US20010031737A1 - Unit dosage forms for the treatment of herpes simplex - Google Patents
Unit dosage forms for the treatment of herpes simplex Download PDFInfo
- Publication number
- US20010031737A1 US20010031737A1 US09/828,323 US82832301A US2001031737A1 US 20010031737 A1 US20010031737 A1 US 20010031737A1 US 82832301 A US82832301 A US 82832301A US 2001031737 A1 US2001031737 A1 US 2001031737A1
- Authority
- US
- United States
- Prior art keywords
- dosage form
- unit dosage
- accordance
- amount ranging
- increasing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000009889 Herpes Simplex Diseases 0.000 title claims abstract description 30
- 238000011282 treatment Methods 0.000 title claims abstract description 30
- 239000002552 dosage form Substances 0.000 title claims description 138
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 claims abstract description 50
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims abstract description 49
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 claims abstract description 36
- 239000011668 ascorbic acid Substances 0.000 claims abstract description 28
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims abstract description 27
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 claims abstract description 25
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 claims abstract description 25
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229960001285 quercetin Drugs 0.000 claims abstract description 25
- 235000005875 quercetin Nutrition 0.000 claims abstract description 25
- 235000010323 ascorbic acid Nutrition 0.000 claims abstract description 24
- 229920000669 heparin Polymers 0.000 claims abstract description 22
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 claims abstract description 21
- 229960001008 heparin sodium Drugs 0.000 claims abstract description 20
- 150000003573 thiols Chemical class 0.000 claims abstract description 20
- 239000004472 Lysine Substances 0.000 claims abstract description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011701 zinc Substances 0.000 claims abstract description 13
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 13
- 229940072107 ascorbate Drugs 0.000 claims abstract description 12
- 235000019766 L-Lysine Nutrition 0.000 claims abstract description 10
- 239000011669 selenium Substances 0.000 claims abstract description 6
- 229960000984 tocofersolan Drugs 0.000 claims abstract description 6
- 239000002076 α-tocopherol Substances 0.000 claims abstract description 6
- 235000004835 α-tocopherol Nutrition 0.000 claims abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000010949 copper Substances 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 4
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 claims abstract 7
- 239000004480 active ingredient Substances 0.000 claims description 61
- 239000003795 chemical substances by application Substances 0.000 claims description 58
- MSWZFWKMSRAUBD-UHFFFAOYSA-N beta-D-galactosamine Natural products NC1C(O)OC(CO)C(O)C1O MSWZFWKMSRAUBD-UHFFFAOYSA-N 0.000 claims description 31
- 239000003826 tablet Substances 0.000 claims description 29
- FZHXIRIBWMQPQF-UHFFFAOYSA-N Glc-NH2 Natural products O=CC(N)C(O)C(O)C(O)CO FZHXIRIBWMQPQF-UHFFFAOYSA-N 0.000 claims description 28
- FZHXIRIBWMQPQF-SLPGGIOYSA-N aldehydo-D-glucosamine Chemical group O=C[C@H](N)[C@@H](O)[C@H](O)[C@H](O)CO FZHXIRIBWMQPQF-SLPGGIOYSA-N 0.000 claims description 28
- BVHLGVCQOALMSV-JEDNCBNOSA-N L-lysine hydrochloride Chemical group Cl.NCCCC[C@H](N)C(O)=O BVHLGVCQOALMSV-JEDNCBNOSA-N 0.000 claims description 26
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 25
- 239000011777 magnesium Substances 0.000 claims description 25
- 229910052749 magnesium Inorganic materials 0.000 claims description 25
- 229940091250 magnesium supplement Drugs 0.000 claims description 25
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 21
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 21
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 17
- 229960001763 zinc sulfate Drugs 0.000 claims description 17
- 229960005070 ascorbic acid Drugs 0.000 claims description 16
- 229960003646 lysine Drugs 0.000 claims description 16
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 16
- 239000012729 immediate-release (IR) formulation Substances 0.000 claims description 12
- 239000000499 gel Substances 0.000 claims description 10
- AIOKQVJVNPDJKA-ZZMNMWMASA-L magnesium;(2r)-2-[(1s)-1,2-dihydroxyethyl]-4-hydroxy-5-oxo-2h-furan-3-olate Chemical compound [Mg+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] AIOKQVJVNPDJKA-ZZMNMWMASA-L 0.000 claims description 9
- 239000006186 oral dosage form Substances 0.000 claims description 9
- 229940032991 zinc picolinate Drugs 0.000 claims description 9
- NHVUUBRKFZWXRN-UHFFFAOYSA-L zinc;pyridine-2-carboxylate Chemical compound C=1C=CC=NC=1C(=O)O[Zn]OC(=O)C1=CC=CC=N1 NHVUUBRKFZWXRN-UHFFFAOYSA-L 0.000 claims description 9
- BMLMGCPTLHPWPY-REOHCLBHSA-N (4R)-2-oxo-4-thiazolidinecarboxylic acid Chemical group OC(=O)[C@@H]1CSC(=O)N1 BMLMGCPTLHPWPY-REOHCLBHSA-N 0.000 claims description 8
- 210000002784 stomach Anatomy 0.000 claims description 8
- 238000013268 sustained release Methods 0.000 claims description 8
- 239000012730 sustained-release form Substances 0.000 claims description 8
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 claims description 7
- 239000003889 eye drop Substances 0.000 claims description 7
- 229960002718 selenomethionine Drugs 0.000 claims description 7
- 230000037406 food intake Effects 0.000 claims description 6
- 230000000699 topical effect Effects 0.000 claims description 6
- 239000004471 Glycine Substances 0.000 claims description 5
- 239000006071 cream Substances 0.000 claims description 5
- 239000003885 eye ointment Substances 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 229940074358 magnesium ascorbate Drugs 0.000 claims description 5
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 4
- 235000018417 cysteine Nutrition 0.000 claims description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 4
- 230000002496 gastric effect Effects 0.000 claims description 4
- 229940069265 ophthalmic ointment Drugs 0.000 claims description 4
- YZURQOBSFRVSEB-UHFFFAOYSA-L magnesium;2-aminoethanesulfonate Chemical compound [Mg+2].NCCS([O-])(=O)=O.NCCS([O-])(=O)=O YZURQOBSFRVSEB-UHFFFAOYSA-L 0.000 claims description 3
- 239000000829 suppository Substances 0.000 claims description 3
- NJNDBGREJCHIFG-MDTVQASCSA-L zinc;(2s)-2,6-diaminohexanoate Chemical compound [Zn+2].NCCCC[C@H](N)C([O-])=O.NCCCC[C@H](N)C([O-])=O NJNDBGREJCHIFG-MDTVQASCSA-L 0.000 claims description 3
- 230000002500 effect on skin Effects 0.000 claims description 2
- 239000000839 emulsion Substances 0.000 claims description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 claims description 2
- 239000011654 magnesium acetate Substances 0.000 claims description 2
- 235000011285 magnesium acetate Nutrition 0.000 claims description 2
- 229940069446 magnesium acetate Drugs 0.000 claims description 2
- 239000004337 magnesium citrate Substances 0.000 claims description 2
- 229960005336 magnesium citrate Drugs 0.000 claims description 2
- 235000002538 magnesium citrate Nutrition 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- PLSARIKBYIPYPF-UHFFFAOYSA-H trimagnesium dicitrate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O PLSARIKBYIPYPF-UHFFFAOYSA-H 0.000 claims description 2
- 229940056904 zinc ascorbate Drugs 0.000 claims description 2
- WWRJFSIRMWUMAE-ZZMNMWMASA-L zinc;(2r)-2-[(1s)-1,2-dihydroxyethyl]-3-hydroxy-5-oxo-2h-furan-4-olate Chemical compound [Zn+2].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] WWRJFSIRMWUMAE-ZZMNMWMASA-L 0.000 claims description 2
- VYAAXNAPTXCMLY-UHFFFAOYSA-L zinc;pyridine-3-carboxylate Chemical compound [Zn+2].[O-]C(=O)C1=CC=CN=C1.[O-]C(=O)C1=CC=CN=C1 VYAAXNAPTXCMLY-UHFFFAOYSA-L 0.000 claims description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims 5
- 229960004308 acetylcysteine Drugs 0.000 claims 5
- 150000004820 halides Chemical class 0.000 claims 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 5
- 239000007942 layered tablet Substances 0.000 claims 4
- WPLOVIFNBMNBPD-ATHMIXSHSA-N subtilin Chemical compound CC1SCC(NC2=O)C(=O)NC(CC(N)=O)C(=O)NC(C(=O)NC(CCCCN)C(=O)NC(C(C)CC)C(=O)NC(=C)C(=O)NC(CCCCN)C(O)=O)CSC(C)C2NC(=O)C(CC(C)C)NC(=O)C1NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C1NC(=O)C(=C/C)/NC(=O)C(CCC(N)=O)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C2NC(=O)CNC(=O)C3CCCN3C(=O)C(NC(=O)C3NC(=O)C(CC(C)C)NC(=O)C(=C)NC(=O)C(CCC(O)=O)NC(=O)C(NC(=O)C(CCCCN)NC(=O)C(N)CC=4C5=CC=CC=C5NC=4)CSC3)C(C)SC2)C(C)C)C(C)SC1)CC1=CC=CC=C1 WPLOVIFNBMNBPD-ATHMIXSHSA-N 0.000 claims 4
- 229910019142 PO4 Inorganic materials 0.000 claims 3
- 229940087168 alpha tocopherol Drugs 0.000 claims 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 3
- 239000010452 phosphate Substances 0.000 claims 3
- RJFAYQIBOAGBLC-UHFFFAOYSA-N Selenomethionine Natural products C[Se]CCC(N)C(O)=O RJFAYQIBOAGBLC-UHFFFAOYSA-N 0.000 claims 2
- 229960002433 cysteine Drugs 0.000 claims 2
- IELOKBJPULMYRW-NJQVLOCASA-N D-alpha-Tocopheryl Acid Succinate Chemical compound OC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C IELOKBJPULMYRW-NJQVLOCASA-N 0.000 claims 1
- MSCCTZZBYHQMQJ-AZAGJHQNSA-N Tocopheryl nicotinate Chemical compound C([C@@](OC1=C(C)C=2C)(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)CC1=C(C)C=2OC(=O)C1=CC=CN=C1 MSCCTZZBYHQMQJ-AZAGJHQNSA-N 0.000 claims 1
- 229940099418 d- alpha-tocopherol succinate Drugs 0.000 claims 1
- 239000006210 lotion Substances 0.000 claims 1
- 229940100655 ophthalmic gel Drugs 0.000 claims 1
- 229950009883 tocopheryl nicotinate Drugs 0.000 claims 1
- 241000700605 Viruses Species 0.000 abstract description 30
- 241000700584 Simplexvirus Species 0.000 abstract description 26
- 210000004027 cell Anatomy 0.000 abstract description 24
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 abstract description 24
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 14
- 201000010099 disease Diseases 0.000 abstract description 13
- 229960003180 glutathione Drugs 0.000 abstract description 13
- 230000003612 virological effect Effects 0.000 abstract description 11
- 230000004927 fusion Effects 0.000 abstract description 10
- 230000003834 intracellular effect Effects 0.000 abstract description 6
- 210000000170 cell membrane Anatomy 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract description 5
- 150000003254 radicals Chemical class 0.000 abstract description 5
- 230000010076 replication Effects 0.000 abstract description 5
- 241001529453 unidentified herpesvirus Species 0.000 abstract description 5
- 230000002519 immonomodulatory effect Effects 0.000 abstract description 4
- 230000036542 oxidative stress Effects 0.000 abstract description 4
- 230000004888 barrier function Effects 0.000 abstract description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 abstract description 3
- 230000007123 defense Effects 0.000 abstract description 3
- 238000011084 recovery Methods 0.000 abstract description 3
- 108010024636 Glutathione Proteins 0.000 abstract description 2
- 230000006851 antioxidant defense Effects 0.000 abstract description 2
- 230000028993 immune response Effects 0.000 abstract description 2
- 230000003993 interaction Effects 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract description 2
- VRYALKFFQXWPIH-JFNGLFLDSA-N (2R,3R,4S,5R)-2-deuterio-3,4,5,6-tetrahydroxyhexanal Chemical compound [2H][C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO VRYALKFFQXWPIH-JFNGLFLDSA-N 0.000 abstract 1
- 241000175212 Herpesvirales Species 0.000 abstract 1
- 230000001590 oxidative effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 33
- 239000000546 pharmaceutical excipient Substances 0.000 description 22
- 238000009472 formulation Methods 0.000 description 20
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 19
- 239000003981 vehicle Substances 0.000 description 17
- 239000010410 layer Substances 0.000 description 16
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 15
- 239000013543 active substance Substances 0.000 description 14
- 230000000840 anti-viral effect Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- -1 hydroxyl radicals Chemical class 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 235000005911 diet Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 230000003902 lesion Effects 0.000 description 10
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 10
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229920002451 polyvinyl alcohol Polymers 0.000 description 9
- 229940068984 polyvinyl alcohol Drugs 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- 210000002845 virion Anatomy 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 239000000969 carrier Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 8
- 239000002480 mineral oil Substances 0.000 description 8
- 235000010446 mineral oil Nutrition 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 7
- 229960004150 aciclovir Drugs 0.000 description 7
- 239000003085 diluting agent Substances 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 235000018977 lysine Nutrition 0.000 description 7
- 239000000825 pharmaceutical preparation Substances 0.000 description 7
- 239000003755 preservative agent Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000029812 viral genome replication Effects 0.000 description 7
- VRYALKFFQXWPIH-PBXRRBTRSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-PBXRRBTRSA-N 0.000 description 6
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 6
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 6
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 108020005202 Viral DNA Proteins 0.000 description 6
- PMMURAAUARKVCB-UHFFFAOYSA-N alpha-D-ara-dHexp Natural products OCC1OC(O)CC(O)C1O PMMURAAUARKVCB-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000013270 controlled release Methods 0.000 description 6
- 230000037213 diet Effects 0.000 description 6
- 235000019271 petrolatum Nutrition 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 5
- 229920002971 Heparan sulfate Polymers 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 230000003078 antioxidant effect Effects 0.000 description 5
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 5
- 235000009697 arginine Nutrition 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000000378 dietary effect Effects 0.000 description 5
- 229940079593 drug Drugs 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 210000000936 intestine Anatomy 0.000 description 5
- 235000019359 magnesium stearate Nutrition 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 239000002674 ointment Substances 0.000 description 5
- 229940127557 pharmaceutical product Drugs 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 239000008213 purified water Substances 0.000 description 5
- 239000003871 white petrolatum Substances 0.000 description 5
- 102000006587 Glutathione peroxidase Human genes 0.000 description 4
- 108700016172 Glutathione peroxidases Proteins 0.000 description 4
- 208000001688 Herpes Genitalis Diseases 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 229960000686 benzalkonium chloride Drugs 0.000 description 4
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 210000005178 buccal mucosa Anatomy 0.000 description 4
- 230000001413 cellular effect Effects 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 201000004946 genital herpes Diseases 0.000 description 4
- 210000004392 genitalia Anatomy 0.000 description 4
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000009545 invasion Effects 0.000 description 4
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 4
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 4
- 229960002216 methylparaben Drugs 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 239000001488 sodium phosphate Substances 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 230000009385 viral infection Effects 0.000 description 4
- MSWZFWKMSRAUBD-IVMDWMLBSA-N 2-amino-2-deoxy-D-glucopyranose Chemical compound N[C@H]1C(O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-IVMDWMLBSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 3
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 108090000288 Glycoproteins Proteins 0.000 description 3
- 102000003886 Glycoproteins Human genes 0.000 description 3
- 208000004898 Herpes Labialis Diseases 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 206010067152 Oral herpes Diseases 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000007910 cell fusion Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 3
- 229960004926 chlorobutanol Drugs 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 231100000433 cytotoxic Toxicity 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 229960002442 glucosamine Drugs 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 3
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 206010023332 keratitis Diseases 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- 230000017074 necrotic cell death Effects 0.000 description 3
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 3
- 230000008506 pathogenesis Effects 0.000 description 3
- 230000035790 physiological processes and functions Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 210000003594 spinal ganglia Anatomy 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000007442 viral DNA synthesis Effects 0.000 description 3
- GVJHHUAWPYXKBD-QLVXXPONSA-N (S,R,R)-alpha-tocopherol Chemical compound [H][C@@](C)(CCCC(C)C)CCC[C@@]([H])(C)CCC[C@@]1(C)CCC2=C(O1)C(C)=C(C)C(O)=C2C GVJHHUAWPYXKBD-QLVXXPONSA-N 0.000 description 2
- MXHRCPNRJAMMIM-SHYZEUOFSA-N 2'-deoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-SHYZEUOFSA-N 0.000 description 2
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 2
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- CTKXFMQHOOWWEB-UHFFFAOYSA-N Ethylene oxide/propylene oxide copolymer Chemical compound CCCOC(C)COCCO CTKXFMQHOOWWEB-UHFFFAOYSA-N 0.000 description 2
- 229920003134 Eudragit® polymer Polymers 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000007514 Herpes zoster Diseases 0.000 description 2
- 206010034133 Pathogen resistance Diseases 0.000 description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000003376 axonal effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 2
- 239000001527 calcium lactate Substances 0.000 description 2
- 235000011086 calcium lactate Nutrition 0.000 description 2
- 229960002401 calcium lactate Drugs 0.000 description 2
- 210000000234 capsid Anatomy 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- MXHRCPNRJAMMIM-UHFFFAOYSA-N desoxyuridine Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-UHFFFAOYSA-N 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 229940124274 edetate disodium Drugs 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 235000011167 hydrochloric acid Nutrition 0.000 description 2
- 229960004716 idoxuridine Drugs 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 235000011147 magnesium chloride Nutrition 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000003094 microcapsule Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000004879 molecular function Effects 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 210000004400 mucous membrane Anatomy 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000006195 ophthalmic dosage form Substances 0.000 description 2
- 230000000242 pagocytic effect Effects 0.000 description 2
- 210000001539 phagocyte Anatomy 0.000 description 2
- 229940044519 poloxamer 188 Drugs 0.000 description 2
- 229920001993 poloxamer 188 Polymers 0.000 description 2
- 229940044476 poloxamer 407 Drugs 0.000 description 2
- 229920001992 poloxamer 407 Polymers 0.000 description 2
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 2
- 229940068968 polysorbate 80 Drugs 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000011083 sodium citrates Nutrition 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000001540 sodium lactate Substances 0.000 description 2
- 235000011088 sodium lactate Nutrition 0.000 description 2
- 229940005581 sodium lactate Drugs 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- AOBORMOPSGHCAX-DGHZZKTQSA-N tocofersolan Chemical compound OCCOC(=O)CCC(=O)OC1=C(C)C(C)=C2O[C@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C AOBORMOPSGHCAX-DGHZZKTQSA-N 0.000 description 2
- PTDJZWCASDTZER-FPBYJLLGSA-N (2s)-2,6-diaminohexanoic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound NCCCC[C@H](N)C(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O PTDJZWCASDTZER-FPBYJLLGSA-N 0.000 description 1
- IIKXQNOSYLQWJQ-UHFFFAOYSA-N 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one 2-phenyl-3,4-dihydro-2H-chromen-3-ol Chemical compound OC1CC2=CC=CC=C2OC1C1=CC=CC=C1.C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IIKXQNOSYLQWJQ-UHFFFAOYSA-N 0.000 description 1
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 208000007204 Brain death Diseases 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102100023321 Ceruloplasmin Human genes 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 206010061788 Corneal infection Diseases 0.000 description 1
- 229910002535 CuZn Inorganic materials 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 101100421833 Danio rerio sod1 gene Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000001860 Eye Infections Diseases 0.000 description 1
- 206010073931 Genital herpes simplex Diseases 0.000 description 1
- 206010061978 Genital lesion Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010063907 Glutathione Reductase Proteins 0.000 description 1
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 229940121672 Glycosylation inhibitor Drugs 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 206010019973 Herpes virus infection Diseases 0.000 description 1
- 241000700586 Herpesviridae Species 0.000 description 1
- 208000005100 Herpetic Keratitis Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 206010073938 Ophthalmic herpes simplex Diseases 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920002701 Polyoxyl 40 Stearate Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 206010037898 Rash vesicular Diseases 0.000 description 1
- 208000035999 Recurrence Diseases 0.000 description 1
- 208000019802 Sexually transmitted disease Diseases 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 102000019197 Superoxide Dismutase Human genes 0.000 description 1
- 102000008221 Superoxide Dismutase-1 Human genes 0.000 description 1
- 108010021188 Superoxide Dismutase-1 Proteins 0.000 description 1
- 108010012715 Superoxide dismutase Proteins 0.000 description 1
- 206010043275 Teratogenicity Diseases 0.000 description 1
- 206010066901 Treatment failure Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 206010064996 Ulcerative keratitis Diseases 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 239000012751 acid resistant agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 230000000143 anti-replicative effect Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000006931 brain damage Effects 0.000 description 1
- 231100000874 brain damage Toxicity 0.000 description 1
- 208000029028 brain injury Diseases 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000007969 cellular immunity Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940082500 cetostearyl alcohol Drugs 0.000 description 1
- 210000003837 chick embryo Anatomy 0.000 description 1
- 229940059329 chondroitin sulfate Drugs 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 231100000313 clinical toxicology Toxicity 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 210000000795 conjunctiva Anatomy 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229940108928 copper Drugs 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 201000007717 corneal ulcer Diseases 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 238000011461 current therapy Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000018823 dietary intake Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000002355 dual-layer Substances 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 210000003981 ectoderm Anatomy 0.000 description 1
- XACKNLSZYYIACO-DJLDLDEBSA-N edoxudine Chemical compound O=C1NC(=O)C(CC)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XACKNLSZYYIACO-DJLDLDEBSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 206010014599 encephalitis Diseases 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003560 epithelium corneal Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000002008 hemorrhagic effect Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 201000010884 herpes simplex virus keratitis Diseases 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000031891 intestinal absorption Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 210000001630 jejunum Anatomy 0.000 description 1
- 201000010666 keratoconjunctivitis Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 229960001375 lactose Drugs 0.000 description 1
- 229940039717 lanolin Drugs 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229940099367 lanolin alcohols Drugs 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000003794 male germ cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 235000013622 meat product Nutrition 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 239000002997 ophthalmic solution Substances 0.000 description 1
- 229940054534 ophthalmic solution Drugs 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229940100460 peg-100 stearate Drugs 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 229940066842 petrolatum Drugs 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 238000011458 pharmacological treatment Methods 0.000 description 1
- 230000003169 placental effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 229940099429 polyoxyl 40 stearate Drugs 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229950008882 polysorbate Drugs 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- 238000009490 roller compaction Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 210000001044 sensory neuron Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229960001866 silicon dioxide Drugs 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229940114926 stearate Drugs 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000013269 sustained drug release Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 231100000211 teratogenicity Toxicity 0.000 description 1
- OULAJFUGPPVRBK-UHFFFAOYSA-N tetratriacontyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCO OULAJFUGPPVRBK-UHFFFAOYSA-N 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 239000006208 topical dosage form Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 229960004418 trolamine Drugs 0.000 description 1
- 230000036269 ulceration Effects 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 239000000029 vaginal gel Substances 0.000 description 1
- 239000006216 vaginal suppository Substances 0.000 description 1
- 239000000003 vaginal tablet Substances 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000007419 viral reactivation Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
- 229940099269 viroptic Drugs 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000005550 wet granulation Methods 0.000 description 1
- 235000020985 whole grains Nutrition 0.000 description 1
- 235000019683 whole nuts Nutrition 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- 229940107931 zovirax Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7004—Monosaccharides having only carbon, hydrogen and oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/34—Copper; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0034—Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0048—Eye, e.g. artificial tears
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2086—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
- A61K9/209—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
Definitions
- This invention is in the field of pharmacology, and relates specifically to the pharmacological treatment of conditions associated with herpes simplex virus infections.
- Herpes Simplex The Virus
- Viruses may be grouped in a variety of ways; perhaps most simply by considering five elements:
- herpes simplex virus enters the host by direct contact, is spread to a target tissue only, spreads within the host via neuronal axonal flow, targets the dorsal root ganglia and after recovery of the host from an acute infection, remains latent in the targeted tissue.
- the HSV virion is a large (100 to 150 m ⁇ ), enveloped virus with an icosahedral capsid. It has double strand DNA with a genome that encodes at least 70 polypeptides—this large amount of regulatory information permits the virus to control its own gene expression and elegantly to modify multiple complex events within the infected cell.
- the invading virion binds to host cell receptors.
- a primary binding site is host cell surface heparan sulfate glycosaminoglycan, which binds with the V3 loop of the viral envelope glycoprotein (gp 120).
- Another primary binding site may be chondroitin sulfate.
- the virion envelope fuses with the plasma membrane of the host cell.
- the capsid is uncoated, the virus invasively inserts surface glycoprotein gB through the host cell plasma membrane and enters the host nucleus where viral DNA is transcribed and processed into mature mRNA; at the same time, host cell mRNA synthesis is inhibited. Invading HSV also inhibits host cell DNA synthesis while viral DNA replicates within the host nucleus. The viral DNA combines with newly formed HSV capsid proteins translated in the cytoplasm, and assembles into progeny virion particles within the nuclear membrane. Concurrent expression of glycoproteins in the host plasma envelope stimulates neighboring cells to clump together. Following cell-to-cell contact by binding and fusion of their respective plasma envelopes, progeny particles invade clumped, neighboring host cells directly or by spread following lysis of previously invaded tissue cells or phagocytes and the process repeats itself.
- Viral invasion elicits a phagocytic response coupled with typical phagocytic immune activities—the release of soluble immune mediators (i.e., cytokines) and high respiratory burst responses by activated phagocytes.
- soluble immune mediators i.e., cytokines
- cytokines soluble immune mediators
- These immune responses are themselves detrimental to the host; not only because of local tissue necrosis from high environmental levels of free radical release, but also because of the development of mutant, potentially resistant viral strains secondary to toxic local levels of activated oxygen and hydroxyl species.
- HSV The massive disruption by HSV of host cell molecular functions and of host cellular structure is manifested clinically as host cellular death, resulting in shallow, painful vesicular ectodermal lesions or by hemorrhagic encephalitic necrosis of the brain.
- Target tissues for HSV are the skin or mucous membranes usually derived from embryonic ectoderm: mouth, skin, vagina, conjunctiva, cornea, etc.
- the virus enters the host cell by direct mucosal contact or by direct contact of abraded skin. In the skin the virus replicates in epithelial cells and then enters local sensory neurons.
- the virus travels to the dorsal root ganglia via retrograde axonal flow where it establishes permanent residency. There it establishes latency a state in which the viral lytic genes are silenced and only the latency locus is transcriptionally active. Although latent most of the time, it reactivates intermittently, travels down the sensory nerve and causes vesicular eruptions at or near the site of initial invasion. Alternatively the virus may invade the CNS and cause encephalitis.
- HSV herpes simplex Type 1 seroprevalence for men and women has decreased from 75.3 and 80.6% in 1973 to 54.4 and 59.6%, respectively in 1993 and where Herpes simplex Type 2 (HSV-2) seroprevalence has decreased from 10.2 and 9.9% in 1973 to 1.8 and 1.2%, respectively in 1993, to quite high in Africa where all adult study groups have a high HSV-1 seroprevalence of>80%.
- HSV infects more than 50% of the adult population, but some infections may be unrecognized. About half of these develop clinical manifestations of the disease. Its most significant manifestations are keratitis, genital lesions and labial vesicular lesions (“cold sores”).
- HSV-1 typically causes herpes keratitis (cornea). This disease is identified by a typically unusual dendritic-patterned corneal ulcer that tends to be recurrent and very often leads to scarring with a reduction of vision, sometimes to the level of legal blindness. HSV-1 also causes herpes labialis, peri-orbital, peri-oral, peri-nasal skin eruptions and, in older patients, the virus has been associated with herpes zoster (“shingles”) infection of the upper trunk.
- shingles herpes zoster
- HSV-2 causes the most prevalent sexually transmitted disease in the United States and visits to physicians for genital herpes simplex virus infection continue to increase. As many as 30 million Americans are infected with HSV-2. About half of these carriers are symptomatic. The clinical manifestations range from mild genital inflammation to severe, very painful, vesicular lesions and ulceration. Systemic involvement in the most severe cases may include hepatitis. Brain damage and death often are the result of HSV-2 acquired by a newborn infant as it passes through an infected birth canal.
- the herpes virus (of either kind) has infected the human body, the virus is permanently present. This is particularly true for viral infection of the nerve cells of the dorsal root ganglia that are out of range of the immune system. Less commonly, the epithelial basement membrane may house the latent virus. The virus becomes periodically active when the immune system is depressed or when oxidative stress is increased, i.e., during illness, after exposure to high intensity ultraviolet light, following local tissue trauma, etc.
- HSV-1 principally causes corneal infections or “cold sores” and HSV-2 most often causes genital herpes, either type can infect the cornea, the mouth and/or the genitals.
- HSV-2 most herpetic ocular infections in adults are caused by HSV-1, other more severe and prolonged cases in adults have been shown to be caused by HSV-2.
- ⁇ - ⁇ - ⁇ -trifluorothymidine (Viroptic® 1% solution)—useful in treating HSV-1 and HSV-2 keratoconjunctivitis, i.e., HSV lesions of the conjunctival and corneal epithelium, but not effective in the treatment of associated corneal stromal lesions. It acts by interfering with thymidine synthesis in eukaryocytes, normal or infected. Its precise action against invading viruses is unknown. Little clinical toxicity is described, but pregnant women should use it with caution.
- 2′-Deoxy-5-idouridine (Herplex® 0.1% solution)—useful in the treatment of corneal epithelial infection with HSV-1.
- the delivered solution is converted to idoxuridine which replaces DNA thymidine involved in the enzymatic step of viral replication.
- the resulting structural faults in viral DNA prevent replicative tissue infection.
- idoxuridine is generally cytotoxic, crosses the placental barrier and is implicated in fetal malformations in rabbits and rats. Pregnant women should use it with caution.
- acyclovir (Zovirax® tablets)—useful in the treatment of HSV-1 and HSV-2 as well as other virus infections. Mode of action appears to be interference with viral DNA polymerase resulting in premature termination of the DNA chain and a reduction of viral replication. May be effective in preventing corneal stromal infection if used prophylactically, but expense (A major pharmaceutical wholesale firm, Henry Schein, list prices which range from $2.34 to $4.58 per tablet.), concerns for general cytotoxity and especially the rapid, irreversible development of resistant viral strains, limits this routine use. The use of acyclovir results in the emergence of highly resistant viruses sometimes with only one pass of therapy. Low rates of teratogenicity have been found in rats exposed to acyclovir.
- L-lysine monohydrochloride Topical application of L-lysine to the skin of guinea pigs protected the skin from HSV inoculation. It is suggested that LMH exerts an immuno-modulatory effect in the herpes simplex host. More specifically, a study involving 52 subjects indicates that oral LMH is an effective agent for the reduction of occurrence, severity and healing time for herpes simplex virus infections. One study reported that subjective improvement seemed to occur in 88% of herpes simplex patients using L-lysine. However, there are studies in which L-lysine is reported to be ineffective with daily dosages below about 1000 milligrams per day. At least one study found that L-lysine had no effect on the rate of healing or the appearance of lesions. The conflicting results obtained for the efficacy of lysine for herpes infections may be explained by:
- GSH GSH is produced intracellularly from precursor amino acids including glycine and cysteine.
- precursor amino acids including glycine and cysteine.
- NAC N-acetyl-L-cysteine
- a high thiol redox status may contribute to the apparent barrier function of endothelial cells with respect to viral infection (in this case, cytomegalovirus) and that oxidative stress may facilitate infection of the vascular wall.
- antioxidants such as glutathione reductase, glutathione peroxidase and Cu—Zn superoxide dismutase appear to be reduced in the lacrimal fluid of patients with herpes simplex keratitis and are altered during the active phase of the disease. Impaired inhibition of the hydroxyl radical and a drop of antioxidant activities in herpes-infected cornea and tears appear to be factors in the pathogenesis of ophthalmic herpes.
- the trace element Zn 2+ plays an important, if indirect, role here because it function as a cofactor for the Se 2+ -dependent protective enzyme glutathione peroxidase.
- Quercetin In an in vitro cell culture study, the naturally occurring flavanol 3,3′,4′,5,7-pentahydroxyflavone (quercetin) caused a concentration-dependent reduction of infectivity of a number of viruses, including HSV-1. In addition, it reduced intracellular viral replication. This activity may be related to the ability of quercetin to increase non-protein —SH compounds (important anti-oxidant agents) and increase glutathione peroxidase activity.
- quercetin flavanol 3,3′,4′,5,7-pentahydroxyflavone
- a topical paste consisting solely of vitamin C was effective in the treatment of HSV lesions.
- Zn 2+ plays a vital role in maintaining immunocompetence.
- Humoral and cellular immunity are depressed in the Zn 2+ -deficient rabbit.
- Epithelial and stromal HSV keratitis are more severe in the Zn 2+ -deficient rabbit and these conditions are not improved by local Zn 2+ replacement used alone (zinc sulfate ointment).
- This treatment failure highlights the necessity of maintaining a healthy underlying immune system in resisting HSV and the important involvement of dietary Zn 2+ in maintaining that immunity.
- Mg +2 Magnesium (Mg +2 )—The recommended daily allowance of ionic Mg +2 for humans is 350 mg. Mg +2 deficiencies have been documented in many segments of the world population. It is estimated that the average adult in Western society has a dietary magnesium shortfall of 90-178 mg per day. Mg +2 deficiencies are particularly prevalent among diabetics with normal renal function, alcoholics, smokers, the elderly, and those who suffer from a variety of gastrointestinal mobility disorders.
- Ionic Mg +2 in mammals resides in three compartments: (1) in bone; (2) in an intracellular bound form or in an intracellular unbound form; and (3) in circulating bound and unbound forms.
- concentration of circulating Mg +2 in the bloodstream increases as a result of the dietary uptake of Mg +2
- the body quickly responds by sequestering the Mg +2 into one of the bound or intracellular forms listed above.
- elemental Mg +2 is ingested in a bulk amount that results in the absorption of a Mg +2 bolus in excess of 8 mEq
- the renal excretion of Mg +2 rapidly increases and, as a result, becomes less efficient in the resorption of this element.
- the accurate sustenance of an appropriate Mg +2 level requires the repeated administration of carefully designed Mg +2 -containing medicaments with correctly formulated, absorption targeted amounts.
- Mg +2 and Cu +2 deficiencies impair antioxidant defenses through decreased synthesis of GSH and reduced activity of CuZn superoxide dismutase, respectively.
- Mg +2 deficiencies enhance general oxidative stress levels by permitting elevated circulating levels of factors that promote free radical generation and which are mitogenic. This results in increased tissue necrosis in the presence of acute local levels of active oxygen species or hydroxyl radicals.
- Heparin Sodium—Heparan sulfate is a primary receptor for viral fusion with the host cell. Very low doses of sodium heparin bind competitively with host cell surface heparan sulfate receptors and thus inhibit the very earliest stages of virion fusion. In addition, heparin sodium mobilizes fibroblastic growth factor (bFGF) by releasing it from its bound status to heparan sulfate. bFGF is a potent mediator of inflammatory angiogenesis fundamental to lesion repair. The effective doses of heparin sodium required for these activities are greatly lower than those necessary for anticoagulant purposes.
- bFGF fibroblastic growth factor
- the invention resides in a unique, orchestrated pharmaceutical formulation for use in the treatment of HSV-1 and HSV-2 that takes advantage of the additive and synergistic antiviral complementarity of these biofactors in a variety of applications and makes these specific formulations available in a variety of dosage forms.
- cytotoxic drugs are imprecisely effective—i.e., 1) While these drugs may be clinically effective in reducing active epithelial disease they are not effective in treating corneal stromal disease. 2) For a variety of reasons it is not presently practical to treat patients prophylactically between recrudescent episodes of viral activity. Furthermore, current treatment is expensive and involves the use of admittedly cytotoxic agents. In a broader failure, current treatment programs focus almost exclusively upon the topical treatment of acutely infected tissue while ignoring the global, complex, metabolic and immunological cellular environment within which the disease process operates.
- This invention takes a different approach entirely.
- this invention addresses the more expansive physiological stage upon which this pathological activity occurs.
- the agents used in the invention have not been shown to have any cytotoxicity when used in appropriate dose levels, they are inexpensive and can be used prophylactically without concern for any significant development of viral resistance.
- the invention will be effective against stromal HSV infection and will reduce viral rates of recurrence.
- the invention will not replace current therapy for active HSV infection. It will, however, reduce clinical requirements for present therapies by minimizing therapeutic failure, thus reducing morbidity and recrudescence.
- each of these biofactors In vitro studies or limited clinical evaluations have shown each of these biofactors to have some antiviral activity when used alone. They have not before been united in appropriately designed multi-factor formulations available in a variety of delivery vehicles or modes.
- the invention is unique in providing this new, safe, effective and inexpensive addition to current therapeutic options, thereby improving the potential for success in treating a worldwide disease with severe morbidity, and in neonates, severe mortality potential.
- Unit dosage form refers to a composition intended for a single administration to treat a subject suffering from a disease or medical condition.
- Each unit dosage form typically comprises each of the active ingredients of this invention plus pharmaceutically acceptable excipients.
- Examples of unit dosage forms are individual tablets, individual capsules, bulk powders, liquid solutions, ointments, creams, eye drops, suppositories, emulsions or suspensions.
- Treatment of the disease or condition may require periodic administration of unit dosage forms, for example: one unit dosage form two or more times a day, one with each meal, one every four hours or other interval, or only one per day.
- oral unit dosage form indicates a unit dosage form designed to be taken orally.
- an “active agent” or “active ingredient” is a component of a dosage form that performs a biological function when administered or induces or affects (enhances or inhibits) a physiological process in some manner. “Activity” is the ability to perform the function, or to induce or affect the process. Active agents and ingredients are distinguishable from excipients such as carriers, vehicles, diluents, lubricants, binders, buffers and other formulating aids, and encapsulating or otherwise protective components.
- Delivery vehicle is a composition, which comprises one or more active agents, and is designed to release the active agent in a particular fashion, either by immediately dispersing the agents, or by releasing the agents in a slow sustained fashion.
- the term encompasses porous microspheres, microcapsules, cross-linked porous beads, and liposomes that contain one or more active ingredients sequestered within internal cavities or porous spaces.
- the term also includes osmotic delivery systems, coated tablets or capsules that include nonporous microspheres, microcapsules, and liposomes, and active agents dispersed within polymeric matrices.
- a dosage form can include one or more delivery vehicles.
- Controlled or “sustained” or “time release” delivery are equivalent terms that describe the type of active agent delivery that occurs when the active agent is released from a delivery vehicle at an ascertainable and manipulatable rate over a period of time, which is generally on the order of minutes, hours or days, typically ranging from about thirty minutes to about 3 days, rather than being dispersed immediately upon entry into the digestive tract or upon contact with gastric fluid.
- a controlled release rate can vary as a function of a multiplicity of factors.
- Factors influencing the rate of delivery in controlled release include the particle size, composition, porosity, charge structure, and degree of hydration of the delivery vehicle and the active ingredient(s), the acidity of the environment (either internal or external to the delivery vehicle), and the solubility of the active agent in the physiological environment, i.e., the particular location along the digestive tract.
- “Targeted” or “site-specific” delivery means that the pharmaceutical preparation is formulated to limit the release of its contents in an amount appropriate to the site where release occurs.
- the term refers in particular to the active agent, whose site-specific delivery implements the performance of the therapeutic function at a specific site within the body of the subject to whom the preparation is administered.
- therapeutically effective amount means an amount sufficient to produce a therapeutic result.
- the therapeutic result is an objective or subjective improvement of a disease or condition, achieved by inducing or enhancing a physiological process, blocking or inhibiting a physiological process, or in general terms performing a biological function that helps in or contributes to the elimination or abatement of the disease or condition.
- substantially homogeneous when used to describe a formulation (or portion of a formulation) that contains a combination of components, means that the components, although each may be in particle or powder form, are fully mixed so that the individual components are not divided into discrete layers or form concentration gradients within the formulation.
- the amounts of the eight primary components of the oral dosage form of the pharmaceutical preparation of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges. Expressed in terms of milligrams the components and their preferred ranges may be as follows: TABLE I Dosage in milligrams % in bi-layered Component Preferred Most Preferred Immed. Sustain.
- magnesium ascorbate in Table I the following may be substituted: magnesium L-acetylcysteinate in the range of about 80 mg to about 3300 mg, magnesium 2,N-thioctylcysteinate in the range of about 56 mg to about 2800 mg, magnesium 2,N-thioctyltaurate in the range of about 50 mg to about 2500 mg, magnesium taurate in the range of about 80 mg to about 3400 mg, magnesium acetate in the range of about 175 mg to about 5800 mg, magnesium citrate in the range of about 32 mg to about 1610 mg, magnesium oxide in the range of about 50 mg to abut 1600 mg.
- L-2-oxothiazolidine-4-carboxylate may be substituted in the range of about 80 mg to about 4000 mg.
- zinc picolinate in Table I the following may be substituted: zinc sulfate in the range of about 3.7 mg to about 198 mg, zinc dinicotinate in the range of about 7.1 mg to about 380 mg, zinc ascorbate in the range of about 9.5 mg to about 500 mg, zinc L-acetylcysteinate in the range of about 9 mg to about 480 mg, zinc L-lysinate in the range of about 8 mg to about 435 mg.
- copper sulfate in Table I the following may be substituted: copper L-acetylcysteinate in the range of about 1 mg to about 30 mg.
- a slower, more sustained release of the active agents can be achieved by placing the active agents in one or more delivery vehicles that inherently retard the release rate.
- delivery vehicles are polymeric matrices that maintain their structural integrity for a period of time prior to dissolving, or that resist dissolving in the stomach but are readily made available in the post-gastric environment by the alkalinity of the intestine, or by the action of metabolites and enzymes that are present only in the intestine.
- the preparation and use of polymeric matrices designed for sustained drug release is well known. Examples are disclosed in U.S. Pat. No. 5,238,714 (Aug.
- polymeric matrices are hydrophilic, water-swellable polymers such as hydroxymethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, hydroxymethylpropylcellulose, polyethylene oxide, and porous bioerodible particles prepared from alginate and chitosan that have been ionically crosslinked.
- a delayed, post-gastric, prolonged release of the active ingredients in the small intestine can also be achieved by encasing the active agents, or by encasing hydrophilic, water-swellable polymers containing the active agents, in an enteric (acid-resistant) film.
- acid-resistant agents suitable for this purpose is that disclosed in Eury et al., U.S. Pat. No. 5,316,774 (“Blocked Polymeric Particles Having Internal Pore Networks for Delivering Active Substances to Selected Environments”).
- the formulations disclosed in this patent consist of porous particles whose pores contain an active ingredient and a polymer acting as a blocking agent that degrades and releases the active ingredient upon exposure to either low or high pH or to changes in ionic strength.
- enteric materials include polyacids having a pK a of from about 3 to 5. Examples of such materials are fatty acid mixtures, methacrylic acid polymers and copolymers, ethyl cellulose, and cellulose acetate phthalates.
- methacrylic acid copolymers sold under the name EUDRAGIT®, available from Rohm Tech, Inc., Maiden, Mass., USA; and the cellulose acetate phthalate latex AQUATERIC®, available from FMC Corporation, New York, N.Y., USA, and similar products available from Eastman-Kodak Co., Rochester, N.Y., USA.
- Acid-resistant films of these types are particularly useful in confining the release of components post-gastric environment. Acid-resistant films can be applied as coatings over individual particles of the components of the formulation, with the coated particles then optionally compressed into tablets. An acid-resistant film can also be applied as a layer encasing an entire tablet or a portion of a tablet where each tablet is a single unit dosage form.
- the oral dosage forms of the invention optionally include one or more suitable and pharmaceutically acceptable excipients, such as ethyl cellulose, cellulose acetate phthalates, mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, glucose, sucrose, carbonate, and the like.
- excipients serve a variety of functions, as indicated above, as carriers, vehicles, diluents, binders, and other formulating aids.
- the dosage forms of this invention include powders, liquid forms, tablets or capsules.
- the oral dosage form is a substantially homogeneous single layer tablet that releases all of its components into the stomach upon ingestion.
- the oral dosage form is a combination tablet in which the components are divided into two portions: one that is fully released into the stomach upon ingestion, and the other protected by an acid-resistant coating for release only in the intestine, and optionally in a sustained-release manner over a period of time
- the oral dosage forms of this invention can be formulated for administration at rates of either one unit dosage form per day, or two or more. Unit dosage forms to be taken two to four times per day are preferred.
- the tablet is coated with a coating that dissolves in an aqueous environment.
- a coating that dissolves in an aqueous environment. Examples of such a coating are SURELEASE and OPADRY (both available from Colorcon, West Point, Pa., USA).
- the tablet is made by weighing and mixing all ingredients together in a twin-shell blender, granulating either by roller compaction and milling or by a wet granulation process, and feeding the mixture into a high-speed, rotary tablet press.
- the starch is a tablet binder, for which lactose can be substituted if desired.
- This example illustrates a dual layer tablet, with each layer substantially homogeneous in composition, including an immediate release layer that disintegrates in the stomach to provide simultaneous accessibility to all of the immediate release components and a controlled release layer that remains intact until reaching the intestine where it provides accessibility to all of its components.
- the tablet is prepared with the following composition: TABLE III Components Weight % Weight (mg) BI-LAYER TABLET 49% CONTROLLED RELEASE Magnesium L-Ascorbate 11.1% 213.88 L- ⁇ -Tocopherol 8.2% 157.58 L-lysine monohydrochloride 28.5% 550.00 2-amino-2-deoxy-D-glucose 7.8% 150.00 N-Acetyl-L-Cysteine 15.5% 300.00 Quercetin 1.8% 35.00 Excipients Magnesium Stearate 0.81% 15.6 Polymer (H2O Sol, Cellulose) 26.40% 510 ACID RESISTANT FILM 51% IMMEDIATE RELEASE Magnesium L-Ascorbate 10.7% 213.88 L-Selenomethionine 0.004% 0.08 D/L ⁇ -Tocopherol 7.9% 157.58 L-Lysine 27.6% 550.00 Copper sulfate 0.2% 4.40 Zinc Picolinate 4.3%
- the controlled release layer comprises 49% by weight of the tablet and has an acid-resistant coating separating it from the immediate release layer.
- the immediate release layer comprises 51% by weight of the tablet and has a coating that dissolves in an aqueous environment.
- agents of the immediate release layer dissolve rapidly in the stomach and are available for immediate absorption in the gastrointestinal tract.
- the polymer matrix of the controlled release layer having been given an enteric coating in the granulation process with EUDRAGIT, does not dissolve in the acid pH of the stomach, but remains intact until it passes to the upper part of the small intestine, where the enteric coating dissolves in the more alkaline environment of the intestine.
- the polymeric matrix then immediately begins to imbibe water from the intestinal fluid, forming a water-swollen gel.
- the agents incorporated into this layer are then available for intestinal absorption as they osmotically diffuse from the gel. Since the agents have been selected with a view toward their water solubilities, the rate of diffusion of each agent is reasonably constant for the useful life of the matrix (approximately four hours), by which time the incorporated agents are finally depleted and the matrix disintegrates.
- the ophthalmic dosage forms include solutions and suspensions prepared for use as eye drops to provide immediate therapeutic levels of the formulation and ophthalmic ointments designed to provide slower release rates or for use at bedtime.
- Eye drop The eye drop dosage form of the invention will optionally include one or more suitable and pharmaceutically acceptable inactive excipients, including but not limited to: preservatives from a group including benzalkonium chloride, methylparaben, edetate disodium, thimersol, chlorbutanol; buffers from a group including sodium citrate, potassium chloride, magnesium chloride, sodium acetate, citric acid, sodium lactate; vehicles from a group including polyvinyl alcohol, hydroxy methylcellulose, cetyl alcohol, carboxymethylcellulose, hydroxy-propylenemethyl cellulose; pH adjusters from a group including sulfuric acid, hydrochloric acid, sodium hydroxide, monosodium or disodium phosphate; purified water USP; poloxamer 407 or 188, polysorbate 80; polyoxyethylene polyoxypropylene compound; mineral oil USP and similar products.
- suitable and pharmaceutically acceptable inactive excipients including but not limited to: preservatives from a group including benzalkonium
- inactive excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids as briefly listed above and are currently in wide use in ophthalmic pharmaceutical products manufactured under GMP standards.
- the eye drop dosage form of this invention can be formulated for administration at a rate of one unit dosage form daily or two or more unit dosage forms four times daily. A unit dosage form taken three to four times per day is preferred.
- the amounts of the seven primary components of the eye drop dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
- a solution for use as an eye drop for delivering all components simultaneously is prepared with the following composition: TABLE IV EXAMPLE 4 Ophthalmic Solution Components Ascorbic acid 0.64% L-lysine hydrochloride 0.60% Zinc Sulfate 0.04% Copper Sulfate 0.06% N-Acetyl-L-cysteine 0.60% 2-Amino-2-deoxy-D-glucose 0.38% USP units/mL Heparin sodium 1.60 Excipients Polyvinyl alcohol, sulfated 1.00% Polyethylene glycol 0.50% Benzalkonium chloride 0.004%
- Ointment An ophthalmic ointment dosage form for more prolonged delivery of the formulation or for use at bedtime will optionally include one or more suitable and pharmaceutically acceptable inactive excipients, including but not limited to: chlorbutanol, polyethylene mineral oil gel, white petrolatum USP, mineral oil USP, petrolatum and lanolin alcohol, purified water USP, polyvinyl alcohol gel and similar products.
- suitable and pharmaceutically acceptable inactive excipients including but not limited to: chlorbutanol, polyethylene mineral oil gel, white petrolatum USP, mineral oil USP, petrolatum and lanolin alcohol, purified water USP, polyvinyl alcohol gel and similar products.
- the above excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids and are currently in wide use in pharmaceutical products manufactured under GMP standards.
- the ointment dosage forms of this invention can be formulated for administration at rates of one unit dosage form daily or two or more unit dosage forms four times daily. Unit dosage forms to be used one time per day at bedtime or three times per day are preferred.
- Ophthalmic Ointment Components Ascorbic acid 0.80% L-lysine hydrochloride 0.74% Zinc Sulfate 0.05% Copper Sulfate 0.08% N-Acetyl-L-cysteine 0.75% 2-Amino-2-deoxy-D-glucose 0.48% Quercetin 0.24% USP units/mL Heparin sodium 2.00 Excipients Polyvinyl alcohol, sulfated 0.05% Mineral oil 30% White petrolatum 45%
- This dosage form includes solutions and suspensions prepared for use for application to the buccal mucosa to provide immediate therapeutic levels of the formulation.
- the buccal mucosa dosage form of the invention will optionally include one or more suitable and pharmaceutically acceptable inactive excipients, including but not limited to: preservatives from a group including benzalkonium chloride, methylparaben, edetate disodium, thimersol, chlorbutanol; buffers from a group including sodium citrate, potassium chloride, magnesium chloride, sodium acetate, citric acid, sodium lactate; vehicles from a group including polyvinyl alcohol, hydroxy methylcellulose, cetyl alcohol, carboxymethylcellulose, hydroxy-propylenemethyl cellulose; pH adjusters from a group including sulfuric acid, hydrochloric acid, sodium hydroxide, monosodium or disodium phosphate; purified water USP; poloxamer 407 or 188, polysorbate 80; polyoxyethylene polyoxypropylene compound; mineral oil USP and similar products.
- suitable and pharmaceutically acceptable inactive excipients including but not limited to: preservatives from a group including benzal
- inactive excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids as briefly listed above and are currently in wide use in pharmaceutical products manufactured under GMP standards.
- the buccal mucosa dosage form of this invention can be formulated for administration at a rate of one unit dosage form daily or two or more unit dosage forms four times daily. A unit dosage form taken three to four times per day is preferred.
- the amounts of the seven primary components of the buccal mucosal dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
- a solution for delivering all components simultaneously to the buccal mucosa is prepared with the following composition: TABLE VI EXAMPLE 6
- Buccal Mucosal Solution Components Ascorbic acid 0.88% L-lysine hydrochloride 0.82% Zinc Sulfate 0.06% Copper Sulfate 0.09% N-Acetyl-L-cysteine 0.83% 2-Amino-2-deoxy-D-glucose 0.52% USP units/mL Heparin sodium 2.20 Excipients Polyvinyl alcohol, sulfated 1.00% Polyethylene glycol 0.50% Benzalkonium chloride 0.004%
- Dosage forms of the invention for use in the topical treatment of cutaneous manifestations of HSV infections are prepared in a variety of forms including ointments, gels and creams. These preparations optionally include one or more of the following suitable and pharmaceutically acceptable excipients: isopropyl myristate NF, trolamine NF, SD alcohol 40 (20%), white petrolatum USP, lanolin alcohols NF, mineral oil USP, polyvinyl alcohol gel, cetostearyl alcohol NF, lactic acid USP, calcium stearate, dextran, polyoxyl 40 stearate, methylparaben, propylene glycol, sodium lauryl sulfate, polyethylene glycol (PEG) base, synthetic beeswax (B wax), calcium acetate, purified water USP and similar products.
- suitable and pharmaceutically acceptable excipients isopropyl myristate NF, trolamine NF, SD alcohol 40 (20%), white petrolatum USP, lan
- the above excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids and are currently in wide use in dermatological pharmaceutical products manufactured under GMP standards.
- the dermatological dosage forms of this invention can be formulated for administration at rates of one unit dosage form daily or one unit dosage form six times daily. A unit dosage form used three to four times per day is preferred.
- the amounts of the nine primary components of this dosage form of the invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
- TABLE VII Dermatologic Dosage Form Components Ascorbic acid 1.20% D- ⁇ -Tocopherol 1.62% L-lysine hydrochloride 1.12% Zinc Sulfate 0.08% Copper Sulfate 0.12% N-Acetyl-L-cysteine 1.13% 2-Amino-2-deoxy-D-glucose 0.71% Quercetin 0.36% USP units/mL Heparin sodium 3.00
- Dosage forms of the invention for local use in treating female genital manifestations of HSV infections, especially HSV-2, are prepared in dosage forms for vaginal insertion including vaginal suppositories, gels and tablets.
- These preparations optionally may include one or more of the following suitable and pharmaceutically acceptable excipients, including but not limited to: isopropyl myristate NF, mineral oil USP, stearyl alcohol NF, benzoic acid USP, pegoxyl 7 stearate, methylparaben, propylparaben, propylene glycol, butylated hydroxyanisole, coconut or palm kernel oil triglycerides, polysorbate 60 or polysorbate 8, peglicol 5, PEG-100 stearate and sorbitan monostearate, calcium lactate, hydroxypropyl methylcellulose, polysaccharide carrageenan, corn starch, lactose, calcium lactate, silicon dioxide and purified water USP, among others.
- the above excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids and are currently in use in vaginal pharmaceutical products manufactured under GMP standards.
- vaginal dosage form of this invention can be formulated for administration at rates of one unit dosage form daily or one unit dosage form twice daily. A unit dosage form to be used one time per day is preferred.
- vaginal dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
- TABLE VIII Vaginal Dosage Form Components Ascorbic acid 1.04% L-Lysine hydrochloride 0.97% Zinc Sulfate 0.07% Copper Sulfate 0.10% N-Acetyl-L-cysteine 0.98% 2-Amino-2-deoxy-D-glucose 0.62% Quercetin 0.31% USP units/mL Heparin sodium 2.60 Excipients Polyvinyl alcohol, sulfated 0.05% Mineral oil 30% White petrolatum 45%
- compositions and dosage forms of the invention are useful for treating HSV-1 and HSV-2 infections of epithelial-derived tissues including but not limited to the eye, genitals, and mouth, etc., whether of mucous membrane or dermal origin.
- the individual formulations consist of orchestrated groups of complementary biofactors that have interlocking antiviral activities. Each functional biofactor has an identifiable and individual antiviral activity which acts against the virus at a different locus of fusion, invasion or replication, which sum with one another to provide the total antiviral activity of the orchestrated formulation: i.e., prevention of virion fusion with the cell to be invaded, interruption of viral DNA replication, improvement of cellular immunomodulation, restoration of endogenous antioxidant potency, etc.
- biofactors are incorporated to work not additively, but synergistically, to provide a leveraged therapeutic effect, i.e., although individually Cu 2+ and ascorbic acid each negatively influence invasive viruses, when combined they create a synergistic anti-viral effect.
- Still other biofactors may be included which act synergistically with current cytotoxic drugs (i.e., quercetin with acyclovir or with deoxyuridine).
- current cytotoxic drugs i.e., quercetin with acyclovir or with deoxyuridine.
- the invention is not designed to replace current therapeusis for HSV. Its clinical use will reduce recurrence rates and the severity of infection, and will reduce reliance upon present drugs. It is designed to create a biological environment in which the opportunity for success with present and future therapies will be increased, the possibility for failure reduced.
- oral dosage forms and topical dosage forms of the invention are described. These dosage forms are designed to provide adequate therapeutic doses of formulation if used alone, or if used in combination, not to exceed appropriate therapeutic levels. This variety of dosage forms and formulations will permit the advising physician great latitude in tailoring for the patient appropriate intensities of treatment for HSV disease at variable clinical levels of severity.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gynecology & Obstetrics (AREA)
- Urology & Nephrology (AREA)
- Reproductive Health (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Inorganic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
The components of this invention are chosen because of their complementarity for the prevention or treatment of diseases caused by the herpes simplex virus. L-Lysine favorably increases the physiologic immunomodulation necessary for defense against this virus. Zinc improves and maintains a normal immune response. 2-Deoxy-2-D-glucose and heparin sodium alter the surface interaction between the herpes virus and the cell, preventing fusion and infectivity. N-Acetyl-L-cysteine increases glutathione levels thereby creating a thiol redox barrier to the virus at the cell membrane. Quercetin reduces intracellular replication of the herpes virus and viral infectivity. Ascorbate, in concert with copper and D-α-tocopherol, provides an antioxidant defense against the herpes virus, which tends to lose latency during period of oxidative, free radical excess. Selenium and quercetin also participate in reducing various oxidative stresses. Together the components of this invention provide the potential for improved resistance to, improved recovery from, and a decreased frequency of recurrence of herpes simplex virus infection.
Description
- This application is related to U.S. Provisional Patent Application No. 60/101,308, filed Sep. 21, 1998, and claims all benefits legally available therefrom. Provisional Patent Application No. 60/101,308 is hereby incorporated by reference for all purposes capable of being served thereby.
- 1. Field of the Invention
- This invention is in the field of pharmacology, and relates specifically to the pharmacological treatment of conditions associated with herpes simplex virus infections.
- 2. Description of the Prior Art
- Herpes Simplex—The Virus
- No human virus is considered normal flora; although some viruses may be more or less symptomatic, unlike bacteria none can be considered non-pathogenic. And because the viral life cycle is played out within a host cell, the membrane and molecular function of the target eukaryocyte and the biological life cycle of the invasive virion are inextricably entwined.
- Viruses may be grouped in a variety of ways; perhaps most simply by considering five elements:
- 1) Method of entry into the host.
- 2) Extent of spread in the host.
- 3) Mode of spread within the host.
- 4) The host tissue targeted .
- 5) The fate of the virus after host recovery.
- According to this admittedly simple list of characteristics, herpes simplex virus (HSV), Herpesviridae, Simplexvirus, enters the host by direct contact, is spread to a target tissue only, spreads within the host via neuronal axonal flow, targets the dorsal root ganglia and after recovery of the host from an acute infection, remains latent in the targeted tissue.
- The HSV virion is a large (100 to 150 mγ), enveloped virus with an icosahedral capsid. It has double strand DNA with a genome that encodes at least 70 polypeptides—this large amount of regulatory information permits the virus to control its own gene expression and elegantly to modify multiple complex events within the infected cell.
- The invading virion binds to host cell receptors. A primary binding site is host cell surface heparan sulfate glycosaminoglycan, which binds with the V3 loop of the viral envelope glycoprotein (gp 120). Another primary binding site may be chondroitin sulfate. Mediated by viral glycoprotein gB and following nonspecific primary binding, more specific binding occurs to the gC4 and gD4 viral surface glycoproteins. The virion envelope fuses with the plasma membrane of the host cell. The capsid is uncoated, the virus invasively inserts surface glycoprotein gB through the host cell plasma membrane and enters the host nucleus where viral DNA is transcribed and processed into mature mRNA; at the same time, host cell mRNA synthesis is inhibited. Invading HSV also inhibits host cell DNA synthesis while viral DNA replicates within the host nucleus. The viral DNA combines with newly formed HSV capsid proteins translated in the cytoplasm, and assembles into progeny virion particles within the nuclear membrane. Concurrent expression of glycoproteins in the host plasma envelope stimulates neighboring cells to clump together. Following cell-to-cell contact by binding and fusion of their respective plasma envelopes, progeny particles invade clumped, neighboring host cells directly or by spread following lysis of previously invaded tissue cells or phagocytes and the process repeats itself.
- Viral invasion elicits a phagocytic response coupled with typical phagocytic immune activities—the release of soluble immune mediators (i.e., cytokines) and high respiratory burst responses by activated phagocytes. These immune responses are themselves detrimental to the host; not only because of local tissue necrosis from high environmental levels of free radical release, but also because of the development of mutant, potentially resistant viral strains secondary to toxic local levels of activated oxygen and hydroxyl species.
- Herpes Simplex—Clinical Expression
- The massive disruption by HSV of host cell molecular functions and of host cellular structure is manifested clinically as host cellular death, resulting in shallow, painful vesicular ectodermal lesions or by hemorrhagic encephalitic necrosis of the brain. Target tissues for HSV are the skin or mucous membranes usually derived from embryonic ectoderm: mouth, skin, vagina, conjunctiva, cornea, etc. The virus enters the host cell by direct mucosal contact or by direct contact of abraded skin. In the skin the virus replicates in epithelial cells and then enters local sensory neurons. The virus travels to the dorsal root ganglia via retrograde axonal flow where it establishes permanent residency. There it establishes latency a state in which the viral lytic genes are silenced and only the latency locus is transcriptionally active. Although latent most of the time, it reactivates intermittently, travels down the sensory nerve and causes vesicular eruptions at or near the site of initial invasion. Alternatively the virus may invade the CNS and cause encephalitis.
- The rate of seropositivity to HSV varies widely from country to country: from relatively low in Japan where Herpes simplex Type 1 (HSV-1) seroprevalence for men and women has decreased from 75.3 and 80.6% in 1973 to 54.4 and 59.6%, respectively in 1993 and where Herpes simplex Type 2 (HSV-2) seroprevalence has decreased from 10.2 and 9.9% in 1973 to 1.8 and 1.2%, respectively in 1993, to quite high in Africa where all adult study groups have a high HSV-1 seroprevalence of>80%. HSV infects more than 50% of the adult population, but some infections may be unrecognized. About half of these develop clinical manifestations of the disease. Its most significant manifestations are keratitis, genital lesions and labial vesicular lesions (“cold sores”).
- HSV-1 typically causes herpes keratitis (cornea). This disease is identified by a typically bizarre dendritic-patterned corneal ulcer that tends to be recurrent and very often leads to scarring with a reduction of vision, sometimes to the level of legal blindness. HSV-1 also causes herpes labialis, peri-orbital, peri-oral, peri-nasal skin eruptions and, in older patients, the virus has been associated with herpes zoster (“shingles”) infection of the upper trunk.
- HSV-2 causes the most prevalent sexually transmitted disease in the United States and visits to physicians for genital herpes simplex virus infection continue to increase. As many as 30 million Americans are infected with HSV-2. About half of these carriers are symptomatic. The clinical manifestations range from mild genital inflammation to severe, very painful, vesicular lesions and ulceration. Systemic involvement in the most severe cases may include hepatitis. Brain damage and death often are the result of HSV-2 acquired by a newborn infant as it passes through an infected birth canal.
- Once the herpes virus (of either kind) has infected the human body, the virus is permanently present. This is particularly true for viral infection of the nerve cells of the dorsal root ganglia that are out of range of the immune system. Less commonly, the epithelial basement membrane may house the latent virus. The virus becomes periodically active when the immune system is depressed or when oxidative stress is increased, i.e., during illness, after exposure to high intensity ultraviolet light, following local tissue trauma, etc.
- Although HSV-1 principally causes corneal infections or “cold sores” and HSV-2 most often causes genital herpes, either type can infect the cornea, the mouth and/or the genitals. Similarly although most herpetic ocular infections in adults are caused by HSV-1, other more severe and prolonged cases in adults have been shown to be caused by HSV-2.
- Herpes Simplex—Current Clinical Treatment
- Present treatment rationales are focused upon preventing the fusion of the virion envelope with the host cell plasma membrane by negatively influencing host cell membrane receptors or by interfering with the glycosylation of viral protein required for fusion, and by reducing viral replication within the host cell nucleus. More recently some attention has been drawn to the relationship between local levels of toxic free radicals and antioxidants in the host target cell environment and apparent target cell resistance to infection following viral reactivation.
- A. Ophthalmic Preparations
- 1. α-α-α-trifluorothymidine—(Viroptic® 1% solution)—useful in treating HSV-1 and HSV-2 keratoconjunctivitis, i.e., HSV lesions of the conjunctival and corneal epithelium, but not effective in the treatment of associated corneal stromal lesions. It acts by interfering with thymidine synthesis in eukaryocytes, normal or infected. Its precise action against invading viruses is unknown. Little clinical toxicity is described, but pregnant women should use it with caution.
- 2. 2′-Deoxy-5-idouridine—(Herplex® 0.1% solution)—useful in the treatment of corneal epithelial infection with HSV-1. The delivered solution is converted to idoxuridine which replaces DNA thymidine involved in the enzymatic step of viral replication. The resulting structural faults in viral DNA prevent replicative tissue infection. However, idoxuridine is generally cytotoxic, crosses the placental barrier and is implicated in fetal malformations in rabbits and rats. Pregnant women should use it with caution.
- 3. 9-β-D-arabinofuranosyladenine—(Vira-A® 3% ointment)—useful in the treatment of corneal epithelial HSV-1 and HSV-2 infections, but not stromal lesions induced by these viruses. Although the mode of action of Vira-A® is not established, it probably acts by interference with viral DNA synthesis. Embryonic mutogenesis has occurred in male germ cells and mouse embryos.
- B. Genital Herpes Preparations
- 1. acyclovir—(Zovirax® tablets)—useful in the treatment of HSV-1 and HSV-2 as well as other virus infections. Mode of action appears to be interference with viral DNA polymerase resulting in premature termination of the DNA chain and a reduction of viral replication. May be effective in preventing corneal stromal infection if used prophylactically, but expense (A major pharmaceutical wholesale firm, Henry Schein, list prices which range from $2.34 to $4.58 per tablet.), concerns for general cytotoxity and especially the rapid, irreversible development of resistant viral strains, limits this routine use. The use of acyclovir results in the emergence of highly resistant viruses sometimes with only one pass of therapy. Low rates of teratogenicity have been found in rats exposed to acyclovir.
- Herpes Simplex—Antiviral Agents Under Study 1. 2-deoxy-D-glucose (glucosamine)—Glycosylation inhibitors such as 2-deoxy-D-glucose have been shown to retard the appearance and speed the evolution of both HSV-1 and HSV-2. There are several steps in the metabolism of virus-induced cellular surface glycoproteins that induce infected cell clumping that may be negatively affected by glucosamine. In similar fashion, by inhibiting glycosylation and thereby reducing levels of surface glycoprotein gD and gB, glucosamine reduces virion-host cell fusion; fusion is inhibited in the presence of reduced levels of viral surface glycoprotein carbohydrate. 2-Deoxy-D-glucose has also been shown to inhibit viral DNA synthesis (human cytomegalovirus) thus reducing viral replication potentials.
- 2. L-lysine monohydrochloride—Topical application of L-lysine to the skin of guinea pigs protected the skin from HSV inoculation. It is suggested that LMH exerts an immuno-modulatory effect in the herpes simplex host. More specifically, a study involving 52 subjects indicates that oral LMH is an effective agent for the reduction of occurrence, severity and healing time for herpes simplex virus infections. One study reported that subjective improvement seemed to occur in 88% of herpes simplex patients using L-lysine. However, there are studies in which L-lysine is reported to be ineffective with daily dosages below about 1000 milligrams per day. At least one study found that L-lysine had no effect on the rate of healing or the appearance of lesions. The conflicting results obtained for the efficacy of lysine for herpes infections may be explained by:
- 1) the great variability of the relative amounts of lysine and arginine in diets; and
- 2) failure to measure the serum lysine concentration. (The latter should be maintained above 165 nmol/mL)
- The higher the arginine/lysine ratio in any diet, the greater the risk for herpes recurrence. Patients with diets high in naturally occurring arginine, such as legumes, whole grains, and nuts, are more vulnerable to herpes simplex recurrence than those whose diets are high in lysine, such as meat and dairy products. The mean daily intakes of lysine and arginine for 16 persons studied were 8.11 g±2.28 and 6.32 g±1.74, respectively. The standard deviations from the mean intake levels are notably wide and most likely illustrate the large variability of lysine and arginine intake in individual diets. This widely variable dietary intake underlines the value of dietary supplementation in countering herpes simplex virus infections; a better dietary balance between these two amino acids should help reduce the existing statistical difference in herpes recurrence.
- 3. Glutathione (GSH) and Selenium (Se2+)—In vitro studies show that intracellular, endogenous, reduced GSH levels are significantly and immediately decreased in the first 24 hours after herpes virus invasion. This dramatic cellular depletion emphasizes the importance of GSH in the host cell's defense against the virus. Supplementation with exogenous GSH not only restored intracellular levels almost to those found in uninfected cells, but also inhibited over 99% of the replication of HSV-1. Although, GSH interferes with the late replication stages of the HSV-1 cycle, it does not disturb normal cellular metabolism.
- Human GSH levels cannot be raised directly by supplemental administration in the diet. GSH is produced intracellularly from precursor amino acids including glycine and cysteine. One GSH precursor, N-acetyl-L-cysteine (NAC)—a high endogenous thiol in redox status—has itself been found to possess antiviral antioxidative effectiveness. This study suggested that a high thiol redox status may contribute to the apparent barrier function of endothelial cells with respect to viral infection (in this case, cytomegalovirus) and that oxidative stress may facilitate infection of the vascular wall. In fact, the activity of antioxidants such as glutathione reductase, glutathione peroxidase and Cu—Zn superoxide dismutase appear to be reduced in the lacrimal fluid of patients with herpes simplex keratitis and are altered during the active phase of the disease. Impaired inhibition of the hydroxyl radical and a drop of antioxidant activities in herpes-infected cornea and tears appear to be factors in the pathogenesis of ophthalmic herpes. The trace element Zn2+, plays an important, if indirect, role here because it function as a cofactor for the Se2+-dependent protective enzyme glutathione peroxidase.
- 4. Quercetin—In an in vitro cell culture study, the naturally occurring flavanol 3,3′,4′,5,7-pentahydroxyflavone (quercetin) caused a concentration-dependent reduction of infectivity of a number of viruses, including HSV-1. In addition, it reduced intracellular viral replication. This activity may be related to the ability of quercetin to increase non-protein —SH compounds (important anti-oxidant agents) and increase glutathione peroxidase activity. Yield reduction studies (chick embryo fibroblasts) reveal that quercetin acts synergistically with acyclovir and with 5-ethyl-2′-deoxyuridine to enhance the HSV-1 and HSV-2 antiviral activity of these widely used clinically pharmaceuticals.
- 5. Ascorbate, ascorbic acid and Copper (Cu2+)—Impaired inhibition of hydroxyl radicals and reduced levels of ascorbic acid in the corneae and tears of herpes-infected eyes are factors in the pathogenesis of ophthalmic herpes. Suspensions of HSV have been inactivated by copper-catalyzed sodium ascorbate. Although inactivation of herpes simplex virus can be achieved by Cu2+ used alone, this effect is enhanced by the addition of ascorbate. One study mentions that a topical paste consisting solely of vitamin C was effective in the treatment of HSV lesions.
- 6. Zinc (Zn2+)—Zinc sulfate inactivates free herpes simplex virus. Zn2+ inactivation of the virus lessens after several passes, but this partial resistance of the virus eventually disappears. (In contrast, resistance to acyclovir is complete and irreversible after a single pass.) Consistent with this in vitro evidence of the persistence of zinc's inhibitory effect on HSV, is the finding that long-term, topical application of Zn2+ greatly reduces or eliminates recurrences of genital herpes. Even low concentrations of zinc, prevented recurrent herpes simplex. These direct contact effects of zinc on HSV reflect and complement the systemic importance of Zn2+ in global immune system maintenance. For example: in rabbits Zn2+ plays a vital role in maintaining immunocompetence. Humoral and cellular immunity are depressed in the Zn2+-deficient rabbit. Epithelial and stromal HSV keratitis are more severe in the Zn2+-deficient rabbit and these conditions are not improved by local Zn2+ replacement used alone (zinc sulfate ointment). This treatment failure highlights the necessity of maintaining a healthy underlying immune system in resisting HSV and the important involvement of dietary Zn2+ in maintaining that immunity.
- 7. Magnesium (Mg+2)—The recommended daily allowance of ionic Mg+2 for humans is 350 mg. Mg+2 deficiencies have been documented in many segments of the world population. It is estimated that the average adult in Western society has a dietary magnesium shortfall of 90-178 mg per day. Mg+2 deficiencies are particularly prevalent among diabetics with normal renal function, alcoholics, smokers, the elderly, and those who suffer from a variety of gastrointestinal mobility disorders.
- Ionic Mg+2 in mammals resides in three compartments: (1) in bone; (2) in an intracellular bound form or in an intracellular unbound form; and (3) in circulating bound and unbound forms. When the concentration of circulating Mg+2 in the bloodstream increases as a result of the dietary uptake of Mg+2, the body quickly responds by sequestering the Mg+2 into one of the bound or intracellular forms listed above. If elemental Mg+2 is ingested in a bulk amount that results in the absorption of a Mg+2 bolus in excess of 8 mEq, the renal excretion of Mg+2 rapidly increases and, as a result, becomes less efficient in the resorption of this element. Thus the accurate sustenance of an appropriate Mg+2 level requires the repeated administration of carefully designed Mg+2-containing medicaments with correctly formulated, absorption targeted amounts.
- Among other functions, Mg+2 and Cu+2 deficiencies impair antioxidant defenses through decreased synthesis of GSH and reduced activity of CuZn superoxide dismutase, respectively. Mg+2 deficiencies enhance general oxidative stress levels by permitting elevated circulating levels of factors that promote free radical generation and which are mitogenic. This results in increased tissue necrosis in the presence of acute local levels of active oxygen species or hydroxyl radicals.
- 7. Heparin Sodium—Heparan sulfate is a primary receptor for viral fusion with the host cell. Very low doses of sodium heparin bind competitively with host cell surface heparan sulfate receptors and thus inhibit the very earliest stages of virion fusion. In addition, heparin sodium mobilizes fibroblastic growth factor (bFGF) by releasing it from its bound status to heparan sulfate. bFGF is a potent mediator of inflammatory angiogenesis fundamental to lesion repair. The effective doses of heparin sodium required for these activities are greatly lower than those necessary for anticoagulant purposes.
- Although several in vitro and in vivo studies appear to support the antiviral effectiveness of individual biofactors, almost universally the studies focus upon attempts to measure the effect of the application of single biofactors, i.e., the effectiveness of each biofactor used independently as measured against a single physiological endpoint.
- The invention resides in a unique, orchestrated pharmaceutical formulation for use in the treatment of HSV-1 and HSV-2 that takes advantage of the additive and synergistic antiviral complementarity of these biofactors in a variety of applications and makes these specific formulations available in a variety of dosage forms.
- The present treatment of HSV infected or exposed patients with cytotoxic drugs is imprecisely effective—i.e., 1) While these drugs may be clinically effective in reducing active epithelial disease they are not effective in treating corneal stromal disease. 2) For a variety of reasons it is not presently practical to treat patients prophylactically between recrudescent episodes of viral activity. Furthermore, current treatment is expensive and involves the use of admittedly cytotoxic agents. In a broader failure, current treatment programs focus almost exclusively upon the topical treatment of acutely infected tissue while ignoring the global, complex, metabolic and immunological cellular environment within which the disease process operates.
- This invention takes a different approach entirely. By combining a variety of agents that have been shown individually to have antiviral activity at a variety of the required nodal steps in the invasive interplay between the HSV virion and the host cell, this invention addresses the more expansive physiological stage upon which this pathological activity occurs. Furthermore, the agents used in the invention have not been shown to have any cytotoxicity when used in appropriate dose levels, they are inexpensive and can be used prophylactically without concern for any significant development of viral resistance. Unlike current treatment methods the invention will be effective against stromal HSV infection and will reduce viral rates of recurrence. The invention will not replace current therapy for active HSV infection. It will, however, reduce clinical requirements for present therapies by minimizing therapeutic failure, thus reducing morbidity and recrudescence.
- The combined complementary activities of the elements of the invention reduce HSV infection by:
- 1. Retarding infected host cell clumping by reducing surface glycoprotein. This reduction of cell clumping mechanically interferes with virion-host cell fusion and interferes with cell-to-cell spread. (2-deoxy-D-glucose)
- 2. Retarding virion-host cell fusion physiologically by reducing levels of glycoprotein gB carbohydrate and, thus, reducing virus infectivity. (2-deoxy-D-glucose)
- 3. Modifying the host-cell immunomodulation abilities and thus improving existing statistical differences in herpes recurrence rates between patients with dietary L-arginine/L-lysine imbalances. (L-lysine)
- 4. Improving host-cell defenses by increasing endogenous reduced-GSH levels. Maintenance of GSH levels interferes with late-stage replication of HSV-1. (Se2+, NAC)
- 5. Improving local host-cell antiviral antioxidative effectiveness by reducing local levels of hydroxyl radicals involved in the pathogenesis of ophthalmic herpes. This improves local tissue survival by countering high levels of free radical damage. (Se2+)
- 6. Increasing host-cell levels of antioxidant thiols and glutathione peroxidase and, in addition, providing synergistic anti-replicative activity in conjunction with acyclovir and deoxyuridine. (quercetin, NAC)
- 7. Inactivating viral replication and reducing host-cell levels of hydroxyl radicals. (Cu2+, ascorbate—alone or, more effectively, in combination)
- 8. Locally inactivating HSV without creating long-term resistance and concurrently ensuring adequate immune system stability. (Zn2+)
- 9. Inhibiting primary virus fusion by blocking access to the heparan sulfate receptor and improving lesion healing by stimulating bFGF mediated reparative angiogenesis. (heparin sodium)
- 10. Inhibiting viral DNA synthesis and thus reducing viral replication. (2-deoxy-D-glucose)
- In vitro studies or limited clinical evaluations have shown each of these biofactors to have some antiviral activity when used alone. They have not before been united in appropriately designed multi-factor formulations available in a variety of delivery vehicles or modes. The invention is unique in providing this new, safe, effective and inexpensive addition to current therapeutic options, thereby improving the potential for success in treating a worldwide disease with severe morbidity, and in neonates, severe mortality potential.
- Definitions
- All terms appearing in this specification and the appended claims are used in the same manner as commonly recognized among those skilled in the technology and terminology of pharmacology. These terms are therefore used in accordance with their conventional definitions, except as otherwise noted. Further clarifications of some of these terms as they apply specifically to this invention are offered below.
- “Unit dosage form” refers to a composition intended for a single administration to treat a subject suffering from a disease or medical condition. Each unit dosage form typically comprises each of the active ingredients of this invention plus pharmaceutically acceptable excipients. Examples of unit dosage forms are individual tablets, individual capsules, bulk powders, liquid solutions, ointments, creams, eye drops, suppositories, emulsions or suspensions. Treatment of the disease or condition may require periodic administration of unit dosage forms, for example: one unit dosage form two or more times a day, one with each meal, one every four hours or other interval, or only one per day. The expression “oral unit dosage form” indicates a unit dosage form designed to be taken orally.
- An “active agent” or “active ingredient” is a component of a dosage form that performs a biological function when administered or induces or affects (enhances or inhibits) a physiological process in some manner. “Activity” is the ability to perform the function, or to induce or affect the process. Active agents and ingredients are distinguishable from excipients such as carriers, vehicles, diluents, lubricants, binders, buffers and other formulating aids, and encapsulating or otherwise protective components.
- 5 “Delivery vehicle” is a composition, which comprises one or more active agents, and is designed to release the active agent in a particular fashion, either by immediately dispersing the agents, or by releasing the agents in a slow sustained fashion. The term encompasses porous microspheres, microcapsules, cross-linked porous beads, and liposomes that contain one or more active ingredients sequestered within internal cavities or porous spaces. The term also includes osmotic delivery systems, coated tablets or capsules that include nonporous microspheres, microcapsules, and liposomes, and active agents dispersed within polymeric matrices. A dosage form can include one or more delivery vehicles.
- “Controlled” or “sustained” or “time release” delivery are equivalent terms that describe the type of active agent delivery that occurs when the active agent is released from a delivery vehicle at an ascertainable and manipulatable rate over a period of time, which is generally on the order of minutes, hours or days, typically ranging from about thirty minutes to about 3 days, rather than being dispersed immediately upon entry into the digestive tract or upon contact with gastric fluid. A controlled release rate can vary as a function of a multiplicity of factors. Factors influencing the rate of delivery in controlled release include the particle size, composition, porosity, charge structure, and degree of hydration of the delivery vehicle and the active ingredient(s), the acidity of the environment (either internal or external to the delivery vehicle), and the solubility of the active agent in the physiological environment, i.e., the particular location along the digestive tract.
- “Targeted” or “site-specific” delivery means that the pharmaceutical preparation is formulated to limit the release of its contents in an amount appropriate to the site where release occurs. The term refers in particular to the active agent, whose site-specific delivery implements the performance of the therapeutic function at a specific site within the body of the subject to whom the preparation is administered.
- The phrase “therapeutically effective amount” means an amount sufficient to produce a therapeutic result. Generally the therapeutic result is an objective or subjective improvement of a disease or condition, achieved by inducing or enhancing a physiological process, blocking or inhibiting a physiological process, or in general terms performing a biological function that helps in or contributes to the elimination or abatement of the disease or condition.
- The phrase “substantially homogeneous,” when used to describe a formulation (or portion of a formulation) that contains a combination of components, means that the components, although each may be in particle or powder form, are fully mixed so that the individual components are not divided into discrete layers or form concentration gradients within the formulation.
- Composition, Formulations and Dosages
- A: Oral Dosage Forms
- The amounts of the eight primary components of the oral dosage form of the pharmaceutical preparation of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges. Expressed in terms of milligrams the components and their preferred ranges may be as follows:
TABLE I Dosage in milligrams % in bi-layered Component Preferred Most Preferred Immed. Sustain. 2-amino-2-deoxy- 75 to 2500 250 to 1500 40-60% balance D-glucose L-lysine 150 to 5000 500 to 20000 40-60% balance monohydrochloride N-acetyl-L-cysteine 80 to 4000 200 to 1200 40-60% balance L-selenomethionine 0.05 to 1.0 0.124 to 0.500 100% D-alpha-tocopherol 15 to 1600 50 to 800 40-60% balance Quercetin 6.0 to 300 20 to 120 40-60% balance Magnesium ascorbate 80 to 3300 270 to 1350 40-60% balance Copper sulfate 0.4 to 14 1.0 to 8.0 100% Zinc picolinate 7.0 to 380 24 to 150 40-60% balance - For magnesium ascorbate in Table I, the following may be substituted: magnesium L-acetylcysteinate in the range of about 80 mg to about 3300 mg, magnesium 2,N-thioctylcysteinate in the range of about 56 mg to about 2800 mg, magnesium 2,N-thioctyltaurate in the range of about 50 mg to about 2500 mg, magnesium taurate in the range of about 80 mg to about 3400 mg, magnesium acetate in the range of about 175 mg to about 5800 mg, magnesium citrate in the range of about 32 mg to about 1610 mg, magnesium oxide in the range of about 50 mg to abut 1600 mg.
- For N-acetyl-L-cysteine in Table I, L-2-oxothiazolidine-4-carboxylate may be substituted in the range of about 80 mg to about 4000 mg.
- For zinc picolinate in Table I, the following may be substituted: zinc sulfate in the range of about 3.7 mg to about 198 mg, zinc dinicotinate in the range of about 7.1 mg to about 380 mg, zinc ascorbate in the range of about 9.5 mg to about 500 mg, zinc L-acetylcysteinate in the range of about 9 mg to about 480 mg, zinc L-lysinate in the range of about 8 mg to about 435 mg.
- For copper sulfate in Table I, the following may be substituted: copper L-acetylcysteinate in the range of about 1 mg to about 30 mg.
- A slower, more sustained release of the active agents can be achieved by placing the active agents in one or more delivery vehicles that inherently retard the release rate. Examples of such delivery vehicles are polymeric matrices that maintain their structural integrity for a period of time prior to dissolving, or that resist dissolving in the stomach but are readily made available in the post-gastric environment by the alkalinity of the intestine, or by the action of metabolites and enzymes that are present only in the intestine. The preparation and use of polymeric matrices designed for sustained drug release is well known. Examples are disclosed in U.S. Pat. No. 5,238,714 (Aug. 24, 1993) to Wallace et al.; Bechtel, W., Radiology 161: 601-604 (1986); and Tice et al., EPO 0302582, Feb. 8, 1989. Selection of the most appropriate polymeric matrix for a particular formulation can be governed by the intended use of the formulation. Preferred polymeric matrices are hydrophilic, water-swellable polymers such as hydroxymethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, hydroxymethylpropylcellulose, polyethylene oxide, and porous bioerodible particles prepared from alginate and chitosan that have been ionically crosslinked.
- A delayed, post-gastric, prolonged release of the active ingredients in the small intestine (duodenum, ileum, jejunum) can also be achieved by encasing the active agents, or by encasing hydrophilic, water-swellable polymers containing the active agents, in an enteric (acid-resistant) film. One class of acid-resistant agents suitable for this purpose is that disclosed in Eury et al., U.S. Pat. No. 5,316,774 (“Blocked Polymeric Particles Having Internal Pore Networks for Delivering Active Substances to Selected Environments”). The formulations disclosed in this patent consist of porous particles whose pores contain an active ingredient and a polymer acting as a blocking agent that degrades and releases the active ingredient upon exposure to either low or high pH or to changes in ionic strength. The most effective enteric materials include polyacids having a pKa of from about 3 to 5. Examples of such materials are fatty acid mixtures, methacrylic acid polymers and copolymers, ethyl cellulose, and cellulose acetate phthalates. Specific examples are methacrylic acid copolymers sold under the name EUDRAGIT®, available from Rohm Tech, Inc., Maiden, Mass., USA; and the cellulose acetate phthalate latex AQUATERIC®, available from FMC Corporation, New York, N.Y., USA, and similar products available from Eastman-Kodak Co., Rochester, N.Y., USA.
- Acid-resistant films of these types are particularly useful in confining the release of components post-gastric environment. Acid-resistant films can be applied as coatings over individual particles of the components of the formulation, with the coated particles then optionally compressed into tablets. An acid-resistant film can also be applied as a layer encasing an entire tablet or a portion of a tablet where each tablet is a single unit dosage form.
- The oral dosage forms of the invention optionally include one or more suitable and pharmaceutically acceptable excipients, such as ethyl cellulose, cellulose acetate phthalates, mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, glucose, sucrose, carbonate, and the like. These excipients serve a variety of functions, as indicated above, as carriers, vehicles, diluents, binders, and other formulating aids. In general, the dosage forms of this invention include powders, liquid forms, tablets or capsules.
- In certain embodiments of the invention, the oral dosage form is a substantially homogeneous single layer tablet that releases all of its components into the stomach upon ingestion. In certain other embodiments of the invention, the oral dosage form is a combination tablet in which the components are divided into two portions: one that is fully released into the stomach upon ingestion, and the other protected by an acid-resistant coating for release only in the intestine, and optionally in a sustained-release manner over a period of time The oral dosage forms of this invention can be formulated for administration at rates of either one unit dosage form per day, or two or more. Unit dosage forms to be taken two to four times per day are preferred.
- Examples 1 through 7 are offered for purposes of illustration only.
- A single layer tablet, substantially homogeneous in composition, which will disintegrate upon ingestion to provide simultaneous accessibility to all components, is prepared with the following composition:
TABLE II Components Weight % Weight (mg) Magnesium L-Ascorbate 11.45% 427.76 L-Selenomethionine 0.002% 0.08 L-Lysine monohydrochloride 32.11% 1200.00 Copper sulfate 0.07% 2.51 Zinc Picolinate 3.84% 143.37 2-Amino-2-deoxy-D-glucose 6.02% 225.00 N-Acetyl-L-cysteine 18.73% 700.00 Quercetin 1.87% 70.00 Excipients Magnesium Stearate 0.75% 28.15 Starch 25.15% 940.00 - The tablet is coated with a coating that dissolves in an aqueous environment. Examples of such a coating are SURELEASE and OPADRY (both available from Colorcon, West Point, Pa., USA).
- The tablet is made by weighing and mixing all ingredients together in a twin-shell blender, granulating either by roller compaction and milling or by a wet granulation process, and feeding the mixture into a high-speed, rotary tablet press. The starch is a tablet binder, for which lactose can be substituted if desired.
- This example illustrates a dual layer tablet, with each layer substantially homogeneous in composition, including an immediate release layer that disintegrates in the stomach to provide simultaneous accessibility to all of the immediate release components and a controlled release layer that remains intact until reaching the intestine where it provides accessibility to all of its components. The tablet is prepared with the following composition:
TABLE III Components Weight % Weight (mg) BI-LAYER TABLET 49% CONTROLLED RELEASE Magnesium L-Ascorbate 11.1% 213.88 L-α-Tocopherol 8.2% 157.58 L-lysine monohydrochloride 28.5% 550.00 2-amino-2-deoxy-D-glucose 7.8% 150.00 N-Acetyl-L-Cysteine 15.5% 300.00 Quercetin 1.8% 35.00 Excipients Magnesium Stearate 0.81% 15.6 Polymer (H2O Sol, Cellulose) 26.40% 510 ACID RESISTANT FILM 51% IMMEDIATE RELEASE Magnesium L-Ascorbate 10.7% 213.88 L-Selenomethionine 0.004% 0.08 D/L α-Tocopherol 7.9% 157.58 L-Lysine 27.6% 550.00 Copper sulfate 0.2% 4.40 Zinc Picolinate 4.3% 86.02 2-amino-2-deoxy-D-glucose 7.5% 150.00 N-Acetyl-L-Cysteine 12.6% 250.00 Quercetin 1.9% 37.00 Excipients Magnesium Stearate 0.79% 15.64 Starch 26.4% 525.00 AQUEOUS, FILM - The controlled release layer comprises 49% by weight of the tablet and has an acid-resistant coating separating it from the immediate release layer. The immediate release layer comprises 51% by weight of the tablet and has a coating that dissolves in an aqueous environment.
- Ingredients for each layer are fed into appropriate hoppers of a two-layer, rotary tablet press, and compressed into two-layer tablets. The magnesium stearate present in both layers provides lubrication of the tablet press and serves as a minimal source of magnesium in the formulation. Selenium may be added as a spray.
- Upon oral ingestion of the tablet, agents of the immediate release layer dissolve rapidly in the stomach and are available for immediate absorption in the gastrointestinal tract. The polymer matrix of the controlled release layer, having been given an enteric coating in the granulation process with EUDRAGIT, does not dissolve in the acid pH of the stomach, but remains intact until it passes to the upper part of the small intestine, where the enteric coating dissolves in the more alkaline environment of the intestine. The polymeric matrix then immediately begins to imbibe water from the intestinal fluid, forming a water-swollen gel. The agents incorporated into this layer are then available for intestinal absorption as they osmotically diffuse from the gel. Since the agents have been selected with a view toward their water solubilities, the rate of diffusion of each agent is reasonably constant for the useful life of the matrix (approximately four hours), by which time the incorporated agents are finally depleted and the matrix disintegrates.
- B. Ophthalmic Dosage Forms
- The ophthalmic dosage forms include solutions and suspensions prepared for use as eye drops to provide immediate therapeutic levels of the formulation and ophthalmic ointments designed to provide slower release rates or for use at bedtime.
-
- The above inactive excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids as briefly listed above and are currently in wide use in ophthalmic pharmaceutical products manufactured under GMP standards.
- The eye drop dosage form of this invention can be formulated for administration at a rate of one unit dosage form daily or two or more unit dosage forms four times daily. A unit dosage form taken three to four times per day is preferred.
- The amounts of the seven primary components of the eye drop dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
- A solution for use as an eye drop for delivering all components simultaneously, is prepared with the following composition:
TABLE IV EXAMPLE 4 Ophthalmic Solution Components Ascorbic acid 0.64% L-lysine hydrochloride 0.60% Zinc Sulfate 0.04% Copper Sulfate 0.06% N-Acetyl-L-cysteine 0.60% 2-Amino-2-deoxy-D-glucose 0.38% USP units/mL Heparin sodium 1.60 Excipients Polyvinyl alcohol, sulfated 1.00% Polyethylene glycol 0.50% Benzalkonium chloride 0.004% -
- The above excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids and are currently in wide use in pharmaceutical products manufactured under GMP standards.
- The ointment dosage forms of this invention can be formulated for administration at rates of one unit dosage form daily or two or more unit dosage forms four times daily. Unit dosage forms to be used one time per day at bedtime or three times per day are preferred.
- The amounts of the eight primary components of the ophthalmic ointment dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
TABLE V EXAMPLE 5 Ophthalmic Ointment Components Ascorbic acid 0.80% L-lysine hydrochloride 0.74% Zinc Sulfate 0.05% Copper Sulfate 0.08% N-Acetyl-L-cysteine 0.75% 2-Amino-2-deoxy-D-glucose 0.48% Quercetin 0.24% USP units/mL Heparin sodium 2.00 Excipients Polyvinyl alcohol, sulfated 0.05% Mineral oil 30% White petrolatum 45% - C. Buccal Mucosal Dosage Forms
- This dosage form includes solutions and suspensions prepared for use for application to the buccal mucosa to provide immediate therapeutic levels of the formulation.
- The buccal mucosa dosage form of the invention will optionally include one or more suitable and pharmaceutically acceptable inactive excipients, including but not limited to: preservatives from a group including benzalkonium chloride, methylparaben, edetate disodium, thimersol, chlorbutanol; buffers from a group including sodium citrate, potassium chloride, magnesium chloride, sodium acetate, citric acid, sodium lactate; vehicles from a group including polyvinyl alcohol, hydroxy methylcellulose, cetyl alcohol, carboxymethylcellulose, hydroxy-propylenemethyl cellulose; pH adjusters from a group including sulfuric acid, hydrochloric acid, sodium hydroxide, monosodium or disodium phosphate; purified water USP; poloxamer 407 or 188, polysorbate 80; polyoxyethylene polyoxypropylene compound; mineral oil USP and similar products.
- The above inactive excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids as briefly listed above and are currently in wide use in pharmaceutical products manufactured under GMP standards.
- The buccal mucosa dosage form of this invention can be formulated for administration at a rate of one unit dosage form daily or two or more unit dosage forms four times daily. A unit dosage form taken three to four times per day is preferred.
- The amounts of the seven primary components of the buccal mucosal dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
- A solution for delivering all components simultaneously to the buccal mucosa, is prepared with the following composition:
TABLE VI EXAMPLE 6 Buccal Mucosal Solution Components Ascorbic acid 0.88% L-lysine hydrochloride 0.82% Zinc Sulfate 0.06% Copper Sulfate 0.09% N-Acetyl-L-cysteine 0.83% 2-Amino-2-deoxy-D-glucose 0.52% USP units/mL Heparin sodium 2.20 Excipients Polyvinyl alcohol, sulfated 1.00% Polyethylene glycol 0.50% Benzalkonium chloride 0.004% - D. Dermatological Dosage Forms
- Dosage forms of the invention for use in the topical treatment of cutaneous manifestations of HSV infections are prepared in a variety of forms including ointments, gels and creams. These preparations optionally include one or more of the following suitable and pharmaceutically acceptable excipients: isopropyl myristate NF, trolamine NF, SD alcohol 40 (20%), white petrolatum USP, lanolin alcohols NF, mineral oil USP, polyvinyl alcohol gel, cetostearyl alcohol NF, lactic acid USP, calcium stearate, dextran, polyoxyl 40 stearate, methylparaben, propylene glycol, sodium lauryl sulfate, polyethylene glycol (PEG) base, synthetic beeswax (B wax), calcium acetate, purified water USP and similar products.
- The above excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids and are currently in wide use in dermatological pharmaceutical products manufactured under GMP standards.
- The dermatological dosage forms of this invention can be formulated for administration at rates of one unit dosage form daily or one unit dosage form six times daily. A unit dosage form used three to four times per day is preferred.
- The amounts of the nine primary components of this dosage form of the invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
TABLE VII Dermatologic Dosage Form Components Ascorbic acid 1.20% D-α-Tocopherol 1.62% L-lysine hydrochloride 1.12% Zinc Sulfate 0.08% Copper Sulfate 0.12% N-Acetyl-L-cysteine 1.13% 2-Amino-2-deoxy-D-glucose 0.71% Quercetin 0.36% USP units/mL Heparin sodium 3.00 Excipients Polyvinyl alcohol, sulfated 1.00% Benzyl alcohol 5.00% Polyethylene glycol 0.50% White petrolatum 45% - E. Vaginal Dosage Forms
- Dosage forms of the invention for local use in treating female genital manifestations of HSV infections, especially HSV-2, are prepared in dosage forms for vaginal insertion including vaginal suppositories, gels and tablets. These preparations optionally may include one or more of the following suitable and pharmaceutically acceptable excipients, including but not limited to: isopropyl myristate NF, mineral oil USP, stearyl alcohol NF, benzoic acid USP, pegoxyl 7 stearate, methylparaben, propylparaben, propylene glycol, butylated hydroxyanisole, coconut or palm kernel oil triglycerides, polysorbate 60 or polysorbate 8, peglicol 5, PEG-100 stearate and sorbitan monostearate, calcium lactate, hydroxypropyl methylcellulose, polysaccharide carrageenan, corn starch, lactose, calcium lactate, silicon dioxide and purified water USP, among others.
- The above excipients serve a variety of functions as carriers, vehicles, diluents, binders, preservatives, buffers, pH adjusters, emulsifiers and other formulating aids and are currently in use in vaginal pharmaceutical products manufactured under GMP standards.
- The vaginal dosage form of this invention can be formulated for administration at rates of one unit dosage form daily or one unit dosage form twice daily. A unit dosage form to be used one time per day is preferred.
- The amounts of the eight primary components of the vaginal dosage form of this invention can vary, although in preferred preparations the components are present in amounts lying within certain ranges.
TABLE VIII Vaginal Dosage Form Components Ascorbic acid 1.04% L-Lysine hydrochloride 0.97% Zinc Sulfate 0.07% Copper Sulfate 0.10% N-Acetyl-L-cysteine 0.98% 2-Amino-2-deoxy-D-glucose 0.62% Quercetin 0.31% USP units/mL Heparin sodium 2.60 Excipients Polyvinyl alcohol, sulfated 0.05% Mineral oil 30% White petrolatum 45% - Methods of Administration and Types of Utility
- The compositions and dosage forms of the invention are useful for treating HSV-1 and HSV-2 infections of epithelial-derived tissues including but not limited to the eye, genitals, and mouth, etc., whether of mucous membrane or dermal origin. The individual formulations consist of orchestrated groups of complementary biofactors that have interlocking antiviral activities. Each functional biofactor has an identifiable and individual antiviral activity which acts against the virus at a different locus of fusion, invasion or replication, which sum with one another to provide the total antiviral activity of the orchestrated formulation: i.e., prevention of virion fusion with the cell to be invaded, interruption of viral DNA replication, improvement of cellular immunomodulation, restoration of endogenous antioxidant potency, etc. However, in some formulations biofactors are incorporated to work not additively, but synergistically, to provide a leveraged therapeutic effect, i.e., although individually Cu2+ and ascorbic acid each negatively influence invasive viruses, when combined they create a synergistic anti-viral effect. Still other biofactors may be included which act synergistically with current cytotoxic drugs (i.e., quercetin with acyclovir or with deoxyuridine). As a result, when the invention is used, the chosen array of carefully selected biofactors function in complementarity and the combined anti-viral result is potent and unique. At the same time, toxic side effects, high drug costs and the development of viral resistance (a recognized problem with the use of acyclovir at least) are avoided.
- The invention is not designed to replace current therapeusis for HSV. Its clinical use will reduce recurrence rates and the severity of infection, and will reduce reliance upon present drugs. It is designed to create a biological environment in which the opportunity for success with present and future therapies will be increased, the possibility for failure reduced.
- As is apparent, both oral dosage forms and topical dosage forms of the invention are described. These dosage forms are designed to provide adequate therapeutic doses of formulation if used alone, or if used in combination, not to exceed appropriate therapeutic levels. This variety of dosage forms and formulations will permit the advising physician great latitude in tailoring for the patient appropriate intensities of treatment for HSV disease at variable clinical levels of severity.
- The foregoing is offered primarily for purposes of illustration. It will be readily apparent to those skilled in the art that the proportions, materials, formulation procedures, administration protocols and other parameters of this invention may be further modified or substituted in various ways without departing from the spirit and scope of the invention.
Claims (69)
1. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form comprising as active ingredients:
(a) a thiol-containing glutathione-increasing agent,
(b) an L-lysine-increasing agent,
(c) a glucosamine-increasing agent, and
(d) magnesium.
2. A unit dosage form in accordance with in which said active ingredients are formulated as a substantially homogeneous tablet that releases all of said active ingredients into the stomach upon ingestion for contact with gastric fluid.
claim 1
3. A unit dosage form in accordance with in which:
claim 1
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose, and
(d) said magnesium is in the form of magnesium ascorbate.
4. A unit dosage form in accordance with in which:
claim 1
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium ascorbate in an amount ranging from about 80 mg to about 3300 mg.
5. A unit dosage form in accordance with in which said active ingredients are formulated as a substantially homogeneous tablet that releases all of said active ingredients into the stomach upon ingestion for contact with gastric fluid.
claim 4
6. A unit dosage form in accordance with further comprising as an active ingredient quercetin in an amount ranging from about 6 mg to about 300 mg.
claim 5
7. A unit dosage form in accordance with further comprising as an active ingredient selenomethionine in an amount ranging from about 0.04 mg to about 1 mg.
claim 5
8. A unit dosage form in accordance with further comprising as active ingredients quercetin in an amount ranging from about 6 mg to about 300 mg and selenomethionine in an amount ranging from about 0.05 mg to about 1 mg.
claim 5
9. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is L-2-oxothiazolidine-4-carboxylate in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium ascorbate in an amount ranging from about 80 mg to about 3300 mg.
10. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium L-acetylcysteinate in an amount ranging from about 80 mg to about 3300 mg.
11. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium 2,N-thioctylcysteinate in an amount ranging from about 56 mg to about 2800 mg.
12. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium 2,N-thioctyltaurate in an amount ranging from about 50 mg to about 2500 mg.
13. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium taurate in an amount ranging from about 80 mg to about 3400 mg.
14. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium acetate in an amount ranging from about 175 mg to about 5800 mg.
15. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium citrate in an amount ranging from about 32 mg to about 1610 mg.
16. A unit dosage form in accordance with in which
claim 2
(a) said thiol-containing glutathione-increasing agent is N-acetyl-L-cysteine in an amount ranging from about 80 mg to about 4000 mg,
(b) said L-lysine-increasing agent is L-lysine monohydrochloride in an amount ranging from about 150 mg to about 5000 mg,
(c) said glucosamine-increasing agent is 2-amino-2-deoxy-D-glucose in an amount ranging from about 75 mg to about 2500 mg, and
(d) said magnesium is in the form of magnesium oxide in an amount ranging from about 50 mg to about 1600 mg.
17. A unit dosage form in accordance with further comprising as an active ingredient zinc picolinate present in an amount ranging from about 7.1 mg to about 380 mg.
claim 5
18. A unit dosage form in accordance with further comprising as an active ingredient copper sulfate present in an amount ranging from about 0.40 mg to about 14 mg.
claim 5
19. A unit dosage form in accordance with further comprising as active ingredients zinc picolinate in an amount ranging from about 7.1 mg to about 380 mg and copper sulfate in an amount ranging from about 0.40 mg to about 14 mg.
claim 5
20. A unit dosage form in accordance with in which said zinc is in the form of zinc sulfate and is present in an amount ranging from about 3.7 mg to about 198 mg.
claim 17
21. A unit dosage form in accordance with in which said zinc is in the form of zinc dinicotinate and is present in an amount ranging from about 7.1 mg to about 380 mg.
claim 17
22. A unit dosage form in accordance with in which said zinc is in the form of zinc ascorbate and is present in an amount ranging from about 9.5 mg to about 500 mg.
claim 17
23. A unit dosage form in accordance with in which said zinc is in the form of zinc L-acetylcysteinate and is present in an amount ranging from about 9 mg to about 480 mg.
claim 17
24. A unit dosage form in accordance with in which said zinc is in the form of zinc L-lysinate and is present in an amount ranging from about 8 mg to about 435 mg.
claim 17
25. A unit dosage form in accordance with in which said unit dosage form is an oral dosage form and said Cu+2 is in the form of copper L-acetylcysteinate and is present in an amount ranging from about 1 mg to about 30 mg.
claim 18
26. A unit dosage form in accordance with further comprising as an active ingredient zinc picolinate in an amount ranging from about 7.1 mg to about 380 mg.
claim 8
27. A unit dosage form in accordance with further comprising as an active ingredient copper sulfate in an amount ranging from about 0.40 mg to about 14.0 mg.
claim 8
28. A unit dosage form in accordance with further comprising as an active ingredient zinc picolinate in an amount ranging from about 7.1 mg to about 380 mg and copper sulfate in an amount ranging from about 0.40 mg to about 14.0 mg.
claim 8
29. A layered tablet for the treatment of herpes simplex and conditions giving rise thereto, said layered tablet comprising an immediate-release layer and a sustained-release layer, and comprising the following as active ingredients distributed between said immediate-release layer and said sustained-release layer in the following approximate proportions expressed as relative weight percents:
30. A layered tablet for use as an oral dosage form, said layered tablet comprising an immediate-release layer and a sustained-release layer, and comprising the following as active ingredients distributed between said immediate-release layer and said sustained-release layer in the following approximate proportions expressed as relative weight percents:
31. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form comprising as active ingredients:
(a) a thiol-containing glutathione-increasing agent having the formula
RMX
in which:
R is a member selected from the group consisting of N-acetyl-L-cysteine, L-2-oxothiazolidine-4-carboxylate, N-2(-mercaptopropionyl)-glycine, and L-lysine,
M is a member selected from the group consisting of Mg+2, Cu+2, Zn+2, and Se+2, and
X is a member selected from the group consisting of hydroxide, halide, sulfate, acetate, ascorbate, and bis-ascorbate;
(b) an L-lysine-increasing agent,
(c) a glucosamine-increasing agent, and
(d) magnesium.
32. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form comprising as active ingredients:
(a) a thiol-containing glutathione-increasing agent having the formula
RMg+2X
in which:
R is a member selected from the group consisting of cysteine, N-acetyl-L-cysteine, L-2-oxothiazolidine-4-carboxylate, N-2(-mercaptopropionyl)-glycine, and L-lysine, and
X is a member selected from the group consisting of hydroxide, halide, sulfate, phosphate, acetate, ascorbate, and bis-ascorbate;
(b) an L-lysine-increasing agent,
(c) a glucosamine-increasing agent, and
(d) magnesium.
33. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form comprising as active ingredients:
(a) a thiol-containing glutathione-increasing agent having the formula
RCu+2X
in which:
R is a member selected from the group consisting of cysteine, acetylcysteine, N-acetyl-cysteine, L-2-oxothiazolidine-4-carboxylate, N-2(-mercaptopropionyl)-glycine, and L-lysine, and
X is a member selected from the group consisting of hydroxide, halide, sulfate, phosphate, and acetate;
(b) an L-lysine-increasing agent,
(c) a glucosamine-increasing agent, and
(d) magnesium.
34. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form comprising as active ingredients:
(a) a thiol-containing glutathione-increasing agent;
(b) an L-lysine-increasing agent,
(c) a glucosamine-increasing agent,
(d) magnesium, and
(e) a complex having the formula
RZn+2X
in which:
R is a member selected from the group consisting of cysteine, acetylcysteine, N-acetyl-cysteine, L-2-oxothiazolidine-4-carboxylate, N-2(-mercaptopropionyl)-glycine, and L-lysine, and
X is a member selected from the group consisting of hydroxide, halide, sulfate, phosphate, acetate, ascorbate, and bis-ascorbate.
35. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form comprising as active ingredients:
(a) a thiol-containing glutathione-increasing agent;
(b) an L-lysine-increasing agent,
(c) a glucosamine-increasing agent,
(d) magnesium,
(e) copper,
(f) zinc, and
(g) selenium, at least one of (d), (e), (f), and (g) being in the form of a complex having the formula
RnMX
in which:
R is a member selected from the group consisting of 2,N-thioctylcysteine, 2,N-thioctyllysine, and 2,N-thioctyltaurine,
n is 1 or 2,
M is a member selected from the group consisting of Mg+2, Cu+2, Zn+2, and Se+2, and
X is a member selected from the group consisting of hydroxide, halide, sulfate, acetate, ascorbate, and bis-ascorbate.
36. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form being an ophthalmic eyedrop dosage form comprising as active ingredients:
(a) ascorbic acid,
(b) 2-amino-2-deoxy-D-glucose,
(c) zinc sulfate, and
(d) L-lysine hydrochloride.
37. A unit dosage form in accordance with in which the concentrations of said active ingredients are as follows:
claim 36
(a) about 1.3 μg/mL to about 30 μg/mL of ascorbic acid,
(b) about 0.01 mg/mL to about 0.2 mg/mL of 2-amino-2-deoxy-D-glucose,
(c) about 0.06 μg/mL to about 8.5 μg/mL of zinc sulfate, and
(d) about 1.6 μg/mL to about 23 μg/mL of L-lysine hydrochloride.
38. A unit dosage form in accordance with further comprising as an active ingredient copper sulfate in a concentration ranging from about 0.4 μg/mL to about 15 μg/mL.
claim 37
39. A unit dosage form in accordance with further comprising as an active ingredient heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 37
40. A unit dosage form in accordance with further comprising as active ingredients copper sulfate in a concentration ranging from about 0.4 μg/mL to about 15 μg/mL and heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 37
41. A unit dosage form in accordance with further comprising as an active ingredient N-acetyl-L-cysteine in a concentration ranging from about 0.02 mg/mL to about 0.5 mg/mL.
claim 37
42. A unit dosage form in accordance with further comprising as an active ingredient L-2-oxothiazolidine-4-carboxylate in a concentration ranging from about 0.02 mg/mL to about 0.5 mg/mL.
claim 37
43. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form being an ophthalmic ointment or gel comprising as active ingredients:
(a) about 1.3 μg/mL to about 30 μg/mL of ascorbic acid,
(b) about 0.01 mg/mL to about 0.2 mg/mL of 2-amino-2-deoxy-D-glucose,
(c) about 0.06 μg/mL to about 8.5 μg/mL of zinc sulfate, and
(d) about 1.6 μg/mL to about 23 μg/mL of L-lysine hydrochloride.
44. A unit dosage form in accordance with further comprising as an active ingredient copper sulfate in a concentration ranging from about 0.4 μg/mL to about 15 μg/mL.
claim 43
45. A unit dosage form in accordance with further comprising as an active ingredient quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL.
claim 43
46. A unit dosage form in accordance with further comprising as an active ingredient heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 43
47. A unit dosage form in accordance with further comprising as active ingredients quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL and heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 43
48. A unit dosage form in accordance with further comprising as active ingredients quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL, heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL, and N-acetyl-L-cysteine in a concentration ranging from about 0.02 mg/mL to about 0.5 mg/mL.
claim 43
49. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form being a vaginal dosage form selected from the group consisting of vaginally appropriate suppositories, creams, tablets and gels, comprising as active ingredients:
(a) about 1.3 μg/mL to about 30 μg/mL of ascorbic acid,
(b) about 0.01 mg/mL to about 0.2 mg/mL of 2-amino-2-deoxy-D-glucose,
(c) about 0.06 μg/mL to about 8.5 μg/mL of zinc sulfate, and
(d) about 1.6 μg/mL to about 23 μg/mL of L-lysine hydrochloride.
50. A unit dosage form in accordance with further comprising as an active ingredient copper sulfate in a concentration ranging from about 0.4 μg/mL to about 15 μg/mL.
claim 49
51. A unit dosage form in accordance with further comprising as an active ingredient quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL.
claim 49
52. A unit dosage form in accordance with further comprising as an active ingredient heparin sodium in a concentration ranging from about 0.6 unit/mL to about 8 units/mL.
claim 49
53. A unit dosage form in accordance with further comprising as an active ingredient quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL and heparin sodium in a concentration ranging from about 0.6 unit/mL to about 8 units/mL.
claim 49
54. A unit dosage form in accordance with further comprising as an active ingredient quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL, heparin sodium in a concentration ranging from about 0.6 unit/mL to about 8 units/mL, and N-acetylcysteine in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 49
55. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form being a mucosal dosage form selected from the group consisting of vaginally appropriate suppositories, creams, tablets and gels, comprising as active ingredients:
(a) ascorbic acid, (b) 2-amino-2-deoxy-D-glucose, (c) zinc sulfate, and (d) L-lysine hydrochloride.
56. A unit dosage form in accordance with in which the concentrations of said active ingredients are as follows:
claim 55
(a) about 1.3 μg/mL to about 30 μg/mL of ascorbic acid,
(b) about 0.01 mg/mL to about 0.2 mg/mL of 2-amino-2-deoxy-D-glucose,
(c) about 0.06 μg/mL to about 8.5 μg/mL of zinc sulfate, and
(d) about 1.6 μg/mL to about 23 μg/mL of L-lysine hydrochloride.
57. A unit dosage form in accordance with further comprising as an active ingredient copper sulfate in a concentration ranging from about 0.4 μg/mL to about 15 μg/mL.
claim 55
58. A unit dosage form in accordance with further comprising as an active ingredient heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 55
59. A unit dosage form in accordance with further comprising as active ingredients copper sulfate in a concentration ranging from about 0.4 μg/mL to about 15 μg/mL and heparin sodium in a concentration ranging from about 0.6 units/mL to about 8 units/mL.
claim 55
60. A unit dosage form in accordance with further comprising as an active ingredient N-acetyl-L-cysteine in a concentration ranging from about 0.02 mg/mL to about 0.5 mg/mL.
claim 55
61. A unit dosage form in accordance with further comprising as an active ingredient L-2-oxothiazolidine-4-carboxylate in a concentration ranging from about 0.02 mg/mL to about 0.5 mg/mL.
claim 55
62. A unit dosage form for the treatment of herpes simplex and conditions giving rise thereto, said unit dosage form being a topical dermal dosage form selected from the group consisting of topical lotions, gels, creams, and emulsions, comprising as active ingredients:
(a) ascorbic acid,
(b) 2-amino-2-deoxy-D-glucose,
(c) zinc sulfate, and
(d) L-lysine hydrochloride.
63. A unit dosage form in accordance with in which the concentrations of said active ingredients are as follows:
claim 62
(a) about 1.3 μg/mL to about 30 μg/mL of ascorbic acid,
(b) about 0.01 mg/mL to about 0.2 mg/mL of 2-amino-2-deoxy-D-glucose,
(c) about 0.06 μg/mL to about 8.5 μg/mL of zinc sulfate, and
(d) about 1.6 μg/mL to about 23 μg/mL of L-lysine hydrochloride.
64. A unit dosage form in accordance with further comprising as an active ingredient Cu+2 in a concentration ranging from about 0.15 μg/mL to about 15 μg/mL.
claim 63
65. A unit dosage form in accordance with further comprising as an active ingredient quercetin in a concentration ranging from about 0.12 μg/mL to about 2.75 μg/mL.
claim 64
66. A unit dosage form in accordance with further comprising as an active ingredient heparin sodium in a concentration ranging from about 0.6 unit/mL to about 8 units/mL.
claim 65
67. A unit dosage form in accordance with further comprising as an active ingredient D,α-tocopherol in a concentration ranging from about 16 μg/mL to about 1600 μg/mL.
claim 66
68. A unit dosage form in accordance with in which said D,α-tocopherol is in the form of D,α-tocopherol nicotinate in a concentration ranging from about 19 μg/mL to about 2600 μg/mL.
claim 67
69. A unit dosage form in accordance with in which said D,α-tocopherol is in the form of D,α-tocopherol succinate in a concentration ranging from about 19 μg/mL to about 2500 μg/mL.
claim 67
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/828,323 US6455061B2 (en) | 1998-09-21 | 2001-04-05 | Unit dosage forms for the treatment of herpes simplex |
US10/209,432 US6632445B2 (en) | 1998-09-21 | 2002-07-30 | Unit dosage forms for the treatment of herpes simplex |
US10/627,439 US7351715B2 (en) | 1998-09-21 | 2003-07-25 | Unit dosage forms for the treatment of herpes simplex |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10130898P | 1998-09-21 | 1998-09-21 | |
US09/396,019 US6231889B1 (en) | 1998-09-21 | 1999-09-15 | Unit dosage forms for the treatment of herpes simplex |
US09/828,323 US6455061B2 (en) | 1998-09-21 | 2001-04-05 | Unit dosage forms for the treatment of herpes simplex |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/396,019 Division US6231889B1 (en) | 1998-09-21 | 1999-09-15 | Unit dosage forms for the treatment of herpes simplex |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/209,432 Division US6632445B2 (en) | 1998-09-21 | 2002-07-30 | Unit dosage forms for the treatment of herpes simplex |
Publications (2)
Publication Number | Publication Date |
---|---|
US20010031737A1 true US20010031737A1 (en) | 2001-10-18 |
US6455061B2 US6455061B2 (en) | 2002-09-24 |
Family
ID=26798118
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/396,019 Expired - Fee Related US6231889B1 (en) | 1998-09-21 | 1999-09-15 | Unit dosage forms for the treatment of herpes simplex |
US09/828,323 Expired - Fee Related US6455061B2 (en) | 1998-09-21 | 2001-04-05 | Unit dosage forms for the treatment of herpes simplex |
US10/209,432 Expired - Fee Related US6632445B2 (en) | 1998-09-21 | 2002-07-30 | Unit dosage forms for the treatment of herpes simplex |
US10/627,439 Expired - Fee Related US7351715B2 (en) | 1998-09-21 | 2003-07-25 | Unit dosage forms for the treatment of herpes simplex |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/396,019 Expired - Fee Related US6231889B1 (en) | 1998-09-21 | 1999-09-15 | Unit dosage forms for the treatment of herpes simplex |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/209,432 Expired - Fee Related US6632445B2 (en) | 1998-09-21 | 2002-07-30 | Unit dosage forms for the treatment of herpes simplex |
US10/627,439 Expired - Fee Related US7351715B2 (en) | 1998-09-21 | 2003-07-25 | Unit dosage forms for the treatment of herpes simplex |
Country Status (1)
Country | Link |
---|---|
US (4) | US6231889B1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2869764A1 (en) * | 2004-05-07 | 2005-11-11 | Olivier Roche | LIQUID NUTRIENT COMPLEMENT AND PROCESS FOR PREPARING THE COMPLEMENT |
JP2006219460A (en) * | 2005-02-14 | 2006-08-24 | Ryukyu Bio Resource Kaihatsu:Kk | Anti-herpesvirus composition and method for producing fermented terminalia catappa extract having anti-herpesvirus action |
EP1531837A4 (en) * | 2001-06-07 | 2006-11-15 | Chiou Consulting Inc | Compositions and methods for the prophylaxis and treatment of aphthous ulcers and herpes simplex lesions |
US20070049640A1 (en) * | 2005-08-24 | 2007-03-01 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses therefor |
US10300371B2 (en) | 2015-10-01 | 2019-05-28 | Mc10, Inc. | Method and system for interacting with a virtual environment |
US11071745B2 (en) * | 2014-07-07 | 2021-07-27 | Elian Llc | Viral prophylaxis treatment methods and pre-exposure prophylaxis kits |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19836339B4 (en) * | 1998-08-11 | 2011-12-22 | N.V. Nutricia | carbohydrate mix |
US6303651B1 (en) * | 1999-09-23 | 2001-10-16 | Thione International, Inc. | Synergistic antioxidant veterinary compositions |
WO2001080832A2 (en) * | 2000-04-26 | 2001-11-01 | Oregon Health Sciences University | Administration of a thiol-based chemoprotectant compound |
AT412758B (en) * | 2000-06-05 | 2005-07-25 | Vis Vitalis Lizenz & Handels | USE OF A SELENICITY SOLUTION TO TREAT VIRAL DISEASES |
US7288265B1 (en) | 2000-10-16 | 2007-10-30 | Lectec Corporation | Treating viral infection at smallpox vaccination site |
ATE316786T1 (en) * | 2000-11-22 | 2006-02-15 | Rxkinetix Inc | TREATMENT OF MUCOSITIS |
WO2003002125A2 (en) * | 2001-06-29 | 2003-01-09 | Astion A/S | Combination of aminosugars and cysteine or cysteine derivatives |
US20050101563A1 (en) * | 2001-08-14 | 2005-05-12 | Pharmacia Corporation | Method and compositions for the treatment and prevention of pain and inflammation |
US20030114416A1 (en) * | 2001-08-14 | 2003-06-19 | Pharmacia Corporation | Method and compositions for the treatment and prevention of pain and inflammation with a cyclooxygenase-2 selective inhibitor and chondroitin sulfate |
JP4255656B2 (en) * | 2001-09-17 | 2009-04-15 | 株式会社メニコン | Ophthalmic solution and contact lens solution |
DK1538924T3 (en) * | 2002-08-30 | 2008-02-04 | Campina Bv | Foaming ingredient and products containing the ingredient |
WO2004062600A2 (en) * | 2003-01-08 | 2004-07-29 | Lectec Corporation | Antiviral patch |
AU2003900064A0 (en) * | 2003-01-09 | 2003-01-23 | Penam Investments Pty. Ltd. | A method of treatment or prophylaxis of viral infection. |
US20040180006A1 (en) * | 2003-03-12 | 2004-09-16 | Sceusa Nicholas A. | Methods and compositions for blocking the calcium cascade |
BRPI0415766A (en) * | 2003-10-22 | 2006-12-26 | Council Of Scientifc & Ind Res | use of selected zinc-amino acid complexes as anti-malarial |
US7968122B2 (en) * | 2003-12-10 | 2011-06-28 | Adventrx Pharmaceuticals, Inc. | Anti-viral pharmaceutical compositions |
US20060020035A1 (en) * | 2004-03-11 | 2006-01-26 | Oregon Health & Science University | Bone marrow protection with N-acetyl-L-cysteine |
EP1597978A1 (en) | 2004-05-17 | 2005-11-23 | Nutricia N.V. | Synergism of GOS and polyfructose |
US8252769B2 (en) | 2004-06-22 | 2012-08-28 | N. V. Nutricia | Intestinal barrier integrity |
EP1721611A1 (en) * | 2005-04-21 | 2006-11-15 | N.V. Nutricia | Nutritional supplement with oligosaccharides for a category of HIV patients |
DK1758469T4 (en) * | 2004-06-22 | 2013-11-04 | Nutricia Nv | Improving barrier integrity in HIV patients using fatty acids |
EP1723951A1 (en) * | 2005-04-21 | 2006-11-22 | N.V. Nutricia | Nutritional supplement with oligosaccharides for a category of HIV patients |
MX2007001155A (en) * | 2004-07-29 | 2007-08-14 | Creabilis Therapeutics Spa | Methods, systems, and computer program products for providing presence gateway functionality in a telecommunications network. |
US20060030620A1 (en) * | 2004-08-04 | 2006-02-09 | Chia-Yu Chang | Method for treating and/or preventing ischemia/reperfusion injury |
US7740875B2 (en) * | 2004-10-08 | 2010-06-22 | Mediquest Therapeutics, Inc. | Organo-gel formulations for therapeutic applications |
US20060078580A1 (en) * | 2004-10-08 | 2006-04-13 | Mediquest Therapeutics, Inc. | Organo-gel formulations for therapeutic applications |
US20060141483A1 (en) * | 2004-12-23 | 2006-06-29 | Calton Gary J | Stabilization of viral compositions |
BE1016468A5 (en) * | 2005-02-25 | 2006-11-07 | Raf Gijsemans | Composition for the treatment and prevention of viral infections. |
PL1871181T5 (en) * | 2005-04-21 | 2017-10-31 | Nutricia Nv | Nutritional supplement for hiv patients |
MX2007015078A (en) * | 2005-05-31 | 2008-01-18 | Akzo Nobel Nv | Storage-stable accelerator solution. |
EP1774971A1 (en) * | 2005-10-14 | 2007-04-18 | Advanced in Vitro Cell Technologies, S.L. | Chitosan and heparin nanoparticles |
CA2635603C (en) * | 2005-11-30 | 2016-01-19 | Endo Pharmaceuticals Inc. | Treatment of xerostomia |
US7790203B2 (en) * | 2005-12-13 | 2010-09-07 | Lowder Tom R | Composition and regimen for the treatment of herpes simplex virus, herpes zoster, and herpes genitalia epidermal herpetic lesions |
RU2309740C1 (en) * | 2006-08-03 | 2007-11-10 | Исаак Григорьевич Гитлин | Antioxidant used in prophylaxis if diseases associated with oxidative stress, method for its preparing, granulate containing thereof, and tabletted or capsulated formulated based on thereof |
WO2008097581A1 (en) * | 2007-02-06 | 2008-08-14 | Incept, Llc | Polymerization with precipitation of proteins for elution in physiological solution |
WO2009096772A1 (en) * | 2008-02-01 | 2009-08-06 | N.V. Nutricia | Composition for stimulating natural killer cell activity |
WO2009137827A2 (en) * | 2008-05-09 | 2009-11-12 | Tiara Pharmaceuticals, Inc. | Controlled release of n-acetylcysteine (nac) for reduction of systemic and/or vascular inflammation |
MX2011004678A (en) | 2008-11-04 | 2011-10-11 | Vymedic Llc | Antiviral supplement formulations. |
GB2470040A (en) | 2009-05-06 | 2010-11-10 | Systagenix Wound Man Ip Co Bv | Wound dressing material comprising N-acetyl cysteine |
US20120070476A1 (en) * | 2009-05-29 | 2012-03-22 | Moench Thomas R | Compositions and Methods for Inactivation of Pathogens at Genital Tract Surfaces |
FR2949196B1 (en) * | 2009-08-21 | 2013-01-11 | Oreal | CAPILLARY COLORING PROCESS USING CHROMENIC OR CHROMANIC COLOR |
US20110206638A1 (en) * | 2010-01-20 | 2011-08-25 | The Regents Of The University Of California | Compositions and methods for reducing the mutation rate of viruses |
US10016357B2 (en) * | 2012-03-22 | 2018-07-10 | The Beauty Factory, Llc | Personal lubricants |
DE202012103733U1 (en) | 2012-09-28 | 2012-11-15 | Reiner Rittinghausen | Composition for nutritive supplementation or treatment for herpes |
US11318089B2 (en) * | 2013-03-15 | 2022-05-03 | Cda Research Group, Inc. | Topical copper ion treatments and methods of making topical copper ion treatments for use in various anatomical areas of the body |
US11007143B2 (en) | 2013-03-15 | 2021-05-18 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the oral-respiratory-otic areas of the body |
US10398733B2 (en) | 2013-03-15 | 2019-09-03 | Cda Research Group, Inc. | Topical copper ion treatments and methods of treatment using topical copper ion treatments in the dermatological areas of the body |
US11000545B2 (en) | 2013-03-15 | 2021-05-11 | Cda Research Group, Inc. | Copper ion compositions and methods of treatment for conditions caused by coronavirus and influenza |
US11083750B2 (en) | 2013-03-15 | 2021-08-10 | Cda Research Group, Inc. | Methods of treatment using topical copper ion formulations |
CN106998778A (en) | 2014-11-25 | 2017-08-01 | 雅培制药有限公司 | Improve the method for visual processes, visual acuity or both by applying the composition comprising RRR alpha tocopherols and carotenoid to baby |
AU2016211605A1 (en) * | 2015-01-27 | 2017-08-10 | Florengale, Llc | Healing topical composition |
EP3426262B1 (en) * | 2016-03-08 | 2023-08-23 | University of Utah Research Foundation | Cross-linking agents and associated methods |
WO2019005222A1 (en) * | 2017-06-29 | 2019-01-03 | Advaite LLC. | Treatment and diagnosis of ocular surface disorders |
CA3087622A1 (en) * | 2018-01-05 | 2019-07-11 | University Of Utah Research Foundation | Treatment of myopic progression |
MX2018002985A (en) * | 2018-03-09 | 2019-09-10 | Inst Tecnologico Jose Mario Molina Pasquel Y Henriquez | Bimetal complexes with divalent cations with an inhibiting effect on hsv replication. |
US11193184B2 (en) | 2019-02-22 | 2021-12-07 | Cda Research Group, Inc. | System for use in producing a metal ion suspension and process of using same |
WO2021211487A1 (en) * | 2020-04-16 | 2021-10-21 | Siemens Healthcare Diagnostics Inc. | Compositions and methods of treating covid-19 with heparin or other negatively charged molecules |
US20210386779A1 (en) * | 2020-04-30 | 2021-12-16 | Leon Margolin | Compositions and methods for dietary enhancement of immune system function |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4937234A (en) * | 1988-08-10 | 1990-06-26 | Fahim Mostafa S | Minerals in bioavailable form |
US5525519A (en) * | 1992-01-07 | 1996-06-11 | Middlesex Sciences, Inc. | Method for isolating biomolecules from a biological sample with linear polymers |
US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
US6133318A (en) * | 1995-11-15 | 2000-10-17 | Hart; Francis J. | Oxalic acid or oxalate compositions and methods for bacterial, viral, and other diseases or conditions |
ATE444760T1 (en) * | 1997-01-13 | 2009-10-15 | Univ Emory | GLUTATHIONE FOR THE TREATMENT OF INFLUENCE INFECTIONS |
US5804594A (en) * | 1997-01-22 | 1998-09-08 | Murad; Howard | Pharmaceutical compositions and methods for improving wrinkles and other skin conditions |
US5962030A (en) * | 1997-03-07 | 1999-10-05 | Akesis Pharmaceuticals, Inc. | Dietary supplement and method of treatment for diabetic control |
US6207190B1 (en) * | 1998-08-13 | 2001-03-27 | Chronorx, Llc | Dosage forms for the treatment of the chronic glaucomas |
-
1999
- 1999-09-15 US US09/396,019 patent/US6231889B1/en not_active Expired - Fee Related
-
2001
- 2001-04-05 US US09/828,323 patent/US6455061B2/en not_active Expired - Fee Related
-
2002
- 2002-07-30 US US10/209,432 patent/US6632445B2/en not_active Expired - Fee Related
-
2003
- 2003-07-25 US US10/627,439 patent/US7351715B2/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1531837A4 (en) * | 2001-06-07 | 2006-11-15 | Chiou Consulting Inc | Compositions and methods for the prophylaxis and treatment of aphthous ulcers and herpes simplex lesions |
FR2869764A1 (en) * | 2004-05-07 | 2005-11-11 | Olivier Roche | LIQUID NUTRIENT COMPLEMENT AND PROCESS FOR PREPARING THE COMPLEMENT |
WO2005110114A1 (en) * | 2004-05-07 | 2005-11-24 | Olivier Roche | Liquid nutritional supplement and method for preparing same |
JP2006219460A (en) * | 2005-02-14 | 2006-08-24 | Ryukyu Bio Resource Kaihatsu:Kk | Anti-herpesvirus composition and method for producing fermented terminalia catappa extract having anti-herpesvirus action |
US20070049640A1 (en) * | 2005-08-24 | 2007-03-01 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses therefor |
US8148356B2 (en) | 2005-08-24 | 2012-04-03 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses therefor |
US8399445B2 (en) | 2005-08-24 | 2013-03-19 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses thereof |
US8653061B2 (en) | 2005-08-24 | 2014-02-18 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses thereof |
US8952065B2 (en) | 2005-08-24 | 2015-02-10 | Cumberland Pharmaceuticals, Inc. | Acetylcysteine composition and uses thereof |
US11071745B2 (en) * | 2014-07-07 | 2021-07-27 | Elian Llc | Viral prophylaxis treatment methods and pre-exposure prophylaxis kits |
US10300371B2 (en) | 2015-10-01 | 2019-05-28 | Mc10, Inc. | Method and system for interacting with a virtual environment |
Also Published As
Publication number | Publication date |
---|---|
US20020197313A1 (en) | 2002-12-26 |
US6455061B2 (en) | 2002-09-24 |
US7351715B2 (en) | 2008-04-01 |
US20040018996A1 (en) | 2004-01-29 |
US6231889B1 (en) | 2001-05-15 |
US6632445B2 (en) | 2003-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6455061B2 (en) | Unit dosage forms for the treatment of herpes simplex | |
US6042849A (en) | Unit dosage forms for treatment of vasoconstriction and related conditions | |
US6288106B1 (en) | Processes for the synthesis and use of various α-lipoic acid complexes | |
US6207190B1 (en) | Dosage forms for the treatment of the chronic glaucomas | |
US5075116A (en) | Composition and method for treatment of macular degeneration | |
EP1484059B1 (en) | Antiviral compositions comprising phenylacetic acid derivatives | |
US12257238B2 (en) | Magnesium biotinate compositions and methods of use | |
US20090062387A1 (en) | Method of preventing nephrocalcinosis | |
US5156852A (en) | Composition and method for combating macular degeneration | |
CA2072533A1 (en) | Process for the preparation of a pharmaceutical formulation containing at least two different active substances and use of such a formulation | |
SK8272000A3 (en) | The use of phospholipid complexes of oligomeric proanthocyanidines | |
JP2002509540A (en) | Pharmaceutical composition containing aldose reductase inhibitor and ACE inhibitor | |
WO2008091704A2 (en) | Treatment of cushing's syndrome and autism | |
US20220288050A1 (en) | Methods and compositions for the antiviral use of synthetic lysine analogs and mimetics | |
PL190505B1 (en) | Pharmaceutic compositions | |
JP2006515361A (en) | Method for treating or preventing symptoms of herpes virus infection | |
WO2004006908A1 (en) | Remedies for pigmentation | |
US5290809A (en) | Methods for the treatment of seborrheic dermatitis | |
JP3612729B2 (en) | Nourishing tonic | |
SI9620036B (en) | Aminotetralin derivative for the therapy of cardiovascular diseases | |
US6395720B1 (en) | Synergistically acting compositions for selectively combating tumor tissue | |
AU2734095A (en) | A pharmaceutical composition for the prevention and/or treatment of viral infections and optionally inflammations as well as a method for the treatment thereof | |
US6423847B1 (en) | Synthesis and clinical uses of D,α-tocopherol nicotinate compounds | |
US20130210841A1 (en) | Mucoadhesive buccal tablets for the treatment of orofacial herpes | |
RU2336076C2 (en) | Peroral medical product for offset of magnesium deficiency in organism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20100924 |