starting time of the polymerization to form an electroconductive polymer layer is delayed by using an oxidative polymerization retarding agent. Because the polymerization started after the monomer and the oxidizing agent solution have permeated well into small pores, the electroconductive polymer layer is formed inside small pores and the capacitance appearance factor and the equivalent series resistance of a solid electrolytic capacitor with an electroconductive polymer as an electrolyte material are improved.
- FIG. 2 is a cross-sectional view of a capacitor manufactured by the method described in the present invention.
- FIGS. 3A to 3 C are cross-sectional drawings to explain steps of the manufacturing method of the solid electrolytic capacitor described in FIG. 2;
- FIGS. 4A and 4B are sectional views of a small pore of the porous body element of a solid electrolytic capacitor to explain the action of the oxidative polymerization retarding agent in the chemical oxidative polymerization reaction step of the electroconductive polymer layer in the manufacturing method of a solid electrolytic capacitor in the present invention.
- a tantalum wire 1 which becomes the anode of a solid electrolytic capacitor, is buried into a tantalum metal powder which has a valve-action capability.
- the powder is press-formed and the wire and pressed powder are sintered to form a porous anode body 2 .
- the anode body 2 is anodized in an aqueous solution of phosphoric acid to form a dielectric film 3 of tantalum oxide (Ta 2 O 5 ) on the surface of the anode body 2 .
- a porous body element 6 is formed (FIGS. 2 and 3A).
- the porous body element 6 with the dielectric film 3 is soaked in an oxidant solution 7 for a predetermined time (FIG. 3B). After it is dried, as shown in FIG. 3C, it is soaked in a monomer solution containing an oxidative polymerization retarding agent (a mixed solution 8 of a monomer and an oxidative polymerization retarding agent) for a predetermined time. Then, the porous body element 6 is pulled out of the oxidant solution 7 and dried in air.
- an oxidative polymerization retarding agent a mixed solution 8 of a monomer and an oxidative polymerization retarding agent
- Iron(II) sulfonate e.g., iron(II) p-toluene sulfonate, iron(II) dodecylbenzene sulfonate, iron(II) benzene sulfonate, and iron(II) naphthalene sulfonate
- sulfuric acid e.g., sulfuric acid, or hydrogen peroxide
- hydrogen peroxide is used as a solution of the oxidant.
- Oxime compounds e.g., p-benzoquinone dioxime and diethyl ketone dioxime
- nitro compounds e.g., dinitrobenzene, nitrotoluene, 2,2-diphenyl-picryl-hydrazyl, and picric acid
- nitroso compounds e.g., n-nitroso phenylhydroxylamine ammonium salt, nitrosotoluene, and nitrosobenzene
- nitrooxide compounds e.g., 2,2,6,6-tetramethyl-1-1piperidyloxy, 4,4-dimethyl-3-oxazolinyloxy, 2,2,5,5-tetramethyl-1-pyrrolidinyloxy, 5,5-dimethyl-1-pyrroline-n-oxide, 2,5,5-trimethyl-1-pyrroline, n-tert-butyl- ⁇ -phenylnitrone, ⁇ -(4-pyridyl-1-oxide
- the amount of the oxidative polymerization retarding agent added to the monomer solution is 0.1 to 20 wt %, preferably 1 to 20 wt %. The most preferred amount is 1 to 10 wt %.
- the amount of the retarding agent added is less than 0.1 wt %, the covering rate of the electrolyte layer 4 inside small pores of the dielectric film 3 decreases remarkably.
- the amount of the oxidative polymerization retarding agent is more than 20 wt %, it is difficult to form the electrolyte layer 4 not only inside the small pores but also on the outer surface because the oxidative polymerization reaction of the monomer is suppressed remarkably.
- a cathode layer 5 is formed by forming a carbon paste and the silver paste successively on the surface of the electrolyte layer 4 and a capacitor element is completed.
- an external lead terminal is connected with each of the tantalum wire 1 in the capacitor element and a silver paste in the cathode layer 5 , by sealing the capacitor element with a sealing resin such as an epoxy resin, the intended capacitor is manufactured.
- the oxidative polymerization retarding agent is mixed into a monomer solution in the above embodiment, it is possible to mix the retarding agent into the oxidant solution or to mix the retarding agent into both the monomer solution and the oxidant solution. In the case of adding the oxidative polymerization retarding agent into the oxidizing agent solution, the amount of the retarding agent is same as that into the monomer solution.
- the sum of the amount of the retarding agent added into the solutions is 0.1 to 20 wt %.
- the sum total amount is preferably 1 to 20 wt % and the most preferred amount is 1 to 10 wt %.
- the covering rate of the electrolyte layer 4 into small pores decreases remarkably.
- the sum total amount of the retarding agent is more than 20 wt %, it is difficult to form the electrolyte layer 4 not only inside the small pores but also on the outer surface because the oxidative polymerization reaction of the monomer is suppressed remarkably.
- Ta or another metal such as Al, Nb, or Ti is used as a metal powder having a valve-action.
- the porous body element 6 is soaked in an oxidant solution to adhere the oxidant inside the element pore 10 , and then soaked in a monomer solution.
- chemical oxidative polymerization starts and an electroconductive polymer layer 11 as an electrolyte material is formed before the monomer permeates into the element pore 10 .
- the entrance of the element pore 10 is clogged with the electroconductive polymer layer 11 and the permeation of the oxidant or the monomer into the pores is disturbed in the repeating process to form the electroconductive polymer layer as follows.
- the oxidative polymerization retarding agent is mixed in at least one of the monomer solution and the oxidizing solution, when the monomer contacts with the oxidizing agent on the surface of the porous body element 6 , the oxidative polymerization retarding agent contacts at the same time with the monomer and the oxidizing agent.
- the chemical oxidative polymerization reaction doesn't start at the moment the porous body element 6 is soaked in the monomer solution. Accordingly, the monomer permeates into small pores of the element before the polymerization starts, and thus an electroconductive polymer layer is formed inside the element pore without causing the blockage with the electroconductive polymer layer at the entrance of the pore.
- FIGS. 3A to 3 C Preferred embodiments of the present invention are described below by referring to FIGS. 3A to 3 C. However, the present invention is not limited to the embodiments.
- a rectangular parallelepiped tantalum powder sintered pellet having 1 mm long, 1 mm wide, and 1 mm high is anodized in 0.1 wt % nitric acid solution at 33V to form a dielectric film on its surface and a porous body element 6 is obtained (FIG. 3A).
- the porous body element 6 with a dielectric film is soaked in an oxidizing agent solution 7 , a methyl alcohol solution with 40 wt % iron(II) p-toluenesulfonate, for one minute (FIG. 3B). And, the element is pulled out of the oxidizing agent solution 7 and dried at room temperature.
- the element is soaked in a monomer/oxidative polymerization retarding agent mixture solution 8 obtained by adding 10 wt % p-benzoquinone as a retarding agent to a pyrrole solution, for one minute (FIG. 3C). Then, the porous body element 6 is pulled out of the monomer/oxidative polymerization retarding agent mixture solution 8 and kept in air for 30 min. By repeating this step three times, an electroconductive polymer layer of polypyrrole is formed on the surface of the porous body element 6 . Then the porous body element 6 with an electroconductive polymer layer is cleaned with butyl alcohol for 30 min. It is possible to use isopropyl alcohol instead of the butyl alcohol for the cleaning.
- a carbon paste and a silver paste are sequentially formed on the surface of the electrolyte layer 4 , dried to form a cathode layer 5 , and a capacitor element is completed.
- a sealing resin such as an epoxy resin
- a capacitor is completed in the same manner as in Example 1, except that the pyrrole for forming an electroconductive polymer layer in Example 1 is replaced by thiophene.
- the porous body element 6 is formed (FIG. 3A)
- the porous body element 6 is soaked in an oxidizing agent solution 7 , a methyl alcohol solution with 40 wt % iron(II) p-toluenesulfonate, for one minute (FIG. 3B). Then, the element is pulled out of the oxidizing agent solution 7 and dried at room temperature.
- the element is soaked in a monomer/oxidative polymerization retarding agent mixture solution 8 obtained by adding 10 wt % p-benzoquinone as a retarding agent to a thiophene solution, for one minute (FIG. 3C). Then, the porous body element 6 is pulled out of the monomer/oxidative polymerization retarding agent mixture solution 8 and kept in air for 30 min. By repeating this step three times, an electroconductive polymer layer of polythiophene is formed on the surface of the porous body element 6 . Then the porous body element 6 with an electroconductive polymer layer is cleaned with butyl alcohol for 30 min. It is possible to use isopropyl alcohol instead of the butyl alcohol for the cleaning.
- a rectangular parallelepiped tantalum powder sintered pellet having 1 mm long, 1 mm wide, and 1 mm high is anodized in 0.1 wt % nitric acid solution at 33V to form a dielectric film on its surface and a porous body element 6 is obtained (FIG. 3A).
- the element is soaked in a monomer/oxidative polymerization retarding agent mixture solution 8 obtained by adding 5 wt % p-benzoquinone as a retarding agent to a pyrrole solution, for one minute (FIG. 3C). Then, the porous body element 6 is pulled out of the monomer/oxidative polymerization retarding agent mixture solution 8 and kept in air for 30 min. By repeating this step three times, an electroconductive polymer layer of polypyrrole is formed on the surface of the porous body element 6 . Then the porous body element 6 with an electroconductive polymer layer is cleaned with butyl alcohol for 30 min.
- a carbon paste and a silver paste are applied on the surface of the electrolyte layer 4 successively, dried to form a cathode layer 5 , and a capacitor element is completed.
- a sealing resin such as an epoxy resin
- a covering rate of the electroconductive polymer layer on the surface of the inside and outside of the small pores improves because the clogging of the electroconductive polymer layer at the entrance of the small pore in the porous body is suppressed.
- an electrolyte layer of an electroconductive polymer is formed on the surface of a dielectric film formed by anodizing a porous body of a electrochemical valve metal.
- the explanation of the present invention can be applied to the manufacturing method of a solid electrolytic capacitor with an electrolyte layer of an electroconductive polymer on a dielectric film on a porous body formed by thermally decomposing an organic metal compound of a electrochemical valve metal.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
- 1. Field of the Invention
- The present invention relates to a manufacturing method of a solid electrolytic capacitor, and more particularly to a manufacturing method of a solid electrolytic capacitor using an electroconductive polymer as a solid electrolyte layer.
- 2. Description of the Related Art
- In recent years, due to the miniaturization, high-speed operation, and digitalization of electronic devices, there has been a strong demand for capacitors which are small in size, have a high capacitance, and have a low impedance in high-frequency region in a field of a solid electrolyte capacitor.
- Usually, a solid electrolytic capacitor has a solid electrolyte layer such as manganese dioxide or lead dioxide on a dielectric film which is formed by oxidizing the surface of a porous anode body. The porous anode body is made by sintering a molded body of valve metal powder, such as tantalum or aluminum. However, there has been a problem in using this solid electrolyte layer for capacitors in high frequency region because it has a high resistance itself and also has a high equivalent series resistance and high impedance in high-frequency region.
- To improve the characteristics for the conventional solid electrolytic capacitor in high frequency region, is known a capacitor with a solid electrolyte layer of an electroconductive polymer such as a five-membered heterocyclic compound (e.g., polypyrrole and polythiophene) and polyaniline, which has a higher conductivity compared with that for the conventional solid electrolyte layer. This electroconductive polymer as a solid electrolyte layer is formed by chemical or electrochemical oxidative polymerization on the dielectric film such as Ta2O5 made by anodizing electrochemically on the surface of the porous anode body.
- However, it is difficult to form an electroconductive polymer layer on the entire surface of the pores of a porous body element covered with a dielectric film. Because of this, the capacitance appearance factor decreases and the equivalent series resistance increases in a high-frequency region for the solid electrolytic capacitor with an electroconductive polymer electrolyte.
- FIGS. 1A and 1B are sectional views of a small pore of the porous body element of a solid electrolytic capacitor to explain the formation of the electroconductive polymer layer in its pore by chemical oxidative polymerization after the formation of the dielectric in a conventional manufacturing method of a solid electrolytic capacitor with the electroconductive polymer electrolyte.
- In the conventional method, as shown in FIG. 1A, a
porous body element 6 with adielectric film 3 formed on the surface is soaked in an oxidant solution (not shown in FIG. 1A) to make the inside and the outside of apore 10 of theporous body element 6 adsorb the oxidant. Then, the porous body element is soaked in a monomer solution. When the porous body element is soaked in the monomer solution, chemical oxidative polymerization starts and an electroconductive polymer layer 11, an electrolyte material, is formed before the monomer permeates enough into thepore 10 of theporous body element 6. As a result, as shown in FIG. 1B, the entrance of thepore 10 of theporous body element 6 is clogged with the electroconductive polymer layer 11, preventing the oxidant and the monomer from permeating into thepore 10 of theporous body element 6 in the following chemical oxidative polymerization process. - A technique, which promotes a chemical oxidative polymerization reaction of the monomer for forming the electroconductive polymer layer at the pore and improves the capacitance appearance factor of the capacitor, is disclosed in Japanese Patent Applications Laid-Open No. 11-74157, No. 11-219862, and No. 2000-21686.
- In the technique disclosed in Japanese Patent Application Laid-Open No. 11-74157, an electroconductive polymer layer is formed by a chemical oxidative polymerization as follows. A porous body of a electrochemical valve metal with a dielectric film formed on the surface is soaked in a solution (hereinafter referred to as a “reaction solution”) which contains a monomer, an oxidizing agent, and a dopant. After the porous body soaked for a predetermined time, an electroconductive polymer layer is formed on the surface of the dielectric film in the reaction solution. Or, a porous body of a electrochemical valve metal with a dielectric film formed on the surface is soaked in the reaction solution and pulled out of the reaction solution after some of the reaction solution is adsorbed on the surface of the dielectric film. Then, chemical oxidative polymerization takes place in air and an electroconductive polymer layer is formed on the surface of the dielectric film. While the electroconductive polymer layer is forming on the surface of the dielectric film, the temperature of the porous body itself or of the spaces inside the pores is kept higher than that of the solution. In this technique, by keeping the porous body or inside temperature higher than the solution temperature, the chemical oxidative polymerization reaction rate inside the porous body becomes faster than outside and the production of the electroconductive polymer layer inside a small pore of the porous body is enhanced.
- However, in this technique, there is a problem that the production of the electroconductive polymer layer is not uniform inside the small pore because it is difficult to control the temperature inside the pores of the porous body stabilizing.
- In the technique disclosed in Japanese Patent Application Laid-Open No. 11-219862, by oxidizing a sintered electrochemical valve metal, a porous body with an oxide film (a dielectric film) on the surface is formed. The porous body is soaked in a monomer solution and then in an oxidant solution to form an electroconductive polymer layer on the oxide film. To improve the yield of the electroconductive polymer layer inside the pores of the porous body, the soaking time of the porous body in the oxidant solution after soaking in the monomer solution is kept less than the time for 30% of the monomer in the porous body to flow out by diffusion. And also the reaction temperature is decreased. As a result, the monomer outflow from the pores is decreased and the yield of the electroconductive polymer layer inside the pores of the porous body is increased.
- In this technique, there is a problem that the yield of the electroconductive polymer layer is not uniform inside the pores of the porous body and the capacitance of the capacitor becomes unstable because it is difficult to control the flow of the monomer out of the porous body to a certain constant amount.
- In the technique disclosed in Japanese Patent Application Laid-Open No. 2000-21686, the outside of the porous body (dielectric film) is covered with the first electroconductive polymer layer and then the second electroconductive polymer layer is formed inside the dielectric film. The first electroconductive polymer layer is formed in a solution with a higher concentration of the oxidizing agent than the second electroconductive polymer layer so that a high polymerization rate is achieved and the electroconductive polymer layer can be formed preferentially on the surface except small pores, the outer surface of the dielectric film.
- In this technique, there is a problem that the first electroconductive polymer layer prevents the solution for forming the second electroconductive polymer layer inside small pores from permeating, and as a result, it restricts the formation of the electroconductive polymer layer inside small pores because the outer surface of the porous body is already covered with the first layer.
- Accordingly, an object of the present invention is to provide a manufacturing method of a solid electrolytic capacitor using an electroconductive polymer as an electrolyte material which improves the capacitance appearance factor and equivalent series resistance in high frequency region.
- The manufacturing method of a solid electrolytic capacitor is characterized by comprising the steps of: contacting a dielectric film of a porous body made of an oxide film of a electrochemical valve metal with an oxidant solution; and contacting the dielectric film with an electroconductive polymer forming monomer solution to form the electrolyte layer made of the electroconductive polymer on the surface of the dielectric film by an oxidative polymerization reaction, wherein an oxidative polymerization retarding agent which delays the oxidative polymerization reaction, is added to at least one of the solutions, an oxidant solution and a monomer solution.
- The oxidative polymerization retarding agent is an additive to prevent the chemically-oxidative polymerization from occurring immediately when the oxidant and the monomer contact each other and to delay starting of the chemical oxidative polymerization reaction.
- Pyrrole, pyrrole derivatives, thiophene, tiophene derivatives, or aniline is used as a monomer. Oxime compounds nitro compounds, nitroso compounds, nitroxide compounds, chinone compounds, or phenol compounds is used as an oxidative polymerization retarding agent.
- Iron(II) sulfonate, sulfuric acid, or hydrogen peroxide is used as an oxidizing agent.
- In the present invention, when an electrolyte layer made of an electroconductive polymer is formed by a chemical oxidative polymerization reaction, the starting time of the polymerization to form an electroconductive polymer layer is delayed by using an oxidative polymerization retarding agent. Because the polymerization started after the monomer and the oxidizing agent solution have permeated well into small pores, the electroconductive polymer layer is formed inside small pores and the capacitance appearance factor and the equivalent series resistance of a solid electrolytic capacitor with an electroconductive polymer as an electrolyte material are improved.
- In the accompanying drawings:
- FIGS. 1A and 1B are sectional views of a small pore of the porous body element of a solid electrolytic capacitor to explain the formation of the electroconductive polymer layer in its pore by chemical oxidative polymerization after the formation of the dielectric in a conventional manufacturing method of a solid electrolytic capacitor with the electroconductive polymer electrolyte;
- FIG. 2 is a cross-sectional view of a capacitor manufactured by the method described in the present invention;
- FIGS. 3A to3C are cross-sectional drawings to explain steps of the manufacturing method of the solid electrolytic capacitor described in FIG. 2; and
- FIGS. 4A and 4B are sectional views of a small pore of the porous body element of a solid electrolytic capacitor to explain the action of the oxidative polymerization retarding agent in the chemical oxidative polymerization reaction step of the electroconductive polymer layer in the manufacturing method of a solid electrolytic capacitor in the present invention.
- The embodiments of the present invention are explained by referring to FIGS. 2 and 3A to3C.
- A
tantalum wire 1, which becomes the anode of a solid electrolytic capacitor, is buried into a tantalum metal powder which has a valve-action capability. The powder is press-formed and the wire and pressed powder are sintered to form a porous anode body 2. Then, the anode body 2 is anodized in an aqueous solution of phosphoric acid to form adielectric film 3 of tantalum oxide (Ta2O5) on the surface of the anode body 2. Thus, aporous body element 6 is formed (FIGS. 2 and 3A). - Next, the
porous body element 6 with thedielectric film 3 is soaked in anoxidant solution 7 for a predetermined time (FIG. 3B). After it is dried, as shown in FIG. 3C, it is soaked in a monomer solution containing an oxidative polymerization retarding agent (amixed solution 8 of a monomer and an oxidative polymerization retarding agent) for a predetermined time. Then, theporous body element 6 is pulled out of theoxidant solution 7 and dried in air. - The above steps shown in FIGS. 3B and 3C are repeated (3 to 10 times). With these steps, an electrolyte layer4 made of an electroconductive polymer having a predetermined thickness is formed inside the pores and on the surface of the
dielectric film 3 of theporous body element 6. - Iron(II) sulfonate (e.g., iron(II) p-toluene sulfonate, iron(II) dodecylbenzene sulfonate, iron(II) benzene sulfonate, and iron(II) naphthalene sulfonate), sulfuric acid, or hydrogen peroxide is used as a solution of the oxidant.
- Pyrrole, thiophene, their derivatives (e.g., 3,4-ethylenedioxythiophene and 3,4-dimethylpyrrole) or aniline is used as s solution of the monomer.
- Oxime compounds (e.g., p-benzoquinone dioxime and diethyl ketone dioxime), nitro compounds (e.g., dinitrobenzene, nitrotoluene, 2,2-diphenyl-picryl-hydrazyl, and picric acid), nitroso compounds (e.g., n-nitroso phenylhydroxylamine ammonium salt, nitrosotoluene, and nitrosobenzene), nitrooxide compounds (e.g., 2,2,6,6-tetramethyl-1-1piperidyloxy, 4,4-dimethyl-3-oxazolinyloxy, 2,2,5,5-tetramethyl-1-pyrrolidinyloxy, 5,5-dimethyl-1-pyrroline-n-oxide, 2,5,5-trimethyl-1-pyrroline, n-tert-butyl-α-phenylnitrone, α-(4-pyridyl-1-oxide)-n-tert-butylnitrone, 2-methyl-2-nitrosopropane, 2-hydroxymrthyl-2-nitrosopropane, 2,4,6-tri-tert-butyl-nitrosobenzene, nitrosodurene, and pyridine-n-oxide), quinone compounds (e.g., benzoquinone, naphthoquinone, hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, 2,5-diphenyl-p-benzoquinone, and mono-t-butyl-p-benzoquinone), or phenol compounds (e.g., catechol, pyrogallol, 2,6-di-t-butyl-4-methylphenol, phenol, catechol, resorcin, and naphthol) is used as an oxidative polymerization retarding agent.
- The amount of the oxidative polymerization retarding agent added to the monomer solution is 0.1 to 20 wt %, preferably 1 to 20 wt %. The most preferred amount is 1 to 10 wt %. When the amount of the retarding agent added is less than 0.1 wt %, the covering rate of the electrolyte layer4 inside small pores of the
dielectric film 3 decreases remarkably. When the amount of the oxidative polymerization retarding agent is more than 20 wt %, it is difficult to form the electrolyte layer 4 not only inside the small pores but also on the outer surface because the oxidative polymerization reaction of the monomer is suppressed remarkably. - After forming the electrolyte layer4 with the above steps, a
cathode layer 5 is formed by forming a carbon paste and the silver paste successively on the surface of the electrolyte layer 4 and a capacitor element is completed. After an external lead terminal is connected with each of thetantalum wire 1 in the capacitor element and a silver paste in thecathode layer 5, by sealing the capacitor element with a sealing resin such as an epoxy resin, the intended capacitor is manufactured. - Although the oxidative polymerization retarding agent is mixed into a monomer solution in the above embodiment, it is possible to mix the retarding agent into the oxidant solution or to mix the retarding agent into both the monomer solution and the oxidant solution. In the case of adding the oxidative polymerization retarding agent into the oxidizing agent solution, the amount of the retarding agent is same as that into the monomer solution.
- In the case of adding the oxidative polymerization retarding agent into both the monomer solution and the oxidant solution, the sum of the amount of the retarding agent added into the solutions is 0.1 to 20 wt %. The sum total amount is preferably 1 to 20 wt % and the most preferred amount is 1 to 10 wt %. When the sum total amount of the oxidative polymerization retarding agent is less than 0.1 wt %, the covering rate of the electrolyte layer4 into small pores decreases remarkably. When the sum total amount of the retarding agent is more than 20 wt %, it is difficult to form the electrolyte layer 4 not only inside the small pores but also on the outer surface because the oxidative polymerization reaction of the monomer is suppressed remarkably.
- The above-described Ta or another metal such as Al, Nb, or Ti is used as a metal powder having a valve-action.
- Next, the operations of the embodiment in the present invention are explained by referring to FIGS. 4A and 4B.
- As described above by referring to FIG. 1, in the conventional technique, the
porous body element 6 is soaked in an oxidant solution to adhere the oxidant inside theelement pore 10, and then soaked in a monomer solution. At the moment the porous body element is soaked into the solution, chemical oxidative polymerization starts and an electroconductive polymer layer 11 as an electrolyte material is formed before the monomer permeates into theelement pore 10. As a result, the entrance of theelement pore 10 is clogged with the electroconductive polymer layer 11 and the permeation of the oxidant or the monomer into the pores is disturbed in the repeating process to form the electroconductive polymer layer as follows. - In the present invention, the oxidative polymerization retarding agent is mixed in at least one of the monomer solution and the oxidizing solution, when the monomer contacts with the oxidizing agent on the surface of the
porous body element 6, the oxidative polymerization retarding agent contacts at the same time with the monomer and the oxidizing agent. By the action of the oxidative polymerization retarding agent, the chemical oxidative polymerization reaction doesn't start at the moment theporous body element 6 is soaked in the monomer solution. Accordingly, the monomer permeates into small pores of the element before the polymerization starts, and thus an electroconductive polymer layer is formed inside the element pore without causing the blockage with the electroconductive polymer layer at the entrance of the pore. - Preferred embodiments of the present invention are described below by referring to FIGS. 3A to3C. However, the present invention is not limited to the embodiments.
- A rectangular parallelepiped tantalum powder sintered pellet having 1 mm long, 1 mm wide, and 1 mm high is anodized in 0.1 wt % nitric acid solution at 33V to form a dielectric film on its surface and a
porous body element 6 is obtained (FIG. 3A). - Then, the
porous body element 6 with a dielectric film is soaked in anoxidizing agent solution 7, a methyl alcohol solution with 40 wt % iron(II) p-toluenesulfonate, for one minute (FIG. 3B). And, the element is pulled out of theoxidizing agent solution 7 and dried at room temperature. - Then, the element is soaked in a monomer/oxidative polymerization retarding
agent mixture solution 8 obtained by adding 10 wt % p-benzoquinone as a retarding agent to a pyrrole solution, for one minute (FIG. 3C). Then, theporous body element 6 is pulled out of the monomer/oxidative polymerization retardingagent mixture solution 8 and kept in air for 30 min. By repeating this step three times, an electroconductive polymer layer of polypyrrole is formed on the surface of theporous body element 6. Then theporous body element 6 with an electroconductive polymer layer is cleaned with butyl alcohol for 30 min. It is possible to use isopropyl alcohol instead of the butyl alcohol for the cleaning. - Then, a carbon paste and a silver paste are sequentially formed on the surface of the electrolyte layer4, dried to form a
cathode layer 5, and a capacitor element is completed. After an external lead terminal is connected with each of atantalum wire 1 and the silver paste of thecathode layer 5 in the capacitor element, by sealing the capacitor element with a sealing resin such as an epoxy resin, the intended capacitor is manufactured. - A capacitor is completed in the same manner as in Example 1, except that the pyrrole for forming an electroconductive polymer layer in Example 1 is replaced by thiophene.
- After the
porous body element 6 is formed (FIG. 3A), theporous body element 6 is soaked in anoxidizing agent solution 7, a methyl alcohol solution with 40 wt % iron(II) p-toluenesulfonate, for one minute (FIG. 3B). Then, the element is pulled out of theoxidizing agent solution 7 and dried at room temperature. - Then, the element is soaked in a monomer/oxidative polymerization retarding
agent mixture solution 8 obtained by adding 10 wt % p-benzoquinone as a retarding agent to a thiophene solution, for one minute (FIG. 3C). Then, theporous body element 6 is pulled out of the monomer/oxidative polymerization retardingagent mixture solution 8 and kept in air for 30 min. By repeating this step three times, an electroconductive polymer layer of polythiophene is formed on the surface of theporous body element 6. Then theporous body element 6 with an electroconductive polymer layer is cleaned with butyl alcohol for 30 min. It is possible to use isopropyl alcohol instead of the butyl alcohol for the cleaning. - A rectangular parallelepiped tantalum powder sintered pellet having 1 mm long, 1 mm wide, and 1 mm high is anodized in 0.1 wt % nitric acid solution at 33V to form a dielectric film on its surface and a
porous body element 6 is obtained (FIG. 3A). - Then, 5 wt % p-benzoquinone as an oxidative polymerization retarding agent is added to an
oxidant solution 7, a methyl alcohol solution with 40 wt % iron(II) p-toluenesulfonate. Theporous body element 6 with a dielectric film is soaked in the solution for one minute (FIG. 3B). Then, the element is pulled out of theoxidant solution 7 and dried at room temperature. - Then, the element is soaked in a monomer/oxidative polymerization retarding
agent mixture solution 8 obtained by adding 5 wt % p-benzoquinone as a retarding agent to a pyrrole solution, for one minute (FIG. 3C). Then, theporous body element 6 is pulled out of the monomer/oxidative polymerization retardingagent mixture solution 8 and kept in air for 30 min. By repeating this step three times, an electroconductive polymer layer of polypyrrole is formed on the surface of theporous body element 6. Then theporous body element 6 with an electroconductive polymer layer is cleaned with butyl alcohol for 30 min. - Then, a carbon paste and a silver paste are applied on the surface of the electrolyte layer4 successively, dried to form a
cathode layer 5, and a capacitor element is completed. After an external lead terminal is connected with each of atantalum wire 1 and the silver paste of thecathode layer 5 in the capacitor element, by sealing the capacitor element with a sealing resin such as an epoxy resin, the intended capacitor is manufactured. - As described above, in the present invention, delaying the polymerization by adding an oxidative polymerization retarding agent to at least one of the solutions, the monomer solution and the oxidant solution, the following advantages are obtained:
- (1) A covering rate of the electroconductive polymer layer on the surface of the inside and outside of the small pores improves because the clogging of the electroconductive polymer layer at the entrance of the small pore in the porous body is suppressed.
- (2) The capacitance appearance factor increases while the equivalent series resistance decreases in the high-frequency region,and thus a solid electrolytic capacitor with improved characteristics can be manufactured.
- In the above explanation of the present invention, an electrolyte layer of an electroconductive polymer is formed on the surface of a dielectric film formed by anodizing a porous body of a electrochemical valve metal. The explanation of the present invention can be applied to the manufacturing method of a solid electrolytic capacitor with an electrolyte layer of an electroconductive polymer on a dielectric film on a porous body formed by thermally decomposing an organic metal compound of a electrochemical valve metal.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP138617/2000 | 2000-05-11 | ||
JP2000138617 | 2000-05-11 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010039702A1 true US20010039702A1 (en) | 2001-11-15 |
US6421228B2 US6421228B2 (en) | 2002-07-16 |
Family
ID=18646203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/849,197 Expired - Lifetime US6421228B2 (en) | 2000-05-11 | 2001-05-04 | Manufacturing method of solid electrolytic capacitor |
Country Status (3)
Country | Link |
---|---|
US (1) | US6421228B2 (en) |
EP (1) | EP1154449B1 (en) |
DE (1) | DE60128749T2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683046A (en) * | 2011-03-18 | 2012-09-19 | 三洋电机株式会社 | Method of manufacturing solid electrolytic capacitor |
US20130109813A1 (en) * | 2011-10-21 | 2013-05-02 | Plextronics, Inc. | Synthesis of conjugated polymers via oxidative polymerization and related compositions |
CN113921280A (en) * | 2021-10-13 | 2022-01-11 | 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) | Cathode region polymerization method of laminated aluminum capacitor and preparation method of aluminum capacitor |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006014579A1 (en) * | 2006-03-29 | 2007-10-04 | Epcos Ag | Procedure for purifying monomer solution by polymerizing monomer and impurities, where the impurities are at least partially removed by adsorption chromatography |
US8420671B2 (en) | 2009-09-30 | 2013-04-16 | H.C. Starck Clevios Gmbh | Stabilised thiophene derivatives |
EP2305685B1 (en) * | 2009-09-30 | 2014-05-21 | Heraeus Precious Metals GmbH & Co. KG | Stabilised thiophene derivatives |
TWI494959B (en) * | 2011-05-12 | 2015-08-01 | 帝化股份有限公司 | Producing method for solid electrolytic condenser |
TWI591670B (en) * | 2012-07-26 | 2017-07-11 | 財團法人工業技術研究院 | Electrolyte mixture, electrolytic capacitor using the same and oxidant mixture for conjugated polymer synthesis |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6208503B1 (en) * | 1997-06-06 | 2001-03-27 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor and process for producing the same |
JP3416050B2 (en) * | 1997-06-17 | 2003-06-16 | 松下電器産業株式会社 | Electrolytic capacitor and method of manufacturing the same |
JP3251208B2 (en) * | 1997-07-24 | 2002-01-28 | 富山日本電気株式会社 | Method for manufacturing solid electrolytic capacitor |
JP3157748B2 (en) * | 1997-07-30 | 2001-04-16 | 富山日本電気株式会社 | Solid electrolytic capacitor using conductive polymer and method for manufacturing the same |
US6088218A (en) * | 1997-10-31 | 2000-07-11 | Matsushita Electric Industrial Co., Ltd. | Electrolytic capacitor and method for producing the same |
JP3273761B2 (en) * | 1997-10-31 | 2002-04-15 | 松下電器産業株式会社 | Electrolytic capacitor and method of manufacturing the same |
JP3991429B2 (en) * | 1998-03-25 | 2007-10-17 | 松下電器産業株式会社 | Electrolytic capacitor and manufacturing method thereof |
US6051044A (en) * | 1998-05-04 | 2000-04-18 | Cabot Corporation | Nitrided niobium powders and niobium electrolytic capacitors |
JP3667531B2 (en) * | 1998-07-07 | 2005-07-06 | 松下電器産業株式会社 | Electrolytic capacitor manufacturing method |
-
2001
- 2001-04-10 EP EP01108939A patent/EP1154449B1/en not_active Expired - Lifetime
- 2001-04-10 DE DE60128749T patent/DE60128749T2/en not_active Expired - Lifetime
- 2001-05-04 US US09/849,197 patent/US6421228B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102683046A (en) * | 2011-03-18 | 2012-09-19 | 三洋电机株式会社 | Method of manufacturing solid electrolytic capacitor |
US20130109813A1 (en) * | 2011-10-21 | 2013-05-02 | Plextronics, Inc. | Synthesis of conjugated polymers via oxidative polymerization and related compositions |
US8859718B2 (en) * | 2011-10-21 | 2014-10-14 | Solvay Usa, Inc. | Synthesis of conjugated polymers via oxidative polymerization and related compositions |
US20150105534A1 (en) * | 2011-10-21 | 2015-04-16 | Solvay Usa, Inc. | Synthesis of conjugated polymers via oxidative polymerization and related compositions |
CN113921280A (en) * | 2021-10-13 | 2022-01-11 | 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) | Cathode region polymerization method of laminated aluminum capacitor and preparation method of aluminum capacitor |
Also Published As
Publication number | Publication date |
---|---|
US6421228B2 (en) | 2002-07-16 |
DE60128749D1 (en) | 2007-07-19 |
EP1154449B1 (en) | 2007-06-06 |
EP1154449A3 (en) | 2006-05-10 |
DE60128749T2 (en) | 2008-02-07 |
EP1154449A2 (en) | 2001-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3157748B2 (en) | Solid electrolytic capacitor using conductive polymer and method for manufacturing the same | |
JP3202668B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP3251208B2 (en) | Method for manufacturing solid electrolytic capacitor | |
US6421228B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2765453B2 (en) | Method for manufacturing solid electrolytic capacitor | |
US6110235A (en) | Fabrication method of solid electrolytic capacitor using organic conducting polymer | |
KR20150048703A (en) | Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor | |
US8513123B2 (en) | Method of manufacturing solid electrolytic capacitor | |
JP3493605B2 (en) | Manufacturing method of solid electrolytic capacitor | |
US6423103B1 (en) | Method for producing a solid electrolytic capacitor | |
JP2007281268A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP2006147900A (en) | Manufacturing method of solid electrolytic capacitor | |
JP5023940B2 (en) | Solid electrolytic capacitor | |
JP4442285B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4126746B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2792441B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH06120086A (en) | Method for manufacturing solid electrolytic capacitor | |
JP4442361B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4363022B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2007173454A (en) | Solid electrolytic capacitor | |
JP2009059831A (en) | Solid electrolytic capacitor | |
JP2000106331A (en) | Solid electrolytic capacitor and its manufacture | |
JP4637700B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPH11283876A (en) | Solid electrolytic capacitor and manufacture thereof | |
JPH11251192A (en) | Solid electrolytic capacitor and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARAKI, KENJI;REEL/FRAME:011790/0389 Effective date: 20010404 |
|
AS | Assignment |
Owner name: NEC TOKIN TOYAMA, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:012681/0307 Effective date: 20020128 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: NEC TOKIN CORPORATION, JAPAN Free format text: MERGER;ASSIGNOR:NEC TOKIN TOYAMA, LTD.;REEL/FRAME:042744/0371 Effective date: 20060126 |
|
AS | Assignment |
Owner name: TOKIN CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NEC TOKIN CORPORATION;REEL/FRAME:043125/0103 Effective date: 20170419 |